refactor : llama-model.cpp (#16252)

* Sqashed: llama-model.cpp refactoring

* Fix formatting of attn / ffn / ffn_moe calls

* Fix import regression / unify spacing in models.h

* totally DID NOT miss those!

* Add missing qwen3vl(moe) models

* Add missing new .cpp files to build

* Remove extra semicolons

* Editor checker

* Update src/models/models.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
This commit is contained in:
Piotr Wilkin (ilintar) 2025-10-31 23:40:23 +01:00 committed by GitHub
parent 0de0a01576
commit bea04522ff
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
97 changed files with 13423 additions and 13563 deletions

View File

@ -35,6 +35,100 @@ add_library(llama
unicode-data.cpp
unicode.cpp
unicode.h
models/apertus.cpp
models/arcee.cpp
models/arctic.cpp
models/arwkv7.cpp
models/baichuan.cpp
models/bailingmoe.cpp
models/bailingmoe2.cpp
models/bert.cpp
models/bitnet.cpp
models/bloom.cpp
models/chameleon.cpp
models/chatglm.cpp
models/codeshell.cpp
models/cogvlm.cpp
models/cohere2-iswa.cpp
models/command-r.cpp
models/dbrx.cpp
models/deci.cpp
models/deepseek.cpp
models/deepseek2.cpp
models/dots1.cpp
models/dream.cpp
models/ernie4-5-moe.cpp
models/ernie4-5.cpp
models/exaone.cpp
models/exaone4.cpp
models/falcon-h1.cpp
models/falcon.cpp
models/gemma-embedding.cpp
models/gemma.cpp
models/gemma2-iswa.cpp
models/gemma3-iswa.cpp
models/gemma3n-iswa.cpp
models/glm4-moe.cpp
models/glm4.cpp
models/gpt2.cpp
models/gptneox.cpp
models/granite-hybrid.cpp
models/granite.cpp
models/grok.cpp
models/grovemoe.cpp
models/hunyuan-dense.cpp
models/hunyuan-moe.cpp
models/internlm2.cpp
models/jais.cpp
models/jamba.cpp
models/lfm2.cpp
models/llada-moe.cpp
models/llada.cpp
models/llama-iswa.cpp
models/llama.cpp
models/mamba.cpp
models/minicpm3.cpp
models/minimax-m2.cpp
models/mpt.cpp
models/nemotron-h.cpp
models/nemotron.cpp
models/neo-bert.cpp
models/olmo.cpp
models/olmo2.cpp
models/olmoe.cpp
models/openai-moe-iswa.cpp
models/openelm.cpp
models/orion.cpp
models/phi2.cpp
models/phi3.cpp
models/plamo.cpp
models/plamo2.cpp
models/plm.cpp
models/qwen.cpp
models/qwen2.cpp
models/qwen2moe.cpp
models/qwen2vl.cpp
models/qwen3.cpp
models/qwen3vl.cpp
models/qwen3vl-moe.cpp
models/qwen3moe.cpp
models/refact.cpp
models/rwkv6-base.cpp
models/rwkv6.cpp
models/rwkv6qwen2.cpp
models/rwkv7-base.cpp
models/rwkv7.cpp
models/seed-oss.cpp
models/smallthinker.cpp
models/smollm3.cpp
models/stablelm.cpp
models/starcoder.cpp
models/starcoder2.cpp
models/t5-dec.cpp
models/t5-enc.cpp
models/wavtokenizer-dec.cpp
models/xverse.cpp
models/graph-context-mamba.cpp
)
target_include_directories(llama PRIVATE .)

File diff suppressed because it is too large Load Diff

125
src/models/apertus.cpp Normal file
View File

@ -0,0 +1,125 @@
#include "models.h"
llm_build_apertus::llm_build_apertus(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale =
hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur_pos", il);
cb(Kcur, "Kcur_pos", il);
cb(Vcur, "Vcur_pos", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network with xIELU activation
{
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, nullptr, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// Up projection
ggml_tensor * up = build_lora_mm(model.layers[il].ffn_up, cur);
cb(up, "ffn_up", il);
float alpha_n_val = hparams.xielu_alpha_n[il];
float alpha_p_val = hparams.xielu_alpha_p[il];
float beta_val = hparams.xielu_beta[il];
float eps_val = hparams.xielu_eps[il];
// Apply xIELU activation
ggml_tensor * activated = ggml_xielu(ctx0, up, alpha_n_val, alpha_p_val, beta_val, eps_val);
cb(activated, "ffn_xielu", il);
// Down projection
cur = build_lora_mm(model.layers[il].ffn_down, activated);
cb(cur, "ffn_down", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

135
src/models/arcee.cpp Normal file
View File

@ -0,0 +1,135 @@
#include "models.h"
llm_build_arcee::llm_build_arcee(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
// ARCEE uses relu^2 instead of silu
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

138
src/models/arctic.cpp Normal file
View File

@ -0,0 +1,138 @@
#include "models.h"
llm_build_arctic::llm_build_arctic(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
cb(ffn_out, "ffn_out", il);
// MoE
cur = build_norm(inpSA,
model.layers[il].ffn_norm_exps, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm_exps", il);
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_out);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

86
src/models/arwkv7.cpp Normal file
View File

@ -0,0 +1,86 @@
#include "models.h"
llm_build_arwkv7::llm_build_arwkv7(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv7_base(model, params) {
GGML_ASSERT(n_embd == hparams.n_embd_r());
ggml_tensor * cur;
ggml_tensor * inpL;
ggml_tensor * v_first = nullptr;
inpL = build_inp_embd(model.tok_embd);
auto * rs_inp = build_rs_inp();
const auto n_embd = hparams.n_embd;
const auto n_seq_tokens = ubatch.n_seq_tokens;
const auto n_seqs = ubatch.n_seqs;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const llama_layer * layer = &model.layers[il];
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
cb(att_norm, "attn_norm", il);
ggml_tensor * x_prev = ggml_concat(
ctx0,
token_shift,
ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
1
);
cur = build_rwkv7_time_mix(rs_inp, att_norm, x_prev, v_first, ubatch, il);
token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
}
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

122
src/models/baichuan.cpp Normal file
View File

@ -0,0 +1,122 @@
#include "models.h"
llm_build_baichuan::llm_build_baichuan(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
switch (model.type) {
case LLM_TYPE_7B:
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
break;
case LLM_TYPE_13B:
break;
default:
GGML_ABORT("fatal error");
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

144
src/models/bailingmoe.cpp Normal file
View File

@ -0,0 +1,144 @@
#include "models.h"
llm_build_bailingmoe::llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
false, hparams.expert_weights_scale,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
{
ggml_tensor * ffn_shexp = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

135
src/models/bailingmoe2.cpp Normal file
View File

@ -0,0 +1,135 @@
#include "models.h"
llm_build_bailingmoe2::llm_build_bailingmoe2(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
for (int il = 0; il < n_transformer_layers; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 0 * sizeof(float) * (n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_transformer_layers - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * sa_out = ggml_add(ctx0, cur, inpSA);
cb(sa_out, "sa_out", il);
// MoE branch
cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
{
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
cur = ggml_add(ctx0, cur, sa_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

176
src/models/bert.cpp Normal file
View File

@ -0,0 +1,176 @@
#include "models.h"
llm_build_bert::llm_build_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
ggml_tensor * inp_pos = nullptr;
if (model.arch != LLM_ARCH_JINA_BERT_V2) {
inp_pos = build_inp_pos();
}
// construct input embeddings (token, type, position)
inpL = build_inp_embd(model.tok_embd);
// token types are hardcoded to zero ("Sentence A")
if (model.type_embd) {
ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
inpL = ggml_add(ctx0, inpL, type_row0);
}
if (model.arch == LLM_ARCH_BERT) {
inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
}
cb(inpL, "inp_embd", -1);
// embed layer norm
inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
cb(inpL, "inp_norm", -1);
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * cur = inpL;
{
ggml_tensor * Qcur;
ggml_tensor * Kcur;
ggml_tensor * Vcur;
// self-attention
if (model.layers[il].wqkv) {
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
if (model.layers[il].bqkv) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1],
0 * sizeof(float) * (n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
} else {
Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
}
if (model.layers[il].attn_q_norm) {
Qcur = ggml_reshape_2d(ctx0, Qcur, n_embd_head * n_head, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
}
if (model.layers[il].attn_k_norm) {
Kcur = ggml_reshape_2d(ctx0, Kcur, n_embd_head * n_head_kv, n_tokens);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, il);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
}
// RoPE
if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE ||
model.arch == LLM_ARCH_JINA_BERT_V3) {
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
cb(cur, "kqv_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// re-add the layer input
cur = ggml_add(ctx0, cur, inpL);
// attention layer norm
cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
if (model.layers[il].attn_norm_2 != nullptr) {
cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
}
ggml_tensor * ffn_inp = cur;
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
// MoE branch
cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, nullptr,
model.layers[il].ffn_down_exps, nullptr, hparams.n_expert, hparams.n_expert_used,
LLM_FFN_GELU, false, false, 0.0f, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
cb(cur, "ffn_moe_out", il);
} else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE ||
model.arch == LLM_ARCH_JINA_BERT_V3) {
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
} else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL,
model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
// attentions bypass the intermediate layer
cur = ggml_add(ctx0, cur, ffn_inp);
// output layer norm
cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
// input for next layer
inpL = cur;
}
cur = inpL;
cb(cur, "result_embd", -1);
res->t_embd = cur;
ggml_build_forward_expand(gf, cur);
}

160
src/models/bitnet.cpp Normal file
View File

@ -0,0 +1,160 @@
#include "models.h"
llm_build_bitnet::llm_build_bitnet(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
if (model.layers[il].wq_scale) {
Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
}
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
// B1.K
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
if (model.layers[il].wk_scale) {
Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
}
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
// B1.V
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
if (model.layers[il].wv_scale) {
Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
}
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
NULL, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
cur = build_norm(cur,
model.layers[il].attn_sub_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_sub_norm", il);
cur = build_lora_mm(model.layers[il].wo, cur);
if (model.layers[il].wo_scale) {
cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
}
if (model.layers[il].bo) {
cur = ggml_add(ctx0, cur, model.layers[il].bo);
}
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward forward
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
NULL, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_sub_out", il);
cur = build_norm(cur,
model.layers[il].ffn_sub_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_sub_norm", il);
cur = build_lora_mm(model.layers[il].ffn_down, cur);
if (model.layers[il].ffn_down_scale) {
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
}
cb(cur, "ffn_down", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
// FIXME: do not use model.tok_embd directly, duplicate as model.output
cur = build_lora_mm(model.tok_embd, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

101
src/models/bloom.cpp Normal file
View File

@ -0,0 +1,101 @@
#include "models.h"
llm_build_bloom::llm_build_bloom(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
auto * inp_attn = build_attn_inp_kv();
inpL = build_norm(inpL,
model.tok_norm,
model.tok_norm_b,
LLM_NORM, -1);
cb(inpL, "inp_norm", -1);
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// Add the input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

178
src/models/chameleon.cpp Normal file
View File

@ -0,0 +1,178 @@
#include "models.h"
#include <float.h>
llm_build_chameleon::llm_build_chameleon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
if (hparams.swin_norm) {
cur = inpL;
} else {
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
}
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].attn_q_norm) {
Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
ggml_element_size(Qcur) * n_embd_head,
ggml_element_size(Qcur) * n_embd_head * n_head,
0);
cb(Qcur, "Qcur", il);
Qcur = build_norm(Qcur,
model.layers[il].attn_q_norm,
model.layers[il].attn_q_norm_b,
LLM_NORM, il);
cb(Qcur, "Qcur", il);
}
if (model.layers[il].attn_k_norm) {
Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
ggml_element_size(Kcur) * n_embd_head,
ggml_element_size(Kcur) * n_embd_head * n_head_kv,
0);
cb(Kcur, "Kcur", il);
Kcur = build_norm(Kcur,
model.layers[il].attn_k_norm,
model.layers[il].attn_k_norm_b,
LLM_NORM, il);
cb(Kcur, "Kcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, nullptr,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
if (hparams.swin_norm) {
cur = build_norm(cur,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
if (!hparams.swin_norm) {
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
}
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
if (hparams.swin_norm) {
cur = build_norm(cur,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output_with_img_logits", -1);
// TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
// Needs to be removed once image outputs are supported.
int img_token_end_idx = 8196;
int img_token_start_idx = 4;
int num_img_tokens = img_token_end_idx - img_token_start_idx;
// creates 1d tensor of size num_img_tokens and values -FLT_MAX,
// which ensures that text token values are always at least larger than image token values
ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
cb(img_logits, "img_logits", -1);
cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

132
src/models/chatglm.cpp Normal file
View File

@ -0,0 +1,132 @@
#include "models.h"
llm_build_chatglm::llm_build_chatglm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL,
model.layers[il].attn_norm,
NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = nullptr;
ggml_tensor * Kcur = nullptr;
ggml_tensor * Vcur = nullptr;
if (model.layers[il].wqkv == nullptr) {
Qcur = build_lora_mm(model.layers[il].wq, cur);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
}
Kcur = build_lora_mm(model.layers[il].wk, cur);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
}
Vcur = build_lora_mm(model.layers[il].wv, cur);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
} else {
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
if (model.layers[il].bqkv) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
}
//printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// Add the input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
}
inpL = ggml_add(ctx0, cur, ffn_inp);
cb(inpL, "l_out", il);
}
cur = build_norm(inpL,
model.output_norm,
NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

111
src/models/codeshell.cpp Normal file
View File

@ -0,0 +1,111 @@
#include "models.h"
llm_build_codeshell::llm_build_codeshell(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// add the input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

100
src/models/cogvlm.cpp Normal file
View File

@ -0,0 +1,100 @@
#include "models.h"
llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
float kq_scale = 1.0f / sqrtf(float(n_embd_head));
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor *inpL, *cur;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
// check ubatch to see if we have input tokens (text)
// or an input embedding vector (image)
bool is_text;
if (ubatch.token) {
is_text = true;
} else {
is_text = false;
}
for (int il = 0; il < n_layer; ++il) {
// get either the text or image weight tensors
ggml_tensor *wqkv, *wo;
ggml_tensor *ffn_gate, *ffn_down, *ffn_up;
if (is_text) {
wqkv = model.layers[il].wqkv;
wo = model.layers[il].wo;
ffn_gate = model.layers[il].ffn_gate;
ffn_down = model.layers[il].ffn_down;
ffn_up = model.layers[il].ffn_up;
} else {
wqkv = model.layers[il].visexp_attn_wqkv;
wo = model.layers[il].visexp_attn_wo;
ffn_gate = model.layers[il].visexp_ffn_gate;
ffn_down = model.layers[il].visexp_ffn_down;
ffn_up = model.layers[il].visexp_ffn_up;
}
ggml_tensor * inpSA = inpL;
cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
// build self attention
{
ggml_tensor * qkv = build_lora_mm(wqkv, cur);
// split qkv into Q, K, V along the first dimension
ggml_tensor * Qcur =
ggml_view_3d(ctx0, qkv, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), qkv->nb[1], 0);
ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
qkv->nb[1], n_embd * ggml_element_size(qkv));
ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
qkv->nb[1], 2 * n_embd * ggml_element_size(qkv));
Qcur = ggml_rope(ctx0, Qcur, inp_pos, n_embd_head, rope_type);
Kcur = ggml_rope(ctx0, Kcur, inp_pos, n_embd_head, rope_type);
cur = build_attn(inp_attn,
wo, nullptr,
Qcur, Kcur, Vcur,
nullptr, nullptr, nullptr,
kq_scale, il);
cb(cur, "attn_out", il);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
ffn_up, NULL, NULL,
ffn_gate, NULL, NULL,
ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

131
src/models/cohere2-iswa.cpp Normal file
View File

@ -0,0 +1,131 @@
#include "models.h"
llm_build_cohere2_iswa::llm_build_cohere2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
const float f_logit_scale = hparams.f_logit_scale;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_iswa();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const bool is_swa = hparams.is_swa(il);
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
cb(cur, "attn_norm", il);
ggml_tensor * ffn_inp = cur;
// self-attention
{
// rope freq factors for 128k context
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
if (is_swa) {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
}
ggml_tensor * attn_out = cur;
// feed-forward network
{
cur = build_ffn(ffn_inp,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
// add together residual + FFN + self-attention
cur = ggml_add(ctx0, cur, inpL);
cur = ggml_add(ctx0, cur, attn_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
if (f_logit_scale) {
cur = ggml_scale(ctx0, cur, f_logit_scale);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

122
src/models/command-r.cpp Normal file
View File

@ -0,0 +1,122 @@
#include "models.h"
llm_build_command_r::llm_build_command_r(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
const float f_logit_scale = hparams.f_logit_scale;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
cb(cur, "attn_norm", il);
ggml_tensor * ffn_inp = cur;
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
if (model.layers[il].attn_q_norm) {
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM, il);
cb(Qcur, "Qcur", il);
}
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
if (model.layers[il].attn_k_norm) {
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM, il);
cb(Kcur, "Kcur", il);
}
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
}
ggml_tensor * attn_out = cur;
// feed-forward network
{
cur = build_ffn(ffn_inp,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
// add together residual + FFN + self-attention
cur = ggml_add(ctx0, cur, inpL);
cur = ggml_add(ctx0, cur, attn_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
if (f_logit_scale) {
cur = ggml_scale(ctx0, cur, f_logit_scale);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

123
src/models/dbrx.cpp Normal file
View File

@ -0,0 +1,123 @@
#include "models.h"
llm_build_dbrx::llm_build_dbrx(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = nullptr;
ggml_tensor * Kcur = nullptr;
ggml_tensor * Vcur = nullptr;
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(cur, "wqkv_clamped", il);
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].attn_out_norm, NULL,
LLM_NORM, il);
cb(cur, "attn_out_norm", il);
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

135
src/models/deci.cpp Normal file
View File

@ -0,0 +1,135 @@
#include "models.h"
llm_build_deci::llm_build_deci(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale =
hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_head = hparams.n_head(il);
const int64_t n_ff = hparams.n_ff(il);
if (n_head == 0) {
// attention-free layer of Llama-3_1-Nemotron-51B
cur = inpL;
} else {
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
}
if (n_head > 0 && n_head_kv == 0) {
// "linear attention" of Llama-3_1-Nemotron-51B
cur = build_lora_mm(model.layers[il].wo, cur);
cb(cur, "wo", il);
} else if (n_head > 0) {
// self-attention
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
if (n_ff == 0) {
continue;
}
// modified to support attention-free layer of Llama-3_1-Nemotron-51B
ggml_tensor * ffn_inp = cur;
if (n_head > 0) {
ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
}
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

144
src/models/deepseek.cpp Normal file
View File

@ -0,0 +1,144 @@
#include "models.h"
llm_build_deepseek::llm_build_deepseek(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale =
hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
if ((uint32_t) il < hparams.n_layer_dense_lead) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, hparams.expert_weights_scale,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
{
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

236
src/models/deepseek2.cpp Normal file
View File

@ -0,0 +1,236 @@
#include "models.h"
llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
bool is_lite = (hparams.n_layer == 27);
const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
// note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
const int64_t n_embd_head_qk_rope = hparams.n_rot;
const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
const uint32_t kv_lora_rank = hparams.n_lora_kv;
// We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
const float kq_scale = 1.0f * mscale * mscale / sqrtf(float(n_embd_head_k));
const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
ggml_tensor * q = NULL;
if (!is_lite) {
q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
cb(q, "q", il);
q = build_norm(q, model.layers[il].attn_q_a_norm, nullptr, LLM_NORM_RMS, il);
cb(q, "q", il);
q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
cb(q, "q", il);
} else {
q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(q, "q", il);
}
// split into {n_embd_head_qk_nope, n_head, n_tokens}
ggml_tensor * q_nope =
ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(q->type, n_embd_head_k),
ggml_row_size(q->type, n_embd_head_k) * n_head, 0);
cb(q_nope, "q_nope", il);
// and {n_embd_head_qk_rope, n_head, n_tokens}
ggml_tensor * q_pe = ggml_view_3d(
ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, ggml_row_size(q->type, n_embd_head_k),
ggml_row_size(q->type, n_embd_head_k) * n_head, ggml_row_size(q->type, n_embd_head_qk_nope));
cb(q_pe, "q_pe", il);
ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
cb(kv_cmpr_pe, "kv_cmpr_pe", il);
// split into {kv_lora_rank, n_tokens}
ggml_tensor * kv_cmpr =
ggml_view_2d(ctx0, kv_cmpr_pe, kv_lora_rank, n_tokens,
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), 0);
cb(kv_cmpr, "kv_cmpr", il);
// and {n_embd_head_qk_rope, 1, n_tokens}
ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe, n_embd_head_qk_rope, 1, n_tokens,
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
cb(k_pe, "k_pe", il);
q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(q_pe, "q_pe", il);
k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(k_pe, "k_pe", il);
kv_cmpr = build_norm(kv_cmpr, model.layers[il].attn_kv_a_norm, nullptr, LLM_NORM_RMS, il);
cb(kv_cmpr, "kv_cmpr", il);
if (is_mla) {
// {n_embd_head_qk_nope, n_tokens, n_head}
q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
cb(q_nope, "q_nope_perm", il);
// {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
cb(q_nope_absorbed, "q_nope_absorbed", il);
// {kv_lora_rank, n_head, n_tokens}
q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
// {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
// note: rope must go first for in-place context shifting in build_rope_shift()
ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
cb(Qcur, "Qcur", il);
kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
cb(kv_cmpr, "kv_cmpr_reshape", il);
// {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
cb(Kcur, "Kcur", il);
// {kv_lora_rank, 1, n_tokens}
ggml_tensor * Vcur = kv_cmpr;
cb(Vcur, "Vcur", il);
// note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, model.layers[il].wv_b, kq_scale, il);
} else {
ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
cb(kv, "kv", il);
// split into {n_embd_head_qk_nope, n_head, n_tokens}
ggml_tensor * k_nope =
ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head, 0);
cb(k_nope, "k_nope_view", il);
// and {n_embd_head_v, n_head, n_tokens}
ggml_tensor * Vcur = ggml_view_3d(ctx0, kv, n_embd_head_v, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
ggml_row_size(kv->type, n_embd_head_qk_nope));
cb(Vcur, "Vcur_view", il);
Vcur = ggml_cont(ctx0, Vcur);
cb(Vcur, "Vcur_cont", il);
// note: rope must go first for in-place context shifting in build_rope_shift()
ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
cb(Kcur, "Kcur", il);
// note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
}
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
if ((uint32_t) il < hparams.n_layer_dense_lead) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
{
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

134
src/models/dots1.cpp Normal file
View File

@ -0,0 +1,134 @@
#include "models.h"
llm_build_dots1::llm_build_dots1(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
if ((uint32_t) il < hparams.n_layer_dense_lead) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
{
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

105
src/models/dream.cpp Normal file
View File

@ -0,0 +1,105 @@
#include "models.h"
llm_build_dream::llm_build_dream(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
//copied from qwen2
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

150
src/models/ernie4-5-moe.cpp Normal file
View File

@ -0,0 +1,150 @@
#include "models.h"
llm_build_ernie4_5_moe::llm_build_ernie4_5_moe(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Ernie 4.5 MoE requires n_moe_layer_step > 0");
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
{
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
}
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
bool is_moe_layer =
static_cast<uint32_t>(il) >= hparams.n_layer_dense_lead && (il + 1) % hparams.n_moe_layer_step == 0;
if (!is_moe_layer) {
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// Shared expert (if present)
if (hparams.n_ff_shexp > 0) {
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
} else {
cur = moe_out;
}
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

111
src/models/ernie4-5.cpp Normal file
View File

@ -0,0 +1,111 @@
#include "models.h"
llm_build_ernie4_5::llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
{
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
}
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

114
src/models/exaone.cpp Normal file
View File

@ -0,0 +1,114 @@
#include "models.h"
llm_build_exaone::llm_build_exaone(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

123
src/models/exaone4.cpp Normal file
View File

@ -0,0 +1,123 @@
#include "models.h"
template <bool iswa>
llm_build_exaone4<iswa>::llm_build_exaone4(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_v);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
inp_attn_type * inp_attn = nullptr;
if constexpr (iswa) {
inp_attn = build_attn_inp_kv_iswa();
} else {
inp_attn = build_attn_inp_kv();
}
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// use RoPE for SWA layers or non-SWA models
const bool use_rope = hparams.is_swa(il) || hparams.swa_type == LLAMA_SWA_TYPE_NONE;
cur = inpL;
// self-attention
{
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
if (use_rope) {
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_ffn(ffn_inp,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL, NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", -1);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
// Explicit template instantiations
template struct llm_build_exaone4<false>;
template struct llm_build_exaone4<true>;

113
src/models/falcon-h1.cpp Normal file
View File

@ -0,0 +1,113 @@
#include "models.h"
llm_build_falcon_h1::llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// Build the inputs in the recurrent & kv cache
auto * inp = build_inp_mem_hybrid();
const float kq_scale =
hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur-post-rope", il);
cb(Kcur, "Kcur-post-rope", il);
cb(Vcur, "Vcur-post-rope", il);
ggml_tensor * attn_out = build_attn(inp->get_attn(),
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(attn_out, "attn_out", il);
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
// Mamba2 layer
cb(cur, "ssm_in", il);
ggml_tensor * ssm_out = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
cb(ssm_out, "ssm_out", il);
// // Aggregation
cur = ggml_add(ctx0, attn_out, ssm_out);
inpSA = ggml_add(ctx0, cur, inpSA);
cb(cur, "layer_out", il);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = inpSA;
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, inpSA);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

120
src/models/falcon.cpp Normal file
View File

@ -0,0 +1,120 @@
#include "models.h"
llm_build_falcon::llm_build_falcon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * attn_norm;
attn_norm = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(attn_norm, "attn_norm", il);
// self-attention
{
if (model.layers[il].attn_norm_2) {
// Falcon-40B
cur = build_norm(inpL,
model.layers[il].attn_norm_2,
model.layers[il].attn_norm_2_b,
LLM_NORM, il);
cb(cur, "attn_norm_2", il);
} else {
cur = attn_norm;
}
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
// using mode = 2 for neox mode
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
}
ggml_tensor * ffn_inp = cur;
// feed forward
{
cur = build_ffn(attn_norm, // !! use the attn norm, not the result
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = ggml_add(ctx0, cur, inpL);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
// norm
cur = build_norm(cur,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,120 @@
#include "models.h"
llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base(cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
// ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
cur =
build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
cb(sa_out, "sa_out", il);
cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
{
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_GELU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", -1);
cur = ggml_add(ctx0, cur, sa_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
ggml_build_forward_expand(gf, cur);
}

112
src/models/gemma.cpp Normal file
View File

@ -0,0 +1,112 @@
#include "models.h"
llm_build_gemma::llm_build_gemma(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
cb(Qcur, "Qcur_scaled", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
cb(sa_out, "sa_out", il);
cur = build_norm(sa_out,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
{
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, sa_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

125
src/models/gemma2-iswa.cpp Normal file
View File

@ -0,0 +1,125 @@
#include "models.h"
llm_build_gemma2_iswa::llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_iswa();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
cur = build_norm(cur,
model.layers[il].attn_post_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
cb(sa_out, "sa_out", il);
cur = build_norm(sa_out,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
{
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = build_norm(cur,
model.layers[il].ffn_post_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", -1);
cur = ggml_add(ctx0, cur, sa_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
// final logit soft-capping
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
cur = ggml_tanh(ctx0, cur);
cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

131
src/models/gemma3-iswa.cpp Normal file
View File

@ -0,0 +1,131 @@
#include "models.h"
llm_build_gemma3_iswa::llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// TODO: is causal == true correct? might need some changes
auto * inp_attn = build_attn_inp_kv_iswa();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
// ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
cur = build_norm(cur,
model.layers[il].attn_post_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
cb(sa_out, "sa_out", il);
cur = build_norm(sa_out,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
{
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = build_norm(cur,
model.layers[il].ffn_post_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", -1);
cur = ggml_add(ctx0, cur, sa_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

377
src/models/gemma3n-iswa.cpp Normal file
View File

@ -0,0 +1,377 @@
#include "models.h"
llm_build_gemma3n_iswa::llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model),
n_embd_head(model.hparams.n_embd_head_k),
n_embd_altup(model.hparams.n_embd_altup),
n_altup(model.hparams.n_altup),
i_altup_act(model.hparams.i_altup_act) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// TODO: is causal == true correct? might need some changes
auto * inp_attn = build_attn_inp_kv_iswa();
// inp_per_layer shape: [n_embd_altup, n_tokens, n_layer]
ggml_tensor * inp_per_layer = project_per_layer_inputs(inpL, get_per_layer_inputs());
// inpL now has only 1 altup, project it to the rest of the altups
// these "added" altups will be concat to the last dim of inpL
{
ggml_tensor * target_magnitude = calc_magnitude(inpL);
ggml_tensor * inp_repeated = ggml_repeat_4d(ctx0, inpL, n_embd, n_tokens, n_altup - 1, 1);
ggml_tensor * altup_added =
ggml_mul_mat(ctx0, model.altup_proj, inp_repeated); // shape: [n_embd, n_tokens, n_altup - 1]
ggml_tensor * new_magnitude = calc_magnitude(altup_added);
altup_added = ggml_div(ctx0, ggml_mul(ctx0, altup_added, target_magnitude), new_magnitude);
inpL = ggml_concat(ctx0, inpL, altup_added, 2); // shape: [n_embd, n_tokens, n_altup]
cb(inpL, "inp_stacked", -1);
}
// inpL now has shape: [n_embd, n_tokens, n_altup]
// inp_per_layer now has shape: [n_embd_altup, n_tokens, n_layer]
for (int il = 0; il < n_layer; ++il) {
// this block is made to be closely resemble Gemma3p5DecoderLayer on python code
const float freq_base_l = model.get_rope_freq_base(cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
ggml_tensor * cur = inpL; // [n_embd, n_tokens, n_altup]
ggml_tensor * predictions = altup_predict(cur, il); // [n_embd, n_tokens, n_altup]
// predicted value will go through self-attention and laurel
ggml_tensor * active_prediction = view_2d_slice(predictions, i_altup_act); // [n_embd, n_tokens]
cur = active_prediction;
cb(cur, "active_prediction", il);
// norm
cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// laurel
ggml_tensor * laurel_out = laurel(cur, il); // [n_embd, n_tokens]
// self-attention
if (hparams.has_kv(il)) {
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
Vcur = ggml_rms_norm(ctx0, Vcur, hparams.f_norm_rms_eps);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
cb(Vcur, "Vcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur_pos", il);
cb(Kcur, "Kcur_pos", il);
cur = build_attn(inp_attn, model.layers[il].wo,
NULL, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr,
hparams.f_attention_scale, il);
} else {
// reuse KV cache of earlier layers
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur_pos", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, nullptr, nullptr, nullptr, nullptr, nullptr, hparams.f_attention_scale, il);
}
cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
cur = ggml_add(ctx0, cur, active_prediction); // [n_embd, n_tokens]
cb(cur, "attn_gated", il);
ggml_tensor * attn_laurel = ggml_scale(ctx0, ggml_add(ctx0, cur, laurel_out),
1.0f / sqrtf(2.0f)); // [n_embd, n_tokens]
cb(attn_laurel, "attn_laurel", il);
cur = build_norm(attn_laurel, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
{
ggml_tensor * up_proj = build_lora_mm(model.layers[il].ffn_up, cur);
ggml_tensor * gate_proj = build_lora_mm(model.layers[il].ffn_gate, cur);
if (il < n_layer_sparsity) {
// apply activation sparsity
gate_proj = gaussian_topk(gate_proj);
}
gate_proj = ggml_gelu(ctx0, gate_proj);
cur = ggml_mul(ctx0, up_proj, gate_proj);
cur = build_lora_mm(model.layers[il].ffn_down, cur);
cb(cur, "ffn_out", il);
}
cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", il);
ggml_tensor * attn_ffw_laurel_gated = ggml_add(ctx0, cur, attn_laurel); // [n_embd, n_tokens]
cb(attn_ffw_laurel_gated, "attn_ffw_laurel_gated", il);
ggml_tensor * corrected = altup_correct(predictions, attn_ffw_laurel_gated, il); // [n_embd, n_tokens, n_altup]
ggml_tensor * first_prediction; // [n_embd, n_tokens]
{
first_prediction = view_2d_slice(corrected, i_altup_act); // [n_embd, n_tokens]
first_prediction = ggml_mul(ctx0, first_prediction, model.layers[il].altup_correct_scale);
first_prediction = build_lora_mm(model.layers[il].per_layer_inp_gate, first_prediction);
first_prediction = ggml_gelu(ctx0, first_prediction); // [n_embd_altup, n_tokens]
cb(first_prediction, "first_prediction_gated", il);
ggml_tensor * inp_this_layer = view_2d_slice(inp_per_layer, il); // [n_embd_altup, n_tokens]
first_prediction = ggml_mul(ctx0, first_prediction, inp_this_layer); // [n_embd_altup, n_tokens]
cb(first_prediction, "first_prediction_scaled", il);
first_prediction = build_lora_mm(model.layers[il].per_layer_proj, first_prediction); // [n_embd, n_tokens]
first_prediction =
build_norm(first_prediction, model.layers[il].per_layer_post_norm, NULL, LLM_NORM_RMS, il);
cb(first_prediction, "first_prediction_out", il);
}
// equivalent to python code: corrected_predictions[1:] += first_prediction
{
ggml_tensor * slice_first = view_2d_slice(corrected, 0);
ggml_tensor * slice_rest = ggml_view_3d(
ctx0, corrected, n_embd, n_tokens, n_altup - 1, ggml_row_size(corrected->type, n_embd),
ggml_row_size(corrected->type, n_embd * n_tokens), n_embd * n_tokens * ggml_element_size(corrected));
ggml_tensor * tmp = ggml_add(ctx0, slice_rest, first_prediction); // [n_embd, n_tokens, n_altup - 1]
corrected = ggml_concat(ctx0, slice_first, tmp, 2); // [n_embd, n_tokens, n_altup]
}
cur = corrected; // [n_embd, n_tokens, n_altup]
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL; // [n_embd, n_tokens, n_altup]
// cur now has multiple altup(s), we want to merge them back to 1 altup
{
ggml_tensor * target_magnitude = calc_magnitude(view_2d_slice(cur, i_altup_act)); // [n_embd, n_tokens]
// do a view to skip the first slice (active altup)
ggml_tensor * alt_slice =
ggml_view_3d(ctx0, cur, n_embd, n_tokens, n_altup - 1, ggml_row_size(cur->type, n_embd),
ggml_row_size(cur->type, n_embd * n_tokens), n_embd * n_tokens * ggml_element_size(cur));
ggml_tensor * altup_unembd =
ggml_mul_mat(ctx0, model.altup_unembd_proj, alt_slice); // shape: [n_embd, n_tokens, n_altup - 1]
ggml_tensor * new_magnitude = calc_magnitude(altup_unembd);
altup_unembd = ggml_div(ctx0, ggml_mul(ctx0, altup_unembd, target_magnitude), new_magnitude);
cb(altup_unembd, "altup_unembd", -1);
// equivalent to torch.mean(hidden_states, dim=0)
cur = view_2d_slice(cur, 0); // [n_embd, n_tokens]
for (int i = 0; i < n_altup - 1; ++i) {
cur = ggml_add(ctx0, cur, view_2d_slice(altup_unembd, i));
}
cur = ggml_scale(ctx0, cur, 1.0f / float(n_altup)); // [n_embd, n_tokens]
cb(cur, "unembd_merged", -1);
}
// cur now has shape: [n_embd, n_tokens]
// TODO: move this to right after the last KV layer
{
// skip computing output for unused tokens
ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
}
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
{
// final logit soft-capping
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
cur = ggml_tanh(ctx0, cur);
cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
ggml_tensor * llm_build_gemma3n_iswa::calc_magnitude(ggml_tensor * x) {
return ggml_sqrt(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, x)));
}
// get 2D slice view from a 3D tensor, the idx corresponds to the 3rd dim
ggml_tensor * llm_build_gemma3n_iswa::view_2d_slice(ggml_tensor * x, int idx) {
GGML_ASSERT(idx < (int) x->ne[2]);
return ggml_view_2d(ctx0, x, x->ne[0], x->ne[1], ggml_row_size(x->type, x->ne[0]),
idx * x->ne[0] * x->ne[1] * ggml_element_size(x));
}
// equivalent to get_per_layer_inputs() in python code
// output shape: [n_embd_altup, n_layer, n_tokens]
ggml_tensor * llm_build_gemma3n_iswa::get_per_layer_inputs() {
auto inp = std::make_unique<llm_graph_input_embd>();
ggml_tensor * inp_per_layer;
if (ubatch.token) {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
ggml_set_input(inp->tokens);
res->t_tokens = inp->tokens;
inp_per_layer = ggml_get_rows(ctx0, model.tok_embd_per_layer, inp->tokens);
inp_per_layer = ggml_reshape_3d(ctx0, inp_per_layer, n_embd_altup, n_layer, n_tokens);
inp_per_layer = ggml_scale(ctx0, inp_per_layer, sqrtf((float) n_embd_altup));
cb(inp_per_layer, "inp_per_layer_selected", -1);
} else {
GGML_ABORT("TODO: support embd input");
}
res->add_input(std::move(inp));
return inp_per_layer;
}
// equivalent to project_per_layer_inputs() in python code
// this calculates the per-layer inputs, so the final tensor shape will have n_layer as the last dim
// output shape: [n_embd_altup, n_tokens, n_layer]
ggml_tensor * llm_build_gemma3n_iswa::project_per_layer_inputs(ggml_tensor * inputs_embeds, ggml_tensor * inp_per_layer) {
const float per_layer_projection_scale = 1.0f / sqrtf((float) n_embd);
const float per_layer_input_scale = 1.0f / sqrtf(2.0f);
ggml_tensor * per_layer_proj = ggml_mul_mat(ctx0, model.per_layer_model_proj, inputs_embeds);
per_layer_proj = ggml_scale(ctx0, per_layer_proj, per_layer_projection_scale);
per_layer_proj = ggml_reshape_3d(ctx0, per_layer_proj, n_embd_altup, n_layer, n_tokens);
per_layer_proj = build_norm(per_layer_proj, model.per_layer_proj_norm, NULL, LLM_NORM_RMS,
-1); // [n_embd_altup, n_layer, n_tokens]
cb(per_layer_proj, "per_layer_proj", -1);
inp_per_layer = ggml_add(ctx0, inp_per_layer, per_layer_proj);
inp_per_layer = ggml_scale(ctx0, inp_per_layer, per_layer_input_scale);
cb(inp_per_layer, "inp_per_layer", -1);
// permute to shape: [n_embd_altup, n_tokens, n_layer]
inp_per_layer = ggml_cont(ctx0, ggml_permute(ctx0, inp_per_layer, 0, 2, 1, 3));
return inp_per_layer;
}
// input cur shape: [n_altup, n_tokens]
// output shape: [n_altup, n_tokens]
ggml_tensor * llm_build_gemma3n_iswa::laurel(ggml_tensor * cur, int il) {
ggml_tensor * tmp = cur;
tmp = build_lora_mm(model.layers[il].laurel_l, tmp);
tmp = build_lora_mm(model.layers[il].laurel_r, tmp);
tmp = build_norm(tmp, model.layers[il].laurel_post_norm, NULL, LLM_NORM_RMS, il);
tmp = ggml_add(ctx0, tmp, cur);
cb(tmp, "laurel_out", il);
return tmp;
}
// input x shape: [n_embd, n_tokens]
// output shape: [n_embd, n_tokens]
ggml_tensor * llm_build_gemma3n_iswa::gaussian_topk(ggml_tensor * x) {
ggml_tensor * mean = ggml_mean(ctx0, x);
ggml_tensor * std = ggml_sqrt(ctx0, ggml_scale(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x, mean))),
1.0f / (float) (x->ne[0] - 1)));
ggml_tensor * cutoff_x = ggml_add(ctx0, mean, ggml_scale(ctx0, std, f_sparsity_std_mul));
return ggml_relu(ctx0, ggml_sub(ctx0, x, cutoff_x));
}
//
// altup functions
//
// equivalent to compute_router_modalities() in python code
// input x shape: [n_embd, n_tokens]
// output shape: [n_altup, n_tokens]
ggml_tensor * llm_build_gemma3n_iswa::altup_compute_router_modalities(ggml_tensor * x, int il) {
ggml_tensor * router_inputs = build_norm(x, model.layers[il].altup_router_norm, NULL, LLM_NORM_RMS, il);
// router_input_scale
router_inputs = ggml_scale(ctx0, router_inputs, 1.0f / (float) n_embd);
ggml_tensor * output = ggml_mul_mat(ctx0, model.layers[il].altup_router, router_inputs);
return ggml_tanh(ctx0, output); // [n_altup, n_tokens]
}
// input cur shape: [n_embd, n_tokens, n_altup]
// output shape: [n_embd, n_tokens, n_altup]
ggml_tensor * llm_build_gemma3n_iswa::altup_predict(ggml_tensor * cur, int il) {
ggml_tensor * activated = view_2d_slice(cur, i_altup_act); // [n_embd, n_tokens]
ggml_tensor * modalities = altup_compute_router_modalities(activated, il); // [n_altup, n_tokens]
cb(modalities, "modalities", il);
ggml_tensor * all_coefs = build_lora_mm(model.layers[il].altup_predict_coef, modalities);
cb(all_coefs, "all_coefs", il);
// first dim now having n_altup^2 elements, we reshape it to 2D (so we end up with 3D tensor)
all_coefs = ggml_reshape_3d(ctx0, all_coefs, n_altup, n_altup, n_tokens);
// permute to [n_altup, n_embd, n_tokens]
ggml_tensor * cur_permuted = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3));
ggml_tensor * predictions = ggml_mul_mat(ctx0, cur_permuted, all_coefs); // [n_altup, n_embd, n_tokens]
// final shape must be the same as cur: [n_embd, n_tokens, n_altup]
predictions = ggml_cont(ctx0, ggml_permute(ctx0, predictions, 0, 2, 1, 3));
predictions = ggml_add(ctx0, predictions, cur);
cb(predictions, "predictions", il);
return predictions;
}
// input predictions shape: [n_embd, n_tokens, n_altup]
// input activated shape: [n_embd, n_tokens]
// output shape: [n_embd, n_tokens, n_altup]
ggml_tensor * llm_build_gemma3n_iswa::altup_correct(ggml_tensor * predictions, ggml_tensor * activated, int il) {
ggml_tensor * modalities = altup_compute_router_modalities(activated, il); // [n_altup, n_tokens]
cb(modalities, "modalities", il);
ggml_tensor * active_prediction = view_2d_slice(predictions, i_altup_act);
ggml_tensor * innovation = ggml_sub(ctx0, activated, active_prediction); // [n_embd, n_tokens]
cb(innovation, "innovation", il);
ggml_tensor * all_coefs = build_lora_mm(model.layers[il].altup_correct_coef, modalities); // [n_altup, n_tokens]
all_coefs = ggml_scale_bias(ctx0, all_coefs, 1.0f, 1.0f); // + 1.0
cb(all_coefs, "all_coefs", il);
all_coefs = ggml_transpose(ctx0, all_coefs); // [n_tokens, n_altup]
all_coefs = ggml_cont_3d(ctx0, all_coefs, 1, n_tokens, n_altup); // [1, n_tokens, n_altup]
innovation = ggml_repeat_4d(ctx0, innovation, n_embd, n_tokens, n_altup, 1);
ggml_tensor * corrected = ggml_mul(ctx0, innovation, all_coefs); // [n_embd, n_tokens, n_altup]
corrected = ggml_add(ctx0, corrected, predictions); // [n_embd, n_tokens, n_altup]
cb(corrected, "corrected", il);
return corrected;
}

153
src/models/glm4-moe.cpp Normal file
View File

@ -0,0 +1,153 @@
#include "models.h"
llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
// Only process up to last layer (skip final NextN layer)
// Final layer tensors are loaded but not processed in forward pass
const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
for (int il = 0; il < n_transformer_layers; ++il) {
ggml_tensor * inpSA = inpL;
// Pre-attention norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
}
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
}
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
}
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
// Apply Q/K norm if available (GLM-4.5 355B variant)
if (model.layers[il].attn_q_norm) {
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
}
if (model.layers[il].attn_k_norm) {
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
}
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_transformer_layers - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// Post-attention norm
cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "post_attn_norm", il);
// Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
// Dense FFN layer
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// Process routed experts using existing MoE infrastructure
ggml_tensor * routed_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(routed_out, "ffn_moe_out", il);
// Process shared expert on original input
ggml_tensor * shared_out = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(shared_out, "ffn_shexp_out", il);
// Final output: routed_output + shared_output
cur = ggml_add(ctx0, routed_out, shared_out);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

127
src/models/glm4.cpp Normal file
View File

@ -0,0 +1,127 @@
#include "models.h"
llm_build_glm4::llm_build_glm4(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// Pre-attention norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = nullptr;
ggml_tensor * Kcur = nullptr;
ggml_tensor * Vcur = nullptr;
if (model.layers[il].wqkv == nullptr) {
Qcur = build_lora_mm(model.layers[il].wq, cur);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
}
Kcur = build_lora_mm(model.layers[il].wk, cur);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
}
Vcur = build_lora_mm(model.layers[il].wv, cur);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
} else {
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
if (model.layers[il].bqkv) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1],
0 * sizeof(float) * (n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
}
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// Post-attention norm (new!)
cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "post_attn_norm", il);
// Add the input (residual connection after post-attention norm)
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// FF
{
// Pre-MLP norm
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// MLP
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
// Post-MLP norm
cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "post_mlp_norm", il);
}
// Add residual connection after post-MLP norm
inpL = ggml_add(ctx0, cur, ffn_inp);
cb(inpL, "l_out", il);
}
// Final norm
cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// Output projection
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

105
src/models/gpt2.cpp Normal file
View File

@ -0,0 +1,105 @@
#include "models.h"
llm_build_gpt2::llm_build_gpt2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * pos;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
cb(pos, "pos_embd", -1);
inpL = ggml_add(ctx0, inpL, pos);
cb(inpL, "inpL", -1);
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// add the input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

144
src/models/gptneox.cpp Normal file
View File

@ -0,0 +1,144 @@
#include "models.h"
llm_build_gptneox::llm_build_gptneox(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// ffn
if (hparams.use_par_res) {
// attention and ffn are computed in parallel
// x = x + attn(ln1(x)) + ffn(ln2(x))
ggml_tensor * attn_out = cur;
cur = build_norm(inpL,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, inpL);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, attn_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
} else {
// attention and ffn are computed sequentially
// x = x + attn(ln1(x))
// x = x + ffn(ln2(x))
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,196 @@
#include "models.h"
llm_build_granite_hybrid::llm_build_granite_hybrid(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
auto * inp = build_inp_mem_hybrid();
ggml_tensor * inp_out_ids = build_inp_out_ids();
// Positional embeddings populated if rope enabled
ggml_tensor * inp_pos = nullptr;
if (hparams.rope_finetuned) {
inp_pos = build_inp_pos();
}
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
if (hparams.is_recurrent(il)) {
// ssm layer //
cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
} else {
// attention layer //
cur = build_attention_layer(cur, inp_pos, inp->get_attn(), model, n_embd_head, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// ffn
cur = build_layer_ffn(cur, inpSA, model, il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
// For Granite architectures - scale logits
if (hparams.f_logit_scale) {
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
ggml_tensor * llm_build_granite_hybrid::build_attention_layer(ggml_tensor * cur,
ggml_tensor * inp_pos,
llm_graph_input_attn_kv * inp_attn,
const llama_model & model,
const int64_t n_embd_head,
const int il) {
// compute Q and K and (optionally) RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
const bool use_rope = hparams.rope_finetuned;
if (use_rope) {
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
const float kq_scale =
hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
return cur;
}
ggml_tensor * llm_build_granite_hybrid::build_layer_ffn(ggml_tensor * cur,
ggml_tensor * inpSA,
const llama_model & model,
const int il) {
// For Granite architectures - scale residual
if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network (non-MoE)
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// For Granite MoE Shared
if (hparams.n_ff_shexp > 0) {
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
} else {
cur = moe_out;
}
}
// For Granite architectures - scale residual
if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
return cur;
}

211
src/models/granite.cpp Normal file
View File

@ -0,0 +1,211 @@
#include "models.h"
llm_build_granite::llm_build_granite(
const llama_model & model,
const llm_graph_params & params)
: llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - built only if rope enabled
ggml_tensor * inp_pos = nullptr;
if (hparams.rope_finetuned) {
inp_pos = build_inp_pos();
}
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
cur = build_attention_layer(
cur, inp_pos, inp_attn,
model, n_embd_head, il);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// ffn
cur = build_layer_ffn(cur, inpSA, model, il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
// For Granite architectures - scale logits
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
ggml_tensor * llm_build_granite::build_attention_layer(
ggml_tensor * cur,
ggml_tensor * inp_pos,
llm_graph_input_attn_kv * inp_attn,
const llama_model & model,
const int64_t n_embd_head,
const int il) {
// compute Q and K and (optionally) RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
const bool use_rope = hparams.rope_finetuned;
if (use_rope) {
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
return cur;
}
ggml_tensor * llm_build_granite::build_layer_ffn(
ggml_tensor * cur,
ggml_tensor * inpSA,
const llama_model & model,
const int il) {
// For Granite architectures - scale residual
if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network (non-MoE)
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// For Granite MoE Shared
if (hparams.n_ff_shexp > 0) {
ggml_tensor * ffn_shexp = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
} else {
cur = moe_out;
}
}
// For Granite architectures - scale residual
if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
return cur;
}

View File

@ -0,0 +1,283 @@
#include "models.h"
llm_graph_context_mamba::llm_graph_context_mamba(const llm_graph_params & params) : llm_graph_context(params) {}
ggml_tensor * llm_graph_context_mamba::build_mamba_layer(llm_graph_input_rs * inp,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,
int il) {
const auto * mctx_cur = inp->mctx;
const auto kv_head = mctx_cur->get_head();
const auto & layer = model.layers[il];
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t dt_rank = hparams.ssm_dt_rank;
const int64_t n_head = d_inner;
const int64_t head_dim = 1;
const int64_t n_seqs = ubatch.n_seqs;
// Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(ubatch.equal_seqs());
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
// {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
ggml_tensor * xz = build_lora_mm(layer.ssm_in, cur);
// split the above in two
// => {d_inner, n_seq_tokens, n_seqs}
ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
ggml_tensor * z =
ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner * ggml_element_size(xz));
// conv
{
// => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
// copy last (d_conv - 1) columns back into the state cache
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2],
n_seq_tokens * (conv_x->nb[0]));
ggml_build_forward_expand(
gf, ggml_cpy(ctx0, last_conv,
ggml_view_1d(ctx0, conv_states_all, (d_conv - 1) * (d_inner) * (n_seqs),
kv_head * (d_conv - 1) * (d_inner) *ggml_element_size(conv_states_all))));
// 1D convolution
// The equivalent is to make a self-overlapping view of conv_x
// over d_conv columns at each stride in the 3rd dimension,
// then element-wise multiply that with the conv1d weight,
// then sum the elements of each row,
// (the last two steps are a dot product over rows (also doable with mul_mat))
// then permute away the ne[0] dimension,
// and then you're left with the resulting x tensor.
// For simultaneous sequences, all sequences need to have the same length.
x = ggml_ssm_conv(ctx0, conv_x, layer.ssm_conv1d);
// bias
x = ggml_add(ctx0, x, layer.ssm_conv1d_b);
x = ggml_silu(ctx0, x);
}
// ssm
{
// {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
ggml_tensor * x_db = build_lora_mm(layer.ssm_x, x);
// split
ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
ggml_tensor * B =
ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state * x_db->nb[0], x_db->nb[1],
x_db->nb[2], ggml_element_size(x_db) * dt_rank);
ggml_tensor * C =
ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state * x_db->nb[0], x_db->nb[1],
x_db->nb[2], ggml_element_size(x_db) * (dt_rank + d_state));
// Some Mamba variants (e.g. FalconMamba, Jamba) apply RMS norm in B, C & Dt layers
if (ssm_dt_b_c_rms || (layer.ssm_dt_norm && layer.ssm_b_norm && layer.ssm_c_norm)) {
dt = build_norm(dt, layer.ssm_dt_norm, NULL, LLM_NORM_RMS, il);
B = build_norm(B, layer.ssm_b_norm, NULL, LLM_NORM_RMS, il);
C = build_norm(C, layer.ssm_c_norm, NULL, LLM_NORM_RMS, il);
}
// {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
dt = build_lora_mm(layer.ssm_dt, dt);
dt = ggml_add(ctx0, dt, layer.ssm_dt_b);
cur = x;
x = ggml_reshape_4d(ctx0, x, head_dim, n_head, n_seq_tokens, n_seqs);
ggml_tensor * A = layer.ssm_a;
// use the states and the indices provided by build_recurrent_state
// (this is necessary in order to properly use the states before they are overwritten,
// while avoiding to make unnecessary copies of the states)
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, mctx_cur->get_size());
// Custom operator to optimize the parallel associative scan
// as described in the Annex D of the Mamba paper.
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
};
ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
// store last states
ggml_build_forward_expand(
gf, ggml_cpy(ctx0, ggml_view_1d(ctx0, y_ssm, d_state * d_inner * n_seqs, x->nb[3] * x->ne[3]),
ggml_view_1d(ctx0, ssm_states_all, d_state * d_inner * n_seqs,
kv_head * d_state * d_inner * ggml_element_size(ssm_states_all))));
ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[2], x->nb[3], 0);
// TODO: skip computing output earlier for unused tokens
y = ggml_add(ctx0, y, ggml_mul(ctx0, cur, layer.ssm_d));
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
cur = build_lora_mm(layer.ssm_out, y);
}
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
return cur;
}
ggml_tensor * llm_graph_context_mamba::build_mamba2_layer(llm_graph_input_rs * inp,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,
int il) const {
const auto * mctx_cur = inp->mctx;
const auto kv_head = mctx_cur->get_head();
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t n_head = hparams.ssm_dt_rank;
const int64_t head_dim = d_inner / n_head;
const int64_t n_group = hparams.ssm_n_group;
const int64_t n_seqs = ubatch.n_seqs;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(ubatch.equal_seqs());
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2 * n_group * d_state, n_seqs);
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
// d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
// {n_embd, d_in_proj} @ {n_embd, n_seq_tokens, n_seqs} => {d_in_proj, n_seq_tokens, n_seqs}
ggml_tensor * zxBCdt = build_lora_mm(model.layers[il].ssm_in, cur);
// split the above in three
ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim * zxBCdt->nb[0],
zxBCdt->nb[1], zxBCdt->nb[2], 0);
ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2 * n_group * d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1],
zxBCdt->nb[2], d_inner * ggml_element_size(zxBCdt));
ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2],
(2 * d_inner + 2 * n_group * d_state) * ggml_element_size(zxBCdt));
// conv
{
// => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
// copy last (d_conv - 1) columns back into the state cache
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2 * n_group * d_state, n_seqs,
conv_x->nb[1], conv_x->nb[2], n_seq_tokens * (conv_x->nb[0]));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv,
ggml_view_1d(ctx0, conv_states_all,
(d_conv - 1) * (d_inner + 2 * n_group * d_state) * (n_seqs),
kv_head * (d_conv - 1) * (d_inner + 2 * n_group * d_state) *
ggml_element_size(conv_states_all))));
// 1D convolution
// The equivalent is to make a self-overlapping view of conv_x
// over d_conv columns at each stride in the 3rd dimension,
// then element-wise multiply that with the conv1d weight,
// then sum the elements of each row,
// (the last two steps are a dot product over rows (also doable with mul_mat))
// then permute away the ne[0] dimension,
// and then you're left with the resulting x tensor.
// For simultaneous sequences, all sequences need to have the same length.
xBC = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
// bias
xBC = ggml_add(ctx0, xBC, model.layers[il].ssm_conv1d_b);
xBC = ggml_silu(ctx0, xBC);
}
// ssm
{
// These correspond to V K Q in SSM/attention duality
ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim * xBC->nb[0],
xBC->nb[1], xBC->nb[2], 0);
ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state * xBC->nb[0],
xBC->nb[1], xBC->nb[2], d_inner * ggml_element_size(xBC));
ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state * xBC->nb[0],
xBC->nb[1], xBC->nb[2], (d_inner + n_group * d_state) * ggml_element_size(xBC));
// {n_head, n_seq_tokens, n_seqs}
dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
ggml_tensor * A = model.layers[il].ssm_a;
// use the states and the indices provided by build_recurrent_state
// (this is necessary in order to properly use the states before they are overwritten,
// while avoiding to make unnecessary copies of the states)
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, mctx_cur->get_size());
// TODO: use semistructured matrices to implement state-space duality
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
};
ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
// store last states
ggml_build_forward_expand(
gf, ggml_cpy(ctx0, ggml_view_1d(ctx0, y_ssm, d_state * d_inner * n_seqs, ggml_nelements(x) * x->nb[0]),
ggml_view_1d(ctx0, ssm_states_all, d_state * d_inner * n_seqs,
kv_head * d_state * d_inner * ggml_element_size(ssm_states_all))));
ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head * x->nb[1],
n_seq_tokens * n_head * x->nb[1], 0);
// TODO: skip computing output earlier for unused tokens
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
cb(y, "mamba2_y_add_d", il);
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
// grouped RMS norm
if (model.layers[il].ssm_norm) {
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
}
y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
cur = build_lora_mm(model.layers[il].ssm_out, y);
}
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
cb(cur, "mamba_out", il);
return cur;
}

160
src/models/grok.cpp Normal file
View File

@ -0,0 +1,160 @@
#include "models.h"
llm_build_grok::llm_build_grok(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
cur = build_norm(cur,
model.layers[il].attn_out_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_out_norm", il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// MoE branch
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_GELU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
if (model.layers[il].ffn_up) {
ggml_tensor * ffn_out = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, il);
cb(ffn_out, "ffn_out", il);
cur = ggml_scale(ctx0, ggml_add(ctx0, ffn_out, moe_out), std::sqrt(2) / 2);
cb(cur, "ffn_out", il);
} else {
cur = moe_out;
}
cur = build_norm(cur,
model.layers[il].ffn_post_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_post_norm", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cur = ggml_scale(ctx0, cur, hparams.f_logit_scale);
// final logit soft-capping
if (hparams.f_final_logit_softcapping) {
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
cur = ggml_tanh(ctx0, cur);
cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

141
src/models/grovemoe.cpp Normal file
View File

@ -0,0 +1,141 @@
#include "models.h"
llm_build_grovemoe::llm_build_grovemoe(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_chunk_expert = n_expert / hparams.n_group_experts;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * probs = build_lora_mm(model.layers[il].ffn_gate_inp, cur); // [n_expert, n_tokens]
cb(probs, "ffn_moe_logits", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
nullptr,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il,
probs);
cb(moe_out, "ffn_moe_out", il);
cur = moe_out;
// TODO: Only do the expert selection and weights once
moe_out = build_moe_ffn(cur,
nullptr,
model.layers[il].ffn_up_chexps,
model.layers[il].ffn_gate_chexps,
model.layers[il].ffn_down_chexps,
nullptr,
n_chunk_expert, n_expert_used > n_chunk_expert ? n_chunk_expert : n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il,
probs);
cb(moe_out, "ffn_adj_moe_out", il);
cur = ggml_add(ctx0, cur, ggml_scale(ctx0, moe_out, hparams.expert_group_scale));
cb(cur, "ffn_final_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,132 @@
#include "models.h"
llm_build_hunyuan_dense::llm_build_hunyuan_dense(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = build_norm(Kcur,
model.layers[il].attn_k_norm, nullptr,
LLM_NORM_RMS, il);
cb(Kcur, "Kcur_norm", il);
Qcur = build_norm(Qcur,
model.layers[il].attn_q_norm, nullptr,
LLM_NORM_RMS, il);
cb(Qcur, "Qcur_norm", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network (non-MoE)
ggml_tensor * cur_mlp = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur_mlp, "ffn_out", il);
cur = ggml_add(ctx0, cur_mlp, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

154
src/models/hunyuan-moe.cpp Normal file
View File

@ -0,0 +1,154 @@
#include "models.h"
llm_build_hunyuan_moe::llm_build_hunyuan_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = build_norm(Kcur,
model.layers[il].attn_k_norm, nullptr,
LLM_NORM_RMS, il);
cb(Kcur, "Kcur_norm", il);
Qcur = build_norm(Qcur,
model.layers[il].attn_q_norm, nullptr,
LLM_NORM_RMS, il);
cb(Qcur, "Qcur_norm", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network (non-MoE)
ggml_tensor * cur_mlp = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur_mlp, "ffn_mlp", il);
// MoE branch
ggml_tensor * cur_moe = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU,
true, // norm_topk_prob
false,
0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur_moe, "ffn_moe_out", il);
ggml_tensor * ffn_out = ggml_add(ctx0, cur_moe, cur_mlp);
cb(ffn_out, "ffn_out", il);
cur = ggml_add(ctx0, ffn_out, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

121
src/models/internlm2.cpp Normal file
View File

@ -0,0 +1,121 @@
#include "models.h"
llm_build_internlm2::llm_build_internlm2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

86
src/models/jais.cpp Normal file
View File

@ -0,0 +1,86 @@
#include "models.h"
llm_build_jais::llm_build_jais(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*cur->nb[0]*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*cur->nb[0]*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/float(n_embd_head), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// add the input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
inpL = ggml_add(ctx0, cur, ffn_inp);
cb(inpL, "l_out", il);
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

107
src/models/jamba.cpp Normal file
View File

@ -0,0 +1,107 @@
#include "models.h"
llm_build_jamba::llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
auto * inp_hybrid = build_inp_mem_hybrid();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const int64_t n_head_kv = hparams.n_head_kv(il);
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
if (n_head_kv == 0) {
cur = build_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il);
} else {
// Attention
struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
// No RoPE :)
cur = build_attn(inp_hybrid->get_attn(),
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// residual
struct ggml_tensor * ffn_inp = ggml_add(ctx0, inpL, cur);
cb(cur, "ffn_inp", il);
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
// FFN
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
}
// residual
cur = ggml_add(ctx0, ffn_inp, cur);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
// final rmsnorm
cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

173
src/models/lfm2.cpp Normal file
View File

@ -0,0 +1,173 @@
#include "models.h"
#include "../llama-memory-hybrid.h"
llm_build_lfm2::llm_build_lfm2(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model) {
ggml_tensor * cur = build_inp_embd(model.tok_embd);
cb(cur, "model.embed_tokens", -1);
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_hybrid = build_inp_mem_hybrid();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const bool is_moe_layer = il >= static_cast<int>(hparams.n_layer_dense_lead);
auto * prev_cur = cur;
cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "model.layers.{}.operator_norm", il);
cur = hparams.is_recurrent(il) ? build_shortconv_block(cur, inp_hybrid->get_recr(), il) :
build_attn_block(cur, inp_pos, inp_hybrid->get_attn(), il);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
prev_cur = ggml_get_rows(ctx0, prev_cur, inp_out_ids);
}
cur = ggml_add(ctx0, prev_cur, cur);
auto * ffn_norm_out = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(ffn_norm_out, "model.layers.{}.ffn_norm", il);
ggml_tensor * ffn_out =
is_moe_layer ? build_moe_feed_forward(ffn_norm_out, il) : build_dense_feed_forward(ffn_norm_out, il);
cb(ffn_norm_out, "model.layers.{}.ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_out);
}
cur = build_norm(cur, model.tok_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "model.embedding_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "lm_head", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
ggml_tensor * llm_build_lfm2::build_moe_feed_forward(ggml_tensor * cur, int il) const {
return build_moe_ffn(cur,
model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0,
static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func), il);
}
ggml_tensor * llm_build_lfm2::build_dense_feed_forward(ggml_tensor * cur, int il) const {
GGML_ASSERT(!model.layers[il].ffn_up_b);
GGML_ASSERT(!model.layers[il].ffn_gate_b);
GGML_ASSERT(!model.layers[il].ffn_down_b);
return build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
}
ggml_tensor * llm_build_lfm2::build_attn_block(ggml_tensor * cur,
ggml_tensor * inp_pos,
llm_graph_input_attn_kv * inp_attn,
int il) const {
GGML_ASSERT(hparams.n_embd_v_gqa(il) == hparams.n_embd_k_gqa(il));
const auto n_embd_head = hparams.n_embd_head_v;
const auto n_head_kv = hparams.n_head_kv(il);
auto * q = build_lora_mm(model.layers[il].wq, cur);
cb(q, "model.layers.{}.self_attn.q_proj", il);
auto * k = build_lora_mm(model.layers[il].wk, cur);
cb(k, "model.layers.{}.self_attn.k_proj", il);
auto * v = build_lora_mm(model.layers[il].wv, cur);
cb(v, "model.layers.{}.self_attn.v_proj", il);
q = ggml_reshape_3d(ctx0, q, n_embd_head, n_head, n_tokens);
k = ggml_reshape_3d(ctx0, k, n_embd_head, n_head_kv, n_tokens);
v = ggml_reshape_3d(ctx0, v, n_embd_head, n_head_kv, n_tokens);
// qk norm
q = build_norm(q, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(q, "model.layers.{}.self_attn.q_layernorm", il);
k = build_norm(k, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(k, "model.layers.{}.self_attn.k_layernorm", il);
// RoPE
q = ggml_rope_ext(ctx0, q, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor,
attn_factor, beta_fast, beta_slow);
k = ggml_rope_ext(ctx0, k, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor,
attn_factor, beta_fast, beta_slow);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
q, k, v, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
cb(cur, "model.layers.{}.self_attn.out_proj", il);
return cur;
}
ggml_tensor * llm_build_lfm2::build_shortconv_block(ggml_tensor * cur, llm_graph_input_rs * inp_recr, int il) {
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
const uint32_t kv_head = mctx_cur->get_head();
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_seqs = ubatch.n_seqs;
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(ubatch.equal_seqs());
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
GGML_ASSERT(hparams.n_shortconv_l_cache > 1);
const uint32_t d_conv = hparams.n_shortconv_l_cache - 1;
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
auto * bcx = build_lora_mm(model.layers[il].shortconv.in_proj, cur);
cb(bcx, "model.layers.{}.conv.in_proj", il);
constexpr auto n_chunks = 3;
GGML_ASSERT(bcx->ne[0] % n_chunks == 0);
const auto chunk_size = bcx->ne[0] / n_chunks;
auto * b = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
0 * chunk_size * ggml_element_size(bcx));
auto * c = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
1 * chunk_size * ggml_element_size(bcx));
auto * x = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
2 * chunk_size * ggml_element_size(bcx));
auto * bx = ggml_transpose(ctx0, ggml_mul(ctx0, b, x));
// read conv state
auto * conv_state = mctx_cur->get_r_l(il);
auto * conv_rs = build_rs(inp_recr, conv_state, hparams.n_embd_r(), n_seqs);
auto * conv = ggml_reshape_3d(ctx0, conv_rs, d_conv, hparams.n_embd, n_seqs);
bx = ggml_concat(ctx0, conv, bx, 0);
GGML_ASSERT(bx->ne[0] > conv->ne[0]);
// last d_conv columns is a new conv state
auto * new_conv = ggml_view_3d(ctx0, bx, conv->ne[0], bx->ne[1], bx->ne[2], bx->nb[1], bx->nb[2],
(bx->ne[0] - conv->ne[0]) * ggml_element_size(bx));
GGML_ASSERT(ggml_are_same_shape(conv, new_conv));
// write new conv conv state
ggml_build_forward_expand(gf, ggml_cpy(ctx0, new_conv,
ggml_view_1d(ctx0, conv_state, ggml_nelements(new_conv),
kv_head * d_conv * n_embd * ggml_element_size(new_conv))));
auto * conv_kernel = model.layers[il].shortconv.conv;
auto * conv_out = ggml_ssm_conv(ctx0, bx, conv_kernel);
cb(conv_out, "model.layers.{}.conv.conv", il);
auto * y = ggml_mul(ctx0, c, conv_out);
y = build_lora_mm(model.layers[il].shortconv.out_proj, y);
cb(y, "model.layers.{}.conv.out_proj", il);
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
y = ggml_reshape_2d(ctx0, y, y->ne[0], n_seq_tokens * n_seqs);
return y;
}

123
src/models/llada-moe.cpp Normal file
View File

@ -0,0 +1,123 @@
#include "models.h"
llm_build_llada_moe::llm_build_llada_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

101
src/models/llada.cpp Normal file
View File

@ -0,0 +1,101 @@
#include "models.h"
llm_build_llada::llm_build_llada(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
// LLaDA is similar to LLaMA but uses non-causal attention for diffusion
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// Non-causal attention for diffusion
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute separate Q, K, V projections without bias, matching LLaDALlamaBlock
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

174
src/models/llama-iswa.cpp Normal file
View File

@ -0,0 +1,174 @@
#include "models.h"
llm_build_llama_iswa::llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// temperature tuning
ggml_tensor * inp_attn_scale = nullptr;
inp_attn_scale = build_inp_attn_scale();
auto * inp_attn = build_attn_inp_kv_iswa();
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
(il + 1) % hparams.n_no_rope_layer_step != 0;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
if (use_rope) {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
} else if (inp_attn_scale) {
Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
if (use_rope && hparams.use_kq_norm) {
// Llama4TextL2Norm
Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
}
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network (non-MoE)
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
il);
// Shared experts
ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(shexp_out, "ffn_moe_shexp", il);
cur = ggml_add(ctx0, moe_out, shexp_out);
cb(cur, "ffn_moe_out_merged", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

156
src/models/llama.cpp Normal file
View File

@ -0,0 +1,156 @@
#include "models.h"
llm_build_llama::llm_build_llama(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
if (hparams.use_kq_norm) {
// Llama4TextL2Norm
Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
}
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network (non-MoE)
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

55
src/models/mamba.cpp Normal file
View File

@ -0,0 +1,55 @@
#include "models.h"
llm_build_mamba::llm_build_mamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
auto * rs_inp = build_rs_inp();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
if (model.arch == LLM_ARCH_MAMBA2) {
cur = build_mamba2_layer(rs_inp, cur, model, ubatch, il);
} else {
cur = build_mamba_layer(rs_inp, cur, model, ubatch, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// residual
cur = ggml_add(ctx0, cur, inpL);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
// final rmsnorm
cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

200
src/models/minicpm3.cpp Normal file
View File

@ -0,0 +1,200 @@
#include "models.h"
llm_build_minicpm3::llm_build_minicpm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
//TODO: if the model varies, these parameters need to be read from the model
const int64_t n_embd_base = 256;
const float scale_embd = 12.0f;
const float scale_depth = 1.4f;
const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
const uint32_t n_embd_head_qk_rope = hparams.n_rot;
const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
const uint32_t kv_lora_rank = hparams.n_lora_kv;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// scale the input embeddings
inpL = ggml_scale(ctx0, inpL, scale_embd);
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
ggml_tensor * q = NULL;
// {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
cb(q, "q", il);
q = build_norm(q,
model.layers[il].attn_q_a_norm, NULL,
LLM_NORM_RMS, il);
cb(q, "q", il);
// {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
cb(q, "q", il);
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
0);
cb(q_nope, "q_nope", il);
// and {n_head * n_embd_head_qk_rope, n_tokens}
ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
ggml_row_size(q->type, n_embd_head_qk_nope));
cb(q_pe, "q_pe", il);
// {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
cb(kv_pe_compresseed, "kv_pe_compresseed", il);
// split into {kv_lora_rank, n_tokens}
ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
kv_pe_compresseed->nb[1],
0);
cb(kv_compressed, "kv_compressed", il);
// and {n_embd_head_qk_rope, n_tokens}
ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
kv_pe_compresseed->nb[1],
kv_pe_compresseed->nb[1],
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
cb(k_pe, "k_pe", il);
kv_compressed = build_norm(kv_compressed,
model.layers[il].attn_kv_a_norm, NULL,
LLM_NORM_RMS, il);
cb(kv_compressed, "kv_compressed", il);
// {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
cb(kv, "kv", il);
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
0);
cb(k_nope, "k_nope", il);
// and {n_head * n_embd_head_v, n_tokens}
ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
ggml_row_size(kv->type, (n_embd_head_qk_nope)));
cb(v_states, "v_states", il);
v_states = ggml_cont(ctx0, v_states);
cb(v_states, "v_states", il);
q_pe = ggml_rope_ext(
ctx0, q_pe, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(q_pe, "q_pe", il);
// shared RoPE key
k_pe = ggml_rope_ext(
ctx0, k_pe, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(k_pe, "k_pe", il);
ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
cb(q_states, "q_states", il);
ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
cb(k_states, "k_states", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
q_states, k_states, v_states, nullptr, nullptr, nullptr, kq_scale, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// scale_res - scale the hidden states for residual connection
const float scale_res = scale_depth/sqrtf(float(n_layer)); // TODO: is this correct?
cur = ggml_scale(ctx0, cur, scale_res);
cb(cur, "hidden_scaled", il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
// scale the hidden states for residual connection
cur = ggml_scale(ctx0, cur, scale_res);
cb(cur, "hidden_scaled_ffn", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head scaling
const float scale_lmhead = float(n_embd_base)/float(n_embd);
cur = ggml_scale(ctx0, cur, scale_lmhead);
cb(cur, "lmhead_scaling", -1);
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

124
src/models/minimax-m2.cpp Normal file
View File

@ -0,0 +1,124 @@
#include "models.h"
llm_build_minimax_m2::llm_build_minimax_m2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
// GGML_ASSERT(n_embd_head == hparams.n_rot); this is wrong in case of minimax, head_dim = 128, n_rot = 64
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
auto inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = inpL;
// self_attention
{
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

477
src/models/models.h Normal file
View File

@ -0,0 +1,477 @@
#pragma once
#include "../llama-model.h"
#include "../llama-graph.h"
#include "../llama-memory-recurrent.h"
#include <cmath>
struct llm_graph_context_mamba : public llm_graph_context {
llm_graph_context_mamba(const llm_graph_params & params);
virtual ~llm_graph_context_mamba() = default;
ggml_tensor * build_mamba_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il);
ggml_tensor * build_mamba2_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il) const;
};
// Base class for RWKV-related models
struct llm_build_rwkv6_base : public llm_graph_context {
const llama_model & model;
llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params);
virtual ~llm_build_rwkv6_base() = default;
ggml_tensor * build_rwkv6_channel_mix(const llama_layer * layer,
ggml_tensor * cur,
ggml_tensor * x_prev,
llm_arch arch) const;
ggml_tensor * build_rwkv6_time_mix(llm_graph_input_rs * inp,
ggml_tensor * cur,
ggml_tensor * x_prev,
const llama_ubatch & ubatch,
int il) const;
};
// Base class for RWKV7-related models
struct llm_build_rwkv7_base : public llm_graph_context {
const llama_model & model;
llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params);
virtual ~llm_build_rwkv7_base() = default;
// RWKV7-specific graph building methods
ggml_tensor * build_rwkv7_channel_mix(const llama_layer * layer,
ggml_tensor * cur,
ggml_tensor * x_prev,
llm_arch arch) const;
ggml_tensor * build_rwkv7_time_mix(llm_graph_input_rs * inp,
ggml_tensor * cur,
ggml_tensor * x_prev,
ggml_tensor *& first_layer_value,
const llama_ubatch & ubatch,
int il) const;
};
struct llm_build_apertus : public llm_graph_context {
llm_build_apertus(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_arcee : public llm_graph_context {
llm_build_arcee(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_arctic : public llm_graph_context {
llm_build_arctic(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_arwkv7 : public llm_build_rwkv7_base {
llm_build_arwkv7(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_baichuan : public llm_graph_context {
llm_build_baichuan(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_bailingmoe2 : public llm_graph_context {
llm_build_bailingmoe2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_bailingmoe : public llm_graph_context {
llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_bert : public llm_graph_context {
llm_build_bert(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_bitnet : public llm_graph_context {
llm_build_bitnet(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_bloom : public llm_graph_context {
llm_build_bloom(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_chameleon : public llm_graph_context {
llm_build_chameleon(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_chatglm : public llm_graph_context {
llm_build_chatglm(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_codeshell : public llm_graph_context {
llm_build_codeshell(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_cogvlm : public llm_graph_context {
llm_build_cogvlm(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_cohere2_iswa : public llm_graph_context {
llm_build_cohere2_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_command_r : public llm_graph_context {
llm_build_command_r(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_dbrx : public llm_graph_context {
llm_build_dbrx(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_deci : public llm_graph_context {
llm_build_deci(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_deepseek2 : public llm_graph_context {
llm_build_deepseek2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_deepseek : public llm_graph_context {
llm_build_deepseek(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_dots1 : public llm_graph_context {
llm_build_dots1(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_dream : public llm_graph_context {
llm_build_dream(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_ernie4_5 : public llm_graph_context {
llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_ernie4_5_moe : public llm_graph_context {
llm_build_ernie4_5_moe(const llama_model & model, const llm_graph_params & params);
};
template <bool iswa>
struct llm_build_exaone4 : public llm_graph_context {
llm_build_exaone4(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_exaone : public llm_graph_context {
llm_build_exaone(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_falcon : public llm_graph_context {
llm_build_falcon(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_falcon_h1 : public llm_graph_context_mamba {
llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gemma2_iswa : public llm_graph_context {
llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gemma3_iswa : public llm_graph_context {
llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gemma3n_iswa : public llm_graph_context {
const llama_model & model;
const int64_t n_embd_head;
const int64_t n_embd_altup;
const int64_t n_altup;
const int i_altup_act;
const int n_layer_sparsity = 10; // number of layers using activation sparsity
const float f_sparsity_std_mul = 1.6448533535003662f; // std_multiplier = normal_dist.icdf(0.95)
llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params);
ggml_tensor * calc_magnitude(ggml_tensor * x);
ggml_tensor * view_2d_slice(ggml_tensor * x, int idx);
ggml_tensor * get_per_layer_inputs();
ggml_tensor * project_per_layer_inputs(ggml_tensor * inputs_embeds, ggml_tensor * inp_per_layer);
ggml_tensor * gaussian_topk(ggml_tensor * x);
ggml_tensor * altup_compute_router_modalities(ggml_tensor * x, int il);
ggml_tensor * altup_predict(ggml_tensor * cur, int il);
ggml_tensor * laurel(ggml_tensor * cur, int il);
ggml_tensor * altup_correct(ggml_tensor * predictions, ggml_tensor * activated, int il);
};
struct llm_build_gemma_embedding : public llm_graph_context {
llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gemma : public llm_graph_context {
llm_build_gemma(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_glm4 : public llm_graph_context {
llm_build_glm4(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_glm4_moe : public llm_graph_context {
llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gpt2 : public llm_graph_context {
llm_build_gpt2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gptneox : public llm_graph_context {
llm_build_gptneox(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_granite : public llm_graph_context {
llm_build_granite(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_attention_layer(
ggml_tensor * cur,
ggml_tensor * inp_pos,
llm_graph_input_attn_kv * inp_attn,
const llama_model & model,
const int64_t n_embd_head,
const int il);
ggml_tensor * build_layer_ffn(
ggml_tensor * cur,
ggml_tensor * inpSA,
const llama_model & model,
const int il);
};
struct llm_build_granite_hybrid : public llm_graph_context_mamba {
llm_build_granite_hybrid(const llama_model & model, const llm_graph_params & params);
ggml_tensor * build_layer_ffn(ggml_tensor * cur, ggml_tensor * inpSA, const llama_model & model, const int il);
ggml_tensor * build_attention_layer(ggml_tensor * cur, ggml_tensor * inp_pos, llm_graph_input_attn_kv * inp_attn,
const llama_model & model,const int64_t n_embd_head, const int il);
};
struct llm_build_grok : public llm_graph_context {
llm_build_grok(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_grovemoe : public llm_graph_context {
llm_build_grovemoe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_hunyuan_dense : public llm_graph_context {
llm_build_hunyuan_dense(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_hunyuan_moe : public llm_graph_context {
llm_build_hunyuan_moe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_internlm2 : public llm_graph_context {
llm_build_internlm2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_jais : public llm_graph_context {
llm_build_jais(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_jamba : public llm_graph_context_mamba {
llm_build_jamba(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_lfm2 : public llm_graph_context {
const llama_model & model;
llm_build_lfm2(const llama_model & model, const llm_graph_params & params);
ggml_tensor * build_moe_feed_forward(ggml_tensor * cur, int il) const;
ggml_tensor * build_dense_feed_forward(ggml_tensor * cur, int il) const;
ggml_tensor * build_attn_block(ggml_tensor * cur, ggml_tensor * inp_pos, llm_graph_input_attn_kv * inp_attn, int il) const;
ggml_tensor * build_shortconv_block(ggml_tensor * cur, llm_graph_input_rs * inp_recr, int il);
};
struct llm_build_llada : public llm_graph_context {
llm_build_llada(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_llada_moe : public llm_graph_context {
llm_build_llada_moe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_llama : public llm_graph_context {
llm_build_llama(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_llama_iswa : public llm_graph_context {
llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_mamba : public llm_graph_context_mamba {
llm_build_mamba(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_minicpm3 : public llm_graph_context {
llm_build_minicpm3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_minimax_m2 : public llm_graph_context {
llm_build_minimax_m2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_mpt : public llm_graph_context {
llm_build_mpt(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_nemotron : public llm_graph_context {
llm_build_nemotron(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_nemotron_h : public llm_graph_context_mamba {
llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params);
ggml_tensor * build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il);
ggml_tensor * build_attention_layer(ggml_tensor * cur, llm_graph_input_attn_kv * inp_attn,
const llama_model & model, const int64_t n_embd_head, const int il);
};
struct llm_build_neo_bert : public llm_graph_context {
llm_build_neo_bert(const llama_model & model, const llm_graph_params & params);
};
template <bool iswa>
struct llm_build_olmo2 : public llm_graph_context {
llm_build_olmo2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_olmoe : public llm_graph_context {
llm_build_olmoe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_olmo : public llm_graph_context {
llm_build_olmo(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_openai_moe_iswa : public llm_graph_context {
llm_build_openai_moe_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_openelm : public llm_graph_context {
llm_build_openelm(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_orion : public llm_graph_context {
llm_build_orion(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_phi2 : public llm_graph_context {
llm_build_phi2(const llama_model & model, const llm_graph_params & params);
};
template<bool iswa>
struct llm_build_phi3 : public llm_graph_context {
llm_build_phi3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_plamo2 : public llm_graph_context_mamba {
llm_build_plamo2(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_plamo2_mamba_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il);
ggml_tensor * build_plamo2_attn_layer(llm_graph_input_attn_kv * inp, ggml_tensor * inp_pos, ggml_tensor * cur,
const llama_model & model, int il);
};
struct llm_build_plamo : public llm_graph_context {
llm_build_plamo(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_plm : public llm_graph_context {
llm_build_plm(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen2 : public llm_graph_context {
llm_build_qwen2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen2moe : public llm_graph_context {
llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen2vl : public llm_graph_context {
llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen3 : public llm_graph_context {
llm_build_qwen3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen3moe : public llm_graph_context {
llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen3vl : public llm_graph_context {
llm_build_qwen3vl(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen3vlmoe : public llm_graph_context {
llm_build_qwen3vlmoe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen : public llm_graph_context {
llm_build_qwen(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_refact : public llm_graph_context {
llm_build_refact(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_rwkv6 : public llm_build_rwkv6_base {
llm_build_rwkv6(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_rwkv7 : public llm_build_rwkv7_base {
llm_build_rwkv7(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_seed_oss : public llm_graph_context {
llm_build_seed_oss(const llama_model & model, const llm_graph_params & params);
};
template <bool iswa>
struct llm_build_smallthinker : public llm_graph_context {
llm_build_smallthinker(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_smollm3 : public llm_graph_context {
llm_build_smollm3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_stablelm : public llm_graph_context {
llm_build_stablelm(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_starcoder2 : public llm_graph_context {
llm_build_starcoder2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_starcoder : public llm_graph_context {
llm_build_starcoder(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_t5_dec : public llm_graph_context {
llm_build_t5_dec(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_t5_enc : public llm_graph_context {
llm_build_t5_enc(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_wavtokenizer_dec : public llm_graph_context {
llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_xverse : public llm_graph_context {
llm_build_xverse(const llama_model & model, const llm_graph_params & params);
};

126
src/models/mpt.cpp Normal file
View File

@ -0,0 +1,126 @@
#include "models.h"
llm_build_mpt::llm_build_mpt(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * pos;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
auto * inp_attn = build_attn_inp_kv();
if (model.pos_embd) {
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
cb(pos, "pos_embd", -1);
inpL = ggml_add(ctx0, inpL, pos);
cb(inpL, "inpL", -1);
}
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * attn_norm;
attn_norm = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il);
cb(attn_norm, "attn_norm", il);
// self-attention
{
cur = attn_norm;
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
if (model.layers[il].bqkv) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
if (hparams.f_clamp_kqv > 0.0f) {
cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(cur, "wqkv_clamped", il);
}
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 0 * sizeof(float) * (n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
// Q/K Layernorm
if (model.layers[il].attn_q_norm) {
Qcur = ggml_reshape_2d(ctx0, Qcur, n_embd_head * n_head, n_tokens);
Kcur = ggml_reshape_2d(ctx0, Kcur, n_embd_head * n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// Add the input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// feed forward
{
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
model.layers[il].ffn_act, LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

121
src/models/nemotron-h.cpp Normal file
View File

@ -0,0 +1,121 @@
#include "models.h"
llm_build_nemotron_h::llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
ggml_build_forward_expand(gf, inpL);
auto * inp = build_inp_mem_hybrid();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
if (hparams.is_recurrent(il)) {
// ssm layer //
cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
} else if (hparams.n_ff(il) == 0) {
// attention layer //
cur = build_attention_layer(cur, inp->get_attn(), model, n_embd_head, il);
} else {
cur = build_ffn_layer(cur, model, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// add residual
cur = ggml_add(ctx0, cur, inpSA);
cb(cur, "nemotron_h_block_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor * cur,
llm_graph_input_attn_kv * inp_attn,
const llama_model & model,
const int64_t n_embd_head,
const int il) {
// compute Q and K and (optionally) RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
const float kq_scale =
hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
return cur;
}
ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il) {
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL, LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
return cur;
}

122
src/models/nemotron.cpp Normal file
View File

@ -0,0 +1,122 @@
#include "models.h"
llm_build_nemotron::llm_build_nemotron(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
//GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

104
src/models/neo-bert.cpp Normal file
View File

@ -0,0 +1,104 @@
#include "models.h"
llm_build_neo_bert::llm_build_neo_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
ggml_tensor * inp_pos = build_inp_pos();
// construct input embeddings (token, type, position)
inpL = build_inp_embd(model.tok_embd);
cb(inpL, "inp_embd", -1);
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * cur = inpL;
// pre-norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
{
ggml_tensor * Qcur;
ggml_tensor * Kcur;
ggml_tensor * Vcur;
// self-attention
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
// RoPE
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, nullptr,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
cb(cur, "kqv_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// re-add the layer input
cur = ggml_add(ctx0, cur, inpL);
ggml_tensor * ffn_inp = cur;
cb(ffn_inp, "ffn_inp", il);
// pre-norm
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
cur = build_ffn(cur,
model.layers[il].ffn_up,
NULL, NULL, NULL, NULL, NULL,
model.layers[il].ffn_down,
NULL, NULL, NULL,
LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
// attentions bypass the intermediate layer
cur = ggml_add(ctx0, cur, ffn_inp);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm_enc, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_embd", -1);
res->t_embd = cur;
ggml_build_forward_expand(gf, cur);
}

121
src/models/olmo.cpp Normal file
View File

@ -0,0 +1,121 @@
#include "models.h"
llm_build_olmo::llm_build_olmo(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
NULL, NULL,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (hparams.f_clamp_kqv > 0.0f) {
Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (hparams.f_clamp_kqv > 0.0f) {
Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (hparams.f_clamp_kqv > 0.0f) {
Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, nullptr,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
NULL, NULL,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
NULL, NULL,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

151
src/models/olmo2.cpp Normal file
View File

@ -0,0 +1,151 @@
#include "models.h"
template <bool iswa>
llm_build_olmo2<iswa>::llm_build_olmo2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
inp_attn_type * inp_attn = nullptr;
if constexpr (iswa) {
inp_attn = build_attn_inp_kv_iswa();
} else {
inp_attn = build_attn_inp_kv();
}
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = inpL;
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
const bool is_swa = hparams.is_swa(il);
if (is_swa) {
// For sliding window layers, Olmo3 use regular rope with no yarn rope scaling.
// This is achieved here by setting freq_scale and attn_factor to 1.
// We also set ext_factor to 0 to avoid a few unnecessary computations.
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, 1.0,
0.0, 1.0, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, 1.0,
0.0, 1.0, beta_fast, beta_slow
);
} else {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
cur = build_norm(cur,
model.layers[il].attn_post_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_ffn(ffn_inp,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = build_norm(cur,
model.layers[il].ffn_post_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", -1);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
// Explicit template instantiations
template struct llm_build_olmo2<false>;
template struct llm_build_olmo2<true>;

124
src/models/olmoe.cpp Normal file
View File

@ -0,0 +1,124 @@
#include "models.h"
llm_build_olmoe::llm_build_olmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,123 @@
#include "models.h"
llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_iswa();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, nullptr,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, model.layers[il].attn_sinks, nullptr, 1.0f/sqrtf(float(n_rot)), il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = ffn_inp;
cur = build_norm(cur,
model.layers[il].attn_post_norm, nullptr,
LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
// MoE branch
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp, model.layers[il].ffn_gate_inp_b,
model.layers[il].ffn_up_exps, model.layers[il].ffn_up_exps_b,
model.layers[il].ffn_gate_exps, model.layers[il].ffn_gate_exps_b,
model.layers[il].ffn_down_exps, model.layers[il].ffn_down_exps_b,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SWIGLU_OAI_MOE, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT,
il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

124
src/models/openelm.cpp Normal file
View File

@ -0,0 +1,124 @@
#include "models.h"
llm_build_openelm::llm_build_openelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const int64_t n_head = hparams.n_head(il);
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_head_qkv = 2*n_head_kv + n_head;
cur = inpL;
ggml_tensor * residual = cur;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
cb(Vcur, "Vcur", il);
Qcur = build_norm(Qcur,
model.layers[il].attn_q_norm, NULL,
LLM_NORM_RMS, il);
cb(Qcur, "Qcur", il);
Kcur = build_norm(Kcur,
model.layers[il].attn_k_norm, NULL,
LLM_NORM_RMS, il);
cb(Kcur, "Kcur", il);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, NULL,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, NULL,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Qcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
residual = ggml_get_rows(ctx0, residual, inp_out_ids);
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
inpL = cur;
}
cur = inpL;
// norm
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

123
src/models/orion.cpp Normal file
View File

@ -0,0 +1,123 @@
#include "models.h"
llm_build_orion::llm_build_orion(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
// if (model.layers[il].bq) {
// Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
// cb(Qcur, "Qcur", il);
// }
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
// if (model.layers[il].bk) {
// Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
// cb(Kcur, "Kcur", il);
// }
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
// if (model.layers[il].bv) {
// Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
// cb(Vcur, "Vcur", il);
// }
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

121
src/models/phi2.cpp Normal file
View File

@ -0,0 +1,121 @@
#include "models.h"
llm_build_phi2::llm_build_phi2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * attn_norm_output;
ggml_tensor * ffn_output;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
attn_norm_output = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(attn_norm_output, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = nullptr;
ggml_tensor * Kcur = nullptr;
ggml_tensor * Vcur = nullptr;
if (model.layers[il].wqkv) {
cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
} else {
Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
}
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
// with phi2, we scale the Q to avoid precision issues
// ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
}
// FF
{
ffn_output = build_ffn(attn_norm_output,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(ffn_output, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_output);
cur = ggml_add(ctx0, cur, inpL);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output_no_bias", -1);
cur = ggml_add(ctx0, cur, model.output_b);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

153
src/models/phi3.cpp Normal file
View File

@ -0,0 +1,153 @@
#include "models.h"
template<bool iswa>
llm_build_phi3<iswa>::llm_build_phi3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
inp_attn_type * inp_attn = nullptr;
if constexpr (iswa) {
inp_attn = build_attn_inp_kv_iswa();
} else {
inp_attn = build_attn_inp_kv();
}
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
auto * residual = inpL;
// self-attention
{
// rope freq factors for 128k context
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
ggml_tensor* attn_norm_output = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM_RMS, il);
cb(attn_norm_output, "attn_norm", il);
ggml_tensor * Qcur = nullptr;
ggml_tensor * Kcur = nullptr;
ggml_tensor * Vcur = nullptr;
if (model.layers[il].wqkv) {
cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
cb(cur, "wqkv", il);
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 0 * sizeof(float) * (n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 1 * sizeof(float) * (n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
}
else {
Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
}
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
cb(Qcur, "Qcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
residual = ggml_get_rows(ctx0, residual, inp_out_ids);
}
cur = ggml_add(ctx0, cur, residual);
residual = cur;
cur = build_norm(cur,
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
}
cur = ggml_add(ctx0, residual, cur);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
if (model.output_b != nullptr) {
cb(cur, "result_output_no_bias", -1);
cur = ggml_add(ctx0, cur, model.output_b);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
// Explicit template instantiations
template struct llm_build_phi3<false>;
template struct llm_build_phi3<true>;

110
src/models/plamo.cpp Normal file
View File

@ -0,0 +1,110 @@
#include "models.h"
llm_build_plamo::llm_build_plamo(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
ggml_tensor * sa_inp = cur;
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
sa_inp = ggml_get_rows(ctx0, sa_inp, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
ggml_tensor * sa_out = cur;
cur = sa_inp;
// feed-forward network
{
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, sa_out);
cur = ggml_add(ctx0, cur, inpL);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

316
src/models/plamo2.cpp Normal file
View File

@ -0,0 +1,316 @@
#include "models.h"
llm_build_plamo2::llm_build_plamo2(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
cb(inpL, "embedding_output", -1);
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_hybrid = build_inp_mem_hybrid();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * residual = inpL;
// ggml_graph_add_node(gf, model.layers[il].attn_norm);
// cb(model.layers[il].attn_norm, "attn_norm", il);
// pre_mixer_norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
// check if this layer is Mamba or Attention
bool is_mamba_layer = hparams.is_recurrent(il);
if (is_mamba_layer) {
// PLaMo-2 Mamba layer
cur = build_plamo2_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il);
} else {
// PLaMo-2 Attention layer
cur = build_plamo2_attn_layer(inp_hybrid->get_attn(), inp_pos, cur, model, il);
}
// post_mixer_norm
cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
// residual connection
cur = ggml_add(ctx0, cur, residual);
cb(cur, "attn_residual", il);
residual = cur;
// pre-ffn norm
cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_pre_norm", il);
// feed-forward network
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
// post ffn norm
cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_post_norm", il);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
residual = ggml_get_rows(ctx0, residual, inp_out_ids);
}
// residual connection
cur = ggml_add(ctx0, cur, residual);
cb(cur, "ffn_residual", il);
inpL = cur;
}
cur = inpL;
// final norm
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
// Explicitly mark as output tensor to ensure proper backend assignment
ggml_set_output(cur);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
ggml_tensor * llm_build_plamo2::build_plamo2_attn_layer(llm_graph_input_attn_kv * inp,
ggml_tensor * inp_pos,
ggml_tensor * cur,
const llama_model & model,
int il) {
// self-attention
{
// PLaMo-2 uses combined QKV tensor
ggml_tensor * qkv = build_lora_mm(model.layers[il].wqkv, cur);
cb(qkv, "wqkv", il);
// split QKV tensor into Q, K, V
const int64_t n_embd_head_q = hparams.n_embd_head_k;
const int64_t n_embd_head_k = hparams.n_embd_head_k;
const int64_t n_embd_head_v = hparams.n_embd_head_v;
int32_t n_head = hparams.n_head(il);
int32_t n_head_kv = hparams.n_head_kv(il);
const int64_t q_offset = 0;
const int64_t k_offset = n_embd_head_q * n_head;
const int64_t v_offset = k_offset + n_embd_head_k * n_head_kv;
ggml_tensor * Qcur = ggml_view_3d(ctx0, qkv, n_embd_head_q, n_head, n_tokens, n_embd_head_q * sizeof(float),
qkv->nb[1], q_offset * ggml_element_size(qkv));
ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, n_embd_head_k, n_head_kv, n_tokens, n_embd_head_k * sizeof(float),
qkv->nb[1], k_offset * ggml_element_size(qkv));
ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, n_embd_head_v, n_head_kv, n_tokens, n_embd_head_v * sizeof(float),
qkv->nb[1], v_offset * ggml_element_size(qkv));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cur = build_attn(inp,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f / sqrtf(float(n_embd_head_v)), il);
}
cb(cur, "attn_out", il);
return cur;
}
ggml_tensor * llm_build_plamo2::build_plamo2_mamba_layer(llm_graph_input_rs * inp,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,
int il) {
const auto * mctx_cur = inp->mctx;
const auto kv_head = mctx_cur->get_head();
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t n_heads = hparams.ssm_dt_rank;
const int64_t head_dim = d_inner / n_heads;
const int64_t n_group = hparams.ssm_n_group;
const int64_t n_seqs = ubatch.n_seqs;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(ubatch.equal_seqs());
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2 * n_group * d_state, n_seqs);
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
// in_proj: {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
ggml_tensor * zx = build_lora_mm(model.layers[il].ssm_in, cur);
cb(zx, "mamba_in_proj", il);
// {8192, 5, 1, 1} -> {8192, 1, 5, 1}
zx = ggml_permute(ctx0, zx, 0, 2, 1, 3);
zx = ggml_cont_4d(ctx0, zx, head_dim * 2, n_heads, n_seq_tokens, n_seqs);
cb(zx, "mamba_in_proj_out", il);
// split into z and x
// => {head_dim * n_heads, n_seq_tokens, n_seqs}
ggml_tensor * x = ggml_view_4d(ctx0, zx, head_dim, n_heads, n_seq_tokens, n_seqs, zx->nb[1], zx->nb[2], zx->nb[3],
head_dim * ggml_element_size(zx));
x = ggml_cont_3d(ctx0, x, head_dim * n_heads, n_seq_tokens, n_seqs);
// x = ggml_permute(ctx0, x, 0, 2, 1, 3);
cb(x, "mamba_x_split", il);
ggml_tensor * z =
ggml_view_4d(ctx0, zx, head_dim, n_heads, n_seq_tokens, n_seqs, zx->nb[1], zx->nb[2], zx->nb[3], 0);
cb(z, "mamba_z_split", il);
// conv1d
{
// => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
cb(conv_x, "mamba_conv1d_input", il);
// copy last (d_conv - 1) columns back into the state cache
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2],
n_seq_tokens * (conv_x->nb[0]));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv,
ggml_view_1d(ctx0, conv_states_all,
(d_conv - 1) * (d_inner + 2 * n_group * d_state) * (n_seqs),
kv_head * (d_conv - 1) * (d_inner + 2 * n_group * d_state) *
ggml_element_size(conv_states_all))));
cb(conv_states_all, "mamba_conv1d_state", il);
// 1D convolution
x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
cb(x, "mamba_conv1d", il);
x = ggml_silu(ctx0, x);
cb(x, "mamba_conv1d_silu", il);
}
// SSM
{
// bcdt_proj: {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
ggml_tensor * x_bcdt = build_lora_mm(model.layers[il].ssm_x, x);
cb(x_bcdt, "mamba_bcdt_proj", il);
// split into dt, B, C
const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
ggml_tensor * B = ggml_view_3d(ctx0, x_bcdt, d_state, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2], 0);
ggml_tensor * C = ggml_view_3d(ctx0, x_bcdt, d_state, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2],
ggml_element_size(x_bcdt) * d_state);
ggml_tensor * dt = ggml_view_3d(ctx0, x_bcdt, dt_dim, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2],
ggml_element_size(x_bcdt) * (2 * d_state));
cb(B, "mamba_B_raw", il);
cb(C, "mamba_C_raw", il);
cb(dt, "mamba_dt_raw", il);
// Apply RMS norm to dt, B, C (PLaMo-2 specific)
B = build_norm(B, model.layers[il].ssm_b_norm, NULL, LLM_NORM_RMS, il);
C = build_norm(C, model.layers[il].ssm_c_norm, NULL, LLM_NORM_RMS, il);
dt = build_norm(dt, model.layers[il].ssm_dt_norm, NULL, LLM_NORM_RMS, il);
cb(B, "mamba_B_normed", il);
cb(C, "mamba_C_normed", il);
cb(dt, "mamba_dt_normed", il);
// dt_proj: {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
dt = build_lora_mm(model.layers[il].ssm_dt, dt);
dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
cb(dt, "mamba_dt_proj", il);
ggml_tensor * A = ggml_reshape_2d(ctx0, model.layers[il].ssm_a, 1, n_heads);
cb(A, "mamba_A", il);
x = ggml_view_4d(ctx0, x, head_dim, n_heads, n_seq_tokens, n_seqs, head_dim * ggml_element_size(x),
head_dim * n_heads * ggml_element_size(x),
head_dim * n_heads * n_seq_tokens * ggml_element_size(x), 0);
B = ggml_view_4d(ctx0, B, d_state, 1, n_seq_tokens, n_seqs, d_state * B->nb[0], B->nb[1], B->nb[2], 0);
C = ggml_view_4d(ctx0, C, d_state, 1, n_seq_tokens, n_seqs, d_state * C->nb[0], C->nb[1], C->nb[2], 0);
// use the states and the indices provided by build_recurrent_state
// (this is necessary in order to properly use the states before they are overwritten,
// while avoiding to make unnecessary copies of the states)
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_heads, mctx_cur->get_size());
// Custom operator to optimize the parallel associative scan
// as described in the Annex D of the Mamba paper.
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
};
ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
cb(y_ssm, "mamba_ssm_scan", il);
// store last states
ggml_build_forward_expand(
gf, ggml_cpy(
ctx0,
ggml_view_1d(ctx0, y_ssm, n_heads * head_dim * d_state * n_seqs,
n_heads * head_dim * n_seq_tokens * n_seqs * ggml_element_size(y_ssm)),
ggml_view_1d(ctx0, ssm_states_all, n_heads * head_dim * d_state * n_seqs,
kv_head * n_seqs * n_heads * head_dim * d_state * ggml_element_size(ssm_states_all))));
cb(ssm_states_all, "mamba_ssm_states", il);
ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_heads, n_seq_tokens, n_seqs,
head_dim * ggml_element_size(x), head_dim * n_heads * ggml_element_size(x),
head_dim * n_heads * n_seq_tokens * ggml_element_size(x), 0);
cb(y, "mamba_y_view", il);
// Add D parameter and apply gating with z
// {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
ggml_tensor * D = ggml_reshape_2d(ctx0, model.layers[il].ssm_d, 1, n_heads);
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, D));
cb(y, "mamba_y_add_d", il);
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
cb(y, "mamba_y_swiglu_z", il);
// out_proj: {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
y = ggml_view_3d(ctx0, y, head_dim * n_heads, n_seq_tokens, n_seqs, y->nb[2], y->nb[3], 0);
cur = build_lora_mm(model.layers[il].ssm_out, y);
cb(cur, "mamba_out_proj", il);
}
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
cb(cur, "mamba_out", il);
return cur;
}

168
src/models/plm.cpp Normal file
View File

@ -0,0 +1,168 @@
#include "models.h"
llm_build_plm::llm_build_plm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
const uint32_t n_embd_head_qk_rope = hparams.n_rot;
const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
const uint32_t kv_lora_rank = hparams.n_lora_kv;
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
ggml_tensor * q = NULL;
q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(q, "q", il);
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
0);
cb(q_nope, "q_nope", il);
// and {n_head * n_embd_head_qk_rope, n_tokens}
ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
ggml_row_size(q->type, n_embd_head_qk_nope));
cb(q_pe, "q_pe", il);
// {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
cb(kv_pe_compresseed, "kv_pe_compresseed", il);
// split into {kv_lora_rank, n_tokens}
ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
kv_pe_compresseed->nb[1],
0);
cb(kv_compressed, "kv_compressed", il);
// and {n_embd_head_qk_rope, n_tokens}
ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
kv_pe_compresseed->nb[1],
kv_pe_compresseed->nb[1],
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
cb(k_pe, "k_pe", il);
kv_compressed = build_norm(kv_compressed,
model.layers[il].attn_kv_a_norm, NULL,
LLM_NORM_RMS, il);
cb(kv_compressed, "kv_compressed", il);
// {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
cb(kv, "kv", il);
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
0);
cb(k_nope, "k_nope", il);
// and {n_head * n_embd_head_v, n_tokens}
ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
ggml_row_size(kv->type, (n_embd_head_qk_nope)));
cb(v_states, "v_states", il);
v_states = ggml_cont(ctx0, v_states);
cb(v_states, "v_states", il);
v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
0);
cb(v_states, "v_states", il);
q_pe = ggml_rope_ext(
ctx0, q_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(q_pe, "q_pe", il);
// shared RoPE key
k_pe = ggml_rope_ext(
ctx0, k_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(k_pe, "k_pe", il);
ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
cb(q_states, "q_states", il);
ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
cb(k_states, "k_states", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
q_states, k_states, v_states, nullptr, nullptr, nullptr, kq_scale, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

108
src/models/qwen.cpp Normal file
View File

@ -0,0 +1,108 @@
#include "models.h"
llm_build_qwen::llm_build_qwen(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 2*sizeof(float)*(n_embd));
// using mode = 2 for neox mode
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward forward
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

118
src/models/qwen2.cpp Normal file
View File

@ -0,0 +1,118 @@
#include "models.h"
llm_build_qwen2::llm_build_qwen2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
if (model.output_b != nullptr) {
cur = ggml_add(ctx0, cur, model.output_b);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

151
src/models/qwen2moe.cpp Normal file
View File

@ -0,0 +1,151 @@
#include "models.h"
llm_build_qwen2moe::llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
{
ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
// sigmoid
ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
cb(cur_gate, "ffn_shexp_gate", il);
ggml_tensor * cur_ffn = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur_ffn, "ffn_shexp", il);
ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
cb(ffn_shexp_out, "ffn_shexp_out", il);
moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
cb(moe_out, "ffn_out", il);
cur = moe_out;
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

117
src/models/qwen2vl.cpp Normal file
View File

@ -0,0 +1,117 @@
#include "models.h"
llm_build_qwen2vl::llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
int sections[4];
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_multi(
ctx0, Qcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_multi(
ctx0, Kcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

117
src/models/qwen3.cpp Normal file
View File

@ -0,0 +1,117 @@
#include "models.h"
llm_build_qwen3::llm_build_qwen3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

124
src/models/qwen3moe.cpp Normal file
View File

@ -0,0 +1,124 @@
#include "models.h"
llm_build_qwen3moe::llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
cur = moe_out;
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

150
src/models/qwen3vl-moe.cpp Normal file
View File

@ -0,0 +1,150 @@
#include "models.h"
llm_build_qwen3vlmoe::llm_build_qwen3vlmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_full = hparams.n_embd; // main embd + deepstack embds
const size_t n_deepstack_layers = hparams.n_deepstack_layers;
const int64_t n_embd = n_embd_full / (n_deepstack_layers + 1);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
int sections[4];
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
std::vector<ggml_tensor *> deepstack_features(n_deepstack_layers, nullptr);
if (ubatch.embd) {
// Image input: split main embd and deepstack embds
ggml_tensor * inpL_main = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], 0);
for (size_t i = 0; i < n_deepstack_layers; i++) {
deepstack_features[i] = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], (i + 1) * n_embd * sizeof(float));
}
inpL = inpL_main;
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_multi(
ctx0, Qcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_multi(
ctx0, Kcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
cur = moe_out;
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
if (ubatch.embd && (size_t)il < n_deepstack_layers) {
cur = ggml_add(ctx0, cur, deepstack_features[il]);
cb(cur, "deepstack_out", il);
}
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

144
src/models/qwen3vl.cpp Normal file
View File

@ -0,0 +1,144 @@
#include "models.h"
llm_build_qwen3vl::llm_build_qwen3vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_full = hparams.n_embd; // main embd + deepstack embds
const size_t n_deepstack_layers = hparams.n_deepstack_layers;
const int64_t n_embd = n_embd_full / (n_deepstack_layers + 1);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
int sections[4];
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
std::vector<ggml_tensor *> deepstack_features(n_deepstack_layers, nullptr);
if (ubatch.embd) {
// Image input: split main embd and deepstack embds
ggml_tensor * inpL_main = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], 0);
for (size_t i = 0; i < n_deepstack_layers; i++) {
deepstack_features[i] = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], (i + 1) * n_embd * sizeof(float));
}
inpL = inpL_main;
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_multi(
ctx0, Qcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_multi(
ctx0, Kcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
if (ubatch.embd && (size_t)il < n_deepstack_layers) {
cur = ggml_add(ctx0, cur, deepstack_features[il]);
cb(cur, "deepstack_out", il);
}
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

94
src/models/refact.cpp Normal file
View File

@ -0,0 +1,94 @@
#include "models.h"
llm_build_refact::llm_build_refact(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

162
src/models/rwkv6-base.cpp Normal file
View File

@ -0,0 +1,162 @@
#include "models.h"
llm_build_rwkv6_base::llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model) {}
ggml_tensor * llm_build_rwkv6_base::build_rwkv6_channel_mix(const llama_layer * layer,
ggml_tensor * cur,
ggml_tensor * x_prev,
llm_arch arch) const {
ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
switch (arch) {
case LLM_ARCH_RWKV6:
{
ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
ggml_tensor * k = ggml_sqr(ctx0, ggml_relu(ctx0, build_lora_mm(layer->channel_mix_key, xk)));
cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
}
break;
default:
GGML_ABORT("fatal error");
}
return cur;
}
ggml_tensor * llm_build_rwkv6_base::build_rwkv6_time_mix(llm_graph_input_rs * inp,
ggml_tensor * cur,
ggml_tensor * x_prev,
const llama_ubatch & ubatch,
int il) const {
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
const auto n_tokens = ubatch.n_tokens;
const auto n_seqs = ubatch.n_seqs;
const auto n_seq_tokens = ubatch.n_seq_tokens;
const auto n_embd = hparams.n_embd;
const auto head_size = hparams.wkv_head_size;
const auto n_head = n_embd / head_size;
const auto n_head_kv = hparams.n_head_kv(il);
const auto kv_head = mctx_cur->get_head();
const auto & layer = model.layers[il];
bool is_qrwkv = layer.time_mix_first == nullptr;
ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
xxx = ggml_reshape_4d(ctx0, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)),
layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens);
xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
xxx = ggml_mul_mat(
ctx0, ggml_reshape_4d(ctx0, layer.time_mix_w2, layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5), xxx);
ggml_tensor *xw, *xk, *xv, *xr, *xg;
if (layer.time_mix_lerp_fused) {
// fusing these weights makes some performance improvement
sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
} else {
// for backward compatibility
xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
}
ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
if (layer.time_mix_receptance_b) {
r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
}
if (layer.time_mix_key_b) {
k = ggml_add(ctx0, k, layer.time_mix_key_b);
}
if (layer.time_mix_value_b) {
v = ggml_add(ctx0, v, layer.time_mix_value_b);
}
ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
if (is_qrwkv) {
g = ggml_sigmoid(ctx0, g);
} else {
g = ggml_silu(ctx0, g);
}
if (n_head_kv != 0 && n_head_kv != n_head) {
GGML_ASSERT(n_head % n_head_kv == 0);
k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
k = ggml_repeat(ctx0, k, tmp);
v = ggml_repeat(ctx0, v, tmp);
}
k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
ggml_tensor * w =
ggml_mul_mat(ctx0, layer.time_mix_decay_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)));
w = ggml_add(ctx0, w, layer.time_mix_decay);
w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
if (is_qrwkv) {
// k = k * (1 - w)
k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
}
ggml_tensor * wkv_state = build_rs(inp, mctx_cur->get_s_l(il), hparams.n_embd_s(), n_seqs);
ggml_tensor * wkv_output;
if (is_qrwkv) {
wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
} else {
wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
}
cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
ggml_build_forward_expand(
gf, ggml_cpy(ctx0, wkv_state,
ggml_view_1d(ctx0, mctx_cur->get_s_l(il), hparams.n_embd_s() * n_seqs,
hparams.n_embd_s() * kv_head * ggml_element_size(mctx_cur->get_s_l(il)))));
if (!is_qrwkv) {
// group norm with head_count groups
cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
cur = ggml_norm(ctx0, cur, 64e-5f);
// Convert back to regular vectors.
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
} else {
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
}
cur = ggml_mul(ctx0, cur, g);
cur = build_lora_mm(layer.time_mix_output, cur);
return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
}

94
src/models/rwkv6.cpp Normal file
View File

@ -0,0 +1,94 @@
#include "models.h"
llm_build_rwkv6::llm_build_rwkv6(const llama_model & model, const llm_graph_params & params) :
llm_build_rwkv6_base(model, params) {
GGML_ASSERT(hparams.token_shift_count == 2);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
auto * rs_inp = build_rs_inp();
const auto n_embd = hparams.n_embd;
const auto n_seq_tokens = ubatch.n_seq_tokens;
const auto n_seqs = ubatch.n_seqs;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const llama_layer * layer = &model.layers[il];
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
ggml_tensor * att_shift =
ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1],
token_shift->nb[2], n_embd * ggml_element_size(token_shift));
ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
cb(att_norm, "attn_norm", il);
ggml_tensor * x_prev = ggml_concat(
ctx0, att_shift,
ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0), 1);
cur = build_rwkv6_time_mix(rs_inp, att_norm, x_prev, ubatch, il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
cb(ffn_norm, "ffn_norm", il);
x_prev = ggml_concat(
ctx0, ffn_shift,
ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0), 1);
token_shift = ggml_concat(ctx0,
ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2],
(n_seq_tokens - 1) * n_embd * ggml_element_size(att_norm)),
ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2],
(n_seq_tokens - 1) * n_embd * ggml_element_size(ffn_norm)),
1);
ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
ffn_norm = ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens);
x_prev = ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens);
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
if (il == n_layer - 1 && inp_out_ids) {
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
ffn_norm = ggml_get_rows(ctx0, ffn_norm, inp_out_ids);
x_prev = ggml_get_rows(ctx0, x_prev, inp_out_ids);
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
}
cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
cur = ggml_add(ctx0, cur, ffn_inp);
if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
cur = ggml_scale(ctx0, cur, 0.5F);
}
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

86
src/models/rwkv6qwen2.cpp Normal file
View File

@ -0,0 +1,86 @@
#include "models.h"
llm_build_rwkv6qwen2::llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv6_base(model, params) {
GGML_ASSERT(n_embd == hparams.n_embd_r());
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
auto * rs_inp = build_rs_inp();
const auto n_embd = hparams.n_embd;
const auto n_seq_tokens = ubatch.n_seq_tokens;
const auto n_seqs = ubatch.n_seqs;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const llama_layer * layer = &model.layers[il];
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
cb(att_norm, "attn_norm", il);
ggml_tensor * x_prev = ggml_concat(
ctx0,
token_shift,
ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
1
);
cur = build_rwkv6_time_mix(rs_inp, att_norm, x_prev, ubatch, il);
token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
}
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

135
src/models/rwkv7-base.cpp Normal file
View File

@ -0,0 +1,135 @@
#include "models.h"
llm_build_rwkv7_base::llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model) {}
ggml_tensor * llm_build_rwkv7_base::build_rwkv7_channel_mix(const llama_layer * layer,
ggml_tensor * cur,
ggml_tensor * x_prev,
llm_arch arch) const {
ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
switch (arch) {
case LLM_ARCH_RWKV7:
{
ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
ggml_tensor * k = ggml_sqr(ctx0, ggml_relu(ctx0, build_lora_mm(layer->channel_mix_key, xk)));
cur = build_lora_mm(layer->channel_mix_value, k);
}
break;
default:
GGML_ABORT("fatal error");
}
return cur;
}
ggml_tensor * llm_build_rwkv7_base::build_rwkv7_time_mix(llm_graph_input_rs * inp,
ggml_tensor * cur,
ggml_tensor * x_prev,
ggml_tensor *& first_layer_value,
const llama_ubatch & ubatch,
int il) const {
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
const auto n_tokens = ubatch.n_tokens;
const auto n_seqs = ubatch.n_seqs;
const auto n_embd = hparams.n_embd;
const auto head_size = hparams.wkv_head_size;
const auto head_count = n_embd / head_size;
const auto n_seq_tokens = ubatch.n_seq_tokens;
const auto kv_head = mctx_cur->get_head();
const auto & layer = model.layers[il];
bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
sx = ggml_repeat(ctx0, sx, dummy);
ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
ggml_tensor * xg =
has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) :
nullptr;
ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
ggml_tensor * w = ggml_add(
ctx0, ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
layer.time_mix_w0);
w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
if (first_layer_value == nullptr) {
first_layer_value = v;
} else {
// Add the first layer value as a residual connection.
v = ggml_add(ctx0, v,
ggml_mul(ctx0, ggml_sub(ctx0, first_layer_value, v),
ggml_sigmoid(ctx0, ggml_add(ctx0,
ggml_mul_mat(ctx0, layer.time_mix_v2,
ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
layer.time_mix_v0))));
}
ggml_tensor * g = nullptr;
if (layer.time_mix_g1 && layer.time_mix_g2) {
g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
}
ggml_tensor * a = ggml_sigmoid(
ctx0, ggml_add(ctx0, ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
layer.time_mix_a0));
ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
kk = ggml_l2_norm(ctx0, kk, 1e-12);
ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
ggml_tensor * wkv_state = build_rs(inp, mctx_cur->get_s_l(il), hparams.n_embd_s(), n_seqs);
ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
ggml_build_forward_expand(
gf, ggml_cpy(ctx0, wkv_state,
ggml_view_1d(ctx0, mctx_cur->get_s_l(il), hparams.n_embd_s() * n_seqs,
hparams.n_embd_s() * kv_head * ggml_element_size(mctx_cur->get_s_l(il)))));
if (layer.time_mix_ln && layer.time_mix_ln_b) {
// group norm with head_count groups
cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
cur = ggml_norm(ctx0, cur, 64e-5f);
// Convert back to regular vectors.
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
} else {
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
}
ggml_tensor * rk = ggml_sum_rows(
ctx0, ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
if (has_gating) {
cur = ggml_mul(ctx0, cur, g);
}
cur = build_lora_mm(layer.time_mix_output, cur);
return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
}

90
src/models/rwkv7.cpp Normal file
View File

@ -0,0 +1,90 @@
#include "models.h"
llm_build_rwkv7::llm_build_rwkv7(const llama_model & model, const llm_graph_params & params) :
llm_build_rwkv7_base(model, params) {
GGML_ASSERT(hparams.token_shift_count == 2);
ggml_tensor * cur;
ggml_tensor * inpL;
ggml_tensor * v_first = nullptr;
inpL = build_inp_embd(model.tok_embd);
inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
auto * rs_inp = build_rs_inp();
const auto n_embd = hparams.n_embd;
const auto n_seq_tokens = ubatch.n_seq_tokens;
const auto n_seqs = ubatch.n_seqs;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const llama_layer * layer = &model.layers[il];
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
ggml_tensor * att_shift =
ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1],
token_shift->nb[2], n_embd * ggml_element_size(token_shift));
ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
cb(att_norm, "attn_norm", il);
ggml_tensor * x_prev = ggml_concat(
ctx0, att_shift,
ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0), 1);
cur = build_rwkv7_time_mix(rs_inp, att_norm, x_prev, v_first, ubatch, il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
cb(ffn_norm, "ffn_norm", il);
x_prev = ggml_concat(
ctx0, ffn_shift,
ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0), 1);
token_shift = ggml_concat(ctx0,
ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2],
(n_seq_tokens - 1) * n_embd * ggml_element_size(att_norm)),
ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2],
(n_seq_tokens - 1) * n_embd * ggml_element_size(ffn_norm)),
1);
ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
ffn_norm = ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens);
x_prev = ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens);
if (il == n_layer - 1 && inp_out_ids) {
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
ffn_norm = ggml_get_rows(ctx0, ffn_norm, inp_out_ids);
x_prev = ggml_get_rows(ctx0, x_prev, inp_out_ids);
}
cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

124
src/models/seed-oss.cpp Normal file
View File

@ -0,0 +1,124 @@
#include "models.h"
llm_build_seed_oss::llm_build_seed_oss(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].attn_post_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

120
src/models/smallthinker.cpp Normal file
View File

@ -0,0 +1,120 @@
#include "models.h"
template <bool iswa>
llm_build_smallthinker<iswa>::llm_build_smallthinker(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params){
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
inp_attn_type * inp_attn = nullptr;
if constexpr (iswa) {
inp_attn = build_attn_inp_kv_iswa();
} else {
inp_attn = build_attn_inp_kv();
}
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
ggml_tensor * probs = nullptr;
probs = build_lora_mm(model.layers[il].ffn_gate_inp, inpL); // [n_expert, n_tokens]
cb(probs, "ffn_moe_logits", il);
// norm
cur = build_norm(inpL,model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
if (hparams.n_no_rope_layer_step == n_layer || il % hparams.n_no_rope_layer_step != 0) {
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
probs = ggml_get_rows(ctx0, probs, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * ffn_out =
build_moe_ffn(cur,
nullptr,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_RELU, true,
false, 0.0,
static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func),
il, probs);
cb(ffn_out, "ffn_out", il);
cur = ffn_out;
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
// Explicit template instantiations
template struct llm_build_smallthinker<false>;
template struct llm_build_smallthinker<true>;

128
src/models/smollm3.cpp Normal file
View File

@ -0,0 +1,128 @@
#include "models.h"
llm_build_smollm3::llm_build_smollm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
const bool use_rope = (il + 1) % hparams.n_no_rope_layer_step != 0;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
if (use_rope) {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

146
src/models/stablelm.cpp Normal file
View File

@ -0,0 +1,146 @@
#include "models.h"
llm_build_stablelm::llm_build_stablelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
ggml_tensor * inpSA = cur;
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
if (model.layers[il].attn_q_norm) {
Qcur = build_norm(Qcur,
model.layers[il].attn_q_norm,
NULL,
LLM_NORM, il);
cb(Qcur, "Qcur", il);
}
if (model.layers[il].attn_k_norm) {
Kcur = build_norm(Kcur,
model.layers[il].attn_k_norm,
NULL,
LLM_NORM, il);
cb(Kcur, "Kcur", il);
}
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
if (model.layers[il].ffn_norm) {
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
} else {
// parallel residual
cur = inpSA;
}
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

100
src/models/starcoder.cpp Normal file
View File

@ -0,0 +1,100 @@
#include "models.h"
llm_build_starcoder::llm_build_starcoder(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
cb(pos, "pos_embd", -1);
inpL = ggml_add(ctx0, inpL, pos);
cb(inpL, "inpL", -1);
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// add the input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

121
src/models/starcoder2.cpp Normal file
View File

@ -0,0 +1,121 @@
#include "models.h"
llm_build_starcoder2::llm_build_starcoder2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

166
src/models/t5-dec.cpp Normal file
View File

@ -0,0 +1,166 @@
#include "models.h"
llm_build_t5_dec::llm_build_t5_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
//const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * embd_enc = build_inp_cross_embd();
ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
const int64_t n_outputs_enc = embd_enc->ne[1];
auto * inp_attn_self = build_attn_inp_kv();
auto * inp_attn_cross = build_attn_inp_cross();
ggml_tensor * inp_out_ids = build_inp_out_ids();
const int64_t dec_n_layer = hparams.dec_n_layer;
for (int il = 0; il < dec_n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
cur = build_attn(inp_attn_self,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, kq_b, nullptr, nullptr, 1.0f, il);
cb(cur, "kqv_out", il);
}
cur = ggml_add(ctx0, cur, inpSA);
cb(cur, "cross_inp", il);
ggml_tensor * inpCA = cur;
// norm
cur = build_norm(cur,
model.layers[il].attn_norm_cross, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm_cross", il);
// cross-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
cur = build_attn(inp_attn_cross,
model.layers[il].wo_cross, nullptr,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
cb(cur, "kqv_out", il);
//ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
//ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
//ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
//cb(kq, "kq", il);
//kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
//cb(kq, "kq_soft_max_ext", il);
//ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
//cb(v, "v", il);
//ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
//cb(kqv, "kqv", il);
//ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
//cb(kqv_merged, "kqv_merged", il);
//cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
//cb(cur, "kqv_merged_cont", il);
//ggml_build_forward_expand(gf, cur);
//cur = build_lora_mm(model.layers[il].wo_cross, cur);
//cb(cur, "kqv_out", il);
}
if (il == dec_n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// T5 uses relu, flan-T5 uses gelu-gated
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_RELU,
model.layers[il].ffn_gate ? LLM_FFN_PAR : LLM_FFN_SEQ,
il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cb(cur, "result_embd", -1);
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

96
src/models/t5-enc.cpp Normal file
View File

@ -0,0 +1,96 @@
#include "models.h"
llm_build_t5_enc::llm_build_t5_enc(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm_enc, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
cur = build_attn(inp_attn,
model.layers[il].wo_enc, nullptr,
Qcur, Kcur, Vcur, kq_b, nullptr, nullptr, 1.0f, il);
cb(cur, "kqv_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm_enc, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// T5 uses relu, flan-T5 uses gelu-gated
cur = build_ffn(cur,
model.layers[il].ffn_up_enc, NULL, NULL,
model.layers[il].ffn_gate_enc, NULL, NULL,
model.layers[il].ffn_down_enc, NULL, NULL,
NULL,
model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cb(cur, "result_embd", -1);
cur = build_norm(cur,
model.output_norm_enc, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,149 @@
#include "models.h"
llm_build_wavtokenizer_dec::llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
cur = ggml_add(ctx0, cur, model.conv1d_b);
// posnet
for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
const auto & layer = model.layers[il].posnet;
inpL = cur;
switch (il) {
case 0:
case 1:
case 3:
case 4:
{
cur = build_norm(cur,
layer.norm1,
layer.norm1_b,
LLM_NORM_GROUP, 0);
cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
cur = ggml_add(ctx0, cur, layer.conv1_b);
cur = build_norm(cur,
layer.norm2,
layer.norm2_b,
LLM_NORM_GROUP, 0);
cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
cur = ggml_add(ctx0, cur, layer.conv2_b);
cur = ggml_add(ctx0, cur, inpL);
} break;
case 2:
{
cur = build_norm(cur,
layer.attn_norm,
layer.attn_norm_b,
LLM_NORM_GROUP, 0);
ggml_tensor * q;
ggml_tensor * k;
ggml_tensor * v;
q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
q = ggml_add(ctx0, q, layer.attn_q_b);
k = ggml_add(ctx0, k, layer.attn_k_b);
v = ggml_add(ctx0, v, layer.attn_v_b);
q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
cur = ggml_mul_mat(ctx0, kq, v);
cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
cur = ggml_add(ctx0, cur, layer.attn_o_b);
cur = ggml_add(ctx0, cur, inpL);
} break;
case 5:
{
cur = build_norm(cur,
layer.norm,
layer.norm_b,
LLM_NORM_GROUP, 0);
} break;
default: GGML_ABORT("unknown posnet layer");
};
}
cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
cur = build_norm(cur,
model.tok_norm,
model.tok_norm_b,
LLM_NORM, -1);
cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
inpL = cur;
// convnext
for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
const auto & layer = model.layers[il].convnext;
cur = inpL;
cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
cur = ggml_add(ctx0, cur, layer.dw_b);
cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
cur = build_norm(cur,
layer.norm,
layer.norm_b,
LLM_NORM, -1);
cur = build_ffn(cur,
layer.pw1, layer.pw1_b, NULL,
NULL, NULL, NULL,
layer.pw2, layer.pw2_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cur = ggml_mul(ctx0, cur, layer.gamma);
cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
inpL = ggml_add(ctx0, cur, inpL);
}
cur = inpL;
cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
cur = build_norm(cur,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
// lm_head
cur = build_lora_mm(model.output, cur);
cur = ggml_add(ctx0, cur, model.output_b);
cb(cur, "result_embd", -1);
res->t_embd = cur;
ggml_build_forward_expand(gf, cur);
}

108
src/models/xverse.cpp Normal file
View File

@ -0,0 +1,108 @@
#include "models.h"
llm_build_xverse::llm_build_xverse(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}