Commit Graph

52 Commits

Author SHA1 Message Date
Tarek Dakhran 2ba719519d
model: LFM2-VL fixes (#17577)
* Adjust to pytorch

* Add antialiasing upscale

* Increase number of patches to 1024

* Handle default marker insertion for LFM2

* Switch to flag

* Reformat

* Cuda implementation of antialias kernel

* Change placement in ops.cpp

* consistent float literals

* Pad only for LFM2

* Address PR feedback

* Rollback default marker placement changes

* Fallback to CPU implementation for antialias implementation of upscale
2025-11-30 21:57:31 +01:00
Piotr Wilkin (ilintar) ff55414c42
model : Qwen3 Next (#16095)
* Qwen3 Next - cleaned up version

* Whitespaces and stuff

* Correct minor errors

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Misc. fixes.

* Clean up code, add missing hybrid qualifier

* Did someone transpose the SOLVE_TRI result matrix? Perhaps...

* Whitespace

* Proper tensors for cb calls

* Use llama-graph.h vertical alignment

* BROKEN: chunking

* Set new tensors as inputs.

* Proper chunk logic

* It's the circle of life...

* More shenanigans for n_seq > 1

* Nail in the coffin?

* Fix Windows build

* Eh, one fails on Windows, the other fails on Mac... just use general capture.

* quant : cleanup

* model : cleanup

* qwen3 : cleanup

* cont : cleanup

* cont : cleanup

* ggml : revert change

* qwen3 : cleanup

* cont : cleanup

* Readd cmath

* qwen3 : fix typo

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Usual suspects

* fix my bad suggestion

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-28 12:02:56 +01:00
Georgi Gerganov 583cb83416
ggml : add ggml_top_k (#17365)
* ggml : add ggml_top_k

* cont : add ggml_argsort_top_k

* metal : add top_k support

* ggml : cleanup

* tests : add virtual err() function for test_case

* ggml : add comments
2025-11-25 15:31:43 +02:00
Piotr Wilkin (ilintar) 845f200b28
ggml : Fix transposed SOLVE_TRI result (#17323)
* Did someone transpose the SOLVE_TRI result matrix? Perhaps...

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-20 12:58:21 +02:00
Piotr Wilkin (ilintar) 389ac78b26
ggml : add ops SOFTPLUS, EXPM1, TRI, SOLVE_TRI, CUMSUM (#17063)
* Add ops needed for new hybrid models: SOFTPLUS, EXPM1, TRI, SOLVE_TRI, CUMSUM

* Update ggml/include/ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Code review

* Whitespace

* Update tests/test-backend-ops.cpp

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* This is actually sigmoid, duh.

* Add CONST, remove TRI_KEEP, other changes from review

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Remove extra script

* Update ggml/src/ggml.c

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* moving changes from laptop [no ci]

* pre-rebase

* Update tests/test-backend-ops.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Refactor tests

* ggml : cleanup

* cont : fix ggml_fill srcs

* tests : add note

* ggml : add ggml_fill_inplace

* ggml : add asserts

* ggml : fix ggml_fill constant cast

* cont : ggml_tri minor

* Use TENSOR_LOCALS

* Fix regression from #14596, regenerate

* Don't make commits at night...

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-13 20:54:47 +02:00
Diego Devesa 879dec341a
ggml-cpu : use template for argsort (#17222) 2025-11-13 10:59:05 +02:00
Georgi Gerganov 374fe09cdd
ggml : use std::sort in ggml_argsort CPU implementation (#17211)
* ggml : use std::sort in ggml_argsort CPU implementation

* cont : add missing header
2025-11-12 20:43:38 +02:00
duduta 73460f6278
ggml-cpu: templateify ggml_compute_forward_rope_f32 and _f16 (#16805)
* extract rotate_pairs logic from ggml_compute_forward_rope_f32

* templateify ggml_compute_forward_rope_f32 and _f16

* abort when rope type not supported, remove GLM from test-rope

* add imrope branch to switch

* add rope tests for perf

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-11 13:33:24 +02:00
Max Krasnyansky 395e286bc9
cpu: skip NOPs to avoid barriers (#17133)
* cpu: skip NOPs to avoid barriers

* cpu: use ggml_op_is_empty
2025-11-10 12:44:49 -08:00
Georgi Gerganov 852ce5180a ggml : fix conv2d_dw SVE path (ggml/1380)
* Fix test-conv2d-dw failure on ARM SVE by using runtime vector length

The ggml_compute_forward_conv_2d_dw_cwhn function was using a hardcoded GGML_F32_EPR (8) for SIMD vectorization, but on ARM SVE the actual vector length varies by hardware. This caused incorrect computation when processing CWHN layout tensors on ARM machines.

Fix by using svcntw() to get the runtime SVE vector length instead of the compile-time constant.

Co-authored-by: ggerganov <1991296+ggerganov@users.noreply.github.com>

* ci : reduce sam score threshold

* ci : update bbox checks for sam test

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ggerganov <1991296+ggerganov@users.noreply.github.com>
2025-11-05 10:41:51 +02:00
Acly cc98f8d349
ggml-cpu : bicubic interpolation (#16891) 2025-11-04 13:12:20 +01:00
JJJYmmm d261223d24
model: add support for qwen3vl series (#16780)
* support qwen3vl series.

Co-authored-by: Thireus ☠ <Thireus@users.noreply.github.com>
Co-authored-by: yairpatch <yairpatch@users.noreply.github.com>
Co-authored-by: LETS-BEE <LETS-BEE@users.noreply.github.com>

* bugfix: fix the arch check for qwen3vl-moe.

* use build_ffn

* optimize deepstack structure

* optimize deepstack feature saving

* Revert "optimize deepstack feature saving" for temporal fix

This reverts commit f321b9fdf1.

* code clean

* use fused qkv in clip

* clean up / rm is_deepstack_layers for simplification

* add test model

* move test model to "big" section

* fix imrope check

* remove trailing whitespace

* fix rope fail

* metal : add imrope support

* add imrope support for sycl

* vulkan: add imrope w/o check

* fix vulkan

* webgpu: add imrope w/o check

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* fix tensor mapping

---------

Co-authored-by: Thireus ☠ <Thireus@users.noreply.github.com>
Co-authored-by: yairpatch <yairpatch@users.noreply.github.com>
Co-authored-by: LETS-BEE <LETS-BEE@users.noreply.github.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-30 16:19:14 +01:00
Max Krasnyansky dcca0d3ab8
cpu: introduce chunking for flash attention (#16829)
Factor out the core FA loop into flash_atten_f16_one_chunk and add an outter loop
on top that handles the chunks.
2025-10-30 14:26:05 +02:00
Acly 10640e31aa
ggml : fix interpolate with align-corners and ne=1 (#16700)
* ggml : fix interpolate with align-corners and ne=1

* avoid division by zero if one of the spatial dimensions is 1
* cpu, cuda, opencl returned correct result anyway due to clamp
* vulkan didn't clamp for align-corners so results were broken

* fix clang warning
2025-10-27 21:50:22 +01:00
safranowith 466c1911ab
cpu : add FLOOR, CEIL, ROUND and TRUNC unary operators (#16083)
* CPU: Add support for FLOOR,CEIL,ROUND and TRUNC unary operators

- Added the operators to unary op enum
- Implemented API functions
- Implemented forward and unary-op logic in CPU backend
- Updated ggml_get_n_tasks
- Updated operators names array and static_assert
- Updated docs and enabled automatic tests

* docs: add documentation for ggml_trunc and ggml_trunc_inplace in ggml.h

* chore: remove trailing whitespace from ggml.h

* Remove unresolved merge markers

* Apply review suggestions: cleanup formatting, enum order and leftover artifacts

* Regenerate ops.md using create_ops_docs.py
2025-10-15 21:24:51 +02:00
duduta 1deee0f8d4
cpu : optimize the ggml NORM operation (#15953)
* ggml-cpu: optimize norm operation to use intrinsics or Accelerate

          rename function

          add endif macro comment

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Aaron Teo <taronaeo@gmail.com>

* implement s390x SIMD suggested by @taronaeo

* add TODO comment

* tidy up spaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Aaron Teo <taronaeo@gmail.com>
2025-10-09 21:11:15 +02:00
Georgi Gerganov 1d6092fc72
tests : add -INF blocks to the KQ mask in the FA tests (#16380)
* tests : add -INF blocks to the KQ mask in the FA tests

* cont : bump -INF block size to 64

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* ggml : prevent division by zero in FA CPU op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-10-07 08:22:35 +03:00
Piotr Wilkin (ilintar) 34fcc5a4ac
model : Apertus model implementation (#15852)
* First attempt

* No permute during convert (fixes qk tensors), proper norm application.

* RoPE = NeoX

* Coherence!

* Migrate xielu params from tensors to hyperparameters

* Simple CUDA kernel

* Revert stupid LLM refactorings

* Chat template support

* configchecker / flake8 errors

* Reorder unary.cu

* I do conclude that LLMs are, in fact, stupid.

* Fix after merge

* Final newline

* Make xIELU an UNARY_OP

* Final newline

* Correctly account for parameter shift

* Argh.

* Update ggml/src/ggml-cpu/unary-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Refactor: remove unused methods, inline and factorize softplus, add const modifiers

* Revert CUDA changes, implement xIELU as a separate OP

* Pesky newline

* Add float2half / half2float for F16 inputs/outputs

* CUDA variants, attempt 2

* Actually, attempt 3

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Missing convert header

* Proper formula and reference for xIELU in the comments.

* Modify unary-ops.cpp to add the functor-based logic besides the template system to retain optimizations

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add tensor mappings for Apertus to global list instead

* Fix lazy on scalars

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Add comment about the constraints on positive/negative alpha

* Change `softplus` to `ggml_softplus`

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-02 20:43:22 +03:00
Sigbjørn Skjæret 3ecb2f671a
ggml : implement set_rows with i32 index (#16159)
* implement set_rows with i32 index

* template fix

* test quantized path

warnings--

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* forgotten name change

* deduplicate cuda/sycl and test-fix

* indent++

* vulkan: support set_rows with i32 index type (#16162)

* disable i32 index for webgpu for now

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-09-22 19:13:00 +02:00
Xuan-Son Nguyen 0dd58b6877
ggml : refactor forward_dup for cpu backend (#16062)
* ggml : refactor forward_dup for cpu backend

* clean up a bit

* add quant/dequant perf test
2025-09-19 06:31:56 +02:00
Daniel Bevenius 3913f8730e
ggml : fix padding in timestep embedding kernels (#15932)
* ggml : remove adding extra dim timestep embedding

This commit updates the ggml_timestep_embedding function to no longer
add an extra dimension when the specified dimension is odd.

The motivation for this change is that this introduces an unnecessary
dimension when the dimension is odd, which caused an issue in the
kernels which were not expecting this extra dimension and it resulted in
uninitialized memory for the second to last dimension.

* ggml-cuda : fix padding in timestep embedding kernel

This commit removes the zeroing out of the last dimension now that we
are not adding the extra padding dimension.

* ggml-metal : fix padding in timestep embedding kernel

This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel

* ggml-opencl : fix padding in timestep embedding kernel

This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel.

* ggml-sycl : fix padding in timestep embedding kernel

This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel.

* ggml-vulkan : fix padding in timestep embedding kernel

This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel.

* ggml-cpu : fix padding in timestep embedding function

This commit removes the zeroing out of the last dimension now that we
are not adding the extra padding dimension.
2025-09-16 15:25:57 +02:00
Daniel Bevenius 9de447d94e
ggml-cpu : fix padding in ggml_timestep_embedding (#15917)
This commit fixes the zero padding for odd dimensions in
ggml_compute_forward_timestep_embedding_f32.
The motivation for this is that currently if an odd dimension is used,
the padding check incorrectly uses the dimension value for indexing.
For example, with dim=15:

Elements 0-6 are set to cosine values
Elements 7-13 are set to sine values
Element 14 is left uninitialized (contains garbage)
Element 15 is correctly set to zero

This fix changes embed_data[dim] to embed_data[2 * half] so that
element 14 (the first unused element) is properly set to zero as well
as the last element.

Resolves: https://github.com/ggml-org/ggml/issues/1324
2025-09-10 17:31:40 +02:00
Xuan-Son Nguyen 9fcb29f22f
ggml: allow casting between f32 and i32 (#15783)
* ggml: allow casting between f32 and i32

* fix cuda

* add vulkan

* fix CPU non-cont

* add non-cont test case

* add note

* extend test number range

* correct note

* add cont version for vulkan
2025-09-08 12:33:01 +02:00
leejet 0a1b3982cd
ggml: add ops for WAN video model (cuda && cpu) (#15669)
* add conv3d support

* add ggml_pad_ext for cpu & cuda backend

* cuda/cpu: add im2col_3d support

* cuda: make im2col a little faster

* fix cuda pad/scale/im2col3d

* make im2col_3d faster

* gguf: support loading tensors which n_dims > GGML_MAX_DIMS

* fix cuda get_rows

* avoid ggml_conv_3d conflict

* correct GGML_OP_COUNT assertion

* avoid build failure

* avoid build failure on MacOS

* cuda: remove unnecessary MIN define

* fix cpu im2col_3d

* adjust the code style

* cuda: use simpler loop in get_rows

* add test_im2col_3d to test-backend-ops

* test-backend-ops.cpp: remove trailing whitespace

* cpu: im2col_3d support non continuous src

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* fix test_im2col_3d

* remove unused variables

* cuda: get_rows: dfloat2 -> float2

* add test_pad_ext to test-backend-ops.cpp

* add gguf_init_from_file_ext impl

* Revert "gguf: support loading tensors which n_dims > GGML_MAX_DIMS"

This reverts commit d8377a0a37.

* Revert "add gguf_init_from_file_ext impl"

This reverts commit d9f1d13208.

* update ggml_backend_vk_device_supports_op

* fix ggml_backend_vk_device_supports_op

* update other backend supports op for ggml_pad_ext

* metal/opencl/sycl/vulkan: fix GGML_OP_PAD check in supports_op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-09-04 10:38:49 +02:00
compilade 73804145ab
ggml : fix SSM_SCAN for n_groups > 1 (#15625) 2025-08-28 10:11:36 -04:00
xctan 1cf123a343
ggml-cpu : add basic RVV support for vector f32 ops (#15057)
* ggml-cpu : add basic RVV support for vector f32 ops

* ggml-cpu : add RVV support for f32 softmax
2025-08-27 16:44:22 +08:00
rmatif 92f7f0a53c
ggml: add `conv3d` op (#15182)
* add conv3d

* bump GGML_OP_COUNT
2025-08-22 15:33:15 +02:00
Jonathan Graehl 5cdb27e091
finetune: SGD optimizer, more CLI args (#13873)
* examples/finetune -opt SGD (stochastic gradient descent) memory opt

add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.

support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)

llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)

(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val:   [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00

SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val:   [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)

note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')

-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.

note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence

new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)

cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)

since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)

test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values);  tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)

* Vulkan: Implement GGML_OP_OPT_STEP_SGD

* tests: Fix OPT_STEP_SGD test-backend-ops

* SGD op param store weight-decay and not 1-alpha*wd

* minor + cosmetic changes

* fix vulkan sgd

* try CI fix

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-14 12:03:57 +02:00
Georgi Gerganov fd1234cb46
llama : add gpt-oss (#15091)
* oai moe

* compat with new checkpoint

* add attn sink impl

* add rope scaling yarn

* logits match with latest transformers code

* wip chat template

* rm trailing space

* use ggml_scale_bias

* rm redundant is_swa_all

* convert interleaved gate_up

* graph : fix activation function to match reference (#7)

* vocab : handle o200k_harmony special tokens

* ggml : add attention sinks support (#1)

* llama : add attn sinks

* ggml : add attn sinks

* cuda : add attn sinks

* vulkan : add support for sinks in softmax

remove unnecessary return

* ggml : add fused swiglu_oai op (#11)

* ggml : add fused swiglu_oai op

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update CUDA impl

* cont : metal impl

* add vulkan impl

* test-backend-ops : more test cases, clean up

* llama : remove unfused impl

* remove extra lines

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>

* repack mxfp4 upon conversion

* clean up a bit

* enable thinking

* add quick hack to render only some special tokens

* fix bf16 conversion

* remove vocab hack

* webui ok

* support chat parsing for gpt-oss

* fix webui

* direct mapping mxfp4, FINALLY

* force using mxfp4

* properly use lazy tensor

* ggml : add mxfp4

ggml : use e8m0 conversion instead of powf

Co-authored-by: Diego Devesa <slarengh@gmail.com>

change kvalues_mxfp4 table to match e2m1 (#6)

metal : remove quantization for now (not used)

cuda : fix disabled CUDA graphs due to ffn moe bias

vulkan : add support for mxfp4

cont : add cm2 dequant

* ggml : add ggml_add_id (#13)

* ggml : add ggml_add_id

* add cuda impl

* llama : add weight support check for add_id

* perf opt

* add vulkan impl

* rename cuda files

* add metal impl

* allow in-place ggml_add_id

* llama : keep biases on CPU with --cpu-moe

* llama : fix compile error

ggml-ci

* cuda : add fallback for __nv_cvt_e8m0_to_bf16raw

ggml-ci

* cleanup

ggml-ci

* sycl : fix supports_op for MXFP4

ggml-ci

* fix Unknown reasoning format

* ggml-cpu : fix AVX build

ggml-ci

* fix hip build

ggml-ci

* cuda : add mxfp4 dequantization support for cuBLAS

ggml-ci

* ggml-cpu : fix mxfp4 fallback definitions for some architectures

ggml-ci

* cuda : fix version required for __nv_cvt_e8m0_to_bf16raw

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: slaren <slarengh@gmail.com>
2025-08-05 22:10:36 +03:00
Georgi Gerganov 64978340b0
ggml : add asserts (#14720)
* ggml : add asserts

ggml-ci

* cont : fix constant type

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-07-16 14:43:32 +03:00
Xuan-Son Nguyen 98bab638fb
ggml : add ggml_scale_bias (#14417)
* ggml : add ggml_scale_bias

* ggml_vec_mad1_f32

* add more simd

* add CUDA

* sycl

* vulkan

* cann (placeholder)

* opencl

* will this fix cpu?

* fix cuda

* suggestions from coderabbit

* fix cann compile error

* vDSP_vsmsa

* rm __ARM_FEATURE_SVE

* use memcpy for op params

* make code looks more consistent

* use scalar for __ARM_FEATURE_SVE

* add x param to ggml_vec_mad1_f32
2025-07-09 18:16:12 +02:00
Sigbjørn Skjæret 28657a8229
ggml : implement GEGLU_ERF and GEGLU_QUICK ops (#14445) 2025-07-03 23:07:22 +02:00
Georgi Gerganov 9067487c44
ggml : fix FA mask dim 2 and 3 (#14505)
* ggml : fix FA mask dim 2 and 3

ggml-ci

* backends : unsupport batched FA in CUDA and Vulkan

ggml-ci

* vulkan : disable FA for mask->ne[2] != 1
2025-07-03 10:46:57 +03:00
compilade 5d46babdc2
llama : initial Mamba-2 support (#9126)
* llama : initial Mamba-2 support

* ggml : SIMD ggml_ssm_scan for Mamba-2

* ggml : improve ggml_mul speed when masking recurrent states

* llama : support running Mamba-Codestral-7B-v0.1

* llama : fix Mamba-2 conv state saving

* ggml : make the ggml_mul fast broadcast path more consistently formatted

* llama : remove unused variable

* llama : add missing break

* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present

The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.

* llama : avoid redundant state copy for Mamba 1 and 2

* metal : attempt to adapt SSM_SCAN for Mamba-2

* metal : fix SSM_SCAN pipeline scope

* metal : use log and exp instead of log1pf and expf in SSM_SCAN

* metal : remove unused arguments for SSM_SCAN

The max index is 31, so trimming the arguments is necessary.

* metal : add back n_seqs to SSM_SCAN args

Whoops, this is needed for the offset in the concatenated output.

* metal : fix SSM_SCAN state head offset

* metal : fix wrong number of tokens per sequence in SSM_SCAN

* ggml : remove unused fast broadcast path in GGML_MUL

This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.

* ggml : avoid multiply by D in GGML_OP_SSM_SCAN

This makes the weight buft detection in src/llama.cpp simpler.

* convert : transpose Mamba-2 A, D and reshape SSM_NORM

This breaks existing conversions of Mamba-2 models
to avoid some reshapes.

Not sure if it's a good idea,
but it makes the graph slightly cleaner.

* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks

* convert : fix flake8 lint

* metal : fix confusion between ; and ,

* metal : add missing args for nb references in ssm_scan_f32_group

* metal : single-user mamba2 inference works

* kv-cache : remove const_cast when setting inputs for s_copy

And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.

* convert : avoid AutoConfig for Mamba and Mamba2 hparams

* kv-cache : allow context shift for recurrent models

* graph : fix recurrent state copies when avoiding copies

Works, but using lambda functions might not be that clean.

* ggml : fix mamba2 ssm scan when compiled with SVE

* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches

* cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2

* mamba : fix mismatched new and delete size for llm_build_mamba

Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON

* cuda : graceful fallback for Mamba-1 models with weird embd size
2025-07-02 13:10:24 -04:00
Georgi Gerganov ec68e84c32 ggml : support bcast ggml_soft_max_ext, ggml_flash_attn_ext (#14435)
ggml-ci
2025-07-02 15:48:33 +03:00
Acly 431b2c24f3 ggml-cpu : "align corners" for bilinear upscale/downscale (ggml/1285)
* add "align corners" mode for bilinear upscale, and allow downscaling
* add ggml_interpolate, deprecate ggml_upscale_ext, pass in align-corners as bit-flag
* test-backend-ops: replace ggml_upscale_ext with ggml_interpolate, add test cases for downscale and align-corners
2025-07-01 11:06:39 +03:00
Aman Gupta 0a5a3b5cdf
Add Conv2d for CPU (#14388)
* Conv2D: Add CPU version

* Half decent

* Tiled approach for F32

* remove file

* Fix tests

* Support F16 operations

* add assert about size

* Review: further formatting fixes, add assert and use CPU version of fp32->fp16
2025-06-30 23:57:04 +08:00
Sigbjørn Skjæret a0535ffa0d
ggml : implement REGLU/GEGLU/SWIGLU ops (#14158)
* implement unary REGLU/GEGLU/SWIGLU cpu ops

* relax constraints

* duplicate shape of source

* fix ggml_vec_geglu_f16

* special case gated ops

* implement unary REGLU/GEGLU/SWIGLU cuda ops

* tighten constraints again

* refactor into GGML_GLU_OP

* metal : add glu kernels

ggml-ci

* add CUDA_GLU_BLOCK_SIZE [no ci]

* more constraints and use 64bit ints

ggml-ci

* 64bit multiplication [no ci]

* implement swapped variants (cpu/cuda)

* update comment [no ci]

ggml-ci

* Vulkan: Add GLU ops and shaders

* SYCL: Implement fused kernel GEGLU, SWIGLU and REGLU for single up+gate

* ggml : implement GLU for split up/gate (#14181)

* implement GLU for split up/gate

* add tests for ggml_glu_split

* Vulkan: Implement glu_split logic and shader support

* add split to logging [no ci]

* SYCL: refactor element_size ops and add split up and gate support to gated kernels

* SYCL: switch GEGLU to use tanh approximation

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>

* GGML: increase OP count in assertion

* Refactor: Optimize SYCL element-wise operations with unary function inlining

This commit refactors the SYCL element-wise operations to improve performance by:

- Inlining unary operations (sgn, abs, elu, gelu, silu, etc.) to reduce kernel launch overhead.
- Introducing helper functions `op_xxx` for each unary operation to encapsulate the logic.
- Replacing direct kernel calls with calls to these inlined functions.
- Using `__dpct_inline__` to encourage compiler inlining.
- Minor code cleanup and consistency improvements.

The changes aim to reduce kernel launch overhead and improve the overall efficiency of element-wise operations on SYCL devices.

* vulkan: Increase workgroup size for GLU, for performance (#14345)

* vulkan: Increase workgroup size for GLU, for performance

* vulkan: change GLU shaders to do one element per invocation rather than one row per workgroup

* merge fix

* metal : add support for split and swap

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-06-29 11:04:10 +02:00
Radoslav Gerganov 8d94219a4a
ggml : add ggml_set_rows (#14274)
* ggml : add ggml_set_rows

Add ggml_set_rows(a, b, c) which copies rows from 'b' into 'a' using
indices from 'c'.

ref: #8366

* use I64 for indices

* ggml : add repeat impl for i64

* ggml : add ggml_is_contiguous_rows

* ggml : ggml_set_rows support broadcast

* ggml : ggml_set_rows support quantized dst

ggml-ci

* ggml : support GGML_TYPE_F32 ".from_float" trait

* ggml : ggml_set_rows update comment + better index name

* tests : add ggml_set_rows

* metal : add ggml_set_rows implementation

ggml-ci

* ggml : simplify forward_dup_f32

* ggml : fix supports_op

* tests : add comment to set_rows

* ggml : leave the repeat_i64 for a separate PR

ggml-ci

* ggml : set_rows use std::min instead of MIN

* ggml : better error message for set_rows unsupported type

* metal : perform op->type check only once

* tests : more consistent implementation + more tests

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-27 16:41:40 +03:00
Aaron Teo 60ef23d6c1
ggml-cpu: enable IBM NNPA Vector Intrinsics (#14317)
* ggml-cpu: add nnpa compile flag

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 4a9f60c201)

* ggml-cpu: add fp16->fp32 nnpa first

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 8d4a7987f9)

* ggml-cpu: add fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 0ff0d65162)

* ggml-cpu: better variable names

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 2f58bbcbb8)

* docs: update s390x docs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 01b929491b)

* ggml-cpu: add debugging prints to see if dlf16 is correct

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix print vs printf

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix float placeholder

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: ensure fp16 and fp32 load and stores are called

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fp16 load ensured to hit

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove sigint from fp16 store

for some reason, the function is not getting a hit when debugged with
    gdb. we will need to investigate further

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: activate nnpa for ggml_cpu_fp16_to_fp32

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: nnpa activate ggml_cpu_fp16_to_fp32 for 8 elements

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: nnpa switch to vec_xst test

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to vec_xst for 4 element loops also

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: rework noop

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove noop, general code cleanup

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: clarify variable naming

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: activate nnpa for ggml_cpu_fp32_to_fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add breakpoint for debugging

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: test fix for conversion failure

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: disable fp32->fp16 nnpa conversions for now

there are some conversion failures in nnpa that requires the eyes of an
ibm stsm. will create a separate pr to introduce the fp32->fp16 change.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to elif macro

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: reattempt fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix typo

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: reattempt fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix compiler types

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: change to typedef vector types

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add 4 element loops for fp32->fp16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: clarified vector naming

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back fp32->fp16 store nnpa

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: activate nnpa fp32->fp16 or fp16->fp32 compute

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add nnpa macro check in ggml-impl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add missing __func__

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: diagnose why __NNPA__ macro is not being defined

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: import vecintrin.h to fix compiler errors

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: update macro tests

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move s390x typedef to own header file

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: move s390x typedef to own header file"

This reverts commit 157f856c34.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to importing ggml-cpu-impl instead

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix macro declaration

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: test more macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add debug prints

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bruteforce macro definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move macro definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add ggml-impl.h to cmakelists

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to private macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move s390x typedef to own header file

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 157f856c34)

* ggml-cpu: move things around

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back compile macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: switch to quotes for import

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add compiler error macro

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add s390x detection in ggml-src

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back compile definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: undo cmakelists work

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: move s390x typedef to own header file"

This reverts commit 18d79e1a30.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove typedefs.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove typedef from cmakelists

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add ggml-impl.h future notes

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add todo comment for future reference

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: clarify naming of dlf16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove unnecessary target compile definitions

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move nnpa fp16->fp32 and fp32->fp16 to simd-mappings

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: refactor fp32->fp16 and fp16->fp32 simd to ggml-cpu

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* docs: update broken huggingface link for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix duplicate func names during compile

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: fix duplicate func names during compile"

This reverts commit fbb733451f.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml: refactor fp32->fp16 and fp16->fp32 simd to ggml-cpu"

This reverts commit bd288e8fa5.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: refactor fp16<->fp32 simd to ggml-cpu

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix missing simd-mappings.h import in quants.c

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix missing simd-mappings.h within repack

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix amx mmq missing simd-mappings.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: attempt at fixing loongarch failing build

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move nnpa together with other fp16<->fp32 simd

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix wrong refactor of ggml-base

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164176555

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: remove dependency on ggml-cpu from ggml-base

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: rename all fp16<->fp32 macros to prefix with ggml_cpu

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164449406

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: remove mistaken fallback macro

fallback logic was already implemented but i was too sleepy to realise

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move ggml_table_f32_f16 to ggml-cpu

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164775006

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: move ggml_table_f32_f16 back to ggml-base due to ci failures

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: move ggml_table_f32_f16 back to ggml-base due to ci failures"

This reverts commit 32a3533564.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml: move ggml_table_f32_f16 to ggml-cpu"

This reverts commit 9e40d984ad.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move ggml_table_f32_f16 to ggml-cpu

ref: https://github.com/ggml-org/llama.cpp/pull/14317#discussion_r2164775006

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 9e40d984ad)

* ggml: move ggml_table_f32_f16 to ggml-cpu.c

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: extern c ggml_table_f32_f16 + chore docs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: dedup ggml_table_f32_f16 from simd-mappings.h

we rely on the variable declaration in ggml-cpu.c instead

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: dedup ggml_table_f32_f16 from simd-mappings.h"

This reverts commit f71b21d2f7.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: bring back ggml_table_f32_f16

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: bring back ggml_table_f32_f16"

This reverts commit 2dce119178.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* fix ggml time initialization

* fix f32_f16 table init

* remove extra line

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: slaren <slarengh@gmail.com>
2025-06-25 23:49:04 +02:00
Acly b7147673f2 Add `ggml_roll` (ggml/1274)
* ggml : add ggml_roll

* use set/get_op_params & std::min
2025-06-20 21:02:47 +03:00
Diego Devesa 482548716f
releases : use dl backend for linux release, remove arm64 linux release (#13996) 2025-06-04 13:15:54 +02:00
Vineel Abhinav dd8ba93416
ggml: aarch64: Implement SVE F32 kernels for Mamba Sequential Scan Algorithm (#13882)
* F32-Mamba-Seq_Scan-SVE

* Fix formatting

* ggml : missing space

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-05-29 12:18:43 +03:00
Vineel Abhinav 1b8fb8152d
ggml: aarch64: Implement SVE F32 kernels for vector functions (#13843)
* F32-Mamba-SVE

* F32-Mamba-SVE

* Resolve test errors-1

* Resolve test errors-2

* F32-vec-SVE

* F32-vec-SVE

* F32-vec-SVE
2025-05-29 09:01:33 +03:00
Xuan-Son Nguyen cf4cb59e64
ggml : add ggml_gelu_erf() (#13667)
* ggml : add ggml_gelu_na (not approximated)

* fix naming order

* rename na --> erf

* apply review suggesions

* revert naming order
2025-05-21 16:26:33 +02:00
Daniel Bevenius 13b0a04597 whisper: remove MSVC warnings pragmas (whisper/3090)
* ggml : remove MSVC warnings pragmas

This commit removes the MSVC-specific pragmas as these are now handled
in ggml/CMakeLists.txt.

* whisper : remove MSVC warning pragmas

This commit removes the MSVC-specific pragmas. These are now handled in
the ggml/CMakeLists.txt file.
2025-05-07 17:28:36 +03:00
SXX 77d5e9a76a
ggml: move fp16/bf16 conversion optimizations to CPU backend + export conversion APIs (#13107)
* ggml: dynamic x86_64 feature detection for FP32 <-> FP16/BF16 conversion

* move fp converter to ggml-cpu

* Switch ggml_compute_forward_get_rows_f16/bf16 to new ggml_cpu_fp16/bf16_to_fp32
2025-04-26 16:05:31 +02:00
Acly c6e8cc28c1 ggml : Depthwise 2D convolution (ggml/1152)
* ggml-cpu : kernels for faster depthwise 2D convolution

* fix compile: remove static after moving to ops.cpp

* add dilation for depthwise_conv_2d

* review: rename to ggml_conv_2d_dw_direct, remove redundant struct keywords, pass by ref, whitespace

* review: rename depthwise_conv_2d -> conv_2d_dw everywhere
2025-04-24 17:32:47 +03:00
Diego Devesa fe92821ea9 ggml : add bilinear upscale support (ggml/1185) 2025-04-11 00:17:47 +03:00
Diego Devesa 459895c326 ggml : add more generic custom op, remove deprecated custom ops (ggml/1183)
* ggml : add more generic ggml_custom op

* ggml : remove deprecated custom ops
2025-04-11 00:17:47 +03:00