Finetune heuristics
This commit is contained in:
parent
41a0069613
commit
fa1df81d49
|
|
@ -1577,13 +1577,9 @@ static std::unordered_map<std::string, ggml_type> target_bpw_type(
|
|||
float depth_score = 0.0f;
|
||||
float type_score = 0.0f;
|
||||
|
||||
// Depth component: output, embeddings & early/late layers are important
|
||||
if (name.find("output.weight") != std::string::npos ||
|
||||
name.find("token_embd.weight") != std::string::npos) {
|
||||
// Depth component: output & early/late layers are important
|
||||
if (name == "output.weight") {
|
||||
depth_score = 1.0f;
|
||||
}
|
||||
else if (name.find(".attn_output.weight") != std::string::npos) {
|
||||
depth_score = 0.9f;
|
||||
} else {
|
||||
static const std::regex layer_pattern(R"(blk\.(\d+)\.)");
|
||||
std::smatch match;
|
||||
|
|
@ -1591,38 +1587,40 @@ static std::unordered_map<std::string, ggml_type> target_bpw_type(
|
|||
const int layer = std::stoi(match[1]);
|
||||
const float normalized_layer = (float)layer / (float)std::max(1, (int)model.hparams.n_layer - 1);
|
||||
const float center_dist = std::abs(normalized_layer - 0.5f) * 2.0f;
|
||||
depth_score = 0.2f + 0.6f * center_dist;
|
||||
depth_score = 0.9f * center_dist;
|
||||
}
|
||||
}
|
||||
|
||||
// Type component: certain tensor types are more important
|
||||
if (name.find("output.weight") != std::string::npos) {
|
||||
// Type component: certain tensor types have more impact on model quality
|
||||
if (name == "output.weight") {
|
||||
type_score = 1.0f;
|
||||
} else if (name.find(".attn_output.weight") != std::string::npos) {
|
||||
type_score = 0.9f;
|
||||
} else if (name.find(".ffn_down.weight") != std::string::npos ||
|
||||
name.find(".ffn_down_shexp.weight") != std::string::npos ||
|
||||
name.find(".ffn_down_exps.weight") != std::string::npos) {
|
||||
type_score = 0.9f;
|
||||
} else if (name.find(".attn_output.weight") != std::string::npos ||
|
||||
name.find(".time_mix_output.weight") != std::string::npos ||
|
||||
name.find(".attn_o.weight") != std::string::npos) {
|
||||
type_score = 0.8f;
|
||||
} else if (name.find(".ffn_up.weight") != std::string::npos ||
|
||||
name.find(".ffn_gate.weight") != std::string::npos ||
|
||||
name.find(".ffn_up_exps.weight") != std::string::npos ||
|
||||
name.find(".ffn_gate_exps.weight") != std::string::npos) {
|
||||
type_score = 0.3f;
|
||||
} else if (name.find(".attn_q.weight") != std::string::npos ||
|
||||
name.find(".attn_k.weight") != std::string::npos ||
|
||||
name.find(".attn_v.weight") != std::string::npos ||
|
||||
name.find(".attn_qkv.weight") != std::string::npos) {
|
||||
type_score = 0.7f;
|
||||
} else if (name.find(".ffn_up.weight") != std::string::npos ||
|
||||
name.find(".ffn_gate.weight") != std::string::npos ||
|
||||
name.find(".ffn_up_shexp.weight") != std::string::npos ||
|
||||
name.find(".ffn_gate_shexp.weight") != std::string::npos ||
|
||||
name.find(".ffn_up_exps.weight") != std::string::npos ||
|
||||
name.find(".ffn_gate_exps.weight") != std::string::npos) {
|
||||
type_score = 0.6f;
|
||||
type_score = 0.2f;
|
||||
} else if (name.find("token_embd.weight") != std::string::npos) {
|
||||
type_score = 0.5f;
|
||||
type_score = 0.1f;
|
||||
}
|
||||
|
||||
// Weighted combination
|
||||
total_score = 0.80f * type_score + 0.20f * depth_score; // 80% type + 20% depth
|
||||
total_score = 0.8f * type_score + 0.2f * depth_score; // 80% type + 20% depth
|
||||
if (total_score != 0.0f) {
|
||||
scores[name] = total_score;
|
||||
LLAMA_LOG_DEBUG("\t%s: \t %45s \t depth score %.4f \t type score %.4f \t total score %.4f\n", func, name.c_str(), depth_score, type_score, total_score);
|
||||
}
|
||||
}
|
||||
|
||||
return scores;
|
||||
|
|
@ -1636,15 +1634,16 @@ static std::unordered_map<std::string, ggml_type> target_bpw_type(
|
|||
std::sort(sorted_scores.begin(), sorted_scores.end(), [](const auto & a, const auto & b) { return a.second > b.second; });
|
||||
|
||||
// Select top percentile
|
||||
const size_t n_important = std::max<size_t>(1, std::llround((double)sorted_scores.size() * 0.25f)); // top 25%
|
||||
const size_t n_important = std::max<size_t>(1, std::llround((double)sorted_scores.size() * 0.25f)); // bump top 25%
|
||||
|
||||
std::unordered_set<std::string> important;
|
||||
for (size_t i = 0; i < std::min(n_important, sorted_scores.size()); ++i) {
|
||||
important.insert(sorted_scores[i].first);
|
||||
//LLAMA_LOG_DEBUG("\t%s: important tensor %s (score %.4f)\n", func, sorted_scores[i].first.c_str(), sorted_scores[i].second);
|
||||
LLAMA_LOG_DEBUG("\t%s: important tensor %s (score %.4f)\n", func, sorted_scores[i].first.c_str(), sorted_scores[i].second);
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: prioritizing %zu out off %zu tensors\n", func, important.size(), sorted_scores.size());
|
||||
const auto pct = 100.0 * (double)important.size() / (double)sorted_scores.size();
|
||||
LLAMA_LOG_INFO("%s: prioritizing %zu out of %zu tensors (%.2f%%)\n", func, important.size(), sorted_scores.size(), pct);
|
||||
return important;
|
||||
};
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue