Merge branch 'master' into quantize

This commit is contained in:
Ed Addario 2025-10-16 22:20:04 +01:00
commit 41a0069613
No known key found for this signature in database
GPG Key ID: E7875815A3230993
124 changed files with 19333 additions and 8841 deletions

View File

@ -387,6 +387,39 @@ jobs:
cd build
ctest -L main --verbose
ubuntu-24-cmake-vulkan-deb:
runs-on: ubuntu-24.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-24-cmake-vulkan-deb
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get install -y glslc libvulkan-dev libcurl4-openssl-dev
- name: Configure
id: cmake_configure
run: |
cmake -B build \
-DCMAKE_BUILD_TYPE=RelWithDebInfo \
-DGGML_BACKEND_DL=ON \
-DGGML_CPU_ALL_VARIANTS=ON \
-DGGML_VULKAN=ON
- name: Build
id: cmake_build
run: |
cmake --build build -j $(nproc)
ubuntu-24-cmake-vulkan:
runs-on: ubuntu-24.04

View File

@ -1760,7 +1760,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
add_opt(common_arg(
{"-t", "--threads"}, "N",
string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
string_format("number of CPU threads to use during generation (default: %d)", params.cpuparams.n_threads),
[](common_params & params, int value) {
params.cpuparams.n_threads = value;
if (params.cpuparams.n_threads <= 0) {
@ -3358,7 +3358,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
add_opt(common_arg(
{"--chat-template-kwargs"}, "STRING",
string_format("sets additional params for the json template parser"),
[](common_params & params, const std::string & value) {
[](common_params & params, const std::string & value) {
auto parsed = json::parse(value);
for (const auto & item : parsed.items()) {
params.default_template_kwargs[item.key()] = item.value().dump();
@ -3570,21 +3570,23 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
common_log_set_file(common_log_main(), value.c_str());
}
));
add_opt(common_arg({ "--log-colors" }, "[on|off|auto]",
"Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"
"'auto' enables colors when output is to a terminal",
[](common_params &, const std::string & value) {
if (is_truthy(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED);
} else if (is_falsey(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED);
} else if (is_autoy(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_AUTO);
} else {
throw std::invalid_argument(
string_format("error: unkown value for --log-colors: '%s'\n", value.c_str()));
}
}).set_env("LLAMA_LOG_COLORS"));
add_opt(common_arg(
{"--log-colors"}, "[on|off|auto]",
"Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"
"'auto' enables colors when output is to a terminal",
[](common_params &, const std::string & value) {
if (is_truthy(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED);
} else if (is_falsey(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED);
} else if (is_autoy(value)) {
common_log_set_colors(common_log_main(), LOG_COLORS_AUTO);
} else {
throw std::invalid_argument(
string_format("error: unkown value for --log-colors: '%s'\n", value.c_str()));
}
}
).set_env("LLAMA_LOG_COLORS"));
add_opt(common_arg(
{"-v", "--verbose", "--log-verbose"},
"Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
@ -3850,7 +3852,87 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_TTS}));
// model-specific
add_opt(common_arg(
{"--diffusion-steps"}, "N",
string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
[](common_params & params, int value) { params.diffusion.steps = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{"--diffusion-visual"},
string_format("enable visual diffusion mode (show progressive generation) (default: %s)", params.diffusion.visual_mode ? "true" : "false"),
[](common_params & params) { params.diffusion.visual_mode = true; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{"--diffusion-eps"}, "F",
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{"--diffusion-algorithm"}, "N",
string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)", params.diffusion.algorithm),
[](common_params & params, int value) { params.diffusion.algorithm = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{"--diffusion-alg-temp"}, "F",
string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{"--diffusion-block-length"}, "N",
string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
[](common_params & params, int value) { params.diffusion.block_length = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{"--diffusion-cfg-scale"}, "F",
string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
[](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{"--diffusion-add-gumbel-noise"}, "F",
string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
[](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "-lr", "--learning-rate" }, "ALPHA",
string_format("adamw or sgd optimizer alpha (default: %.2g); note: sgd alpha recommended ~10x (no momentum)", (double) params.lr.lr0),
[](common_params & params, const std::string & value) { params.lr.lr0 = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg({ "-lr-min", "--learning-rate-min" }, "ALPHA",
string_format("(if >0) final learning rate after decay (if -decay-epochs is set, default=%.2g)",
(double) params.lr.lr_min),
[](common_params & params, const std::string & value) { params.lr.lr_min = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg(
{"-decay-epochs", "--learning-rate-decay-epochs"}, "ALPHA",
string_format("(if >0) decay learning rate to -lr-min after this many epochs (exponential decay, default=%.2g)", (double) params.lr.decay_epochs),
[](common_params & params, const std::string & value) { params.lr.decay_epochs = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg(
{"-wd", "--weight-decay"}, "WD",
string_format("adamw or sgd optimizer weight decay (0 is off; recommend very small e.g. 1e-9) (default: %.2g).", (double) params.lr.wd),
[](common_params & params, const std::string & value) { params.lr.wd = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg(
{"-val-split", "--val-split"}, "FRACTION",
string_format("fraction of data to use as validation set for training (default: %.2g).", (double) params.val_split),
[](common_params & params, const std::string & value) { params.val_split = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg(
{"-epochs", "--epochs"}, "N",
string_format("optimizer max # of epochs (default: %d)", params.lr.epochs),
[](common_params & params, int epochs) { params.lr.epochs = epochs; }
).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg(
{"-opt", "--optimizer"}, "sgd|adamw", "adamw or sgd",
[](common_params & params, const std::string & name) {
params.optimizer = common_opt_get_optimizer(name.c_str());
if (params.optimizer == GGML_OPT_OPTIMIZER_TYPE_COUNT) {
throw std::invalid_argument("invalid --optimizer, valid options: adamw, sgd");
}
}
).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
// presets
add_opt(common_arg(
{"--tts-oute-default"},
string_format("use default OuteTTS models (note: can download weights from the internet)"),
@ -3863,39 +3945,16 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_TTS}));
add_opt(common_arg(
{"--embd-bge-small-en-default"},
string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
{"--embd-gemma-default"},
string_format("use default EmbeddingGemma model (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
params.embd_normalize = 2;
params.n_ctx = 512;
params.verbose_prompt = true;
params.embedding = true;
}
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--embd-e5-small-en-default"},
string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
params.model.hf_file = "e5-small-v2-q8_0.gguf";
params.embd_normalize = 2;
params.n_ctx = 512;
params.verbose_prompt = true;
params.embedding = true;
}
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--embd-gte-small-default"},
string_format("use default gte-small model (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
params.model.hf_file = "gte-small-q8_0.gguf";
params.embd_normalize = 2;
params.n_ctx = 512;
params.model.hf_repo = "ggml-org/embeddinggemma-300M-qat-q4_0-GGUF";
params.model.hf_file = "embeddinggemma-300M-qat-Q4_0.gguf";
params.port = 8011;
params.n_ubatch = 2048;
params.n_batch = 2048;
params.n_parallel = 32;
params.n_ctx = 2048*params.n_parallel;
params.verbose_prompt = true;
params.embedding = true;
}
@ -3990,96 +4049,65 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{ "--diffusion-steps" }, "N",
string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
[](common_params & params, int value) { params.diffusion.steps = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-visual" },
string_format("enable visual diffusion mode (show progressive generation) (default: %s)",
params.diffusion.visual_mode ? "true" : "false"),
[](common_params & params) { params.diffusion.visual_mode = true; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
{"--gpt-oss-20b-default"},
string_format("use gpt-oss-20b (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/gpt-oss-20b-GGUF";
params.model.hf_file = "gpt-oss-20b-mxfp4.gguf";
params.port = 8013;
params.n_ubatch = 2048;
params.n_batch = 32768;
params.n_parallel = 2;
params.n_ctx = 131072*params.n_parallel;
params.sampling.temp = 1.0f;
params.sampling.top_p = 1.0f;
params.sampling.top_k = 0;
params.sampling.min_p = 0.01f;
params.use_jinja = true;
//params.default_template_kwargs["reasoning_effort"] = "\"high\"";
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{ "--diffusion-eps" }, "F",
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-algorithm" }, "N",
string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)",
params.diffusion.algorithm),
[](common_params & params, int value) { params.diffusion.algorithm = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-alg-temp" }, "F",
string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
{"--gpt-oss-120b-default"},
string_format("use gpt-oss-120b (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/gpt-oss-120b-GGUF";
params.port = 8013;
params.n_ubatch = 2048;
params.n_batch = 32768;
params.n_parallel = 2;
params.n_ctx = 131072*params.n_parallel;
params.sampling.temp = 1.0f;
params.sampling.top_p = 1.0f;
params.sampling.top_k = 0;
params.sampling.min_p = 0.01f;
params.use_jinja = true;
//params.default_template_kwargs["reasoning_effort"] = "\"high\"";
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{ "--diffusion-block-length" }, "N",
string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
[](common_params & params, int value) { params.diffusion.block_length = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-cfg-scale" }, "F",
string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
[](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-add-gumbel-noise" }, "F",
string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
[](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
{"--vision-gemma-4b-default"},
string_format("use Gemma 3 4B QAT (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/gemma-3-4b-it-qat-GGUF";
params.port = 8014;
params.n_ctx = 0;
params.use_jinja = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(
common_arg({ "-lr", "--learning-rate" }, "ALPHA",
string_format(
"adamw or sgd optimizer alpha (default: %.2g); note: sgd alpha recommended ~10x (no momentum)",
(double) params.lr.lr0),
[](common_params & params, const std::string & value) { params.lr.lr0 = std::stof(value); })
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(
common_arg({ "-lr-min", "--learning-rate-min" }, "ALPHA",
string_format(
"(if >0) final learning rate after decay (if -decay-epochs is set, default=%.2g)",
(double) params.lr.lr_min),
[](common_params & params, const std::string & value) { params.lr.lr_min = std::stof(value); })
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(
common_arg({ "-decay-epochs", "--learning-rate-decay-epochs" }, "ALPHA",
string_format(
"(if >0) decay learning rate to -lr-min after this many epochs (exponential decay, default=%.2g)",
(double) params.lr.decay_epochs),
[](common_params & params, const std::string & value) { params.lr.decay_epochs = std::stof(value); })
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg(
{ "-wd", "--weight-decay" }, "WD",
string_format(
"adamw or sgd optimizer weight decay (0 is off; recommend very small e.g. 1e-9) (default: %.2g).",
(double) params.lr.wd),
[](common_params & params, const std::string & value) { params.lr.wd = std::stof(value); })
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg({ "-val-split", "--val-split" }, "FRACTION",
string_format("fraction of data to use as validation set for training (default: %.2g).",
(double) params.val_split),
[](common_params & params, const std::string & value) { params.val_split = std::stof(value); })
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg({ "-epochs", "--epochs" }, "N",
string_format("optimizer max # of epochs (default: %d)", params.lr.epochs),
[](common_params & params, int epochs) { params.lr.epochs = epochs; })
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
add_opt(common_arg({ "-opt", "--optimizer" }, "sgd|adamw", "adamw or sgd",
[](common_params & params, const std::string & name) {
params.optimizer = common_opt_get_optimizer(name.c_str());
if (params.optimizer == GGML_OPT_OPTIMIZER_TYPE_COUNT) {
throw std::invalid_argument("invalid --optimizer, valid options: adamw, sgd");
}
})
.set_examples({ LLAMA_EXAMPLE_FINETUNE }));
{"--vision-gemma-12b-default"},
string_format("use Gemma 3 12B QAT (note: can download weights from the internet)"),
[](common_params & params) {
params.model.hf_repo = "ggml-org/gemma-3-12b-it-qat-GGUF";
params.port = 8014;
params.n_ctx = 0;
params.use_jinja = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
return ctx_arg;
}

View File

@ -432,7 +432,7 @@ std::optional<common_chat_msg_parser::consume_json_result> common_chat_msg_parse
if (is_arguments_path({})) {
// Entire JSON is the arguments and was parsed fully.
return consume_json_result {
partial->json.dump(),
partial->json.dump(/* indent */ -1, /* indent_char */ ' ', /* ensure_ascii */ true),
/* .is_partial = */ false,
};
}
@ -444,7 +444,7 @@ std::optional<common_chat_msg_parser::consume_json_result> common_chat_msg_parse
std::vector<std::string> path;
std::function<json(const json &)> remove_unsupported_healings_and_dump_args = [&](const json & j) -> json {
if (is_arguments_path(path)) {
auto arguments = j.dump();
auto arguments = j.dump(/* indent */ -1, /* indent_char */ ' ', /* ensure_ascii */ true);
if (is_partial() && !partial->healing_marker.marker.empty()) {
auto idx = arguments.find(partial->healing_marker.json_dump_marker);
if (idx != std::string::npos) {

View File

@ -426,7 +426,7 @@ struct common_params {
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
int32_t n_ctx_checkpoints = 8; // max number of context checkpoints per slot
int32_t cache_ram_mib = 8192; // 0 = no limit, 1 = 1 MiB, etc.
int32_t cache_ram_mib = 8192; // -1 = no limit, 0 - disable, 1 = 1 MiB, etc.
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT

View File

@ -5,6 +5,7 @@
#include <nlohmann/json.hpp>
#include <string>
#include <regex>
using json = nlohmann::ordered_json;
@ -168,6 +169,47 @@ bool common_json_parse(
}
}
// Matches a potentially partial unicode escape sequence, e.g. \u, \uX, \uXX, \uXXX, \uXXXX
static const std::regex partial_unicode_regex(R"(\\u(?:[0-9a-fA-F](?:[0-9a-fA-F](?:[0-9a-fA-F](?:[0-9a-fA-F])?)?)?)?$)");
auto is_high_surrogate = [&](const std::string & s) {
// Check if a partial of a high surrogate (U+D800-U+DBFF)
return s.length() >= 4 &&
s[0] == '\\' && s[1] == 'u' &&
std::tolower(s[2]) == 'd' &&
(s[3] == '8' || s[3] == '9' || std::tolower(s[3]) == 'a' || std::tolower(s[3]) == 'b');
};
// Initialize the unicode marker to a low surrogate to handle the edge case
// where a high surrogate (U+D800-U+DBFF) is immediately followed by a
// backslash (\)
std::string unicode_marker_padding = "udc00";
std::smatch last_unicode_seq;
if (std::regex_search(str, last_unicode_seq, partial_unicode_regex)) {
std::smatch second_last_seq;
std::string prelude = str.substr(0, last_unicode_seq.position());
// Pad the escape sequence with 0s until it forms a complete sequence of 6 characters
unicode_marker_padding = std::string(6 - last_unicode_seq.length(), '0');
if (is_high_surrogate(last_unicode_seq.str())) {
// If the sequence is a partial match for a high surrogate, add a low surrogate (U+DC00-U+UDFF)
unicode_marker_padding += "\\udc00";
} else if (std::regex_search(prelude, second_last_seq, partial_unicode_regex)) {
if (is_high_surrogate(second_last_seq.str())) {
// If this follows a high surrogate, pad it to be a low surrogate
if (last_unicode_seq.length() == 2) {
unicode_marker_padding = "dc00";
} else if (last_unicode_seq.length() == 3) {
unicode_marker_padding = "c00";
} else {
// The original unicode_marker_padding is already padded with 0s
}
}
}
}
const auto & magic_seed = out.healing_marker.marker = healing_marker;//"$llama.cpp.json$";
if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_KEY) {
@ -186,6 +228,9 @@ bool common_json_parse(
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\"" + closing)) {
// Was inside an object value string after an escape
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\"" + closing;
} else if (can_parse(str + unicode_marker_padding + "\"" + closing)) {
// Was inside an object value string after a partial unicode escape
str += (out.healing_marker.json_dump_marker = unicode_marker_padding + magic_seed) + "\"" + closing;
} else {
// find last :
auto last_pos = str.find_last_of(':');
@ -205,6 +250,9 @@ bool common_json_parse(
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\"" + closing)) {
// Was inside an array value string after an escape
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\"" + closing;
} else if (can_parse(str + unicode_marker_padding + "\"" + closing)) {
// Was inside an array value string after a partial unicode escape
str += (out.healing_marker.json_dump_marker = unicode_marker_padding + magic_seed) + "\"" + closing;
} else if (!was_maybe_number() && can_parse(str + ", 1" + closing)) {
// Had just finished a value
str += (out.healing_marker.json_dump_marker = ",\"" + magic_seed) + "\"" + closing;
@ -230,6 +278,9 @@ bool common_json_parse(
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\": 1" + closing)) {
// Was inside an object key string after an escape
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\": 1" + closing;
} else if (can_parse(str + unicode_marker_padding + "\": 1" + closing)) {
// Was inside an object key string after a partial unicode escape
str += (out.healing_marker.json_dump_marker = unicode_marker_padding + magic_seed) + "\": 1" + closing;
} else {
auto last_pos = str.find_last_of(':');
if (last_pos == std::string::npos) {

View File

@ -22,6 +22,7 @@ Legend:
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| CEIL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
@ -31,7 +32,7 @@ Legend:
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ✅ | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ✅ | ❌ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
@ -41,6 +42,7 @@ Legend:
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
| FLOOR | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
@ -51,7 +53,7 @@ Legend:
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
@ -65,11 +67,11 @@ Legend:
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| OPT_STEP_SGD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
@ -82,6 +84,7 @@ Legend:
| ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| ROUND | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
@ -92,9 +95,9 @@ Legend:
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | | ✅ | ❌ |
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | | ✅ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
@ -102,9 +105,12 @@ Legend:
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| SWIGLU_OAI | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| TOPK_MOE | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| XIELU | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |

View File

@ -59,6 +59,14 @@
"CPU","EXP","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","CPU"
"CPU","GELU_ERF","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","CPU"
"CPU","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","CPU"
"CPU","FLOOR","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
"CPU","FLOOR","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
"CPU","CEIL","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
"CPU","CEIL","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
"CPU","ROUND","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
"CPU","ROUND","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
"CPU","TRUNC","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
"CPU","TRUNC","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
"CPU","ABS","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
"CPU","ABS","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
"CPU","SGN","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
@ -119,6 +127,14 @@
"CPU","EXP","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","CPU"
"CPU","GELU_ERF","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","CPU"
"CPU","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","CPU"
"CPU","FLOOR","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
"CPU","FLOOR","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
"CPU","CEIL","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
"CPU","CEIL","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
"CPU","ROUND","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
"CPU","ROUND","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
"CPU","TRUNC","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
"CPU","TRUNC","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
"CPU","REGLU","type=f16,ne_a=[128,2,2,2],v=0,swapped=0","support","1","yes","CPU"
"CPU","REGLU","type=f16,ne_a=[5,7,11,13],v=0,swapped=0","support","1","yes","CPU"
"CPU","REGLU","type=f16,ne_a=[128,2,2,2],v=0,swapped=1","support","1","yes","CPU"

Can't render this file because it is too large.

File diff suppressed because it is too large Load Diff

View File

@ -577,6 +577,10 @@ extern "C" {
GGML_UNARY_OP_EXP,
GGML_UNARY_OP_GELU_ERF,
GGML_UNARY_OP_XIELU,
GGML_UNARY_OP_FLOOR,
GGML_UNARY_OP_CEIL,
GGML_UNARY_OP_ROUND,
GGML_UNARY_OP_TRUNC,
GGML_UNARY_OP_COUNT,
};
@ -1151,6 +1155,46 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_floor(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_floor_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_ceil(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_ceil_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_round(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_round_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
/**
* Truncates the fractional part of each element in the tensor (towards zero).
* For example: trunc(3.7) = 3.0, trunc(-2.9) = -2.0
* Similar to std::trunc in C/C++.
*/
GGML_API struct ggml_tensor * ggml_trunc(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_trunc_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// xIELU activation function
// x = x * (c_a(alpha_n) + c_b(alpha_p, beta) * sigmoid(beta * x)) + eps * (x > 0)
// where c_a = softplus and c_b(a, b) = softplus(a) + b are constraining functions

89
ggml/src/ggml-cann/acl_tensor.cpp Executable file → Normal file
View File

@ -51,28 +51,31 @@ aclDataType ggml_cann_type_mapping(ggml_type type) {
return ACL_DT_UNDEFINED;
}
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
size_t* nb, int64_t dims, aclFormat format,
size_t offset) {
aclTensor * ggml_cann_create_tensor(const ggml_tensor * tensor,
int64_t * ne,
size_t * nb,
int64_t dims,
aclFormat format,
size_t offset) {
// If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
// added.
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
if (ne == nullptr) {
for (int i = 0; i < GGML_MAX_DIMS; i++) {
acl_ne[i] = tensor->ne[i];
acl_ne[i] = tensor->ne[i];
// The step size of acl is in elements.
acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor);
}
} else {
// With bcast
for (int i = 0; i < dims; i++) {
acl_ne[i] = ne[i];
acl_ne[i] = ne[i];
acl_stride[i] = nb[i] / ggml_element_size(tensor);
}
}
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
int64_t acl_storage_len = 1;
for (int i = 0; i < final_dims; i++) {
acl_storage_len += (acl_ne[i] - 1) * acl_stride[i];
@ -84,15 +87,13 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
std::reverse(acl_ne, acl_ne + final_dims);
std::reverse(acl_stride, acl_stride + final_dims);
aclTensor* acl_tensor = aclCreateTensor(
acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
elem_offset, format, &acl_storage_len, 1,
tensor->data);
aclTensor * acl_tensor = aclCreateTensor(acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
elem_offset, format, &acl_storage_len, 1, tensor->data);
return acl_tensor;
}
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
bool ggml_cann_need_bcast(const ggml_tensor * t0, const ggml_tensor * t1) {
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) {
return true;
@ -101,15 +102,16 @@ bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
return false;
}
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
const ggml_tensor* src1,
int64_t* bcast_src0_ne,
int64_t* bcast_src1_ne, size_t* bcast_src0_nb,
size_t* bcast_src1_nb) {
int64_t ggml_cann_get_bcast_shape(const ggml_tensor * src0,
const ggml_tensor * src1,
int64_t * bcast_src0_ne,
int64_t * bcast_src1_ne,
size_t * bcast_src0_nb,
size_t * bcast_src1_nb) {
GGML_ASSERT(ggml_can_repeat(src1, src0));
int bcast_dim_cnt = 0;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
int64_t nr = src0->ne[i] / src1->ne[i];
int64_t nr = src0->ne[i] / src1->ne[i];
bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr;
bcast_src1_ne[bcast_dim_cnt] = src1->ne[i];
bcast_src0_nb[bcast_dim_cnt] = src0->nb[i];
@ -119,21 +121,26 @@ int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
// Need to add an extra dim.
bcast_src0_ne[bcast_dim_cnt] = nr;
bcast_src1_ne[bcast_dim_cnt] = 1;
bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] *
bcast_src0_ne[bcast_dim_cnt - 1];
bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] *
bcast_src1_ne[bcast_dim_cnt - 1];
bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] * bcast_src0_ne[bcast_dim_cnt - 1];
bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] * bcast_src1_ne[bcast_dim_cnt - 1];
bcast_dim_cnt++;
}
}
return bcast_dim_cnt;
}
int64_t ggml_cann_get_mulmat_bcast_shape(
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) {
int64_t ggml_cann_get_mulmat_bcast_shape(const int64_t * input_ne,
const int64_t * weight_ne,
const int64_t * dst_ne,
const size_t * input_nb,
const size_t * weight_nb,
const size_t * dst_nb,
int64_t * bcast_input_ne,
int64_t * bcast_weight_ne,
int64_t * bcast_dst_ne,
size_t * bcast_input_nb,
size_t * bcast_weight_nb,
size_t * bcast_dst_nb) {
// input and dst shoule in same shape, except first two dims.
GGML_ASSERT(input_ne[2] == dst_ne[2]);
GGML_ASSERT(input_ne[3] == dst_ne[3]);
@ -148,34 +155,30 @@ int64_t ggml_cann_get_mulmat_bcast_shape(
// Do not use bcast in the first two dimensions because we only support
// the bcast batch dimension. Just copy them.
if (i < 2 || nr == 1) {
bcast_input_ne[bcast_dim_cnt] = input_ne[i];
bcast_input_ne[bcast_dim_cnt] = input_ne[i];
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
bcast_dim_cnt++;
} else {
// Need to add an extra dim.
bcast_input_ne[bcast_dim_cnt] = nr;
bcast_dst_ne[bcast_dim_cnt] = nr;
bcast_input_ne[bcast_dim_cnt] = nr;
bcast_dst_ne[bcast_dim_cnt] = nr;
bcast_weight_ne[bcast_dim_cnt] = 1;
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
bcast_dim_cnt++;
bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] *
bcast_input_ne[bcast_dim_cnt - 1];
bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] *
bcast_dst_ne[bcast_dim_cnt - 1];
bcast_weight_nb[bcast_dim_cnt] =
bcast_weight_nb[bcast_dim_cnt - 1] *
bcast_weight_ne[bcast_dim_cnt - 1];
bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] * bcast_input_ne[bcast_dim_cnt - 1];
bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] * bcast_dst_ne[bcast_dim_cnt - 1];
bcast_weight_nb[bcast_dim_cnt] = bcast_weight_nb[bcast_dim_cnt - 1] * bcast_weight_ne[bcast_dim_cnt - 1];
bcast_dim_cnt++;
}
}

97
ggml/src/ggml-cann/acl_tensor.h Executable file → Normal file
View File

@ -62,10 +62,12 @@ aclDataType ggml_cann_type_mapping(ggml_type type);
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
* @return Pointer to the created ACL tensor.
*/
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = nullptr,
size_t* nb = nullptr, int64_t dims = 0,
aclFormat format = ACL_FORMAT_ND,
size_t offset = 0);
aclTensor * ggml_cann_create_tensor(const ggml_tensor * tensor,
int64_t * ne = nullptr,
size_t * nb = nullptr,
int64_t dims = 0,
aclFormat format = ACL_FORMAT_ND,
size_t offset = 0);
/**
* @brief Template for creating an ACL tensor from provided parameters. typename TYPE
@ -87,12 +89,15 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = null
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
* @return Pointer to the created ACL tensor.
*/
template<typename TYPE>
aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
TYPE type_size, int64_t* ne, TYPE* nb,
int64_t dims,
aclFormat format = ACL_FORMAT_ND,
size_t offset = 0) {
template <typename TYPE>
aclTensor * ggml_cann_create_tensor(void * data_ptr,
aclDataType dtype,
TYPE type_size,
int64_t * ne,
TYPE * nb,
int64_t dims,
aclFormat format = ACL_FORMAT_ND,
size_t offset = 0) {
int64_t tmp_ne[GGML_MAX_DIMS * 2];
int64_t tmp_stride[GGML_MAX_DIMS * 2];
@ -109,9 +114,8 @@ aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
std::reverse(tmp_ne, tmp_ne + dims);
std::reverse(tmp_stride, tmp_stride + dims);
aclTensor* acl_tensor =
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
format, &acl_storage_len, 1, data_ptr);
aclTensor * acl_tensor =
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size, format, &acl_storage_len, 1, data_ptr);
return acl_tensor;
}
@ -132,7 +136,7 @@ aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
* to 1. If such a dimension is found, broadcasting is required to align t1
* with t0 for element-wise operations.
*/
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1);
bool ggml_cann_need_bcast(const ggml_tensor * t0, const ggml_tensor * t1);
/**
* @brief Computes broadcast shapes and strides for two ggml_tensors.
@ -187,19 +191,21 @@ bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1);
* dim1 in a inserted dim, should add nb for dim1,
* and all other nb moves to next in order.
*/
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* src1,
int64_t* bcast_ne_src0, int64_t* bcast_ne_src1,
size_t* bcast_nb_src0, size_t* bcast_nb_src1);
int64_t ggml_cann_get_bcast_shape(const ggml_tensor * src0,
const ggml_tensor * src1,
int64_t * bcast_ne_src0,
int64_t * bcast_ne_src1,
size_t * bcast_nb_src0,
size_t * bcast_nb_src1);
// Bcast macro to avoid duplicate code.
#define BCAST_SHAPE(src0, src1) \
int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \
size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \
int64_t bcast_dims = ggml_cann_get_bcast_shape( \
src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, bcast_##src0##_nb, \
bcast_##src1##_nb);
#define BCAST_SHAPE(src0, src1) \
int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \
size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \
int64_t bcast_dims = ggml_cann_get_bcast_shape(src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, \
bcast_##src0##_nb, bcast_##src1##_nb);
#define BCAST_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
@ -233,26 +239,31 @@ int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* sr
* before cast dim.
* @sa ggml_cann_get_bcast_shape
*/
int64_t ggml_cann_get_mulmat_bcast_shape(
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb);
int64_t ggml_cann_get_mulmat_bcast_shape(const int64_t * input_ne,
const int64_t * weight_ne,
const int64_t * dst_ne,
const size_t * input_nb,
const size_t * weight_nb,
const size_t * dst_nb,
int64_t * bcast_input_ne,
int64_t * bcast_weight_ne,
int64_t * bcast_dst_ne,
size_t * bcast_input_nb,
size_t * bcast_weight_nb,
size_t * bcast_dst_nb);
// Bcast macro to avoid duplicate code.
#define BCAST_MUL_MAT_SHAPE(input, weight, dst) \
int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \
size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \
int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \
input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, \
bcast_##input##_ne, bcast_##weight##_ne, bcast_##dst##_ne, \
bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
#define BCAST_MUL_MAT_SHAPE(input, weight, dst) \
int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \
int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \
size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \
size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \
int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \
input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, bcast_##input##_ne, bcast_##weight##_ne, \
bcast_##dst##_ne, bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
#define BCAST_MUL_MAT_PARAM(tensor) \
bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
#define BCAST_MUL_MAT_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
#endif // CANN_ACL_TENSOR_H

2601
ggml/src/ggml-cann/aclnn_ops.cpp Executable file → Normal file

File diff suppressed because it is too large Load Diff

401
ggml/src/ggml-cann/aclnn_ops.h Executable file → Normal file
View File

@ -62,7 +62,7 @@
* @param dst The ggml tensor representing the destination, which op is
* GGML_OP_REPEAT and specifies the desired dimensions.
*/
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_repeat(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Applies the Leaky ReLU activation function to a tensor using the CANN
@ -82,7 +82,7 @@ void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the result of the Leaky ReLU
* activation is stored, which op is `GGML_OP_LEAKY_RELU`
*/
void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_leaky_relu(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Concatenates multiple tensors along a specified dimension using the
@ -97,7 +97,7 @@ void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @attention tensorList length should be 2 and the dimension using for concat
* default to 1.
*/
void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_concat(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Generates a sequence of evenly spaced values within a specified
@ -113,7 +113,7 @@ void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* `start`, 'stop' and 'step' are in dst->op_params and dst->op is
* `GGML_OP_ARANGE`.
*/
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_arange(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Applies a clamp operation to the elements of a ggml tensor using the
@ -131,7 +131,7 @@ void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the clamped values will be stored.
* dst->op is `GGML_OP_CLAMP`, `min` and `max` value is in dst->params.
*/
void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_clamp(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Scales the elements of a ggml tensor by a constant factor using the
@ -148,7 +148,7 @@ void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the scaled values will be stored.
* dst->op is `GGML_OP_SCALE` and `scale` value is in dst->params.
*/
void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_scale(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Sorts the elements of a ggml tensor and returns the indices that
@ -163,7 +163,7 @@ void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the sorted indices will be stored.
* dst->op is `GGML_OP_ARGSORT`.
*/
void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_argsort(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Computes the Layer Normalization for a ggml tensor using the CANN
@ -185,7 +185,7 @@ void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the normalized values will be stored.
* @attention `Var` defaults to dst->ne[0].
*/
void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Computes the Group Normalization for a ggml tensor using the CANN
@ -209,7 +209,7 @@ void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
*
* @attention eps defaults to 1e-6f.
*/
void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_group_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Computes the accumulation of tensors using the CANN backend.
@ -228,7 +228,7 @@ void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the accumulated values will be stored.
* `inplace` is in dst->params, and dst->op is `GGML_OP_ACC`.
*/
void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_acc(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Computes the sum of elements along the last dimension of a ggml tensor
@ -244,7 +244,7 @@ void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
*
* @attention `reduce_dims` defaults to 3, which means the last dimension.
*/
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_sum_rows(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Computes the sum of elements in a ggml tensor.
@ -258,7 +258,7 @@ void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
*
*/
void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_sum(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Upsamples a ggml tensor using nearest neighbor interpolation using
@ -274,8 +274,7 @@ void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the upsampled values will be stored.
* dst->op is `GGML_OP_UPSCALE`.
*/
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
ggml_tensor* dst);
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Pads a ggml tensor to match the dimensions of the destination tensor
@ -290,7 +289,7 @@ void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
* @param dst The destination tensor, which specifies the target dimensions for
* padding. dst->op is `GGML_OP_PAD`.
*/
void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_pad(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Executes a 2D pooling operation on a ggml tensor using the CANN
@ -307,7 +306,7 @@ void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor on which the pooling operation is to be
* performed. dst->op is `GGML_OP_POOL_2D`.
*/
void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_pool2d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Duplicates a ggml tensor using the CANN backend.
@ -326,7 +325,7 @@ void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* different shape and dst is no-contiguous.
* @note: This func need to simplify.
*/
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_dup(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Computes the Root Mean Square (RMS) normalization of a ggml tensor
@ -348,7 +347,7 @@ void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the normalized values will be stored.
* dst->op is `GGML_OP_RMS_NORM`.
*/
void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_rms_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Applies a diagonal mask to the tensor with a specified value.
@ -363,7 +362,7 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* `GGML_OP_DIAG_MASK`
* @param value The value to use for masking.
*/
void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value);
void ggml_cann_diag_mask(ggml_backend_cann_context & ctx, ggml_tensor * dst, float value);
/**
* @brief Performs an image-to-column transformation on the input tensor.
@ -378,7 +377,7 @@ void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float
* @param dst The destination tensor that stores the result of the operation.
* dst->op is `GGML_OP_IM2COL`.
*/
void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_im2col(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Computes time step embeddings using sine and cosine functions.
@ -392,10 +391,10 @@ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the result of the embedding operation
* will be stored. dst->op is `GGML_OP_TIMESTEP_EMBEDDING`.
*/
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_timestep_embedding(ggml_backend_cann_context & ctx, ggml_tensor * dst);
// @see ggml_cann_dup.
void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_cpy(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Computes the softmax activation with optional masking.
@ -417,7 +416,7 @@ void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the result will be stored. dst->op is
* `GGML_OP_SOFTMAX`.
*/
void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_softmax(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Extracts specific rows from a tensor based on indices.
@ -429,7 +428,7 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the extracted rows will be stored.
*/
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_get_rows(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Writes specific rows into a tensor at positions specified by indices.
@ -441,7 +440,7 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the specified rows will be updated.
*/
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_set_rows(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Executes matrix multiplication for the given tensor.
@ -454,7 +453,7 @@ void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor for storing the result of the matrix
* multiplication. dst->op is `GGML_OP_MUL_MAT`.
*/
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_mul_mat(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Applies Rotary Positional Embedding (RoPE) to the input tensor.
@ -477,7 +476,7 @@ void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @note The function currently does not support cases where the freq_scale is
* not equal 1.
*/
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Computes the index of the maximum value along the specified dimension
@ -492,7 +491,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the indices of the maximum values will
* be stored. dst->op is `GGML_OP_ARGMAX`.
*/
void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_argmax(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Adds two tensors element-wise and stores the result in a destination
@ -509,8 +508,10 @@ void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param acl_src1 The second source tensor.
* @param acl_dst The destination tensor where the result will be stored.
*/
void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
aclTensor* acl_src1, aclTensor* acl_dst = nullptr);
void aclnn_add(ggml_backend_cann_context & ctx,
aclTensor * acl_src0,
aclTensor * acl_src1,
aclTensor * acl_dst = nullptr);
/**
* @brief Sub two tensors element-wise and stores the result in a destination
@ -527,8 +528,10 @@ void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
* @param acl_src1 The second source tensor.
* @param acl_dst The destination tensor where the result will be stored.
*/
void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
aclTensor* acl_src1, aclTensor* acl_dst = nullptr);
void aclnn_sub(ggml_backend_cann_context & ctx,
aclTensor * acl_src0,
aclTensor * acl_src1,
aclTensor * acl_dst = nullptr);
/**
* @brief Performs element-wise multiplication of two tensors and stores the
@ -546,8 +549,10 @@ void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
* @param acl_other The second tensor for element-wise multiplication.
* @param acl_dst The destination tensor where the result will be stored.
*/
void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_other, aclTensor* acl_dst = nullptr);
void aclnn_mul(ggml_backend_cann_context & ctx,
aclTensor * acl_src,
aclTensor * acl_other,
aclTensor * acl_dst = nullptr);
/**
* @brief Matrix division, optionally in-place.
@ -567,8 +572,10 @@ void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src,
* @param inplace Flag indicating whether to perform the operation in-place on
* `acl_src`.
*/
void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_other, aclTensor* acl_dst = nullptr);
void aclnn_div(ggml_backend_cann_context & ctx,
aclTensor * acl_src,
aclTensor * acl_other,
aclTensor * acl_dst = nullptr);
/**
* @brief Applies element-wise cosine function to the elements of a tensor.
@ -584,8 +591,7 @@ void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src,
* @param acl_dst The destination tensor where the cosine results will be
* stored.
*/
void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst);
void aclnn_cos(ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst);
/**
* @brief Applies element-wise sine function to the elements of a tensor.
@ -602,8 +608,7 @@ void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
* @param acl_src The source tensor on which the sine function will be applied.
* @param acl_dst The destination tensor where the sine results will be stored.
*/
void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst);
void aclnn_sin(ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst);
/**
* @brief Prepares broadcast-compatible ACL tensors for two input tensors and one
@ -621,8 +626,12 @@ void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
* @param acl_src1 Output pointer to the created ACL tensor corresponding to src1.
* @param acl_dst Output pointer to the created ACL tensor corresponding to dst.
*/
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst,
aclTensor ** acl_src0, aclTensor ** acl_src1, aclTensor ** acl_dst);
void bcast_shape(ggml_tensor * src0,
ggml_tensor * src1,
ggml_tensor * dst,
aclTensor ** acl_src0,
aclTensor ** acl_src1,
aclTensor ** acl_dst);
/**
* @brief Computes the 1D transposed convolution (deconvolution) of a ggml
@ -637,7 +646,7 @@ void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst,
* @param dst The destination tensor where the transposed convolution result
* will be stored. dst->op is `GGML_OP_CONV_TRANSPOSE_1D`.
*/
void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_conv_transpose_1d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Applies the ELU (Exponential Linear Unit) activation to a ggml tensor
@ -662,7 +671,7 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds
* @param dst The destination tensor where the ELU-activated result will be stored.
* dst->op is expected to be `GGML_OP_ELU`.
*/
void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_elu(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Computes the mean of a ggml tensor element-wise using the CANN backend.
@ -677,7 +686,7 @@ void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the mean result will be stored.
* dst->op is expected to be `GGML_OP_MEAN`.
*/
void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_mean(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Applies 1D reflect padding to a ggml tensor using the CANN backend.
@ -692,7 +701,7 @@ void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the padded result will be stored.
* dst->op is expected to be `GGML_OP_PAD_REFLECT_1D`.
*/
void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_pad_reflect_1d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Counts the number of equal elements in two ggml tensors using the CANN backend.
@ -708,7 +717,7 @@ void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the result will be stored.
* dst->op is expected to be `GGML_OP_COUNT_EQUAL`.
*/
void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_count_equal(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Applies the Step activation function to a ggml tensor using the CANN backend.
@ -723,7 +732,7 @@ void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the result will be stored.
* dst->op is expected to be `GGML_OP_STEP`.
*/
void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_step(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Performs the Flash Attention extended operator using the CANN backend.
@ -738,59 +747,46 @@ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* @param dst The destination tensor where the result will be stored.
* dst->op is expected to be `GGML_OP_FLASH_ATTN_EXT`.
*/
void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_flash_attn_ext(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/*
* @brief A generic wrapper for ACL resources with custom deleter support.
*/
using any_acl_resource = std::unique_ptr<void, std::function<void(void*)>>;
using any_acl_resource = std::unique_ptr<void, std::function<void(void *)>>;
/**
* @brief Trait structure used to define how to destroy a given ACL resource type.
*
* @tparam T ACL resource type.
*/
template<typename T>
struct acl_resource_traits;
template <typename T> struct acl_resource_traits;
/**
* @brief Specialization for aclTensor, defines how to destroy an aclTensor resource.
*/
template<>
struct acl_resource_traits<aclTensor> {
static void destroy(void* p) {
ACL_CHECK(aclDestroyTensor(static_cast<aclTensor*>(p)));
}
template <> struct acl_resource_traits<aclTensor> {
static void destroy(void * p) { ACL_CHECK(aclDestroyTensor(static_cast<aclTensor *>(p))); }
};
/**
* @brief Specialization for aclIntArray, defines how to destroy an aclIntArray resource.
*/
template<>
struct acl_resource_traits<aclIntArray> {
static void destroy(void* p) {
ACL_CHECK(aclDestroyIntArray(static_cast<aclIntArray*>(p)));
}
template <> struct acl_resource_traits<aclIntArray> {
static void destroy(void * p) { ACL_CHECK(aclDestroyIntArray(static_cast<aclIntArray *>(p))); }
};
/**
* @brief Specialization for aclScalar, defines how to destroy an aclScalar resource.
*/
template<>
struct acl_resource_traits<aclScalar> {
static void destroy(void* p) {
ACL_CHECK(aclDestroyScalar(static_cast<aclScalar*>(p)));
}
template <> struct acl_resource_traits<aclScalar> {
static void destroy(void * p) { ACL_CHECK(aclDestroyScalar(static_cast<aclScalar *>(p))); }
};
/**
* @brief Specialization for aclTensorList, defines how to destroy an aclTensorList resource.
*/
template<>
struct acl_resource_traits<aclTensorList> {
static void destroy(void* p) {
ACL_CHECK(aclDestroyTensorList(static_cast<aclTensorList*>(p)));
}
template <> struct acl_resource_traits<aclTensorList> {
static void destroy(void * p) { ACL_CHECK(aclDestroyTensorList(static_cast<aclTensorList *>(p))); }
};
/**
@ -800,14 +796,8 @@ struct acl_resource_traits<aclTensorList> {
* @param ptr Raw pointer to ACL resource.
* @return any_acl_resource Smart pointer that handles destruction.
*/
template<typename T>
any_acl_resource make_acl_resource(T* ptr) {
return any_acl_resource(
static_cast<void*>(ptr),
[](void* p) {
acl_resource_traits<T>::destroy(p);
}
);
template <typename T> any_acl_resource make_acl_resource(T * ptr) {
return any_acl_resource(static_cast<void *>(ptr), [](void * p) { acl_resource_traits<T>::destroy(p); });
}
/**
@ -817,8 +807,7 @@ any_acl_resource make_acl_resource(T* ptr) {
* @param vec Target vector to hold ACL resources.
* @param args Raw pointers to ACL resources.
*/
template<typename... Args>
void register_acl_resources(std::vector<any_acl_resource>& vec, Args*... args) {
template <typename... Args> void register_acl_resources(std::vector<any_acl_resource> & vec, Args *... args) {
(vec.emplace_back(make_acl_resource(args)), ...);
}
@ -826,39 +815,36 @@ void register_acl_resources(std::vector<any_acl_resource>& vec, Args*... args) {
* @brief Task class that wraps the execution of an aclnn function call.
*/
class aclnn_task : public cann_task {
public:
aclnn_task(aclnn_func_t aclnn_func, void * workspace_addr,
uint64_t workspace_size, aclOpExecutor * executor,
aclrtStream stream) :
aclnn_func_(aclnn_func),
workspace_addr_(workspace_addr),
workspace_size_(workspace_size),
executor_(executor),
stream_(stream) {}
virtual void run_task() override {
ACL_CHECK(aclnn_func_(workspace_addr_, workspace_size_, executor_, stream_));
}
private:
aclnn_func_t aclnn_func_;
void * workspace_addr_;
uint64_t workspace_size_;
aclOpExecutor * executor_;
aclrtStream stream_;
public:
aclnn_task(aclnn_func_t aclnn_func,
void * workspace_addr,
uint64_t workspace_size,
aclOpExecutor * executor,
aclrtStream stream) :
aclnn_func_(aclnn_func),
workspace_addr_(workspace_addr),
workspace_size_(workspace_size),
executor_(executor),
stream_(stream) {}
virtual void run_task() override { ACL_CHECK(aclnn_func_(workspace_addr_, workspace_size_, executor_, stream_)); }
private:
aclnn_func_t aclnn_func_;
void * workspace_addr_;
uint64_t workspace_size_;
aclOpExecutor * executor_;
aclrtStream stream_;
};
/**
* @brief Task class that releases ACL resources after usage.
*/
class release_resource_task : public cann_task {
public:
release_resource_task(std::vector<any_acl_resource>&& resources){
resource_ = std::move(resources);
}
public:
release_resource_task(std::vector<any_acl_resource> && resources) { resource_ = std::move(resources); }
virtual void run_task() override {
resource_.clear();
}
private:
virtual void run_task() override { resource_.clear(); }
private:
std::vector<any_acl_resource> resource_;
};
@ -866,38 +852,40 @@ private:
* @brief Task class for performing asynchronous memory copy operations.
*/
class async_memcpy_task : public cann_task {
public:
async_memcpy_task(void* dst, const void* src, size_t size,
aclrtMemcpyKind kind, aclrtStream stream)
: dst_(dst), src_(src), size_(size), kind_(kind), stream_(stream) {}
public:
async_memcpy_task(void * dst, const void * src, size_t size, aclrtMemcpyKind kind, aclrtStream stream) :
dst_(dst),
src_(src),
size_(size),
kind_(kind),
stream_(stream) {}
virtual void run_task() override {
ACL_CHECK(aclrtMemcpyAsync(dst_, size_, src_, size_, kind_, stream_));
}
private:
void* dst_;
const void* src_;
size_t size_;
virtual void run_task() override { ACL_CHECK(aclrtMemcpyAsync(dst_, size_, src_, size_, kind_, stream_)); }
private:
void * dst_;
const void * src_;
size_t size_;
aclrtMemcpyKind kind_;
aclrtStream stream_;
aclrtStream stream_;
};
/**
* @brief Task class for performing asynchronous memory set operations.
*/
class async_memset_task : public cann_task {
public:
async_memset_task(void* buffer, size_t size, int32_t value, aclrtStream stream)
: buffer_(buffer), size_(size), value_(value), stream_(stream) {}
public:
async_memset_task(void * buffer, size_t size, int32_t value, aclrtStream stream) :
buffer_(buffer),
size_(size),
value_(value),
stream_(stream) {}
virtual void run_task() override {
ACL_CHECK(aclrtMemsetAsync(buffer_, size_, value_, size_, stream_));
}
private:
void* buffer_;
size_t size_;
int32_t value_;
aclrtStream stream_;
virtual void run_task() override { ACL_CHECK(aclrtMemsetAsync(buffer_, size_, value_, size_, stream_)); }
private:
void * buffer_;
size_t size_;
int32_t value_;
aclrtStream stream_;
};
/**
@ -918,25 +906,24 @@ class async_memset_task : public cann_task {
* same stream are executed in queue order.
*/
#define GGML_CANN_CALL_ACLNN_OP(CTX, OP_NAME, ...) \
do { \
uint64_t workspaceSize = 0; \
aclOpExecutor * executor; \
void * workspaceAddr = nullptr; \
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor));\
/* workspace should alloced in main thread to keep malloc order when using vmm. */ \
if (workspaceSize > 0) { \
ggml_cann_pool_alloc workspace_allocator(CTX.pool(), workspaceSize); \
workspaceAddr = workspace_allocator.get(); \
} \
if (CTX.async_mode) { \
auto task = \
std::make_unique<aclnn_task>(aclnn##OP_NAME, workspaceAddr, workspaceSize, \
executor, CTX.stream()); \
CTX.task_queue.submit_task(std::move(task)); \
} else { \
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, CTX.stream()));\
} \
#define GGML_CANN_CALL_ACLNN_OP(CTX, OP_NAME, ...) \
do { \
uint64_t workspaceSize = 0; \
aclOpExecutor * executor; \
void * workspaceAddr = nullptr; \
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor)); \
/* workspace should alloced in main thread to keep malloc order when using vmm. */ \
if (workspaceSize > 0) { \
ggml_cann_pool_alloc workspace_allocator(CTX.pool(), workspaceSize); \
workspaceAddr = workspace_allocator.get(); \
} \
if (CTX.async_mode) { \
auto task = \
std::make_unique<aclnn_task>(aclnn##OP_NAME, workspaceAddr, workspaceSize, executor, CTX.stream()); \
CTX.task_queue.submit_task(std::move(task)); \
} else { \
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, CTX.stream())); \
} \
} while (0)
/**
@ -947,11 +934,10 @@ class async_memset_task : public cann_task {
* @param ctx Backend context which manages task submission and async mode.
* @param args Pointers to ACL resources to be released.
*/
template <typename... Args>
void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... args) {
template <typename... Args> void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... args) {
std::vector<any_acl_resource> resources;
register_acl_resources(resources, std::forward<Args>(args)...);
if(ctx.async_mode) {
if (ctx.async_mode) {
auto task = std::make_unique<release_resource_task>(std::move(resources));
ctx.task_queue.submit_task(std::move(task));
}
@ -966,8 +952,11 @@ void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... arg
* @param len Size of memory to copy (in bytes).
* @param kind Type of memory copy (host-to-device, device-to-host, etc).
*/
inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx, void * dst,
const void * src, size_t len, aclrtMemcpyKind kind) {
inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx,
void * dst,
const void * src,
size_t len,
aclrtMemcpyKind kind) {
if (ctx.async_mode) {
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx.stream());
ctx.task_queue.submit_task(std::move(task));
@ -976,8 +965,11 @@ inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx, void * dst,
}
}
inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx, void * dst,
const void * src, size_t len, aclrtMemcpyKind kind) {
inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx,
void * dst,
const void * src,
size_t len,
aclrtMemcpyKind kind) {
if (ctx->async_mode) {
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx->stream());
ctx->task_queue.submit_task(std::move(task));
@ -994,8 +986,7 @@ inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx, void * dst,
* @param size Size of the memory buffer (in bytes).
* @param value Value to set in the buffer.
*/
inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffer,
size_t size, int value) {
inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffer, size_t size, int value) {
if (ctx.async_mode) {
auto task = std::make_unique<async_memset_task>(buffer, size, value, ctx.stream());
ctx.task_queue.submit_task(std::move(task));
@ -1029,7 +1020,7 @@ inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffe
* @param dst The destination tensor where the expert-weighted token outputs are stored.
* Expected to be of shape [M, K, N, 1].
*/
void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_mul_mat_id(ggml_backend_cann_context & ctx, ggml_tensor * dst);
/**
* @brief Check whether a tensor is a weight tensor for matrix multiplication.
@ -1041,20 +1032,14 @@ void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst);
*
* @param tensor Pointer to the target ggml_tensor object (const-qualified).
*/
static bool is_matmul_weight(const ggml_tensor* tensor) {
std::string name = ggml_get_name(tensor);
static const std::unordered_set<std::string> weight_suffixes{
"output.weight",
"attn_q.weight",
"attn_k.weight",
"attn_v.weight",
"attn_output.weight",
"ffn_gate.weight",
"ffn_up.weight",
"ffn_down.weight"
};
static bool is_matmul_weight(const ggml_tensor * tensor) {
std::string name = ggml_get_name(tensor);
static const std::unordered_set<std::string> weight_suffixes{ "output.weight", "attn_q.weight",
"attn_k.weight", "attn_v.weight",
"attn_output.weight", "ffn_gate.weight",
"ffn_up.weight", "ffn_down.weight" };
for (const auto& suffix : weight_suffixes) {
for (const auto & suffix : weight_suffixes) {
if (name.find(suffix) != std::string::npos) {
return true;
}
@ -1078,14 +1063,13 @@ static bool is_matmul_weight(const ggml_tensor* tensor) {
* @param ctx The CANN backend context used to manage execution and resources.
* @param dst The destination tensor.
*/
template <auto binary_op>
void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
template <auto binary_op> void ggml_cann_binary_op(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_tensor * src0 = dst->src[0];
ggml_tensor * src1 = dst->src[1];
aclTensor* acl_src0;
aclTensor* acl_src1;
aclTensor* acl_dst;
aclTensor * acl_src0;
aclTensor * acl_src1;
aclTensor * acl_dst;
// Need bcast
bcast_shape(src0, src1, dst, &acl_src0, &acl_src1, &acl_dst);
@ -1094,7 +1078,6 @@ void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_cann_release_resources(ctx, acl_src0, acl_src1, acl_dst);
}
/**
* @brief Applies a unary operation to an input tensor using the CANN backend.
*
@ -1107,12 +1090,12 @@ void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
* @param ctx The CANN backend context for managing resources and execution.
* @param dst The destination tensor. Its src[0] is treated as the input tensor.
*/
template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
void ggml_cann_op_unary(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
template <void unary_op(ggml_backend_cann_context &, aclTensor *, aclTensor *)>
void ggml_cann_op_unary(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
ggml_tensor * src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
aclTensor * acl_src = ggml_cann_create_tensor(src);
aclTensor * acl_dst = ggml_cann_create_tensor(dst);
unary_op(ctx, acl_src, acl_dst);
ggml_cann_release_resources(ctx, acl_src, acl_dst);
@ -1138,9 +1121,9 @@ template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
*
* @see GGML_CANN_CALL_OP_UNARY
*/
void ggml_cann_op_unary(
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_op_unary(std::function<void(ggml_backend_cann_context &, aclTensor *, aclTensor *)> unary_op,
ggml_backend_cann_context & ctx,
ggml_tensor * dst);
/**
* @brief Applies a gated (GLU-style) unary operation using the CANN backend.
@ -1172,9 +1155,9 @@ void ggml_cann_op_unary(
*
* @see GGML_CANN_CALL_OP_UNARY_GATED
*/
void ggml_cann_op_unary_gated(
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
ggml_backend_cann_context& ctx, ggml_tensor* dst);
void ggml_cann_op_unary_gated(std::function<void(ggml_backend_cann_context &, aclTensor *, aclTensor *)> unary_op,
ggml_backend_cann_context & ctx,
ggml_tensor * dst);
/**
* @brief Helper macro to call a unary ACL operator via ggml_cann_op_unary.
@ -1197,16 +1180,13 @@ void ggml_cann_op_unary_gated(
* @see ggml_cann_op_unary
* @see GGML_CANN_CALL_ACLNN_OP
*/
#define GGML_CANN_CALL_OP_UNARY(OP_NAME) \
do { \
auto lambda = [](ggml_backend_cann_context& ctx, \
aclTensor* acl_src, \
aclTensor* acl_dst) { \
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
}; \
ggml_cann_op_unary(lambda, ctx, dst); \
} \
while (0)
#define GGML_CANN_CALL_OP_UNARY(OP_NAME) \
do { \
auto lambda = [](ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst) { \
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
}; \
ggml_cann_op_unary(lambda, ctx, dst); \
} while (0)
/**
* @brief Helper macro to call a gated unary ACL operator via ggml_cann_op_unary_gated.
@ -1229,15 +1209,12 @@ void ggml_cann_op_unary_gated(
* @see ggml_cann_op_unary_gated
* @see GGML_CANN_CALL_ACLNN_OP
*/
#define GGML_CANN_CALL_OP_UNARY_GATED(OP_NAME) \
do { \
auto lambda = [](ggml_backend_cann_context& ctx, \
aclTensor* acl_src, \
aclTensor* acl_dst) { \
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
}; \
ggml_cann_op_unary_gated(lambda, ctx, dst); \
} \
while (0)
#define GGML_CANN_CALL_OP_UNARY_GATED(OP_NAME) \
do { \
auto lambda = [](ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst) { \
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
}; \
ggml_cann_op_unary_gated(lambda, ctx, dst); \
} while (0)
#endif // CANN_ACLNN_OPS

191
ggml/src/ggml-cann/common.h Executable file → Normal file
View File

@ -44,7 +44,7 @@
#include "../include/ggml.h"
#include "../ggml-impl.h"
#define MATRIX_ROW_PADDING 512
#define MATRIX_ROW_PADDING 512
#define GGML_CANN_MAX_STREAMS 8
/**
@ -56,8 +56,7 @@
* @param line The line number at which the error occurred.
* @param msg The error message.
*/
[[noreturn]] void ggml_cann_error(const char* stmt, const char* func,
const char* file, int line, const char* msg);
[[noreturn]] void ggml_cann_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
/**
* @brief Checks the result of a CANN function call and invokes the error
@ -89,25 +88,24 @@ struct ggml_cann_device_info {
* @brief Information about a single CANN device.
*/
struct cann_device_info {
int cc; /**< Compute capability. */
int cc; /**< Compute capability. */
size_t smpb; /**< Maximum shared memory per block. */
bool vmm; /**< Virtual memory support. */
bool vmm; /**< Virtual memory support. */
size_t vmm_granularity; /**< Granularity of virtual memory. */
size_t total_vram; /**< Total video RAM available on the device. */
};
cann_device_info devices[GGML_CANN_MAX_DEVICES] =
{}; /**< Array of CANN device information. */
cann_device_info devices[GGML_CANN_MAX_DEVICES] = {}; /**< Array of CANN device information. */
};
const ggml_cann_device_info& ggml_cann_info();
const ggml_cann_device_info & ggml_cann_info();
void ggml_cann_set_device(int32_t device);
void ggml_cann_set_device(int32_t device);
int32_t ggml_cann_get_device();
std::optional<std::string> get_env(const std::string& name);
bool parse_bool(const std::string& value);
int parse_integer(const std::string& value);
std::optional<std::string> get_env(const std::string & name);
bool parse_bool(const std::string & value);
int parse_integer(const std::string & value);
/**
* @brief Abstract base class for memory pools used by CANN.
@ -126,7 +124,7 @@ struct ggml_cann_pool {
* will be stored.
* @return Pointer to the allocated memory block.
*/
virtual void* alloc(size_t size, size_t* actual_size) = 0;
virtual void * alloc(size_t size, size_t * actual_size) = 0;
/**
* @brief Frees a previously allocated memory block.
@ -136,16 +134,16 @@ struct ggml_cann_pool {
* @note Note that all CANN opertors are running async. Make sure memory is
* still avaiable before this operator finished.
*/
virtual void free(void* ptr, size_t size) = 0;
virtual void free(void * ptr, size_t size) = 0;
};
/**
* @brief RAII wrapper for managing memory allocations from a CANN memory pool.
*/
struct ggml_cann_pool_alloc {
ggml_cann_pool* pool = nullptr; /**< Pointer to the memory pool. */
void* ptr = nullptr; /**< Pointer to the allocated memory block. */
size_t actual_size = 0; /**< Actual size of the allocated memory block. */
ggml_cann_pool * pool = nullptr; /**< Pointer to the memory pool. */
void * ptr = nullptr; /**< Pointer to the allocated memory block. */
size_t actual_size = 0; /**< Actual size of the allocated memory block. */
/**
* @brief Default constructor.
@ -156,16 +154,14 @@ struct ggml_cann_pool_alloc {
* @brief Constructor that initializes the memory pool.
* @param pool Reference to the memory pool.
*/
explicit ggml_cann_pool_alloc(ggml_cann_pool& pool) : pool(&pool) {}
explicit ggml_cann_pool_alloc(ggml_cann_pool & pool) : pool(&pool) {}
/**
* @brief Constructor that initializes the memory pool and allocates memory.
* @param pool Reference to the memory pool.
* @param size Size of the memory block to allocate.
*/
ggml_cann_pool_alloc(ggml_cann_pool& pool, size_t size) : pool(&pool) {
alloc(size);
}
ggml_cann_pool_alloc(ggml_cann_pool & pool, size_t size) : pool(&pool) { alloc(size); }
/**
* @brief Destructor that frees the allocated memory block.
@ -181,7 +177,7 @@ struct ggml_cann_pool_alloc {
* @param size Size of the memory block to allocate.
* @return Pointer to the allocated memory block.
*/
void* alloc(size_t size) {
void * alloc(size_t size) {
GGML_ASSERT(pool != nullptr);
GGML_ASSERT(ptr == nullptr);
ptr = pool->alloc(size, &this->actual_size);
@ -194,7 +190,7 @@ struct ggml_cann_pool_alloc {
* @param size Size of the memory block to allocate.
* @return Pointer to the allocated memory block.
*/
void* alloc(ggml_cann_pool& pool, size_t size) {
void * alloc(ggml_cann_pool & pool, size_t size) {
this->pool = &pool;
return alloc(size);
}
@ -203,25 +199,25 @@ struct ggml_cann_pool_alloc {
* @brief Gets the pointer to the allocated memory block.
* @return Pointer to the allocated memory block.
*/
void* get() { return ptr; }
void * get() { return ptr; }
// Deleted copy constructor
ggml_cann_pool_alloc(const ggml_cann_pool_alloc&) = delete;
ggml_cann_pool_alloc(const ggml_cann_pool_alloc &) = delete;
// Deleted move constructor
ggml_cann_pool_alloc(ggml_cann_pool_alloc&&) = delete;
ggml_cann_pool_alloc(ggml_cann_pool_alloc &&) = delete;
// Deleted copy assignment operator
ggml_cann_pool_alloc& operator=(const ggml_cann_pool_alloc&) = delete;
ggml_cann_pool_alloc & operator=(const ggml_cann_pool_alloc &) = delete;
// Deleted move assignment operator
ggml_cann_pool_alloc& operator=(ggml_cann_pool_alloc&&) = delete;
ggml_cann_pool_alloc & operator=(ggml_cann_pool_alloc &&) = delete;
};
/**
* @brief Function pointer type for ACLNN operator calls.
*/
using aclnn_func_t = aclnnStatus (*)(void*, uint64_t, aclOpExecutor*, aclrtStream);
using aclnn_func_t = aclnnStatus (*)(void *, uint64_t, aclOpExecutor *, aclrtStream);
/**
* @brief Base class for all CANN tasks to be submitted to the task queue.
@ -229,7 +225,7 @@ using aclnn_func_t = aclnnStatus (*)(void*, uint64_t, aclOpExecutor*, aclrtStrea
* Users should override the run_task() method with actual task logic.
*/
class cann_task {
public:
public:
virtual void run_task() {}
};
@ -237,16 +233,20 @@ public:
* @brief A lock-free ring-buffer based task queue for asynchronously executing cann_task instances.
*/
class cann_task_queue {
public:
public:
/**
* @brief Constructs a task queue with a fixed power-of-two capacity for a specific device.
*
* @param capacity Queue capacity. Must be a power of 2.
* @param device Target device ID (used for context setting).
*/
explicit cann_task_queue(size_t capacity, int32_t device)
: buffer_(capacity), capacity_(capacity), head_(0), tail_(0),
running_(false), device_(device) {
explicit cann_task_queue(size_t capacity, int32_t device) :
buffer_(capacity),
capacity_(capacity),
head_(0),
tail_(0),
running_(false),
device_(device) {
GGML_ASSERT((capacity & (capacity - 1)) == 0 && "capacity must be power of 2");
mask_ = capacity_ - 1;
}
@ -257,7 +257,7 @@ public:
* @param item Unique pointer to the task.
* @return true if the task was successfully enqueued, false if the queue was full.
*/
bool enqueue(std::unique_ptr<cann_task>&& item) {
bool enqueue(std::unique_ptr<cann_task> && item) {
size_t next_tail = (tail_ + 1) & mask_;
if (next_tail == head_) {
@ -276,17 +276,16 @@ public:
*
* @param task Task to be submitted.
*/
void submit_task(std::unique_ptr<cann_task>&& task) {
while(!enqueue(std::move(task))) {
void submit_task(std::unique_ptr<cann_task> && task) {
while (!enqueue(std::move(task))) {
std::this_thread::yield();
continue;
}
if (!running_) {
running_ = true;
thread_ = std::thread(&cann_task_queue::execute, this);
thread_ = std::thread(&cann_task_queue::execute, this);
}
}
/**
@ -309,7 +308,7 @@ public:
}
}
private:
private:
/**
* @brief Worker thread function that continuously dequeues and executes tasks.
*/
@ -317,7 +316,7 @@ private:
ggml_cann_set_device(device_);
while (running_) {
if(head_ == tail_) {
if (head_ == tail_) {
std::this_thread::yield();
continue;
}
@ -330,24 +329,24 @@ private:
}
std::vector<std::unique_ptr<cann_task>> buffer_;
const size_t capacity_;
size_t mask_;
size_t head_;
size_t tail_;
bool running_;
std::thread thread_;
int32_t device_;
const size_t capacity_;
size_t mask_;
size_t head_;
size_t tail_;
bool running_;
std::thread thread_;
int32_t device_;
};
#ifdef USE_ACL_GRAPH
struct ggml_graph_node_properties {
// dst tensor
void * node_address;
void * node_address;
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
// src tensor
void * src_address[GGML_MAX_SRC];
void * src_address[GGML_MAX_SRC];
int64_t src_ne[GGML_MAX_SRC][GGML_MAX_DIMS];
size_t src_nb[GGML_MAX_SRC][GGML_MAX_DIMS];
@ -376,13 +375,11 @@ struct ggml_cann_graph {
* move existing graphs to the front (most recently used), and clear the cache.
*/
struct ggml_cann_graph_lru_cache {
size_t capacity; /**< Maximum number of graphs in the cache. */
size_t capacity; /**< Maximum number of graphs in the cache. */
std::list<ggml_cann_graph*> cache_list; /**< List storing cached graphs as raw pointers. */
std::list<ggml_cann_graph *> cache_list; /**< List storing cached graphs as raw pointers. */
ggml_cann_graph_lru_cache() {
capacity = parse_integer(get_env("GGML_CANN_GRAPH_CACHE_CAPACITY").value_or("12"));
}
ggml_cann_graph_lru_cache() { capacity = parse_integer(get_env("GGML_CANN_GRAPH_CACHE_CAPACITY").value_or("12")); }
/**
* @brief Push a new graph to the front of the cache.
@ -390,11 +387,11 @@ struct ggml_cann_graph_lru_cache {
* @param new_node Pointer to the new ggml_cann_graph to cache.
* Ownership is transferred to the cache (cache will delete it).
*/
void push(ggml_cann_graph* new_node) {
void push(ggml_cann_graph * new_node) {
if (cache_list.size() >= capacity) {
ggml_cann_graph* old = cache_list.back();
ggml_cann_graph * old = cache_list.back();
cache_list.pop_back();
delete old; // free the old graph
delete old; // free the old graph
}
cache_list.push_front(new_node);
}
@ -403,7 +400,7 @@ struct ggml_cann_graph_lru_cache {
* @brief Move an existing graph to the front of the cache.
* @param node Pointer to the ggml_cann_graph to move.
*/
void move_to_front(ggml_cann_graph* node) {
void move_to_front(ggml_cann_graph * node) {
cache_list.remove(node);
cache_list.push_front(node);
}
@ -421,92 +418,89 @@ struct ggml_cann_graph_lru_cache {
/**
* @brief Destructor that clears the cache and frees all cached graphs.
*/
~ggml_cann_graph_lru_cache() {
clear();
}
~ggml_cann_graph_lru_cache() { clear(); }
};
#endif // USE_ACL_GRAPH
struct ggml_cann_rope_cache {
~ggml_cann_rope_cache() {
if(theta_scale_cache != nullptr) {
if (theta_scale_cache != nullptr) {
ACL_CHECK(aclrtFree(theta_scale_cache));
}
if(sin_cache != nullptr) {
if (sin_cache != nullptr) {
ACL_CHECK(aclrtFree(sin_cache));
}
if(cos_cache != nullptr) {
if (cos_cache != nullptr) {
ACL_CHECK(aclrtFree(cos_cache));
}
}
void* theta_scale_cache = nullptr;
void * theta_scale_cache = nullptr;
int64_t theta_scale_length = 0;
// sin/cos cache, used only to accelerate first layer on each device
void* sin_cache = nullptr;
void* cos_cache = nullptr;
int64_t position_length = 0;
void * sin_cache = nullptr;
void * cos_cache = nullptr;
int64_t position_length = 0;
// Properties to check before reusing the sincos cache
bool cached = false;
float ext_factor = 0.0f;
float theta_scale = 0.0f;
float freq_scale = 0.0f;
float attn_factor = 0.0f;
bool is_neox = false;
bool cached = false;
float ext_factor = 0.0f;
float theta_scale = 0.0f;
float freq_scale = 0.0f;
float attn_factor = 0.0f;
bool is_neox = false;
};
struct ggml_cann_tensor_cache {
~ggml_cann_tensor_cache() {
if(cache != nullptr) {
if (cache != nullptr) {
ACL_CHECK(aclrtFree(cache));
}
}
void* cache = nullptr;
int64_t size = 0;
void * cache = nullptr;
int64_t size = 0;
};
/**
* @brief Context for managing CANN backend operations.
*/
struct ggml_backend_cann_context {
int32_t device; /**< Device ID. */
std::string name; /**< Name of the device. */
std::string description; /**< Description of the device. */
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
int32_t device; /**< Device ID. */
std::string name; /**< Name of the device. */
std::string description; /**< Description of the device. */
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
#ifdef USE_ACL_GRAPH
/// Cached CANN ACL graph used for executing the current ggml computation graph.
ggml_cann_graph_lru_cache graph_lru_cache;
bool acl_graph_mode = true;
bool acl_graph_mode = true;
#endif
cann_task_queue task_queue;
bool async_mode;
cann_task_queue task_queue;
bool async_mode;
// Rope Cache
ggml_cann_rope_cache rope_cache;
ggml_cann_rope_cache rope_cache;
// Constant Pool
ggml_cann_tensor_cache rms_norm_one_tensor_cache;
ggml_cann_tensor_cache rms_norm_zero_tensor_cache;
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
aclrtStream streams[GGML_CANN_MAX_STREAMS] = { nullptr }; /**< Array of streams for the device. */
/**
* @brief Constructor for initializing the context with a given device.
* @param device Device ID.
*/
explicit ggml_backend_cann_context(int device)
: device(device), name("CANN" + std::to_string(device)), task_queue(1024, device) {
explicit ggml_backend_cann_context(int device) :
device(device),
name("CANN" + std::to_string(device)),
task_queue(1024, device) {
ggml_cann_set_device(device);
description = aclrtGetSocName();
async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
device, async_mode ? "ON" : "OFF");
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__, device, async_mode ? "ON" : "OFF");
#ifdef USE_ACL_GRAPH
acl_graph_mode = parse_bool(get_env("GGML_CANN_ACL_GRAPH").value_or("on"));
GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n",
__func__, device,
acl_graph_mode ? "GRAPH" : "EAGER",
acl_graph_mode ? "acl graph enabled" : "acl graph disabled");
GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n", __func__, device, acl_graph_mode ? "GRAPH" : "EAGER",
acl_graph_mode ? "acl graph enabled" : "acl graph disabled");
#endif
}
@ -549,8 +543,7 @@ struct ggml_backend_cann_context {
aclrtStream stream() { return stream(0); }
// TODO: each stream should have a memory pool.
std::unique_ptr<ggml_cann_pool>
mem_pool; /**< Memory pool for the device. */
std::unique_ptr<ggml_cann_pool> mem_pool; /**< Memory pool for the device. */
/**
* @brief Create a new memory pool for a given device.
@ -563,7 +556,7 @@ struct ggml_backend_cann_context {
* @brief Get or create the memory pool for the context.
* @return Reference to the memory pool.
*/
ggml_cann_pool& pool() {
ggml_cann_pool & pool() {
if (mem_pool == nullptr) {
mem_pool = new_pool_for_device(device);
}

1109
ggml/src/ggml-cann/ggml-cann.cpp Executable file → Normal file

File diff suppressed because it is too large Load Diff

View File

@ -68,7 +68,7 @@ struct ggml_compute_params {
#endif // __VXE2__
#endif // __s390x__ && __VEC__
#if defined(__ARM_FEATURE_SVE)
#if defined(__ARM_FEATURE_SVE) && defined(__linux__)
#include <sys/prctl.h>
#endif

View File

@ -689,8 +689,13 @@ bool ggml_is_numa(void) {
#endif
static void ggml_init_arm_arch_features(void) {
#if defined(__linux__) && defined(__aarch64__) && defined(__ARM_FEATURE_SVE)
#if defined(__aarch64__) && defined(__ARM_FEATURE_SVE)
#if defined(__linux__)
ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
#else
// TODO: add support of SVE for non-linux systems
#error "TODO: SVE is not supported on this platform. To use SVE, sve_cnt needs to be initialized here."
#endif
#endif
}
@ -2179,6 +2184,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_FLOOR:
case GGML_UNARY_OP_CEIL:
case GGML_UNARY_OP_ROUND:
case GGML_UNARY_OP_TRUNC:
{
n_tasks = 1;
} break;
@ -3558,13 +3567,17 @@ void ggml_cpu_init(void) {
#ifdef GGML_USE_OPENMP
//if (!getenv("OMP_WAIT_POLICY")) {
// // set the wait policy to active, so that OpenMP threads don't sleep
// putenv("OMP_WAIT_POLICY=active");
// setenv("OMP_WAIT_POLICY", "active", 0)
//}
if (!getenv("KMP_BLOCKTIME")) {
// set the time to wait before sleeping a thread
// this is less aggressive than setting the wait policy to active, but should achieve similar results in most cases
putenv("KMP_BLOCKTIME=200"); // 200ms
#ifdef _WIN32
_putenv_s("KMP_BLOCKTIME", "200"); // 200ms
#else
setenv("KMP_BLOCKTIME", "200", 0); // 200ms
#endif
}
#endif
}

View File

@ -8993,6 +8993,22 @@ void ggml_compute_forward_unary(
{
ggml_compute_forward_exp(params, dst);
} break;
case GGML_UNARY_OP_FLOOR:
{
ggml_compute_forward_floor(params, dst);
} break;
case GGML_UNARY_OP_CEIL:
{
ggml_compute_forward_ceil(params, dst);
} break;
case GGML_UNARY_OP_ROUND:
{
ggml_compute_forward_round(params, dst);
} break;
case GGML_UNARY_OP_TRUNC:
{
ggml_compute_forward_trunc(params, dst);
} break;
case GGML_UNARY_OP_XIELU:
{
ggml_compute_forward_xielu(params, dst);

View File

@ -73,6 +73,22 @@ static inline float op_log(float x) {
return logf(x);
}
static inline float op_floor(float x) {
return floorf(x);
}
static inline float op_ceil(float x) {
return ceilf(x);
}
static inline float op_round(float x) {
return roundf(x);
}
static inline float op_trunc(float x) {
return truncf(x);
}
template <float (*op)(float), typename src0_t, typename dst_t>
static inline void vec_unary_op(int64_t n, dst_t * y, const src0_t * x) {
constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32;
@ -274,6 +290,22 @@ void ggml_compute_forward_log(const ggml_compute_params * params, ggml_tensor *
unary_op<op_log>(params, dst);
}
void ggml_compute_forward_floor(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_floor>(params, dst);
}
void ggml_compute_forward_ceil(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_ceil>(params, dst);
}
void ggml_compute_forward_round(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_round>(params, dst);
}
void ggml_compute_forward_trunc(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_trunc>(params, dst);
}
void ggml_compute_forward_xielu(const ggml_compute_params * params, ggml_tensor * dst) {
const float alpha_n = ggml_get_op_params_f32(dst, 1);
const float alpha_p = ggml_get_op_params_f32(dst, 2);

View File

@ -22,6 +22,10 @@ void ggml_compute_forward_sqrt(const struct ggml_compute_params * params, struct
void ggml_compute_forward_sin(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_cos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_log(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_floor(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_ceil(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_round(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_trunc(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_xielu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
#ifdef __cplusplus

View File

@ -463,9 +463,9 @@ ggml_float ggml_vec_cvar_f32(const int n, float * y, const float * x, const floa
#endif
for (; i < n; ++i) {
float val = x[i] - mean;
y[i] = val;
val *= val;
sum += (ggml_float)val;
y[i] = val;
}
return sum/n;
}

View File

@ -144,14 +144,14 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
for (int i = 0; i < np; i += ggml_f16_step) {
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0); // 8 elements
ax1 = GGML_F16x_VEC_LOAD(x[0] + i + 0*ggml_f16_epr, 0); // 8 elemnst
ax1 = GGML_F16x_VEC_LOAD(x[0] + i + 0*ggml_f16_epr, 0); // 8 elements
sum_00 = GGML_F16x_VEC_FMA(sum_00, ax1, ay1); // sum_00 = sum_00+ax1*ay1
ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 0*ggml_f16_epr, 0); // 8 elements
sum_10 = GGML_F16x_VEC_FMA(sum_10, ax1, ay1);
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1); // next 8 elements
ax2 = GGML_F16x_VEC_LOAD(x[0] + i + 1*ggml_f16_epr, 1); // next 8 ekements
ax2 = GGML_F16x_VEC_LOAD(x[0] + i + 1*ggml_f16_epr, 1); // next 8 elements
sum_01 = GGML_F16x_VEC_FMA(sum_01, ax2, ay2);
ax2 = GGML_F16x_VEC_LOAD(x[1] + i + 1*ggml_f16_epr, 1);
sum_11 = GGML_F16x_VEC_FMA(sum_11, ax2, ay2);
@ -160,7 +160,7 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
ax3 = GGML_F16x_VEC_LOAD(x[0] + i + 2*ggml_f16_epr, 2);
sum_02 = GGML_F16x_VEC_FMA(sum_02, ax3, ay3);
ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 2*ggml_f16_epr, 2);
ax3 = GGML_F16x_VEC_LOAD(x[1] + i + 2*ggml_f16_epr, 2);
sum_12 = GGML_F16x_VEC_FMA(sum_12, ax3, ay3);
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
@ -820,7 +820,8 @@ inline static void ggml_vec_tanh_f16 (const int n, ggml_fp16_t * y, const ggml_f
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
inline static void ggml_vec_elu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = GGML_CPU_FP32_TO_FP16(expm1f(GGML_CPU_FP16_TO_FP32(x[i])));
const float v = GGML_CPU_FP16_TO_FP32(x[i]);
y[i] = GGML_CPU_FP32_TO_FP16((v > 0.f) ? v : expm1f(v));
}
}
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }

View File

@ -44,6 +44,8 @@ if (CUDAToolkit_FOUND)
list(APPEND GGML_HEADERS_CUDA "../../include/ggml-cuda.h")
file(GLOB GGML_SOURCES_CUDA "*.cu")
file(GLOB SRCS "template-instances/fattn-tile*.cu")
list(APPEND GGML_SOURCES_CUDA ${SRCS})
file(GLOB SRCS "template-instances/fattn-mma*.cu")
list(APPEND GGML_SOURCES_CUDA ${SRCS})
file(GLOB SRCS "template-instances/mmq*.cu")

View File

@ -245,7 +245,8 @@ static bool fp16_available(const int cc) {
}
static bool fast_fp16_available(const int cc) {
return (GGML_CUDA_CC_IS_NVIDIA(cc) && fp16_available(cc) && cc != 610) || GGML_CUDA_CC_IS_AMD(cc);
return GGML_CUDA_CC_IS_AMD(cc) ||
(GGML_CUDA_CC_IS_NVIDIA(cc) && fp16_available(cc) && ggml_cuda_highest_compiled_arch(cc) != 610);
}
// To be used for feature selection of external libraries, e.g. cuBLAS.
@ -571,6 +572,10 @@ static __device__ __forceinline__ void ggml_cuda_mad(half2 & acc, const half2 v,
}
// Aligned memory transfers of 8/16 bytes can be faster than 2 transfers with 4 bytes, especially on AMD.
// Important: do not use this function if dst and src both point at registers.
// Due to the strict aliasing rule the compiler can do incorrect optimizations if src and dst have different types.
// The function is intended for copies between registers and SRAM/VRAM to make the compiler emit the right instructions.
// If dst and src point at different address spaces then they are guaranteed to not be aliased.
template <int nbytes, int alignment = 0>
static __device__ __forceinline__ void ggml_cuda_memcpy_1(void * __restrict__ dst, const void * __restrict__ src) {
if constexpr (alignment != 0) {
@ -939,13 +944,6 @@ struct ggml_cuda_graph {
bool disable_due_to_failed_graph_capture = false;
int number_consecutive_updates = 0;
std::vector<ggml_graph_node_properties> ggml_graph_properties;
bool use_cpy_indirection = false;
std::vector<char *> cpy_dest_ptrs;
char ** dest_ptrs_d;
int dest_ptrs_size = 0;
// Index to allow each cpy kernel to be aware of it's position within the graph
// relative to other cpy nodes.
int graph_cpynode_index = -1;
#endif
};

View File

@ -8,18 +8,16 @@
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
template <cpy_kernel_t cpy_1>
static __global__ void cpy_flt(const char * cx, char * cdst_direct, const int ne,
static __global__ void cpy_flt(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) {
const int nb12, const int nb13) {
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= ne) {
return;
}
char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct;
// determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
// then combine those indices with the corresponding byte offsets to get the total offsets
const int64_t i03 = i/(ne00 * ne01 * ne02);
@ -63,18 +61,16 @@ static __device__ void cpy_blck_q_f32(const char * cxi, char * cdsti) {
}
template <cpy_kernel_t cpy_blck, int qk>
static __global__ void cpy_f32_q(const char * cx, char * cdst_direct, const int ne,
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) {
const int nb12, const int nb13) {
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
if (i >= ne) {
return;
}
char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct;
const int i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
@ -91,18 +87,16 @@ static __global__ void cpy_f32_q(const char * cx, char * cdst_direct, const int
}
template <cpy_kernel_t cpy_blck, int qk>
static __global__ void cpy_q_f32(const char * cx, char * cdst_direct, const int ne,
static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, char ** cdst_indirect, int graph_cpynode_index) {
const int nb12, const int nb13) {
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
if (i >= ne) {
return;
}
char * cdst = (cdst_indirect != nullptr) ? cdst_indirect[graph_cpynode_index]: cdst_direct;
const int i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
@ -118,67 +112,47 @@ static __global__ void cpy_q_f32(const char * cx, char * cdst_direct, const int
cpy_blck(cx + x_offset, cdst + dst_offset);
}
// Copy destination pointers to GPU to be available when pointer indirection is in use
void ggml_cuda_cpy_dest_ptrs_copy(ggml_cuda_graph * cuda_graph, char ** host_dest_ptrs, const int host_dest_ptrs_size, cudaStream_t stream) {
#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS) || defined(GGML_MUSA_GRAPHS)
if (cuda_graph->dest_ptrs_size < host_dest_ptrs_size) { // (re-)allocate GPU memory for destination pointers
CUDA_CHECK(cudaStreamSynchronize(stream));
if (cuda_graph->dest_ptrs_d != nullptr) {
CUDA_CHECK(cudaFree(cuda_graph->dest_ptrs_d));
}
CUDA_CHECK(cudaMalloc(&cuda_graph->dest_ptrs_d, host_dest_ptrs_size*sizeof(char *)));
cuda_graph->dest_ptrs_size = host_dest_ptrs_size;
}
// copy destination pointers to GPU
CUDA_CHECK(cudaMemcpyAsync(cuda_graph->dest_ptrs_d, host_dest_ptrs, host_dest_ptrs_size*sizeof(char *), cudaMemcpyHostToDevice, stream));
cuda_graph->graph_cpynode_index = 0; // reset index
#else
GGML_UNUSED_VARS(cuda_graph, host_dest_ptrs, host_dest_ptrs_size, stream);
#endif
}
template<typename src_t, typename dst_t>
static void ggml_cpy_flt_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_flt<cpy_1_flt<src_t, dst_t>><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q8_0_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK8_0 == 0);
const int num_blocks = ne / QK8_0;
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_q8_0_f32_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q8_0_f32, QK8_0><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q4_0_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK4_0 == 0);
const int num_blocks = ne / QK4_0;
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_q4_0_f32_cuda(
@ -187,22 +161,22 @@ static void ggml_cpy_q4_0_f32_cuda(
const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12,
const int nb10, const int nb11, const int nb12, const int nb13,
cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
cudaStream_t stream) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_0, QK4_0>, QK4_0><<<num_blocks, 1, 0, stream>>>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q4_1_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK4_1 == 0);
const int num_blocks = ne / QK4_1;
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_q4_1_f32_cuda(
@ -211,22 +185,22 @@ static void ggml_cpy_q4_1_f32_cuda(
const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12,
const int nb10, const int nb11, const int nb12, const int nb13,
cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
cudaStream_t stream) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_1, QK4_1>, QK4_1><<<num_blocks, 1, 0, stream>>>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q5_0_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK5_0 == 0);
const int num_blocks = ne / QK5_0;
cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_q5_0_f32_cuda(
@ -235,22 +209,22 @@ static void ggml_cpy_q5_0_f32_cuda(
const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12,
const int nb10, const int nb11, const int nb12, const int nb13,
cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
cudaStream_t stream) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_0, QK5_0>, QK5_0><<<num_blocks, 1, 0, stream>>>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q5_1_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK5_1 == 0);
const int num_blocks = ne / QK5_1;
cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_q5_1_f32_cuda(
@ -259,25 +233,25 @@ static void ggml_cpy_q5_1_f32_cuda(
const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12,
const int nb10, const int nb11, const int nb12, const int nb13,
cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
cudaStream_t stream) {
const int num_blocks = ne;
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_1, QK5_1>, QK5_1><<<num_blocks, 1, 0, stream>>>(
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_iq4_nl_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK4_NL == 0);
const int num_blocks = ne / QK4_NL;
cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1, bool disable_indirection_for_this_node) {
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) {
const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne == ggml_nelements(src1));
@ -311,16 +285,6 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
char * src0_ddc = (char *) src0->data;
char * src1_ddc = (char *) src1->data;
char ** dest_ptrs_d = nullptr;
int graph_cpynode_index = -1;
#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS) || defined(GGML_MUSA_GRAPHS)
if(ctx.cuda_graph->use_cpy_indirection && !disable_indirection_for_this_node) {
dest_ptrs_d = ctx.cuda_graph->dest_ptrs_d;
graph_cpynode_index = ctx.cuda_graph->graph_cpynode_index;
}
#else
GGML_UNUSED(disable_indirection_for_this_node);
#endif
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1));
#if defined(GGML_USE_MUSA) && defined(GGML_MUSA_MUDNN_COPY)
@ -329,134 +293,62 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
} else
#endif // GGML_USE_MUSA && GGML_MUSA_MUDNN_COPY
{
if (src0->type == GGML_TYPE_F32) {
ggml_cpy_flt_cuda<float, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else {
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
}
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
}
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_flt_cuda<float, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_flt_cuda<float, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {
ggml_cpy_flt_cuda<float, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_flt_cuda<float, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
ggml_cpy_flt_cuda<float, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_flt_cuda<float, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_q8_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q4_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q4_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q5_0_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02,
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) {
ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
ggml_cpy_flt_cuda<half, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_flt_cuda<half, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_BF16) {
ggml_cpy_flt_cuda<half, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_flt_cuda<half, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
ggml_cpy_flt_cuda<half, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_flt_cuda<half, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_BF16) {
ggml_cpy_flt_cuda<nv_bfloat16, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_flt_cuda<nv_bfloat16, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F16) {
ggml_cpy_flt_cuda<nv_bfloat16, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_flt_cuda<nv_bfloat16, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) {
ggml_cpy_flt_cuda<nv_bfloat16, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_flt_cuda<nv_bfloat16, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_I32) {
ggml_cpy_flt_cuda<float, int32_t> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_flt_cuda<float, int32_t> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_flt_cuda<int32_t, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
ggml_cpy_flt_cuda<int32_t, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else {
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
}
#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS) || defined(GGML_MUSA_GRAPHS)
if(ctx.cuda_graph->use_cpy_indirection && !disable_indirection_for_this_node) {
ctx.cuda_graph->graph_cpynode_index = graph_cpynode_index;
}
#else
GGML_UNUSED(disable_indirection_for_this_node);
#endif
}
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
bool disable_indirection = true;
ggml_cuda_cpy(ctx, src0, dst, disable_indirection);
}
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
// Prioritize CUDA graph compatibility over direct memory copy optimization.
// Using copy kernels here maintains graph indirection support, preventing performance regression from disabled CUDA graphs.
if (src0->type == GGML_TYPE_F32) {
return (void*) cpy_flt<cpy_1_flt<float, float>>;
} else {
return nullptr;
}
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_flt<cpy_1_flt<float, float>>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {
return (void*) cpy_flt<cpy_1_flt<float, nv_bfloat16>>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
return (void*) cpy_flt<cpy_1_flt<float, half>>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
return (void*) cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>;
} else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_q_f32<cpy_blck_q8_0_f32, QK8_0>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
return (void*) cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>;
} else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_q_f32<cpy_blck_q_f32<dequantize_q4_0, QK4_0>, QK4_0>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
return (void*) cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>;
} else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_q_f32<cpy_blck_q_f32<dequantize_q4_1, QK4_1>, QK4_1>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
return (void*) cpy_f32_q<cpy_blck_f32_q5_0, QK5_0>;
} else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_q_f32<cpy_blck_q_f32<dequantize_q5_0, QK5_0>, QK5_0>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
return (void*) cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
return (void*) cpy_f32_q<cpy_blck_f32_q5_1, QK5_1>;
} else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_q_f32<cpy_blck_q_f32<dequantize_q5_1, QK5_1>, QK5_1>;
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
return (void*) cpy_flt<cpy_1_flt<half, half>>;
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_BF16) {
return (void*) cpy_flt<cpy_1_flt<half, nv_bfloat16>>;
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_flt<cpy_1_flt<half, float>>;
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F16) {
return (void*) cpy_flt<cpy_1_flt<nv_bfloat16, half>>;
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_BF16) {
return (void*) cpy_flt<cpy_1_flt<nv_bfloat16, nv_bfloat16>>;
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_flt<cpy_1_flt<nv_bfloat16, float>>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_I32) {
return (void*) cpy_flt<cpy_1_flt<float, int32_t>>;
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_flt<cpy_1_flt<int32_t, float>>;
} else {
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
}
ggml_cuda_cpy(ctx, src0, dst);
}

View File

@ -2,10 +2,6 @@
#define CUDA_CPY_BLOCK_SIZE 64
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1, bool disable_indirection = false);
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1);
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1);
void ggml_cuda_cpy_dest_ptrs_copy(ggml_cuda_graph * cuda_graph, char ** host_dest_ptrs, const int host_dest_ptrs_size, cudaStream_t stream);

View File

@ -793,8 +793,6 @@ void launch_fattn(
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
ggml_cuda_pool & pool = ctx.pool();
cudaStream_t main_stream = ctx.stream();
const int id = ggml_cuda_get_device();
@ -878,7 +876,7 @@ void launch_fattn(
// Optional optimization where the mask is scanned to determine whether part of the calculation can be skipped.
// Only worth the overhead if there is at lease one FATTN_KQ_STRIDE x FATTN_KQ_STRIDE square to be skipped or
// multiple sequences of possibly different lengths.
if (mask && (Q->ne[1] >= 1024 || Q->ne[3] > 1)) {
if (mask && K->ne[1] % FATTN_KQ_STRIDE == 0 && (Q->ne[1] >= 1024 || Q->ne[3] > 1)) {
const int s31 = mask->nb[1] / sizeof(half2);
const int s33 = mask->nb[3] / sizeof(half2);
@ -916,8 +914,7 @@ void launch_fattn(
dst_tmp_meta.alloc(blocks_num.x*ncols * (2*2 + DV) * sizeof(float));
} else {
GGML_ASSERT(K->ne[1] % KQ_row_granularity == 0);
const int ntiles_KQ = K->ne[1] / KQ_row_granularity; // Max. number of parallel blocks limited by tensor size.
const int ntiles_KQ = (K->ne[1] + KQ_row_granularity - 1) / KQ_row_granularity; // Max. number of parallel blocks limited by tensor size.
// parallel_blocks must not be larger than what the tensor size allows:
parallel_blocks = std::min(parallel_blocks, ntiles_KQ);
@ -946,7 +943,7 @@ void launch_fattn(
blocks_num.x = ntiles_x;
blocks_num.y = parallel_blocks;
blocks_num.z = Q->ne[2]*Q->ne[3];
blocks_num.z = (Q->ne[2]/ncols2)*Q->ne[3];
if (parallel_blocks > 1) {
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));

View File

@ -1,756 +1,45 @@
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-tile.cuh"
#include "fattn-wmma-f16.cuh"
// kq_stride == number of KQ rows to process per iteration
// kq_nbatch == number of K columns to load in parallel for KQ calculation
static int fattn_tile_get_kq_stride_host(const int D, const int ncols, const int cc, const int warp_size) {
if (GGML_CUDA_CC_IS_AMD(cc)) {
if (GGML_CUDA_CC_IS_RDNA(cc)) {
switch (D) {
case 64:
return 128;
case 128:
case 256:
return ncols <= 16 ? 128 : 64;
default:
GGML_ABORT("fatal error");
return -1;
}
}
switch (D) {
case 64:
return ncols == 32 ? 128 : 64;
case 128:
return ncols == 32 ? 64 : 32;
case 256:
return 32;
default:
GGML_ABORT("fatal error");
return -1;
}
}
if (fast_fp16_available(cc)) {
switch (D) {
case 64:
case 128:
case 256:
return ncols <= 16 ? 128 : 64;
default:
GGML_ABORT("fatal error");
return -1;
}
}
switch (D) {
case 64:
return ncols <= 16 ? 128 : 64;
case 128:
return ncols <= 16 ? 64 : 32;
case 256:
return 32;
default:
GGML_ABORT("fatal error");
return -1;
}
GGML_UNUSED(warp_size);
}
static constexpr __device__ int fattn_tile_get_kq_stride_device(int D, int ncols, int warp_size) {
#ifdef GGML_USE_HIP
#ifdef RDNA
switch (D) {
case 64:
return 128;
case 128:
case 256:
return ncols <= 16 ? 128 : 64;
default:
return -1;
}
#else
switch (D) {
case 64:
return ncols == 32 ? 128 : 64;
case 128:
return ncols == 32 ? 64 : 32;
case 256:
return 32;
default:
return -1;
}
#endif // RDNA
#else
#ifdef FAST_FP16_AVAILABLE
switch (D) {
case 64:
case 128:
case 256:
return ncols <= 16 ? 128 : 64;
default:
return -1;
}
#else
switch (D) {
case 64:
return ncols <= 16 ? 128 : 64;
case 128:
return ncols <= 16 ? 64 : 32;
case 256:
return 32;
default:
return -1;
}
#endif // FAST_FP16_AVAILABLE
#endif // GGML_USE_HIP
GGML_UNUSED_VARS(ncols, warp_size);
}
static constexpr __device__ int fattn_tile_get_kq_nbatch_device(int D, int ncols, int warp_size) {
#ifdef GGML_USE_HIP
switch (D) {
case 64:
return 64;
case 128:
case 256:
return 128;
default:
return -1;
}
#else
#ifdef FAST_FP16_AVAILABLE
switch (D) {
case 64:
return 64;
case 128:
case 256:
return 128;
default:
return -1;
}
#else
switch (D) {
case 64:
return 64;
case 128:
return 128;
case 256:
return ncols <= 16 ? 128 : 64;
default:
return -1;
}
#endif // FAST_FP16_AVAILABLE
#endif // GGML_USE_HIP
GGML_UNUSED_VARS(ncols, warp_size);
}
static int fattn_tile_get_nthreads_host(const int cc, const int ncols) {
return 256;
GGML_UNUSED_VARS(cc, ncols);
}
static constexpr __device__ int fattn_tile_get_nthreads_device(int ncols) {
return 256;
GGML_UNUSED(ncols);
}
static constexpr __device__ int fattn_tile_get_occupancy_device(int ncols) {
#ifdef RDNA
return 3;
#else
return ncols <= 16 ? 3 : 2;
#endif // RDNA
GGML_UNUSED(ncols);
}
template<int D, int ncols, bool use_logit_softcap> // D == head size
__launch_bounds__(fattn_tile_get_nthreads_device(ncols), fattn_tile_get_occupancy_device(ncols))
static __global__ void flash_attn_tile(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#ifdef FLASH_ATTN_AVAILABLE
// Skip unused kernel variants for faster compilation:
#ifdef GGML_USE_WMMA_FATTN
NO_DEVICE_CODE;
return;
#endif // GGML_USE_WMMA_FATTN
if (use_logit_softcap && !(D == 128 || D == 256)) {
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
return;
}
constexpr int warp_size = 32;
constexpr int nwarps = fattn_tile_get_nthreads_device(ncols) / warp_size;
constexpr int kq_stride = fattn_tile_get_kq_stride_device(D, ncols, warp_size);
static_assert(kq_stride % warp_size == 0, "kq_stride not divisable by warp_size.");
constexpr int kq_nbatch = fattn_tile_get_kq_nbatch_device(D, ncols, warp_size);
static_assert(kq_nbatch % (2*warp_size) == 0, "bad kq_nbatch");
// In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float * Q_f = (const float *) (Q + nb03* sequence + nb02* head + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float * sinksf = (const float *) (sinks);
const int stride_KV2 = nb11 / sizeof(half2);
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
constexpr int cpy_ne = cpy_nb / 4;
constexpr int cpw = ncols/nwarps; // cols per warp
// softmax_iter_j == number of KQ columns for which to calculate softmax in parallel.
// KQ is originall 2D but uses a Z-shaped memory pattern for larger reads/writes.
#ifdef FAST_FP16_AVAILABLE
constexpr int softmax_iter_j = cpw < 2*cpy_ne ? cpw : 2*cpy_ne;
__shared__ half KQ[ncols/softmax_iter_j][kq_stride][softmax_iter_j];
__shared__ half2 Q_tmp[ncols][D/2];
__shared__ half2 KV_tmp[kq_stride * (kq_nbatch/2 + cpy_ne)]; // Padded to avoid memory bank conflicts.
half2 VKQ[cpw][D/(2*warp_size)] = {{{0.0f, 0.0f}}};
#else
constexpr int softmax_iter_j = cpw < 1*cpy_ne ? cpw : 1*cpy_ne;
__shared__ float KQ[ncols/softmax_iter_j][kq_stride][softmax_iter_j];
__shared__ float Q_tmp[ncols][D];
__shared__ float KV_tmp[kq_stride * (kq_nbatch + cpy_ne)]; // Padded to avoid memory bank conflicts.
float2 VKQ[cpw][D/(2*warp_size)] = {{{0.0f, 0.0f}}};
#endif // FAST_FP16_AVAILABLE
static_assert(cpw % softmax_iter_j == 0, "bad softmax_iter_j");
float KQ_max[cpw];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
KQ_max[j0/nwarps] = -FLT_MAX/2.0f;
}
float KQ_sum[cpw] = {0.0f};
// Load Q data, convert to FP16 if fast.
#pragma unroll
for (int j0 = 0; j0 < cpw; ++j0) {
const int j = j0 + threadIdx.y*cpw;
constexpr int cpy_ne_D = cpy_ne < D/warp_size ? cpy_ne : D/warp_size;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += warp_size*cpy_ne_D) {
float tmp_f[cpy_ne_D] = {0.0f};
if (ic0 + j < ne01) {
ggml_cuda_memcpy_1<sizeof(tmp_f)>(tmp_f, &Q_f[j*(nb01/sizeof(float)) + i0 + threadIdx.x*cpy_ne_D]);
}
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D; ++i1) {
tmp_f[i1] *= scale;
}
#ifdef FAST_FP16_AVAILABLE
half2 tmp_h2[cpy_ne_D/2];
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D; i1 += 2) {
tmp_h2[i1/2] = make_half2(tmp_f[i1 + 0], tmp_f[i1 + 1]);
}
ggml_cuda_memcpy_1<sizeof(tmp_h2)>(&Q_tmp[j][i0/2 + threadIdx.x*(cpy_ne_D/2)], tmp_h2);
#else
ggml_cuda_memcpy_1<sizeof(tmp_f)> (&Q_tmp[j][i0 + threadIdx.x* cpy_ne_D], tmp_f);
#endif // FAST_FP16_AVAILABLE
}
}
__syncthreads();
// Main loop over KV cache:
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
for (int k_VKQ_0 = blockIdx.y*kq_stride; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*kq_stride) {
// Calculate KQ tile and keep track of new maximum KQ values:
float KQ_max_new[cpw];
#pragma unroll
for (int j = 0; j < cpw; ++j) {
KQ_max_new[j] = KQ_max[j];
}
float KQ_acc[kq_stride/warp_size][cpw] = {{0.0f}}; // Accumulators for KQ matrix multiplication.
// KQ = K @ Q matrix multiplication:
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += kq_nbatch) {
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
#ifdef FAST_FP16_AVAILABLE
constexpr int cpy_ne_kqnb = cpy_ne < kq_nbatch/(2*warp_size) ? cpy_ne : kq_nbatch/(2*warp_size);
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch/2; k_KQ_1 += warp_size*cpy_ne_kqnb) {
ggml_cuda_memcpy_1<cpy_ne_kqnb*4>(
&KV_tmp[i_KQ*(kq_nbatch/2 + cpy_ne) + k_KQ_1 + threadIdx.x*cpy_ne_kqnb],
&K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + k_KQ_1 + threadIdx.x*cpy_ne_kqnb]);
}
#else
constexpr int cpy_ne_kqnb = cpy_ne < kq_nbatch/warp_size ? cpy_ne : kq_nbatch/warp_size;
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch; k_KQ_1 += warp_size*cpy_ne_kqnb) {
half2 tmp_h2[cpy_ne_kqnb/2];
ggml_cuda_memcpy_1<sizeof(tmp_h2)>(
tmp_h2, &K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + k_KQ_1/2 + threadIdx.x*(cpy_ne_kqnb/2)]);
float2 tmp_f2[cpy_ne_kqnb/2];
#pragma unroll
for (int k_KQ_2 = 0; k_KQ_2 < cpy_ne_kqnb/2; ++k_KQ_2) {
tmp_f2[k_KQ_2] = __half22float2(tmp_h2[k_KQ_2]);
}
ggml_cuda_memcpy_1<sizeof(tmp_f2)>(
&KV_tmp[i_KQ*(kq_nbatch + cpy_ne) + k_KQ_1 + threadIdx.x*cpy_ne_kqnb], tmp_f2);
}
#endif // FAST_FP16_AVAILABLE
}
__syncthreads();
#ifdef FAST_FP16_AVAILABLE
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch/2; k_KQ_1 += cpy_ne) {
half2 K_k[kq_stride/warp_size][cpy_ne];
half2 Q_k[cpw][cpy_ne];
#else
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch; k_KQ_1 += cpy_ne) {
float K_k[kq_stride/warp_size][cpy_ne];
float Q_k[cpw][cpy_ne];
#endif // FAST_FP16_AVAILABLE
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
const int i_KQ = i_KQ_0 + threadIdx.x;
#ifdef FAST_FP16_AVAILABLE
ggml_cuda_memcpy_1<cpy_nb>(&K_k[i_KQ_0/warp_size], &KV_tmp[i_KQ*(kq_nbatch/2 + cpy_ne) + k_KQ_1]);
#else
ggml_cuda_memcpy_1<cpy_nb>(&K_k[i_KQ_0/warp_size], &KV_tmp[i_KQ*(kq_nbatch + cpy_ne) + k_KQ_1]);
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < cpw; ++j_KQ_0) {
const int j_KQ = j_KQ_0 + threadIdx.y*cpw;
#ifdef FAST_FP16_AVAILABLE
ggml_cuda_memcpy_1<cpy_nb>(&Q_k[j_KQ_0], &Q_tmp[j_KQ][k_KQ_0/2 + k_KQ_1]);
#else
ggml_cuda_memcpy_1<cpy_nb>(&Q_k[j_KQ_0], &Q_tmp[j_KQ][k_KQ_0 + k_KQ_1]);
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < cpw; ++j_KQ_0) {
#pragma unroll
for (int k = 0; k < cpy_ne; ++k) {
ggml_cuda_mad(KQ_acc[i_KQ_0/warp_size][j_KQ_0], K_k[i_KQ_0/warp_size][k], Q_k[j_KQ_0][k]);
}
}
}
}
if (k_KQ_0 + kq_nbatch < D) {
__syncthreads(); // Sync not needed on last iteration.
}
}
// Apply logit softcap, mask, update KQ_max:
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
const int i_KQ = i_KQ_0 + threadIdx.x;
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < cpw; ++j_KQ_0) {
const int j_KQ = j_KQ_0 + threadIdx.y*cpw;
if (use_logit_softcap) {
KQ_acc[i_KQ_0/warp_size][j_KQ_0] = logit_softcap * tanhf(KQ_acc[i_KQ_0/warp_size][j_KQ_0]);
}
KQ_acc[i_KQ_0/warp_size][j_KQ_0] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
KQ_max_new[j_KQ_0] = fmaxf(KQ_max_new[j_KQ_0], KQ_acc[i_KQ_0/warp_size][j_KQ_0]);
}
}
__syncthreads();
// Calculate KQ softmax, write to shared KQ buffer, re-scale VKQ accumulators:
#pragma unroll
for (int j0 = 0; j0 < cpw; j0 += softmax_iter_j) {
#ifdef FAST_FP16_AVAILABLE
half tmp[kq_stride/warp_size][softmax_iter_j];
#else
float tmp[kq_stride/warp_size][softmax_iter_j];
#endif // FAST_FP16_AVAILABLE
#pragma unroll
for (int j1 = 0; j1 < softmax_iter_j; ++j1) {
KQ_max_new[j0+j1] = warp_reduce_max<warp_size>(KQ_max_new[j0+j1]);
const float KQ_max_scale = expf(KQ_max[j0+j1] - KQ_max_new[j0+j1]);
KQ_max[j0+j1] = KQ_max_new[j0+j1];
float KQ_sum_add = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < kq_stride; i0 += warp_size) {
const float val = expf(KQ_acc[i0/warp_size][j0+j1] - KQ_max[j0+j1]);
KQ_sum_add += val;
tmp[i0/warp_size][j1] = val;
}
KQ_sum[j0+j1] = KQ_sum[j0+j1]*KQ_max_scale + KQ_sum_add;
#ifdef FAST_FP16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
VKQ[j0+j1][i0/warp_size] *= KQ_max_scale_h2;
}
#else
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
VKQ[j0+j1][i0/warp_size].x *= KQ_max_scale;
VKQ[j0+j1][i0/warp_size].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int i0 = 0; i0 < kq_stride; i0 += warp_size) {
const int i = i0 + threadIdx.x;
ggml_cuda_memcpy_1<sizeof(tmp[0])>(
KQ[j0/softmax_iter_j + threadIdx.y*(cpw/softmax_iter_j)][i], tmp[i0/warp_size]);
}
}
// VKQ = V @ KQ matrix multiplication:
constexpr int V_cols_per_iter = kq_stride*kq_nbatch / D; // Number of V columns that fit in SRAM for K.
static_assert(kq_stride % V_cols_per_iter == 0, "bad V_cols_per_iter");
#pragma unroll
for (int k0 = 0; k0 < kq_stride; k0 += V_cols_per_iter) {
#pragma unroll
for (int k1 = 0; k1 < V_cols_per_iter; k1 += nwarps) {
const int k_tile = k1 + threadIdx.y;
#ifdef FAST_FP16_AVAILABLE
constexpr int cpy_ne_D = cpy_ne < D/(2*warp_size) ? cpy_ne : D/(2*warp_size);
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size*cpy_ne_D) {
ggml_cuda_memcpy_1<cpy_ne_D*4>(
&KV_tmp[k_tile*(D/2) + i0 + threadIdx.x*cpy_ne_D],
&V_h2[int64_t(k_VKQ_0 + k0 + k_tile)*stride_KV2 + i0 + threadIdx.x*cpy_ne_D]);
}
#else
constexpr int cpy_ne_D = cpy_ne < D/warp_size ? cpy_ne : D/warp_size;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += warp_size*cpy_ne_D) {
half2 tmp_h2[cpy_ne_D/2];
ggml_cuda_memcpy_1<sizeof(tmp_h2)>(
tmp_h2, &V_h2[int64_t(k_VKQ_0 + k0 + k_tile)*stride_KV2 + i0/2 + threadIdx.x*(cpy_ne_D/2)]);
float2 tmp_f2[cpy_ne_D/2];
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D/2; ++i1) {
tmp_f2[i1] = __half22float2(tmp_h2[i1]);
}
ggml_cuda_memcpy_1<sizeof(tmp_f2)>(
&KV_tmp[k_tile*D + i0 + threadIdx.x*cpy_ne_D], tmp_f2);
}
#endif // FAST_FP16_AVAILABLE
}
__syncthreads();
#ifdef FAST_FP16_AVAILABLE
#pragma unroll
for (int k1 = 0; k1 < V_cols_per_iter; ++k1) {
half2 V_k[(D/2)/warp_size];
half2 KQ_k[cpw];
constexpr int cpy_ne_D = cpy_ne/2 < (D/2)/warp_size ? cpy_ne/2 : (D/2)/warp_size;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size*cpy_ne_D) {
ggml_cuda_memcpy_1<cpy_ne_D*4>(&V_k[i0/warp_size], &KV_tmp[k1*(D/2) + i0 + threadIdx.x*cpy_ne_D]);
}
#pragma unroll
for (int j0 = 0; j0 < cpw; j0 += softmax_iter_j) {
const int j = j0/softmax_iter_j + threadIdx.y*(cpw/softmax_iter_j);
half tmp[softmax_iter_j];
ggml_cuda_memcpy_1<softmax_iter_j*sizeof(half)>(
&tmp, KQ[j][k0 + k1]);
#pragma unroll
for (int j1 = 0; j1 < softmax_iter_j; ++j1) {
KQ_k[j0+j1] = __half2half2(tmp[j1]);
}
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
#pragma unroll
for (int j0 = 0; j0 < cpw; ++j0) {
VKQ[j0][i0/warp_size] += V_k[i0/warp_size]*KQ_k[j0];
}
}
}
#else
#pragma unroll
for (int k1 = 0; k1 < V_cols_per_iter; ++k1) {
float2 V_k[(D/2)/warp_size];
float KQ_k[cpw];
constexpr int cpy_ne_D = cpy_ne < D/warp_size ? cpy_ne : D/warp_size;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += warp_size*cpy_ne_D) {
ggml_cuda_memcpy_1<cpy_ne_D*4>(&V_k[i0/(2*warp_size)], &KV_tmp[k1*D + i0 + threadIdx.x*cpy_ne_D]);
}
#pragma unroll
for (int j0 = 0; j0 < cpw; j0 += softmax_iter_j) {
const int j = j0/softmax_iter_j + threadIdx.y*(cpw/softmax_iter_j);
ggml_cuda_memcpy_1<softmax_iter_j*sizeof(float)>(
&KQ_k[j0], KQ[j][k0 + k1]);
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
#pragma unroll
for (int j0 = 0; j0 < cpw; ++j0) {
VKQ[j0][i0/warp_size].x += V_k[i0/warp_size].x*KQ_k[j0];
VKQ[j0][i0/warp_size].y += V_k[i0/warp_size].y*KQ_k[j0];
}
}
}
#endif // FAST_FP16_AVAILABLE
__syncthreads();
}
}
// Attention sink: adjust running max and sum once per head
if (sinksf && blockIdx.y == 0) {
const float sink = sinksf[head];
#pragma unroll
for (int j0 = 0; j0 < cpw; ++j0) {
float KQ_max_new_j = fmaxf(KQ_max[j0], sink);
KQ_max_new_j = warp_reduce_max<warp_size>(KQ_max_new_j);
const float KQ_max_scale = expf(KQ_max[j0] - KQ_max_new_j);
KQ_max[j0] = KQ_max_new_j;
const float val = expf(sink - KQ_max[j0]);
KQ_sum[j0] = KQ_sum[j0] * KQ_max_scale;
if (threadIdx.x == 0) {
KQ_sum[j0] += val;
}
#ifdef FAST_FP16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
VKQ[j0][i0/warp_size] *= KQ_max_scale_h2;
}
#else
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
VKQ[j0][i0/warp_size].x *= KQ_max_scale;
VKQ[j0][i0/warp_size].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
}
}
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < cpw; ++j_VKQ_0) {
KQ_sum[j_VKQ_0] = warp_reduce_sum<warp_size>(KQ_sum[j_VKQ_0]);
}
if (gridDim.y == 1) {
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < cpw; ++j_VKQ_0) {
#ifdef FAST_FP16_AVAILABLE
const half2 KQ_sum_j_inv = make_half2(1.0f/KQ_sum[j_VKQ_0], 1.0f/KQ_sum[j_VKQ_0]);
#pragma unroll
for (int i = 0; i < (D/2)/warp_size; ++i) {
VKQ[j_VKQ_0][i] *= KQ_sum_j_inv;
}
#else
const float KQ_sum_j_inv = 1.0f/KQ_sum[j_VKQ_0];
#pragma unroll
for (int i = 0; i < (D/2)/warp_size; ++i) {
VKQ[j_VKQ_0][i].x *= KQ_sum_j_inv;
VKQ[j_VKQ_0][i].y *= KQ_sum_j_inv;
}
#endif // FAST_FP16_AVAILABLE
}
}
// Write back results:
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < cpw; ++j_VKQ_0) {
const int j_VKQ = j_VKQ_0 + threadIdx.y*cpw;
if (ic0 + j_VKQ >= ne01) {
return;
}
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
#ifdef FAST_FP16_AVAILABLE
constexpr int cpy_ne_D = cpy_ne/2 < (D/2)/warp_size ? cpy_ne/2 : (D/2)/warp_size;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += warp_size*cpy_ne_D) {
float2 tmp[cpy_ne_D];
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D; ++i1) {
tmp[i1] = __half22float2(VKQ[j_VKQ_0][i0/warp_size + i1]);
}
ggml_cuda_memcpy_1<sizeof(tmp)>(&dst[j_dst_unrolled*D + 2*i0 + threadIdx.x*(2*cpy_ne_D)], tmp);
}
#else
constexpr int cpy_ne_D = cpy_ne < D/warp_size ? cpy_ne : D/warp_size;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += warp_size*cpy_ne_D) {
ggml_cuda_memcpy_1<cpy_ne_D*4>(
&dst[j_dst_unrolled*D + i0 + threadIdx.x*cpy_ne_D], &VKQ[j_VKQ_0][i0/(2*warp_size)]);
}
#endif // FAST_FP16_AVAILABLE
if (gridDim.y != 1 && threadIdx.x == 0) {
dst_meta[j_dst_unrolled] = make_float2(KQ_max[j_VKQ_0], KQ_sum[j_VKQ_0]);
}
}
#else
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}
template <int D, bool use_logit_softcap>
static void launch_fattn_tile_switch_ncols(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
const int id = ggml_cuda_get_device();
const int cc = ggml_cuda_info().devices[id].cc;
const int warp_size = 32;
constexpr size_t nbytes_shared = 0;
#ifdef GGML_USE_HIP
if constexpr (D <= 128) {
if (Q->ne[1] > 32) {
constexpr int cols_per_block = 64;
const int nwarps = fattn_tile_get_nthreads_host(cc, cols_per_block) / warp_size;
fattn_kernel_t fattn_kernel = flash_attn_tile<D, cols_per_block, use_logit_softcap>;
const int kq_stride = fattn_tile_get_kq_stride_host(D, cols_per_block, cc, warp_size);
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, kq_stride, true, true, false, warp_size);
return;
}
}
#endif // GGML_USE_HIP
if (Q->ne[1] > 16) {
constexpr int cols_per_block = 32;
const int nwarps = fattn_tile_get_nthreads_host(cc, cols_per_block) / warp_size;
fattn_kernel_t fattn_kernel = flash_attn_tile<D, cols_per_block, use_logit_softcap>;
const int kq_stride = fattn_tile_get_kq_stride_host(D, cols_per_block, cc, warp_size);
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, kq_stride, true, true, false, warp_size);
return;
}
constexpr int cols_per_block = 16;
const int nwarps = fattn_tile_get_nthreads_host(cc, cols_per_block) / warp_size;
fattn_kernel_t fattn_kernel = flash_attn_tile<D, cols_per_block, use_logit_softcap>;
const int kq_stride = fattn_tile_get_kq_stride_host(D, cols_per_block, cc, warp_size);
launch_fattn<D, cols_per_block, 1>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, kq_stride, true, true, false, warp_size);
}
template <bool use_logit_softcap>
static void launch_fattn_tile_switch_head_size(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
switch (K->ne[0]) {
case 40: {
GGML_ASSERT(V->ne[0] == K->ne[0]);
ggml_cuda_flash_attn_ext_tile_case< 40, 40>(ctx, dst);
} break;
case 64: {
launch_fattn_tile_switch_ncols< 64, use_logit_softcap>(ctx, dst);
GGML_ASSERT(V->ne[0] == K->ne[0]);
ggml_cuda_flash_attn_ext_tile_case< 64, 64>(ctx, dst);
} break;
case 80: {
GGML_ASSERT(V->ne[0] == K->ne[0]);
ggml_cuda_flash_attn_ext_tile_case< 80, 80>(ctx, dst);
} break;
case 96: {
GGML_ASSERT(V->ne[0] == K->ne[0]);
ggml_cuda_flash_attn_ext_tile_case< 96, 96>(ctx, dst);
} break;
case 112: {
GGML_ASSERT(V->ne[0] == K->ne[0]);
ggml_cuda_flash_attn_ext_tile_case<112, 112>(ctx, dst);
} break;
case 128: {
launch_fattn_tile_switch_ncols<128, use_logit_softcap>(ctx, dst);
GGML_ASSERT(V->ne[0] == K->ne[0]);
ggml_cuda_flash_attn_ext_tile_case<128, 128>(ctx, dst);
} break;
case 256: {
launch_fattn_tile_switch_ncols<256, use_logit_softcap>(ctx, dst);
GGML_ASSERT(V->ne[0] == K->ne[0]);
ggml_cuda_flash_attn_ext_tile_case<256, 256>(ctx, dst);
} break;
case 576: {
GGML_ASSERT(V->ne[0] == 512);
ggml_cuda_flash_attn_ext_tile_case<576, 512>(ctx, dst);
} break;
default: {
GGML_ABORT("Unsupported head size");
} break;
}
}
void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_switch_head_size<use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_switch_head_size<use_logit_softcap>(ctx, dst);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -516,8 +516,8 @@ void ggml_cuda_flash_attn_ext_vec_case_impl(ggml_backend_cuda_context & ctx, ggm
const int nthreads = ggml_cuda_fattn_vec_get_nthreads_host(cc);
const int nwarps = nthreads / WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_ext_vec<D, cols_per_block, type_K, type_V, use_logit_softcap>;
constexpr bool need_f16_K = false;
constexpr bool need_f16_V = false;
const bool need_f16_K = type_K == GGML_TYPE_F16;
const bool need_f16_V = type_V == GGML_TYPE_F16;
constexpr size_t nbytes_shared = 0;
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
}
@ -526,11 +526,6 @@ template <int D, ggml_type type_K, ggml_type type_V>
void ggml_cuda_flash_attn_ext_vec_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
GGML_ASSERT(K->type == type_K);
GGML_ASSERT(V->type == type_V);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));

View File

@ -1,3 +1,5 @@
#pragma once
#include "common.cuh"
#if (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)

View File

@ -116,11 +116,15 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
}
}
#define FATTN_VEC_CASE(D, type_K, type_V) \
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
ggml_cuda_flash_attn_ext_vec_case<D, type_K, type_V>(ctx, dst); \
return; \
} \
#define FATTN_VEC_CASE(D, type_K, type_V) \
{ \
const bool type_K_okay = K->type == (type_K) || (K->type == GGML_TYPE_F32 && (type_K) == GGML_TYPE_F16); \
const bool type_V_okay = V->type == (type_V) || (V->type == GGML_TYPE_F32 && (type_V) == GGML_TYPE_F16); \
if (Q->ne[0] == (D) && type_K_okay && type_V_okay) { \
ggml_cuda_flash_attn_ext_vec_case<D, type_K, type_V>(ctx, dst); \
return; \
} \
} \
#define FATTN_VEC_CASES_ALL_D(type_K, type_V) \
FATTN_VEC_CASE( 64, type_K, type_V) \
@ -198,6 +202,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
return BEST_FATTN_KERNEL_NONE;
#endif// FLASH_ATTN_AVAILABLE
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
@ -206,37 +211,32 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
const int gqa_ratio = Q->ne[2] / K->ne[2];
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
// The effective batch size for the kernel can be increased by gqa_ratio.
// The kernel versions without this optimization are also used for ALiBi, if there is no mask, or if the KV cache is not padded,
const bool gqa_opt_applies = gqa_ratio % 2 == 0 && mask && max_bias == 0.0f && K->ne[1] % FATTN_KQ_STRIDE == 0;
const int cc = ggml_cuda_info().devices[device].cc;
// TODO: temporary until support is extended
// https://github.com/ggml-org/llama.cpp/pull/16148#issuecomment-3343525206
if (K->ne[1] % FATTN_KQ_STRIDE != 0) {
return BEST_FATTN_KERNEL_NONE;
}
switch (K->ne[0]) {
case 40:
case 64:
case 128:
case 256:
if (V->ne[0] != K->ne[0]) {
return BEST_FATTN_KERNEL_NONE;
}
break;
case 80:
case 96:
case 128:
case 112:
case 256:
if (V->ne[0] != K->ne[0]) {
return BEST_FATTN_KERNEL_NONE;
}
if (!ggml_cuda_should_use_wmma_fattn(cc) && !turing_mma_available(cc)) {
return BEST_FATTN_KERNEL_NONE;
}
break;
case 576:
if (V->ne[0] != 512) {
return BEST_FATTN_KERNEL_NONE;
}
if (!turing_mma_available(cc) || gqa_ratio % 16 != 0) {
if (!gqa_opt_applies || gqa_ratio % 16 != 0) {
return BEST_FATTN_KERNEL_NONE;
}
break;
@ -251,6 +251,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
#endif // GGML_CUDA_FA_ALL_QUANTS
switch (K->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
break;
case GGML_TYPE_Q4_1:
@ -270,47 +271,57 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
return BEST_FATTN_KERNEL_NONE;
}
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % 64 == 0;
// If Turing tensor cores available, use them except for some cases with batch size 1:
if (turing_mma_available(cc)) {
best_fattn_kernel best = BEST_FATTN_KERNEL_MMA_F16;
// For small batch sizes the vector kernel may be preferable over the kernels optimized for large batch sizes:
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % 64 == 0 && K->ne[1] % FATTN_KQ_STRIDE == 0;
// If Turing tensor cores available, use them:
if (turing_mma_available(cc) && K->ne[1] % FATTN_KQ_STRIDE == 0 && Q->ne[0] != 40) {
if (can_use_vector_kernel) {
if (K->type == GGML_TYPE_F16 && V->type == GGML_TYPE_F16) {
if (!ggml_is_quantized(K->type) && !ggml_is_quantized(V->type)) {
if (cc >= GGML_CUDA_CC_ADA_LOVELACE && Q->ne[1] == 1 && Q->ne[3] == 1 && !(gqa_ratio > 4 && K->ne[1] >= 8192)) {
best = BEST_FATTN_KERNEL_VEC;
return BEST_FATTN_KERNEL_VEC;
}
} else {
if (cc >= GGML_CUDA_CC_ADA_LOVELACE) {
if (Q->ne[1] <= 2) {
best = BEST_FATTN_KERNEL_VEC;
return BEST_FATTN_KERNEL_VEC;
}
} else {
if (Q->ne[1] == 1) {
best = BEST_FATTN_KERNEL_VEC;
return BEST_FATTN_KERNEL_VEC;
}
}
}
if ((gqa_ratio % 2 != 0 || !mask) && Q->ne[1] == 1) {
best = BEST_FATTN_KERNEL_VEC; // GQA-specific optimizations in the mma kernel do not apply.
if (!gqa_opt_applies && Q->ne[1] == 1) {
return BEST_FATTN_KERNEL_VEC;
}
}
return best;
return BEST_FATTN_KERNEL_MMA_F16;
}
// Use kernels specialized for small batch sizes if possible:
if (Q->ne[1] <= 8 && can_use_vector_kernel) {
return BEST_FATTN_KERNEL_VEC;
}
// For large batch sizes, use the WMMA kernel if possible:
if (ggml_cuda_should_use_wmma_fattn(cc)) {
// Use the WMMA kernel if possible:
if (ggml_cuda_should_use_wmma_fattn(cc) && K->ne[1] % FATTN_KQ_STRIDE == 0 && Q->ne[0] != 40 && Q->ne[0] != 576) {
if (can_use_vector_kernel && Q->ne[1] <= 2) {
return BEST_FATTN_KERNEL_VEC;
}
return BEST_FATTN_KERNEL_WMMA_F16;
}
// If there is no suitable kernel for tensor cores or small batch sizes, use the generic kernel for large batch sizes:
// If there are no tensor cores available, use the generic tile kernel:
if (can_use_vector_kernel) {
if (!ggml_is_quantized(K->type) && !ggml_is_quantized(V->type)) {
if (Q->ne[1] == 1) {
if (!gqa_opt_applies) {
return BEST_FATTN_KERNEL_VEC;
}
}
} else {
if (Q->ne[1] <= 2) {
return BEST_FATTN_KERNEL_VEC;
}
}
}
return BEST_FATTN_KERNEL_TILE;
}

View File

@ -273,6 +273,15 @@ static ggml_cuda_device_info ggml_cuda_init() {
} else if (device_name.substr(0, 21) == "NVIDIA GeForce GTX 16") {
turing_devices_without_mma.push_back({ id, device_name });
}
// Temporary performance fix:
// Setting device scheduling strategy for iGPUs with cc121 to "spinning" to avoid delays in cuda synchronize calls.
// TODO: Check for future drivers the default scheduling strategy and
// remove this call again when cudaDeviceScheduleSpin is default.
if (prop.major == 12 && prop.minor == 1) {
CUDA_CHECK(cudaSetDeviceFlags(cudaDeviceScheduleSpin));
}
#endif // defined(GGML_USE_HIP)
}
@ -2633,11 +2642,10 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
}
#ifdef USE_CUDA_GRAPH
static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
static bool check_node_graph_compatibility(ggml_cgraph * cgraph,
bool use_cuda_graph) {
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
cuda_ctx->cuda_graph->cpy_dest_ptrs.clear();
const std::string gemma3n_per_layer_proj_src0_name = "inp_per_layer_selected";
const std::string gemma3n_per_layer_proj_src1_name = "per_layer_proj";
@ -2688,33 +2696,11 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
#endif
}
if (node->op == GGML_OP_CPY) {
// Store the pointers which are updated for each token, such that these can be sent
// to the device and accessed using indirection from CUDA graph
cuda_ctx->cuda_graph->cpy_dest_ptrs.push_back((char *) node->src[1]->data);
// store a pointer to each copy op CUDA kernel to identify it later
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
if (!ptr) {
use_cuda_graph = false;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
#endif
}
}
if (!use_cuda_graph) {
break;
}
}
if (use_cuda_graph) {
cuda_ctx->cuda_graph->use_cpy_indirection = true;
// copy pointers to GPU so they can be accessed via indirection within CUDA graph
ggml_cuda_cpy_dest_ptrs_copy(cuda_ctx->cuda_graph.get(), cuda_ctx->cuda_graph->cpy_dest_ptrs.data(), cuda_ctx->cuda_graph->cpy_dest_ptrs.size(), cuda_ctx->stream());
}
return use_cuda_graph;
}
@ -2733,7 +2719,6 @@ static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_p
static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
if (node->data != graph_node_properties->node_address &&
node->op != GGML_OP_CPY &&
node->op != GGML_OP_VIEW) {
return false;
}
@ -2754,7 +2739,6 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (node->src[i] &&
node->src[i]->data != graph_node_properties->src_address[i] &&
node->op != GGML_OP_CPY &&
node->op != GGML_OP_VIEW
) {
return false;
@ -2901,7 +2885,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
}
//if rms norm is the B operand, then we don't handle broadcast
if (rms_norm == mul->src[1] && !ggml_are_same_shape(mul->src[0], rms_norm->src[1])) {
if (rms_norm == mul->src[1] && !ggml_are_same_shape(mul->src[0], rms_norm)) {
return false;
}
@ -3120,7 +3104,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
if (use_cuda_graph) {
cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph, use_cuda_graph);
use_cuda_graph = check_node_graph_compatibility(cgraph, use_cuda_graph);
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
if (use_cuda_graph && cuda_graph_update_required) {
@ -3147,10 +3131,6 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
}
if (!use_cuda_graph) {
cuda_ctx->cuda_graph->use_cpy_indirection = false;
}
#else
bool use_cuda_graph = false;
bool cuda_graph_update_required = false;
@ -3645,9 +3625,10 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_CONV_2D_DW:
case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_POOL_2D:
case GGML_OP_SUM:
case GGML_OP_ACC:
return true;
case GGML_OP_SUM:
return ggml_is_contiguous_rows(op->src[0]);
case GGML_OP_ARGSORT:
// TODO: Support arbitrary column width
return op->src[0]->ne[0] <= 1024;
@ -3867,7 +3848,6 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
dev_ctx->device = i;
dev_ctx->name = GGML_CUDA_NAME + std::to_string(i);
ggml_cuda_set_device(i);
cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
dev_ctx->description = prop.name;

View File

@ -1,5 +1,7 @@
#include "ggml.h"
#include "mmf.cuh"
#include "mmid.cuh"
void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
GGML_ASSERT( src1->type == GGML_TYPE_F32);
@ -37,6 +39,12 @@ void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * sr
const int64_t ids_s0 = ids ? ids->nb[0] / ggml_type_size(ids->type) : 0;
const int64_t ids_s1 = ids ? ids->nb[1] / ggml_type_size(ids->type) : 0;
mmf_ids_data ids_info{};
mmf_ids_data * ids_info_ptr = nullptr;
ggml_cuda_pool_alloc<int32_t> ids_src_compact_dev;
ggml_cuda_pool_alloc<int32_t> ids_dst_compact_dev;
ggml_cuda_pool_alloc<int32_t> expert_bounds_dev;
// For MUL_MAT_ID the memory layout is different than for MUL_MAT:
const int64_t ncols_dst = ids ? ne2 : ne1;
const int64_t nchannels_dst = ids ? ne1 : ne2;
@ -54,6 +62,33 @@ void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * sr
nchannels_y = ids->ne[0];
}
if (ids && ncols_dst > 16) {
const int64_t n_expert_used = ids->ne[0];
const int64_t n_experts = ne02;
const int64_t n_tokens = ne12;
const int64_t ne_get_rows = n_tokens * n_expert_used;
ids_src_compact_dev.alloc(ctx.pool(), ne_get_rows);
ids_dst_compact_dev.alloc(ctx.pool(), ne_get_rows);
expert_bounds_dev.alloc(ctx.pool(), n_experts + 1);
const int si1 = static_cast<int>(ids_s1);
const int sis1 = static_cast<int>(src1->nb[2] / src1->nb[1]);
GGML_ASSERT(sis1 > 0);
ggml_cuda_launch_mm_ids_helper(ids_d, ids_src_compact_dev.get(), ids_dst_compact_dev.get(), expert_bounds_dev.get(),
static_cast<int>(n_experts), static_cast<int>(n_tokens), static_cast<int>(n_expert_used), static_cast<int>(ne11), si1, sis1, ctx.stream());
CUDA_CHECK(cudaGetLastError());
ids_info.ids_src_compact = ids_src_compact_dev.get();
ids_info.ids_dst_compact = ids_dst_compact_dev.get();
ids_info.expert_bounds_dev = expert_bounds_dev.get();
ids_info.n_experts = static_cast<int>(n_experts);
ids_info.sis1 = sis1;
ids_info_ptr = &ids_info;
}
switch (src0->type) {
case GGML_TYPE_F32: {
const float * src0_d = (const float *) src0->data;
@ -61,7 +96,7 @@ void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * sr
mul_mat_f_switch_cols_per_block(
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, stride_col_y/vals_per_T, stride_col_dst,
ids_s0, ids_s1, ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream(), ids_info_ptr);
} break;
case GGML_TYPE_F16: {
const half2 * src0_d = (const half2 *) src0->data;
@ -69,7 +104,7 @@ void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * sr
mul_mat_f_switch_cols_per_block(
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, stride_col_y/vals_per_T, stride_col_dst,
ids_s0, ids_s1, ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream(), ids_info_ptr);
} break;
case GGML_TYPE_BF16: {
const nv_bfloat162 * src0_d = (const nv_bfloat162 *) src0->data;
@ -77,7 +112,7 @@ void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * sr
mul_mat_f_switch_cols_per_block(
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, stride_col_y/vals_per_T, stride_col_dst,
ids_s0, ids_s1, ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream(), ids_info_ptr);
} break;
default:
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
@ -98,10 +133,9 @@ bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const
}
if (mul_mat_id) {
if (type == GGML_TYPE_F32 && src1_ncols > 32) {
if (src0_ne[1] <= 1024 && src1_ncols > 512) {
return false;
}
if ((type == GGML_TYPE_F16 || type == GGML_TYPE_BF16) && src1_ncols > 64) {
} else if(src0_ne[1] > 1024 && src1_ncols > 128) {
return false;
}
} else {

View File

@ -7,6 +7,14 @@ using namespace ggml_cuda_mma;
#define MMF_ROWS_PER_BLOCK 32
struct mmf_ids_data {
const int32_t * ids_src_compact = nullptr;
const int32_t * ids_dst_compact = nullptr;
const int32_t * expert_bounds_dev = nullptr;
int n_experts = 0;
int sis1 = 0;
};
void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * scr0_ne, const int src1_ncols, bool mul_mat_id);
@ -224,6 +232,250 @@ static __global__ void mul_mat_f(
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
}
//This kernel is for larger batch sizes of mul_mat_id
template <typename T, int rows_per_block, int cols_per_block, int nwarps>
__launch_bounds__(ggml_cuda_get_physical_warp_size()*nwarps, 1)
static __global__ void mul_mat_f_ids(
const T * __restrict__ x, const float * __restrict__ y,
const int32_t * __restrict__ ids_src_compact, const int32_t * __restrict__ ids_dst_compact,
const int32_t * __restrict__ expert_bounds, float * __restrict__ dst,
const int ncols, const int ncols_dst_total, const int nchannels_dst, const int stride_row, const int stride_col_y, const int stride_col_dst,
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
const uint3 sis1_fd, const uint3 nch_fd) {
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
typedef tile<16, 8, T> tile_A;
typedef tile< 8, 8, T> tile_B;
typedef tile<16, 8, float> tile_C;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr int tile_k_padded = warp_size + 4;
constexpr int ntA = rows_per_block / tile_A::I;
constexpr int ntB = (cols_per_block + tile_B::I - 1) / tile_B::I;
const int row0 = blockIdx.x * rows_per_block;
const int expert_idx = blockIdx.y;
const int expert_start = expert_bounds[expert_idx];
const int expert_end = expert_bounds[expert_idx + 1];
const int ncols_expert = expert_end - expert_start;
const int tiles_for_expert = (ncols_expert + cols_per_block - 1) / cols_per_block;
const int tile_idx = blockIdx.z;
if (tile_idx >= tiles_for_expert) {
return;
}
const int col_base = tile_idx * cols_per_block;
GGML_UNUSED(channel_ratio);
const int channel_x = expert_idx;
const int sample_dst = 0;
const int sample_x = sample_dst / sample_ratio;
const int sample_y = sample_dst;
x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row0*stride_row;
y += int64_t(sample_y) *stride_sample_y;
dst += int64_t(sample_dst)*stride_sample_dst;
const int32_t * ids_src_expert = ids_src_compact + expert_start;
const int32_t * ids_dst_expert = ids_dst_compact + expert_start;
extern __shared__ char data_mmv[];
char * compute_base = data_mmv;
//const float2 * y2 = (const float2 *) y;
tile_C C[ntA][ntB];
T * tile_xy = (T *) compute_base + threadIdx.y*(tile_A::I * tile_k_padded);
for (int col = threadIdx.y*warp_size + threadIdx.x; col < ncols; col += nwarps*warp_size) {
tile_A A[ntA][warp_size / tile_A::J];
#pragma unroll
for (int itA = 0; itA < ntA; ++itA) {
#pragma unroll
for (int i = 0; i < tile_A::I; ++i) {
tile_xy[i*tile_k_padded + threadIdx.x] = x[(itA*tile_A::I + i)*stride_row + col];
}
#pragma unroll
for (int k0 = 0; k0 < warp_size; k0 += tile_A::J) {
load_ldmatrix(A[itA][k0/tile_A::J], tile_xy + k0, tile_k_padded);
}
}
if constexpr (std::is_same_v<T, float>) {
float vals_buf[2][tile_B::I];
auto gather_tile = [&](int tile_idx_local, float *vals) {
#pragma unroll
for (int j0 = 0; j0 < tile_B::I; ++j0) {
const int j = j0 + tile_idx_local*tile_B::I;
const int global_j = col_base + j;
float val = 0.0f;
if (j < cols_per_block && global_j < ncols_expert) {
const int src_entry = ids_src_expert[global_j];
const uint2 qrm = fast_div_modulo((uint32_t) src_entry, sis1_fd);
const int token = (int) qrm.x;
const int channel = (int) qrm.y;
if (token < ncols_dst_total) {
val = y[channel*stride_channel_y + token*stride_col_y + col];
}
}
vals[j0] = val;
}
};
gather_tile(0, vals_buf[0]);
int curr_buf = 0;
int next_buf = 1;
#pragma unroll
for (int itB = 0; itB < ntB; ++itB) {
#pragma unroll
for (int j0 = 0; j0 < tile_B::I; ++j0) {
tile_xy[j0*tile_k_padded + threadIdx.x] = vals_buf[curr_buf][j0];
}
if (itB + 1 < ntB) {
gather_tile(itB + 1, vals_buf[next_buf]);
}
#pragma unroll
for (int k0 = 0; k0 < warp_size; k0 += tile_B::J) {
tile_B B;
load_ldmatrix(B, tile_xy + k0, tile_k_padded);
#pragma unroll
for (int itA = 0; itA < ntA; ++itA) {
mma(C[itA][itB], A[itA][k0/tile_B::J], B);
}
}
if (itB + 1 < ntB) {
curr_buf ^= 1;
next_buf ^= 1;
}
}
} else if constexpr (std::is_same_v<T, half2> || std::is_same_v<T, nv_bfloat162>) {
float2 vals_buf[2][tile_B::I];
auto gather_tile = [&](int tile_idx_local, float2 *vals) {
#pragma unroll
for (int j0 = 0; j0 < tile_B::I; ++j0) {
const int j = j0 + tile_idx_local*tile_B::I;
const int global_j = col_base + j;
float2 tmp = make_float2(0.0f, 0.0f);
if (j < cols_per_block && global_j < ncols_expert) {
const int src_entry = ids_src_expert[global_j];
const uint2 qrm = fast_div_modulo((uint32_t) src_entry, sis1_fd);
const int token = (int) qrm.x;
const int channel = (int) qrm.y;
if (token < ncols_dst_total) {
tmp = *(const float2*) &y[channel*stride_channel_y + 2*(token*stride_col_y + col)];
}
}
vals[j0] = tmp;
}
};
if (ntB > 0) {
gather_tile(0, vals_buf[0]);
}
int curr_buf = 0;
int next_buf = 1;
#pragma unroll
for (int itB = 0; itB < ntB; ++itB) {
#pragma unroll
for (int j0 = 0; j0 < tile_B::I; ++j0) {
const float2 tmp = vals_buf[curr_buf][j0];
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y};
}
if (itB + 1 < ntB) {
gather_tile(itB + 1, vals_buf[next_buf]);
}
#pragma unroll
for (int k0 = 0; k0 < warp_size; k0 += tile_B::J) {
tile_B B;
load_ldmatrix(B, tile_xy + k0, tile_k_padded);
#pragma unroll
for (int itA = 0; itA < ntA; ++itA) {
mma(C[itA][itB], A[itA][k0/tile_B::J], B);
}
}
if (itB + 1 < ntB) {
curr_buf ^= 1;
next_buf ^= 1;
}
}
} else {
static_assert(std::is_same_v<T, void>, "unsupported type");
}
}
float * buf_iw = (float *) compute_base;
constexpr int kiw = nwarps*rows_per_block + 4;
if (nwarps > 1) {
__syncthreads();
}
#pragma unroll
for (int itB = 0; itB < ntB; ++itB) {
#pragma unroll
for (int itA = 0; itA < ntA; ++itA) {
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
const int i = threadIdx.y*rows_per_block + itA*tile_C::I + tile_C::get_i(l);
const int j = itB*tile_C::J + tile_C::get_j(l);
buf_iw[j*kiw + i] = C[itA][itB].x[l];
}
}
}
if (nwarps > 1) {
__syncthreads();
}
#pragma unroll
for (int j0 = 0; j0 < cols_per_block; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (j0 + nwarps > cols_per_block && j >= cols_per_block) {
return;
}
float sum = 0.0f;
static_assert(rows_per_block == warp_size, "need loop/check");
#pragma unroll
for (int i0 = 0; i0 < nwarps*rows_per_block; i0 += rows_per_block) {
const int i = i0 + threadIdx.x;
sum += buf_iw[j*kiw + i];
}
const int global_j = col_base + j;
if (j < cols_per_block && global_j < ncols_expert && nchannels_dst > 0) {
const int dst_entry = ids_dst_expert[global_j];
const uint2 qrm = fast_div_modulo((uint32_t) dst_entry, nch_fd);
const int token = (int) qrm.x;
if (token < ncols_dst_total) {
const int slot = (int) qrm.y;
dst[slot*stride_channel_dst + token*stride_col_dst + row0 + threadIdx.x] = sum;
}
}
}
#else
GGML_UNUSED_VARS(x, y, ids_src_compact, ids_dst_compact, expert_bounds, dst,
ncols, ncols_dst_total, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, sis1_fd, nch_fd);
NO_DEVICE_CODE;
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
}
template<typename T, int cols_per_block, int nwarps>
static inline void mul_mat_f_switch_ids(
const T * x, const float * y, const int32_t * ids, float * dst,
@ -232,13 +484,35 @@ static inline void mul_mat_f_switch_ids(
const int64_t stride_col_id, const int64_t stride_row_id,
const int64_t channel_ratio, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
const int64_t sample_ratio, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared_total, cudaStream_t stream) {
if (ids) {
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared_total, cudaStream_t stream,
const mmf_ids_data * ids_data) {
const bool has_ids_data = ids_data && ids_data->ids_src_compact;
// Use the compact-ids kernel only for larger tiles; for small ncols_dst (< 16)
// we prefer the normal mul_mat_f path with has_ids=true.
if (has_ids_data && ncols_dst > 16) {
const int max_tiles = (int) ((ncols_dst + cols_per_block - 1) / cols_per_block);
if (max_tiles == 0) {
return;
}
dim3 block_nums_ids(block_nums.x, ids_data->n_experts, max_tiles);
const uint3 sis1_fd = ids_data->sis1 > 0 ? init_fastdiv_values((uint32_t) ids_data->sis1) : make_uint3(0, 0, 1);
const uint3 nch_fd = init_fastdiv_values((uint32_t) nchannels_dst);
mul_mat_f_ids<T, MMF_ROWS_PER_BLOCK, cols_per_block, nwarps><<<block_nums_ids, block_dims, nbytes_shared_total, stream>>>
(x, y, ids_data->ids_src_compact, ids_data->ids_dst_compact, ids_data->expert_bounds_dev, dst,
ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst,
sis1_fd, nch_fd);
} else if (ids) {
const int64_t col_tiles = (ncols_dst + cols_per_block - 1) / cols_per_block;
dim3 block_nums_ids = block_nums;
block_nums_ids.y *= col_tiles;
mul_mat_f<T, MMF_ROWS_PER_BLOCK, cols_per_block, nwarps, true><<<block_nums_ids, block_dims, nbytes_shared_total, stream>>>
(x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} else {
@ -258,7 +532,7 @@ void mul_mat_f_cuda(
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
cudaStream_t stream) {
cudaStream_t stream, const mmf_ids_data * ids_data) {
typedef tile<16, 8, T> tile_A;
typedef tile< 8, 8, T> tile_B;
@ -290,7 +564,7 @@ void mul_mat_f_cuda(
const int nbytes_shared = std::max(nbytes_shared_iter, nbytes_shared_combine);
const int nbytes_slotmap = ids ? GGML_PAD(cols_per_block, 16) * sizeof(int) : 0;
const int nbytes_shared_total = nbytes_shared + nbytes_slotmap;
const int64_t grid_y = ids ? nchannels_x : nchannels_dst; // per expert when ids present
const int64_t grid_y = ids ? nchannels_x : nchannels_dst;
const dim3 block_nums(nrows_x/rows_per_block, grid_y, nsamples_dst);
const dim3 block_dims(warp_size, nwarps_best, 1);
@ -300,49 +574,57 @@ void mul_mat_f_cuda(
mul_mat_f_switch_ids<T, cols_per_block, 1>(
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream,
ids_data);
} break;
case 2: {
mul_mat_f_switch_ids<T, cols_per_block, 2>(
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream,
ids_data);
} break;
case 3: {
mul_mat_f_switch_ids<T, cols_per_block, 3>(
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream,
ids_data);
} break;
case 4: {
mul_mat_f_switch_ids<T, cols_per_block, 4>(
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream,
ids_data);
} break;
case 5: {
mul_mat_f_switch_ids<T, cols_per_block, 5>(
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream,
ids_data);
} break;
case 6: {
mul_mat_f_switch_ids<T, cols_per_block, 6>(
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream,
ids_data);
} break;
case 7: {
mul_mat_f_switch_ids<T, cols_per_block, 7>(
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream,
ids_data);
} break;
case 8: {
mul_mat_f_switch_ids<T, cols_per_block, 8>(
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream,
ids_data);
} break;
default: {
GGML_ABORT("fatal error");
@ -361,7 +643,7 @@ static void mul_mat_f_switch_cols_per_block(
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
cudaStream_t stream) {
cudaStream_t stream, const mmf_ids_data * ids_data) {
const int ncols_case = (ids && ncols_dst > 16) ? 16 : ncols_dst;
@ -371,82 +653,82 @@ static void mul_mat_f_switch_cols_per_block(
case 1: {
mul_mat_f_cuda<T, 1>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 2: {
mul_mat_f_cuda<T, 2>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 3: {
mul_mat_f_cuda<T, 3>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 4: {
mul_mat_f_cuda<T, 4>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 5: {
mul_mat_f_cuda<T, 5>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 6: {
mul_mat_f_cuda<T, 6>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 7: {
mul_mat_f_cuda<T, 7>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 8: {
mul_mat_f_cuda<T, 8>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 9: {
mul_mat_f_cuda<T, 9>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 10: {
mul_mat_f_cuda<T, 10>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 11: {
mul_mat_f_cuda<T, 11>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 12: {
mul_mat_f_cuda<T, 12>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 13: {
mul_mat_f_cuda<T, 13>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 14: {
mul_mat_f_cuda<T, 14>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 15: {
mul_mat_f_cuda<T, 15>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
case 16: {
mul_mat_f_cuda<T, 16>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream, ids_data);
} break;
default: {
GGML_ABORT("fatal error");
@ -462,7 +744,7 @@ static void mul_mat_f_switch_cols_per_block(
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst, \
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,\
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst, \
cudaStream_t stream);
cudaStream_t stream, const mmf_ids_data * ids_data);
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
#define DECL_MMF_CASE_EXTERN(ncols_dst) \

164
ggml/src/ggml-cuda/mmid.cu Normal file
View File

@ -0,0 +1,164 @@
#include "common.cuh"
#include "mmid.cuh"
// To reduce shared memory use, store "it" and "iex_used" with 22/10 bits each.
struct mm_ids_helper_store {
uint32_t data;
__device__ mm_ids_helper_store(const uint32_t it, const uint32_t iex_used) {
data = (it & 0x003FFFFF) | (iex_used << 22);
}
__device__ uint32_t it() const {
return data & 0x003FFFFF;
}
__device__ uint32_t iex_used() const {
return data >> 22;
}
};
static_assert(sizeof(mm_ids_helper_store) == 4, "unexpected size for mm_ids_helper_store");
// Helper function for mul_mat_id, converts ids to a more convenient format.
// ids_src1 describes how to permute the flattened column indices of src1 in order to get a compact src1 tensor sorted by expert.
// ids_dst describes the same mapping but for the dst tensor.
// The upper and lower bounds for the ith expert in the compact src1 tensor are stored in expert_bounds[i:i+1].
template <int n_expert_used_template>
__launch_bounds__(ggml_cuda_get_physical_warp_size(), 1)
static __global__ void mm_ids_helper(
const int32_t * __restrict__ ids, int32_t * __restrict__ ids_src1, int32_t * __restrict__ ids_dst, int32_t * __restrict__ expert_bounds,
const int n_tokens, const int n_expert_used_var, const int nchannels_y, const int si1, const int sis1) {
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
const int n_expert_used = n_expert_used_template == 0 ? n_expert_used_var : n_expert_used_template;
const int expert = blockIdx.x;
extern __shared__ char data_mm_ids_helper[];
mm_ids_helper_store * store = (mm_ids_helper_store *) data_mm_ids_helper;
int nex_prev = 0; // Number of columns for experts with a lower index.
int it_compact = 0; // Running index for the compact slice of this expert.
if constexpr (n_expert_used_template == 0) {
// Generic implementation:
for (int it = 0; it < n_tokens; ++it) {
int iex_used = -1; // The index at which the expert is used, if any.
for (int iex = threadIdx.x; iex < n_expert_used; iex += warp_size) {
const int expert_used = ids[it*si1 + iex];
nex_prev += expert_used < expert;
if (expert_used == expert) {
iex_used = iex;
}
}
if (iex_used != -1) {
store[it_compact] = mm_ids_helper_store(it, iex_used);
}
if (warp_reduce_any<warp_size>(iex_used != -1)) {
it_compact++;
}
}
} else {
// Implementation optimized for specific numbers of experts used:
static_assert(n_expert_used == 6 || warp_size % n_expert_used == 0, "bad n_expert_used");
const int neu_padded = n_expert_used == 6 ? 8 : n_expert_used; // Padded to next higher power of 2.
for (int it0 = 0; it0 < n_tokens; it0 += warp_size/neu_padded) {
const int it = it0 + threadIdx.x / neu_padded;
const int iex = threadIdx.x % neu_padded; // The index at which the expert is used, if any.
const int expert_used = (neu_padded == n_expert_used || iex < n_expert_used) && it < n_tokens ?
ids[it*si1 + iex] : INT_MAX;
const int iex_used = expert_used == expert ? iex : -1;
nex_prev += expert_used < expert;
// Whether the threads at this token position have used the expert:
const int it_compact_add_self = warp_reduce_any<neu_padded>(iex_used != -1);
// Do a scan over threads at lower token positions in warp to get the correct index for writing data:
int it_compact_add_lower = 0;
#pragma unroll
for (int offset = neu_padded; offset < warp_size; offset += neu_padded) {
const int tmp = __shfl_up_sync(0xFFFFFFFF, it_compact_add_self, offset, warp_size);
if (threadIdx.x >= static_cast<unsigned int>(offset)) {
it_compact_add_lower += tmp;
}
}
if (iex_used != -1) {
store[it_compact + it_compact_add_lower] = mm_ids_helper_store(it, iex_used);
}
// The thread with the highest index in the warp always has the sum over the whole warp, use it to increment all threads:
it_compact += __shfl_sync(0xFFFFFFFF, it_compact_add_lower + it_compact_add_self, warp_size - 1, warp_size);
}
}
nex_prev = warp_reduce_sum<warp_size>(nex_prev);
for (int itc = threadIdx.x; itc < it_compact; itc += warp_size) {
const mm_ids_helper_store store_it = store[itc];
const int it = store_it.it();
const int iex_used = store_it.iex_used();
ids_src1[nex_prev + itc] = it*sis1 + iex_used % nchannels_y;
ids_dst [nex_prev + itc] = it*n_expert_used + iex_used;
}
if (threadIdx.x != 0) {
return;
}
expert_bounds[expert] = nex_prev;
if (expert < static_cast<int>(gridDim.x) - 1) {
return;
}
expert_bounds[gridDim.x] = nex_prev + it_compact;
}
template <int n_expert_used_template>
static void launch_mm_ids_helper(
const int32_t * __restrict__ ids, int32_t * __restrict__ ids_src1, int32_t * __restrict__ ids_dst, int32_t * __restrict__ expert_bounds,
const int n_experts, const int n_tokens, const int n_expert_used_var, const int nchannels_y, const int si1, const int sis1, cudaStream_t stream) {
GGML_ASSERT(n_tokens < (1 << 22) && "too few bits in mm_ids_helper_store");
GGML_ASSERT(n_expert_used_var < (1 << 10) && "too few bits in mm_ids_helper_store");
const int id = ggml_cuda_get_device();
const int warp_size = ggml_cuda_info().devices[id].warp_size;
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
CUDA_SET_SHARED_MEMORY_LIMIT(mm_ids_helper<n_expert_used_template>, smpbo);
const dim3 num_blocks(n_experts, 1, 1);
const dim3 block_size(warp_size, 1, 1);
const size_t nbytes_shared = n_tokens*sizeof(mm_ids_helper_store);
GGML_ASSERT(nbytes_shared <= smpbo);
mm_ids_helper<n_expert_used_template><<<num_blocks, block_size, nbytes_shared, stream>>>
(ids, ids_src1, ids_dst, expert_bounds, n_tokens, n_expert_used_var, nchannels_y, si1, sis1);
}
void ggml_cuda_launch_mm_ids_helper(
const int32_t * __restrict__ ids, int32_t * __restrict__ ids_src1, int32_t * __restrict__ ids_dst, int32_t * __restrict__ expert_bounds,
const int n_experts, const int n_tokens, const int n_expert_used, const int nchannels_y, const int si1, const int sis1, cudaStream_t stream) {
switch (n_expert_used) {
case 2:
launch_mm_ids_helper< 2>(ids, ids_src1, ids_dst, expert_bounds, n_experts, n_tokens, n_expert_used, nchannels_y, si1, sis1, stream);
break;
case 4:
launch_mm_ids_helper< 4>(ids, ids_src1, ids_dst, expert_bounds, n_experts, n_tokens, n_expert_used, nchannels_y, si1, sis1, stream);
break;
case 6:
launch_mm_ids_helper< 6>(ids, ids_src1, ids_dst, expert_bounds, n_experts, n_tokens, n_expert_used, nchannels_y, si1, sis1, stream);
break;
case 8:
launch_mm_ids_helper< 8>(ids, ids_src1, ids_dst, expert_bounds, n_experts, n_tokens, n_expert_used, nchannels_y, si1, sis1, stream);
break;
case 16:
launch_mm_ids_helper<16>(ids, ids_src1, ids_dst, expert_bounds, n_experts, n_tokens, n_expert_used, nchannels_y, si1, sis1, stream);
break;
case 32:
launch_mm_ids_helper<32>(ids, ids_src1, ids_dst, expert_bounds, n_experts, n_tokens, n_expert_used, nchannels_y, si1, sis1, stream);
break;
default:
launch_mm_ids_helper< 0>(ids, ids_src1, ids_dst, expert_bounds, n_experts, n_tokens, n_expert_used, nchannels_y, si1, sis1, stream);
break;
}
}

View File

@ -0,0 +1,5 @@
#pragma once
void ggml_cuda_launch_mm_ids_helper(
const int32_t * ids, int32_t * ids_src1, int32_t * ids_dst, int32_t * expert_bounds,
int n_experts, int n_tokens, int n_expert_used, int nchannels_y, int si1, int sis1, cudaStream_t stream);

View File

@ -1,141 +1,6 @@
#include "mmq.cuh"
#include "quantize.cuh"
#include <vector>
// To reduce shared memory use, store "it" and "iex_used" with 22/10 bits each.
struct mmq_ids_helper_store {
uint32_t data;
__device__ mmq_ids_helper_store(const uint32_t it, const uint32_t iex_used) {
data = (it & 0x003FFFFF) | (iex_used << 22);
}
__device__ uint32_t it() const {
return data & 0x003FFFFF;
}
__device__ uint32_t iex_used() const {
return data >> 22;
}
};
static_assert(sizeof(mmq_ids_helper_store) == 4, "unexpected size for mmq_ids_helper_store");
// Helper function for mul_mat_id, converts ids to a more convenient format.
// ids_src1 describes how to permute the flattened column indices of src1 in order to get a compact src1 tensor sorted by expert.
// ids_dst describes the same mapping but for the dst tensor.
// The upper and lower bounds for the ith expert in the compact src1 tensor are stored in expert_bounds[i:i+1].
template <int n_expert_used_template>
__launch_bounds__(ggml_cuda_get_physical_warp_size(), 1)
static __global__ void mmq_ids_helper(
const int32_t * __restrict__ ids, int32_t * __restrict__ ids_src1, int32_t * __restrict__ ids_dst, int32_t * __restrict__ expert_bounds,
const int n_tokens, const int n_expert_used_var, const int nchannels_y, const int si1, const int sis1) {
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
const int n_expert_used = n_expert_used_template == 0 ? n_expert_used_var : n_expert_used_template;
const int expert = blockIdx.x;
extern __shared__ char data_mmq_ids_helper[];
mmq_ids_helper_store * store = (mmq_ids_helper_store *) data_mmq_ids_helper;
int nex_prev = 0; // Number of columns for experts with a lower index.
int it_compact = 0; // Running index for the compact slice of this expert.
if constexpr (n_expert_used_template == 0) {
// Generic implementation:
for (int it = 0; it < n_tokens; ++it) {
int iex_used = -1; // The index at which the expert is used, if any.
for (int iex = threadIdx.x; iex < n_expert_used; iex += warp_size) {
const int expert_used = ids[it*si1 + iex];
nex_prev += expert_used < expert;
if (expert_used == expert) {
iex_used = iex;
}
}
if (iex_used != -1) {
store[it_compact] = mmq_ids_helper_store(it, iex_used);
}
if (warp_reduce_any<warp_size>(iex_used != -1)) {
it_compact++;
}
}
} else {
// Implementation optimized for specific numbers of experts used:
static_assert(n_expert_used == 6 || warp_size % n_expert_used == 0, "bad n_expert_used");
const int neu_padded = n_expert_used == 6 ? 8 : n_expert_used; // Padded to next higher power of 2.
for (int it0 = 0; it0 < n_tokens; it0 += warp_size/neu_padded) {
const int it = it0 + threadIdx.x / neu_padded;
const int iex = threadIdx.x % neu_padded; // The index at which the expert is used, if any.
const int expert_used = (neu_padded == n_expert_used || iex < n_expert_used) && it < n_tokens ?
ids[it*si1 + iex] : INT_MAX;
const int iex_used = expert_used == expert ? iex : -1;
nex_prev += expert_used < expert;
// Whether the threads at this token position have used the expert:
const int it_compact_add_self = warp_reduce_any<neu_padded>(iex_used != -1);
// Do a scan over threads at lower token positions in warp to get the correct index for writing data:
int it_compact_add_lower = 0;
#pragma unroll
for (int offset = neu_padded; offset < warp_size; offset += neu_padded) {
const int tmp = __shfl_up_sync(0xFFFFFFFF, it_compact_add_self, offset, warp_size);
if (threadIdx.x >= static_cast<unsigned int>(offset)) {
it_compact_add_lower += tmp;
}
}
if (iex_used != -1) {
store[it_compact + it_compact_add_lower] = mmq_ids_helper_store(it, iex_used);
}
// The thread with the highest index in the warp always has the sum over the whole warp, use it to increment all threads:
it_compact += __shfl_sync(0xFFFFFFFF, it_compact_add_lower + it_compact_add_self, warp_size - 1, warp_size);
}
}
nex_prev = warp_reduce_sum<warp_size>(nex_prev);
for (int itc = threadIdx.x; itc < it_compact; itc += warp_size) {
const mmq_ids_helper_store store_it = store[itc];
const int it = store_it.it();
const int iex_used = store_it.iex_used();
ids_src1[nex_prev + itc] = it*sis1 + iex_used % nchannels_y;
ids_dst [nex_prev + itc] = it*n_expert_used + iex_used;
}
if (threadIdx.x != 0) {
return;
}
expert_bounds[expert] = nex_prev;
if (expert < static_cast<int>(gridDim.x) - 1) {
return;
}
expert_bounds[gridDim.x] = nex_prev + it_compact;
}
template <int n_expert_used_template>
static void launch_mmq_ids_helper(
const int32_t * __restrict__ ids, int32_t * __restrict__ ids_src1, int32_t * __restrict__ ids_dst, int32_t * __restrict__ expert_bounds,
const int n_experts, const int n_tokens, const int n_expert_used_var, const int nchannels_y, const int si1, const int sis1, cudaStream_t stream) {
GGML_ASSERT(n_tokens < (1 << 22) && "too few bits in mmq_ids_helper_store");
GGML_ASSERT(n_expert_used_var < (1 << 10) && "too few bits in mmq_ids_helper_store");
const int id = ggml_cuda_get_device();
const int warp_size = ggml_cuda_info().devices[id].warp_size;
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
CUDA_SET_SHARED_MEMORY_LIMIT(mmq_ids_helper<n_expert_used_template>, smpbo);
const dim3 num_blocks(n_experts, 1, 1);
const dim3 block_size(warp_size, 1, 1);
const size_t nbytes_shared = n_tokens*sizeof(mmq_ids_helper_store);
GGML_ASSERT(nbytes_shared <= smpbo);
mmq_ids_helper<n_expert_used_template><<<num_blocks, block_size, nbytes_shared, stream>>>
(ids, ids_src1, ids_dst, expert_bounds, n_tokens, n_expert_used_var, nchannels_y, si1, sis1);
}
#include "mmid.cuh"
static void ggml_cuda_mul_mat_q_switch_type(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
switch (args.type_x) {
@ -293,36 +158,8 @@ void ggml_cuda_mul_mat_q(
const int si1 = ids->nb[1] / ggml_element_size(ids);
const int sis1 = nb12 / nb11;
switch (n_expert_used) {
case 2:
launch_mmq_ids_helper< 2> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
break;
case 4:
launch_mmq_ids_helper< 4> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
break;
case 6:
launch_mmq_ids_helper< 6> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
break;
case 8:
launch_mmq_ids_helper< 8> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
break;
case 16:
launch_mmq_ids_helper<16> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
break;
case 32:
launch_mmq_ids_helper<32> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
break;
default:
launch_mmq_ids_helper< 0> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
break;
}
ggml_cuda_launch_mm_ids_helper((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
CUDA_CHECK(cudaGetLastError());
}

View File

@ -7,14 +7,14 @@ template <typename T, typename type_acc, int ncols_dst, int block_size>
static __global__ void mul_mat_vec_f(
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst,
const int ncols2, const int nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst,
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
const int row = blockIdx.x;
const int channel_dst = blockIdx.y;
const int channel_x = ids ? ids[channel_dst] : channel_dst / channel_ratio;
const int channel_x = ids ? ids[channel_dst] : fastdiv((uint32_t) channel_dst, channel_ratio);
const int channel_y = ids ? channel_dst % nchannels_y : channel_dst;
const int sample_dst = blockIdx.z;
const int sample_x = sample_dst / sample_ratio;
const int sample_x = fastdiv((uint32_t) sample_dst, sample_ratio);
const int sample_y = sample_dst;
const int tid = threadIdx.x;
@ -47,8 +47,8 @@ static __global__ void mul_mat_vec_f(
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
sumf[j] += tmpx.x*tmpy.x;
sumf[j] += tmpx.y*tmpy.y;
ggml_cuda_mad(sumf[j], tmpx.x, tmpy.x);
ggml_cuda_mad(sumf[j], tmpx.y, tmpy.y);
}
}
} else if constexpr (std::is_same_v<T, half>) {
@ -61,8 +61,8 @@ static __global__ void mul_mat_vec_f(
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
sumf[j] += tmpx.x * tmpy.x;
sumf[j] += tmpx.y * tmpy.y;
ggml_cuda_mad(sumf[j], tmpx.x, tmpy.x);
ggml_cuda_mad(sumf[j], tmpx.y, tmpy.y);
}
}
} else {
@ -88,16 +88,32 @@ static __global__ void mul_mat_vec_f(
#endif // FP16_AVAILABLE
}
} else if constexpr (std::is_same_v<T, nv_bfloat16>) {
//TODO: add support for ggml_cuda_mad for hip_bfloat162
#if defined(GGML_USE_HIP)
const int * x2 = (const int *) x;
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const int tmpx = x2[col2];
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
sumf[j] += ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[0]) * tmpy.x;
sumf[j] += ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[1]) * tmpy.y;
const float tmpx0 = ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[0]);
const float tmpx1 = ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[1]);
ggml_cuda_mad(sumf[j], tmpx0, tmpy.x);
ggml_cuda_mad(sumf[j], tmpx1, tmpy.y);
}
}
#else
const nv_bfloat162 * x2 = (const nv_bfloat162 *) x;
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const nv_bfloat162 tmpx = x2[col2];
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
ggml_cuda_mad(sumf[j], tmpx.x, tmpy.x);
ggml_cuda_mad(sumf[j], tmpx.y, tmpy.y);
}
}
#endif
} else {
static_assert(std::is_same_v<T, void>, "unsupported type");
}
@ -140,8 +156,8 @@ static void launch_mul_mat_vec_f_cuda(
GGML_ASSERT(stride_col_y % 2 == 0);
GGML_ASSERT(ids || nchannels_dst % nchannels_x == 0);
GGML_ASSERT( nsamples_dst % nsamples_x == 0);
const int64_t channel_ratio = nchannels_dst / nchannels_x;
const int64_t sample_ratio = nsamples_dst / nsamples_x;
const uint3 channel_ratio_fd = ids ? make_uint3(0, 0, 0) : init_fastdiv_values(nchannels_dst / nchannels_x);
const uint3 sample_ratio_fd = init_fastdiv_values(nsamples_dst / nsamples_x);
const int device = ggml_cuda_get_device();
const int warp_size = ggml_cuda_info().devices[device].warp_size;
@ -167,50 +183,50 @@ static void launch_mul_mat_vec_f_cuda(
case 32: {
mul_mat_vec_f<T, type_acc, ncols_dst, 32><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 64: {
mul_mat_vec_f<T, type_acc, ncols_dst, 64><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 96: {
mul_mat_vec_f<T, type_acc, ncols_dst, 96><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 128: {
mul_mat_vec_f<T, type_acc, ncols_dst, 128><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 160: {
mul_mat_vec_f<T, type_acc, ncols_dst, 160><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 192: {
mul_mat_vec_f<T, type_acc, ncols_dst, 192><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 224: {
mul_mat_vec_f<T, type_acc, ncols_dst, 224><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 256: {
mul_mat_vec_f<T, type_acc, ncols_dst, 256><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
default: {
GGML_ABORT("fatal error");

View File

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-tile.cuh"
DECL_FATTN_TILE_CASE(112, 112);

View File

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-tile.cuh"
DECL_FATTN_TILE_CASE(128, 128);

View File

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-tile.cuh"
DECL_FATTN_TILE_CASE(256, 256);

View File

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-tile.cuh"
DECL_FATTN_TILE_CASE(40, 40);

View File

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-tile.cuh"
DECL_FATTN_TILE_CASE(576, 512);

View File

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-tile.cuh"
DECL_FATTN_TILE_CASE(64, 64);

View File

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-tile.cuh"
DECL_FATTN_TILE_CASE(80, 80);

View File

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-tile.cuh"
DECL_FATTN_TILE_CASE(96, 96);

View File

@ -3,8 +3,17 @@
from glob import glob
import os
HEAD_SIZES_KQ = [40, 64, 80, 96, 112, 128, 256, 576]
TYPES_KV = ["GGML_TYPE_F16", "GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0"]
SOURCE_FATTN_TILE = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-tile.cuh"
DECL_FATTN_TILE_CASE({head_size_kq}, {head_size_v});
"""
SOURCE_FATTN_VEC = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec.cuh"
@ -51,6 +60,11 @@ def get_short_name(long_quant_name):
for filename in glob("*.cu"):
os.remove(filename)
for head_size_kq in HEAD_SIZES_KQ:
head_size_v = head_size_kq if head_size_kq != 576 else 512
with open(f"fattn-tile-instance-dkq{head_size_kq}-dv{head_size_v}.cu", "w") as f:
f.write(SOURCE_FATTN_TILE.format(head_size_kq=head_size_kq, head_size_v=head_size_v))
for type_k in TYPES_KV:
for type_v in TYPES_KV:
with open(f"fattn-vec-instance-{get_short_name(type_k)}-{get_short_name(type_v)}.cu", "w") as f:
@ -64,7 +78,9 @@ for ncols in [8, 16, 32, 64]:
with open(f"fattn-mma-f16-instance-ncols1_{ncols1}-ncols2_{ncols2}.cu", "w") as f:
f.write(SOURCE_FATTN_MMA_START)
for head_size_kq in [64, 80, 96, 112, 128, 256, 576]:
for head_size_kq in HEAD_SIZES_KQ:
if head_size_kq == 40:
continue
if head_size_kq != 576 and ncols2 == 16:
continue
if head_size_kq == 576 and ncols2 != 16:

View File

@ -53,6 +53,8 @@ file(GLOB GGML_HEADERS_ROCM "../ggml-cuda/*.cuh")
list(APPEND GGML_HEADERS_ROCM "../../include/ggml-cuda.h")
file(GLOB GGML_SOURCES_ROCM "../ggml-cuda/*.cu")
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-tile*.cu")
list(APPEND GGML_SOURCES_ROCM ${SRCS})
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-mma*.cu")
list(APPEND GGML_SOURCES_ROCM ${SRCS})
file(GLOB SRCS "../ggml-cuda/template-instances/mmq*.cu")

View File

@ -268,6 +268,25 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_glu(ggml_metal_library_t l
return res;
}
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_sum(ggml_metal_library_t lib, const ggml_tensor * op) {
assert(op->op == GGML_OP_SUM);
char base[256];
char name[256];
snprintf(base, 256, "kernel_op_sum_%s", ggml_type_name(op->src[0]->type));
snprintf(name, 256, "%s", base);
ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
if (res) {
return res;
}
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
return res;
}
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_sum_rows(ggml_metal_library_t lib, const ggml_tensor * op) {
GGML_ASSERT(op->src[0]->nb[0] == ggml_type_size(op->src[0]->type));
@ -1482,3 +1501,40 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_timestep_embedding(ggml_me
return res;
}
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_opt_step_adamw(ggml_metal_library_t lib, const ggml_tensor * op) {
assert(op->op == GGML_OP_OPT_STEP_ADAMW);
char base[256];
char name[256];
snprintf(base, 256, "kernel_opt_step_adamw_%s", ggml_type_name(op->src[0]->type));
snprintf(name, 256, "%s", base);
ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
if (res) {
return res;
}
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
return res;
}
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_opt_step_sgd(ggml_metal_library_t lib, const ggml_tensor * op) {
assert(op->op == GGML_OP_OPT_STEP_SGD);
char base[256];
char name[256];
snprintf(base, 256, "kernel_opt_step_sgd_%s", ggml_type_name(op->src[0]->type));
snprintf(name, 256, "%s", base);
ggml_metal_pipeline_t res = ggml_metal_library_get_pipeline(lib, name);
if (res) {
return res;
}
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
return res;
}

View File

@ -109,6 +109,7 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_set_rows (ggml_me
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_repeat (ggml_metal_library_t lib, enum ggml_type tsrc);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_unary (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_glu (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_sum (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_sum_rows (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_soft_max (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_ssm_conv (ggml_metal_library_t lib, const struct ggml_tensor * op);
@ -134,6 +135,8 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad (ggml_me
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad_reflect_1d (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_arange (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_timestep_embedding(ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_opt_step_adamw (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_opt_step_sgd (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_pad(
ggml_metal_library_t lib,

View File

@ -7,6 +7,8 @@
#include <Metal/Metal.h>
#include <stdatomic.h>
#ifndef TARGET_OS_VISION
#define TARGET_OS_VISION 0
#endif
@ -22,6 +24,9 @@
// overload of MTLGPUFamilyMetal3 (not available in some environments)
static const NSInteger MTLGPUFamilyMetal3_GGML = 5001;
// virtual address for GPU memory allocations
static atomic_uintptr_t g_addr_device = 0x000000400ULL;
#if !GGML_METAL_EMBED_LIBRARY
// Here to assist with NSBundle Path Hack
@interface GGMLMetalClass : NSObject
@ -656,6 +661,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
case GGML_OP_COS:
case GGML_OP_LOG:
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_SUM:
return has_simdgroup_reduction && ggml_is_contiguous(op->src[0]);
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_SOFT_MAX:
@ -692,7 +699,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
return true;
case GGML_OP_FLASH_ATTN_EXT:
// for new head sizes, add checks here
if (op->src[0]->ne[0] != 40 &&
if (op->src[0]->ne[0] != 32 &&
op->src[0]->ne[0] != 40 &&
op->src[0]->ne[0] != 64 &&
op->src[0]->ne[0] != 80 &&
op->src[0]->ne[0] != 96 &&
@ -798,6 +806,9 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
return false;
};
}
case GGML_OP_OPT_STEP_ADAMW:
case GGML_OP_OPT_STEP_SGD:
return has_simdgroup_reduction;
default:
return false;
}
@ -822,7 +833,7 @@ struct ggml_metal_buffer_wrapper {
};
struct ggml_metal_buffer {
void * all_data; // TODO: https://github.com/ggml-org/llama.cpp/pull/15985
void * all_data;
size_t all_size;
// if false, the Metal buffer data is allocated in private GPU memory and is not shared with the host
@ -960,14 +971,15 @@ ggml_metal_buffer_t ggml_metal_buffer_init(ggml_metal_device_t dev, size_t size,
if (shared) {
res->all_data = ggml_metal_host_malloc(size_aligned);
res->is_shared = true;
res->owned = true;
} else {
// dummy, non-NULL value - we'll populate this after creating the Metal buffer below
res->all_data = (void *) 0x000000400ULL;
// use virtual address from g_addr_device counter
res->all_data = (void *) atomic_fetch_add_explicit(&g_addr_device, size_aligned, memory_order_relaxed);
res->is_shared = false;
}
res->all_size = size_aligned;
res->owned = true;
res->device = ggml_metal_device_get_obj(dev);
res->queue = ggml_metal_device_get_queue(dev);
@ -978,15 +990,13 @@ ggml_metal_buffer_t ggml_metal_buffer_init(ggml_metal_device_t dev, size_t size,
res->buffers[0].metal = nil;
if (size_aligned > 0) {
if (props_dev->use_shared_buffers &&shared) {
if (props_dev->use_shared_buffers && shared) {
res->buffers[0].metal = [res->device newBufferWithBytesNoCopy:res->all_data
length:size_aligned
options:MTLResourceStorageModeShared
deallocator:nil];
} else {
res->buffers[0].metal = [res->device newBufferWithLength:size_aligned options:MTLResourceStorageModePrivate];
res->all_data = (void *) (res->buffers[0].metal.gpuAddress);
}
}
@ -1134,7 +1144,7 @@ bool ggml_metal_buffer_is_shared(ggml_metal_buffer_t buf) {
void ggml_metal_buffer_memset_tensor(ggml_metal_buffer_t buf, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
if (buf->is_shared) {
memset((char *)tensor->data + offset, value, size);
memset((char *) tensor->data + offset, value, size);
return;
}
@ -1163,7 +1173,7 @@ void ggml_metal_buffer_memset_tensor(ggml_metal_buffer_t buf, struct ggml_tensor
void ggml_metal_buffer_set_tensor(ggml_metal_buffer_t buf, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
if (buf->is_shared) {
memcpy((char *)tensor->data + offset, data, size);
memcpy((char *) tensor->data + offset, data, size);
return;
}
@ -1218,7 +1228,7 @@ void ggml_metal_buffer_set_tensor(ggml_metal_buffer_t buf, struct ggml_tensor *
void ggml_metal_buffer_get_tensor(ggml_metal_buffer_t buf, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
if (buf->is_shared) {
memcpy(data, (const char *)tensor->data + offset, size);
memcpy(data, (const char *) tensor->data + offset, size);
return;
}

View File

@ -251,6 +251,7 @@ typedef struct {
int32_t sect_1;
int32_t sect_2;
int32_t sect_3;
bool src2;
} ggml_metal_kargs_rope;
typedef struct {
@ -544,6 +545,10 @@ typedef struct{
float limit;
} ggml_metal_kargs_glu;
typedef struct {
uint64_t np;
} ggml_metal_kargs_sum;
typedef struct {
int64_t ne00;
int64_t ne01;
@ -773,4 +778,12 @@ typedef struct {
uint64_t nb01;
} ggml_metal_kargs_argmax;
typedef struct {
int64_t np;
} ggml_metal_kargs_opt_step_adamw;
typedef struct {
int64_t np;
} ggml_metal_kargs_opt_step_sgd;
#endif // GGML_METAL_IMPL

View File

@ -301,6 +301,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
{
n_fuse = ggml_metal_op_glu(ctx, idx);
} break;
case GGML_OP_SUM:
{
n_fuse = ggml_metal_op_sum(ctx, idx);
} break;
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
{
@ -410,6 +414,14 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
{
n_fuse = ggml_metal_op_argmax(ctx, idx);
} break;
case GGML_OP_OPT_STEP_ADAMW:
{
n_fuse = ggml_metal_op_opt_step_adamw(ctx, idx);
} break;
case GGML_OP_OPT_STEP_SGD:
{
n_fuse = ggml_metal_op_opt_step_sgd(ctx, idx);
} break;
default:
{
GGML_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(node->op));
@ -840,6 +852,43 @@ int ggml_metal_op_glu(ggml_metal_op_t ctx, int idx) {
return 1;
}
int ggml_metal_op_sum(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
ggml_metal_library_t lib = ctx->lib;
ggml_metal_encoder_t enc = ctx->enc;
const uint64_t n = (uint64_t) ggml_nelements(op->src[0]);
ggml_metal_kargs_sum args = {
/*.np =*/ n,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_sum(lib, op);
int nth = 32; // SIMD width
while (nth < (int) n && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
nth *= 2;
}
nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
nth = std::min(nth, (int) n);
const int nsg = (nth + 31) / 32;
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
ggml_metal_encoder_set_threadgroup_memory_size(enc, nsg * sizeof(float), 0);
ggml_metal_encoder_dispatch_threadgroups(enc, 1, 1, 1, nth, 1, 1);
return 1;
}
int ggml_metal_op_sum_rows(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
@ -1546,9 +1595,8 @@ int ggml_metal_op_mul_mat(ggml_metal_op_t ctx, int idx) {
!ggml_is_transposed(op->src[1]) &&
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
props_dev->has_simdgroup_mm && ne00 >= 64 &&
(ne11 > ne11_mm_min || (ggml_is_quantized(op->src[0]->type) && ne12 > 1))) {
//printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
props_dev->has_simdgroup_mm && ne00 >= 64 && ne11 > ne11_mm_min) {
//GGML_LOG_INFO("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
// some Metal matrix data types require aligned pointers
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
@ -2934,6 +2982,7 @@ int ggml_metal_op_rope(ggml_metal_op_t ctx, int idx) {
/* sect_1 =*/ sect_1,
/* sect_2 =*/ sect_2,
/* sect_3 =*/ sect_3,
/* src2 =*/ op->src[2] != nullptr,
};
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_rope(lib, op);
@ -3402,3 +3451,73 @@ int ggml_metal_op_leaky_relu(ggml_metal_op_t ctx, int idx) {
return 1;
}
int ggml_metal_op_opt_step_adamw(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
ggml_metal_library_t lib = ctx->lib;
ggml_metal_encoder_t enc = ctx->enc;
GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_opt_step_adamw(lib, op);
const int64_t np = ggml_nelements(op->src[0]);
ggml_metal_kargs_opt_step_adamw args = {
/*.np =*/ np,
};
int ida = 0;
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), ida++);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), ida++);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), ida++);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[2]), ida++);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[3]), ida++);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[4]), ida++);
const int nth = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), ne0);
const int64_t n = (np + nth - 1) / nth;
ggml_metal_encoder_dispatch_threadgroups(enc, n, 1, 1, nth, 1, 1);
return 1;
}
int ggml_metal_op_opt_step_sgd(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
ggml_metal_library_t lib = ctx->lib;
ggml_metal_encoder_t enc = ctx->enc;
GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint32_t, nb, op, nb);
ggml_metal_pipeline_t pipeline = ggml_metal_library_get_pipeline_opt_step_sgd(lib, op);
const int64_t np = ggml_nelements(op->src[0]);
ggml_metal_kargs_opt_step_sgd args = {
/*.np =*/ np,
};
int ida = 0;
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), ida++);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), ida++);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), ida++);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[2]), ida++);
const int nth = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), ne0);
const int64_t n = (np + nth - 1) / nth;
ggml_metal_encoder_dispatch_threadgroups(enc, n, 1, 1, nth, 1, 1);
return 1;
}

View File

@ -50,6 +50,7 @@ int ggml_metal_op_scale (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_clamp (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_unary (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_glu (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_sum (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_sum_rows (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_get_rows (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_set_rows (ggml_metal_op_t ctx, int idx);
@ -78,6 +79,8 @@ int ggml_metal_op_timestep_embedding(ggml_metal_op_t ctx, int idx);
int ggml_metal_op_argmax (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_argsort (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_leaky_relu (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_opt_step_adamw (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_opt_step_sgd (ggml_metal_op_t ctx, int idx);
#ifdef __cplusplus
}

View File

@ -1723,6 +1723,54 @@ kernel void kernel_geglu_quick_f32(
}
}
kernel void kernel_op_sum_f32(
constant ggml_metal_kargs_sum & args,
device const float * src0,
device float * dst,
threadgroup float * shmem_f32 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
if (args.np == 0) {
return;
}
const uint nsg = (ntg.x + 31) / 32;
float sumf = 0;
for (int64_t i0 = tpitg.x; i0 < args.np; i0 += ntg.x) {
sumf += src0[i0];
}
sumf = simd_sum(sumf);
if (tiisg == 0) {
shmem_f32[sgitg] = sumf;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float total = 0;
if (sgitg == 0) {
float v = 0;
if (tpitg.x < nsg) {
v = shmem_f32[tpitg.x];
}
total = simd_sum(v);
if (tpitg.x == 0) {
dst[0] = total;
}
}
}
template <bool norm>
kernel void kernel_sum_rows(
constant ggml_metal_kargs_sum_rows & args,
@ -3730,7 +3778,7 @@ kernel void kernel_rope_norm(
const float theta = theta_base * pow(args.freq_base, inv_ndims*i0);
const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f;
const float freq_factor = args.src2 ? ((device const float *) src2)[ic] : 1.0f;
rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta);
@ -3783,7 +3831,7 @@ kernel void kernel_rope_neox(
const float theta = theta_base * pow(args.freq_base, inv_ndims*i0);
const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f;
const float freq_factor = args.src2 ? ((device const float *) src2)[ic] : 1.0f;
rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta);
@ -3854,7 +3902,7 @@ kernel void kernel_rope_multi(
const float theta = theta_base * pow(args.freq_base, inv_ndims*i0);
const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f;
const float freq_factor = args.src2 ? ((device const float *) src2)[ic] : 1.0f;
rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta);
@ -3921,7 +3969,7 @@ kernel void kernel_rope_vision(
const float theta = theta_base * pow(args.freq_base, 2.0f * inv_ndims * p);
// end of mrope
const float freq_factor = src2 != src0 ? ((device const float *) src2)[ic] : 1.0f;
const float freq_factor = args.src2 ? ((device const float *) src2)[ic] : 1.0f;
rope_yarn(theta/freq_factor, args.freq_scale, corr_dims, i0, args.ext_factor, args.attn_factor, &cos_theta, &sin_theta);
@ -5195,8 +5243,30 @@ kernel void kernel_flash_attn_ext(
half, half4, simdgroup_half8x8
//float, float4, simdgroup_float8x8
#define FA_TYPES_F32 \
half, half4, simdgroup_half8x8, \
float, float4x4, simdgroup_float8x8, \
float, float4x4, simdgroup_float8x8, \
float, simdgroup_float8x8, \
float, float2, simdgroup_float8x8, \
float, float4, simdgroup_float8x8
//half, half4, simdgroup_half8x8
typedef decltype(kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 64, 64>) flash_attn_ext_t;
template [[host_name("kernel_flash_attn_ext_f32_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 32, 32>;
template [[host_name("kernel_flash_attn_ext_f32_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 40, 40>;
template [[host_name("kernel_flash_attn_ext_f32_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 64, 64>;
template [[host_name("kernel_flash_attn_ext_f32_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 80, 80>;
template [[host_name("kernel_flash_attn_ext_f32_dk96_dv96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 96, 96>;
template [[host_name("kernel_flash_attn_ext_f32_dk112_dv112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 112, 112>;
template [[host_name("kernel_flash_attn_ext_f32_dk128_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 128, 128>;
template [[host_name("kernel_flash_attn_ext_f32_dk192_dv192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 192, 192>;
template [[host_name("kernel_flash_attn_ext_f32_dk192_dv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 192, 128>;
template [[host_name("kernel_flash_attn_ext_f32_dk256_dv256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 256, 256>;
template [[host_name("kernel_flash_attn_ext_f32_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_F32, float4x4, 1, dequantize_f32, float4x4, 1, dequantize_f32, 576, 512>;
template [[host_name("kernel_flash_attn_ext_f16_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 32, 32>;
template [[host_name("kernel_flash_attn_ext_f16_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 40, 40>;
template [[host_name("kernel_flash_attn_ext_f16_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 64, 64>;
template [[host_name("kernel_flash_attn_ext_f16_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 80, 80>;
@ -5209,6 +5279,7 @@ template [[host_name("kernel_flash_attn_ext_f16_dk256_dv256")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_f16_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 576, 512>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_bf16_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 32, 32>;
template [[host_name("kernel_flash_attn_ext_bf16_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 40, 40>;
template [[host_name("kernel_flash_attn_ext_bf16_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 64, 64>;
template [[host_name("kernel_flash_attn_ext_bf16_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 80, 80>;
@ -5221,6 +5292,7 @@ template [[host_name("kernel_flash_attn_ext_bf16_dk256_dv256")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_bf16_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 576, 512>;
#endif
template [[host_name("kernel_flash_attn_ext_q4_0_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 32, 32>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 80, 80>;
@ -5232,6 +5304,7 @@ template [[host_name("kernel_flash_attn_ext_q4_0_dk192_dv128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q4_0_dk256_dv256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q4_0_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 32, 32>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 80, 80>;
@ -5243,6 +5316,7 @@ template [[host_name("kernel_flash_attn_ext_q4_1_dk192_dv128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q4_1_dk256_dv256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q4_1_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 32, 32>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 80, 80>;
@ -5254,6 +5328,7 @@ template [[host_name("kernel_flash_attn_ext_q5_0_dk192_dv128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q5_0_dk256_dv256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q5_0_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 32, 32>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 80, 80>;
@ -5265,6 +5340,7 @@ template [[host_name("kernel_flash_attn_ext_q5_1_dk192_dv128")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q5_1_dk256_dv256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 256, 256>;
template [[host_name("kernel_flash_attn_ext_q5_1_dk576_dv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 576, 512>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk32_dv32" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 32, 32>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk40_dv40" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 40, 40>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk64_dv64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 64, 64>;
template [[host_name("kernel_flash_attn_ext_q8_0_dk80_dv80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 80, 80>;
@ -5800,77 +5876,103 @@ kernel void kernel_flash_attn_ext_vec(
float, float4, \
float4
#define FA_TYPES_F32 \
half4, \
float4, \
float4, \
float, \
float, float4, \
float4
typedef decltype(kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>) flash_attn_ext_vec_t;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f32_dk32_dv32")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES_F32, float4, 1, dequantize_f32_t4, float4, 1, dequantize_f32_t4, 32, 32, 4>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk32_dv32")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 32, 32, 4>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk32_dv32")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 32, 32, 4>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk32_dv32")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 32, 32, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk32_dv32")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 32, 32, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk32_dv32")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 32, 32, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk32_dv32")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 32, 32, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk32_dv32")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 32, 32, 4>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_f32_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES_F32, float4, 1, dequantize_f32_t4, float4, 1, dequantize_f32_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 64, 64, 2>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 64, 64, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk64_dv64")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 64, 64, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_f32_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES_F32, float4, 1, dequantize_f32_t4, float4, 1, dequantize_f32_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 96, 96, 4>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 96, 96, 4>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk96_dv96")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 96, 96, 4>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f32_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES_F32, float4, 1, dequantize_f32_t4, float4, 1, dequantize_f32_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 1>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 128, 128, 1>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk128_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 128, 128, 1>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f32_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES_F32, float4, 1, dequantize_f32_t4, float4, 1, dequantize_f32_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 192, 192, 2>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 192, 192, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk192_dv192")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 192, 192, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_f32_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES_F32, float4, 1, dequantize_f32_t4, float4, 1, dequantize_f32_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 192, 128, 2>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 192, 128, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk192_dv128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 192, 128, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f32_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES_F32, float4, 1, dequantize_f32_t4, float4, 1, dequantize_f32_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 256, 256, 1>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 256, 256, 1>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk256_dv256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 256, 256, 1>;
template [[host_name("kernel_flash_attn_ext_vec_f32_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES_F32, float4, 1, dequantize_f32_t4, float4, 1, dequantize_f32_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_f16_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 576, 512, 2>;
#if defined(GGML_METAL_HAS_BF16)
template [[host_name("kernel_flash_attn_ext_vec_bf16_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4, 1, dequantize_bf16_t4, bfloat4, 1, dequantize_bf16_t4, 576, 512, 2>;
#endif
template [[host_name("kernel_flash_attn_ext_vec_q4_0_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 8, dequantize_q4_0_t4, block_q4_0, 8, dequantize_q4_0_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q4_1_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 8, dequantize_q4_1_t4, block_q4_1, 8, dequantize_q4_1_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_0_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 8, dequantize_q5_0_t4, block_q5_0, 8, dequantize_q5_0_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q5_1_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 8, dequantize_q5_1_t4, block_q5_1, 8, dequantize_q5_1_t4, 576, 512, 2>;
template [[host_name("kernel_flash_attn_ext_vec_q8_0_dk576_dv512")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 8, dequantize_q8_0_t4, block_q8_0, 8, dequantize_q8_0_t4, 576, 512, 2>;
#undef FA_TYPES
@ -7487,7 +7589,7 @@ kernel void kernel_mul_mv_iq1_m_f32(
kernel_mul_mv_iq1_m_f32_impl<N_R0_IQ1_M, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, nullptr, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
template<int NR0, typename args_t>
void kernel_mul_mv_iq4_nl_f32_impl(
args_t args,
device const char * src0,
@ -7500,13 +7602,12 @@ void kernel_mul_mv_iq4_nl_f32_impl(
const short NSG = FC_mul_mv_nsg;
threadgroup float * shmem_f32 = (threadgroup float *) shmem;
const int nb = args.ne00/QK4_NL;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const int first_row = (r0 * NSG + sgitg) * NR0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
@ -7517,6 +7618,9 @@ void kernel_mul_mv_iq4_nl_f32_impl(
device const block_iq4_nl * x = (device const block_iq4_nl *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
const int nb = args.ne00/QK4_NL;
const int ns01 = args.nb01/args.nb00;
const short ix = tiisg/2; // 0...15
const short it = tiisg%2; // 0 or 1
@ -7524,24 +7628,25 @@ void kernel_mul_mv_iq4_nl_f32_impl(
threadgroup_barrier(mem_flags::mem_threadgroup);
float4 yl[4];
float sumf[nr0]={0.f};
float sumf[NR0]={0.f};
device const float * yb = y + ix * QK4_NL + it * 8;
device const float * yb = y + ix*QK4_NL + it*8;
uint32_t aux32[2];
thread const uint8_t * q8 = (thread const uint8_t *)aux32;
float4 qf1, qf2;
for (int ib = ix; ib < nb; ib += 16) {
// [TAG_MUL_MV_WEIRD]
for (int ib = ix; ib < nb && ib < ns01; ib += 16) {
device const float4 * y4 = (device const float4 *)yb;
yl[0] = y4[0];
yl[1] = y4[4];
yl[2] = y4[1];
yl[3] = y4[5];
for (short row = 0; row < nr0; row++) {
device const block_iq4_nl & xb = x[row*nb + ib];
for (short row = 0; row < NR0; row++) {
device const block_iq4_nl & xb = x[row*ns01 + ib];
device const uint16_t * q4 = (device const uint16_t *)(xb.qs + 8*it);
float4 acc1 = {0.f}, acc2 = {0.f};
@ -7572,7 +7677,7 @@ void kernel_mul_mv_iq4_nl_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
for (int row = 0; row < NR0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
@ -7594,7 +7699,7 @@ kernel void kernel_mul_mv_iq4_nl_f32(
kernel_mul_mv_iq4_nl_f32_impl<N_R0_IQ4_NL, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
template<int NR0, typename args_t>
void kernel_mul_mv_iq4_xs_f32_impl(
args_t args,
device const char * src0,
@ -7607,12 +7712,11 @@ void kernel_mul_mv_iq4_xs_f32_impl(
const short NSG = FC_mul_mv_nsg;
threadgroup float * shmem_f32 = (threadgroup float *) shmem;
const int nb = args.ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const int first_row = (r0 * NSG + sgitg) * NR0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
@ -7623,6 +7727,9 @@ void kernel_mul_mv_iq4_xs_f32_impl(
device const block_iq4_xs * x = (device const block_iq4_xs *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
const int nb = args.ne00/QK_K;
const int ns01 = args.nb01/args.nb00;
const short ix = tiisg/16; // 0 or 1
const short it = tiisg%16; // 0...15
const short ib = it/2;
@ -7632,7 +7739,7 @@ void kernel_mul_mv_iq4_xs_f32_impl(
threadgroup_barrier(mem_flags::mem_threadgroup);
float4 yl[4];
float sumf[nr0]={0.f};
float sumf[NR0]={0.f};
device const float * yb = y + ix * QK_K + ib * 32 + il * 8;
@ -7641,15 +7748,16 @@ void kernel_mul_mv_iq4_xs_f32_impl(
float4 qf1, qf2;
for (int ibl = ix; ibl < nb; ibl += 2) {
// [TAG_MUL_MV_WEIRD]
for (int ibl = ix; ibl < nb && ibl < ns01; ibl += 2) {
device const float4 * y4 = (device const float4 *)yb;
yl[0] = y4[0];
yl[1] = y4[4];
yl[2] = y4[1];
yl[3] = y4[5];
for (short row = 0; row < nr0; ++row) {
device const block_iq4_xs & xb = x[row*nb + ibl];
for (short row = 0; row < NR0; ++row) {
device const block_iq4_xs & xb = x[row*ns01 + ibl];
device const uint32_t * q4 = (device const uint32_t *)(xb.qs + 16*ib + 8*il);
float4 acc1 = {0.f}, acc2 = {0.f};
@ -7679,7 +7787,7 @@ void kernel_mul_mv_iq4_xs_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
for (int row = 0; row < NR0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
@ -7701,7 +7809,7 @@ kernel void kernel_mul_mv_iq4_xs_f32(
kernel_mul_mv_iq4_xs_f32_impl<N_R0_IQ4_XS, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<int nr0, typename args_t>
template<int NR0, typename args_t>
void kernel_mul_mv_mxfp4_f32_impl(
args_t args,
device const char * src0,
@ -7714,13 +7822,12 @@ void kernel_mul_mv_mxfp4_f32_impl(
const short NSG = FC_mul_mv_nsg;
threadgroup float * shmem_f32 = (threadgroup float *) shmem;
const int nb = args.ne00/QK_MXFP4;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * NSG + sgitg) * nr0;
const int first_row = (r0 * NSG + sgitg) * NR0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
@ -7731,6 +7838,9 @@ void kernel_mul_mv_mxfp4_f32_impl(
device const block_mxfp4 * x = (device const block_mxfp4 *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
const int nb = args.ne00/QK_MXFP4;
const int ns01 = args.nb01/args.nb00; // this can be larger than nb for permuted src0 tensors
const short ix = tiisg/2; // 0...15
const short it = tiisg%2; // 0 or 1
@ -7738,20 +7848,22 @@ void kernel_mul_mv_mxfp4_f32_impl(
threadgroup_barrier(mem_flags::mem_threadgroup);
float4 yl[4];
float sumf[nr0]={0.f};
float sumf[NR0]={0.f};
device const float * yb = y + ix * QK_MXFP4 + it * 8;
device const float * yb = y + ix*QK_MXFP4 + it*8;
// note: just the check `ib < nb` is enough, but adding the redundant `&& ib < ns01` check makes the kernel a bit faster
// no idea why that is - needs some deeper investigation [TAG_MUL_MV_WEIRD]
for (int ib = ix; ib < nb && ib < ns01; ib += 16) {
device const float4 * y4 = (device const float4 *) yb;
for (int ib = ix; ib < nb; ib += 16) {
device const float4 * y4 = (device const float4 *)yb;
yl[0] = y4[0];
yl[1] = y4[4];
yl[2] = y4[1];
yl[3] = y4[5];
#pragma unroll(nr0)
for (short row = 0; row < nr0; row++) {
device const block_mxfp4 & xb = x[row*nb + ib];
FOR_UNROLL (short row = 0; row < NR0; row++) {
device const block_mxfp4 & xb = x[row*ns01 + ib];
device const uint8_t * q2 = (device const uint8_t *)(xb.qs + 8*it);
float4 acc1 = yl[0]*float4(shmem_f32[q2[0] & 0x0F], shmem_f32[q2[1] & 0x0F], shmem_f32[q2[2] & 0x0F], shmem_f32[q2[3] & 0x0F]);
@ -7769,7 +7881,7 @@ void kernel_mul_mv_mxfp4_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
for (int row = 0; row < NR0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
@ -8744,3 +8856,51 @@ kernel void kernel_pool_2d_avg_f32(
o_ptr[cur_oh * args.OW + cur_ow] = res;
}
kernel void kernel_opt_step_adamw_f32(
constant ggml_metal_kargs_opt_step_adamw & args,
device float * x,
device const float * g,
device float * g_m,
device float * g_v,
device const float * pars,
uint gid[[thread_position_in_grid]]) {
if (gid >= args.np) {
return;
}
const float alpha = pars[0];
const float beta1 = pars[1];
const float beta2 = pars[2];
const float eps = pars[3];
const float wd = pars[4];
const float beta1h = pars[5];
const float beta2h = pars[6];
const float gi = g[gid];
const float gmi = g_m[gid] * beta1 + gi * (1.0f - beta1);
const float gvi = g_v[gid] * beta2 + gi * gi * (1.0f - beta2);
g_m[gid] = gmi;
g_v[gid] = gvi;
const float mh = gmi * beta1h;
const float vh = sqrt(gvi * beta2h) + eps;
x[gid] = x[gid] * (1.0f - alpha * wd) - alpha * mh / vh;
}
kernel void kernel_opt_step_sgd_f32(
constant ggml_metal_kargs_opt_step_sgd & args,
device float * x,
device const float * g,
device const float * pars,
uint gid[[thread_position_in_grid]]) {
if (gid >= args.np) {
return;
}
x[gid] = x[gid] * (1.0f - pars[0] * pars[1]) - pars[0] * g[gid];
}

View File

@ -30,6 +30,8 @@ if (MUSAToolkit_FOUND)
list(APPEND GGML_HEADERS_MUSA "../ggml-musa/mudnn.cuh")
file(GLOB GGML_SOURCES_MUSA "../ggml-cuda/*.cu")
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-tile*.cu")
list(APPEND GGML_SOURCES_MUSA ${SRCS})
file(GLOB SRCS "../ggml-cuda/template-instances/fattn-mma*.cu")
list(APPEND GGML_SOURCES_MUSA ${SRCS})
file(GLOB SRCS "../ggml-cuda/template-instances/mmq*.cu")

View File

@ -93,6 +93,7 @@ set(GGML_OPENCL_KERNELS
mul_mv_id_mxfp4_f32_flat
mul_mm_f32_f32_l4_lm
mul_mm_f16_f32_l4_lm
mul_mm_q8_0_f32_l4_lm
mul
norm
relu

View File

@ -408,6 +408,7 @@ struct ggml_backend_opencl_context {
cl_program program_mul_mv_id_mxfp4_f32_flat;
cl_program program_mul_mm_f32_f32_l4_lm;
cl_program program_mul_mm_f16_f32_l4_lm;
cl_program program_mul_mm_q8_0_f32_l4_lm;
cl_kernel kernel_add, kernel_add_row, kernel_add_f16, kernel_add_row_f16;
cl_kernel kernel_mul, kernel_mul_row, kernel_mul_f16, kernel_mul_row_f16;
@ -480,6 +481,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_mul_mv_id_mxfp4_f32_flat;
cl_kernel kernel_mul_mm_f32_f32_l4_lm;
cl_kernel kernel_mul_mm_f16_f32_l4_lm;
cl_kernel kernel_mul_mm_q8_0_f32_l4_lm;
std::vector<ProfilingInfo> profiling_info;
@ -1191,6 +1193,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// mul_mm_q8_0_f32_l4_lm
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mm_q8_0_f32_l4_lm.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mm_q8_0_f32_l4_lm.cl");
#endif
backend_ctx->program_mul_mm_q8_0_f32_l4_lm =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_q8_0_f32_l4_lm, "kernel_mul_mm_q8_0_f32_l4_lm", &err), err));
GGML_LOG_CONT(".");
}
// mul
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -2348,8 +2366,13 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
if (opencl_c_version.major >= 3) {
// Assume it is not available for 3.0, since it is optional in 3.0.
// If compiling against 3.0, then we can query.
backend_ctx->non_uniform_workgroups = false;
#if CL_TARGET_OPENCL_VERSION >= 300
CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT, sizeof(cl_bool),
&backend_ctx->non_uniform_workgroups, 0));
#endif
} else {
GGML_ASSERT(opencl_c_version.major == 2);
// Non-uniform workgroup sizes is mandatory feature in v2.x.
@ -2681,7 +2704,7 @@ static bool ggml_opencl_can_fuse(const struct ggml_cgraph * cgraph, int node_idx
// if rms_norm is the B operand, then we don't handle broadcast
if (rms_norm == mul->src[1] &&
!ggml_are_same_shape(mul->src[0], rms_norm->src[1])) {
!ggml_are_same_shape(mul->src[0], rms_norm)) {
return false;
}
@ -6956,6 +6979,44 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
return;
}
case GGML_TYPE_Q8_0: {
if (ne11 < 32) {
break;
}
kernel = backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm;
nth0 = 128; // calculated as (BM*BN)/(TM*TN)
int batch_stride_a = ne00*ne01;
int batch_stride_b = ne10*ne11;
int batch_stride_d = ne0*ne1;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
// 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
size_t local_work_size[] = {(size_t)nth0, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
return;
}
default:
break;
}

View File

@ -4,6 +4,7 @@
#define ACC_TYPE4 float4
#define DATA_TYPE float
#define DATA_TYPE4 float4
#define MASK_DATA_TYPE half
#define CONVERT_ACC4(x) (x)
#define CONVERT_DATA4(x) (x)
@ -148,7 +149,7 @@ __kernel void flash_attn_f32(
if (k_row1 >= n_kv) score1 = -INFINITY;
if (mask_base != NULL) {
const global DATA_TYPE* mask_ptr = (const global DATA_TYPE*)(mask_base + my_query_row * mask_nb1);
const global MASK_DATA_TYPE* mask_ptr = (const global MASK_DATA_TYPE*)(mask_base + my_query_row * mask_nb1);
if (k_row0 < n_kv) score0 += slope * (ACC_TYPE)mask_ptr[k_row0];
if (k_row1 < n_kv) score1 += slope * (ACC_TYPE)mask_ptr[k_row1];
}
@ -281,7 +282,7 @@ __kernel void flash_attn_f32_q1(
}
ACC_TYPE score = (dot_acc.s0 + dot_acc.s1 + dot_acc.s2 + dot_acc.s3) * scale;
if (mask_base != NULL) {
const global DATA_TYPE* mask_ptr = (const global DATA_TYPE*)(mask_base);
const global MASK_DATA_TYPE* mask_ptr = (const global MASK_DATA_TYPE*)(mask_base);
score += slope * (ACC_TYPE)mask_ptr[k_idx];
}
if (logit_softcap > 0.0f) {
@ -317,7 +318,7 @@ __kernel void flash_attn_f32_q1(
}
ACC_TYPE score = (dot_acc.s0 + dot_acc.s1 + dot_acc.s2 + dot_acc.s3) * scale;
if (mask_base != NULL) {
const global DATA_TYPE* mask_ptr = (const global DATA_TYPE*)(mask_base);
const global MASK_DATA_TYPE* mask_ptr = (const global MASK_DATA_TYPE*)(mask_base);
score += slope * (ACC_TYPE)mask_ptr[k_idx];
}
if (logit_softcap > 0.0f) {

View File

@ -79,19 +79,33 @@ kernel void kernel_mul_mm_f16_f32_l4_lm(
for (int block = 0; block < ne00; block += BK) {
for (int l = 0; l < BM; l += loadstride_a) {
if (loadc_a + l < ne01) {
const int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = src0[idx].s0;
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = src0[idx].s1;
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = src0[idx].s2;
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = src0[idx].s3;
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = src0[idx].s0;
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = src0[idx].s1;
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = src0[idx].s2;
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = src0[idx].s3;
} else {
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = 0.0h;
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = 0.0h;
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = 0.0h;
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = 0.0h;
}
}
for (int l = 0; l < BN; l += loadstride_b) {
const int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
if (loadc_b + l < ne11) {
const int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
} else {
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = 0.0h;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = 0.0h;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = 0.0h;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = 0.0h;
}
}
barrier(CLK_LOCAL_MEM_FENCE);

View File

@ -79,19 +79,33 @@ kernel void kernel_mul_mm_f32_f32_l4_lm(
for (int block = 0; block < ne00; block += BK) {
for (int l = 0; l < BM; l += loadstride_a) {
const int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = src0[idx].s0;
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = src0[idx].s1;
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = src0[idx].s2;
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = src0[idx].s3;
if (loadc_a + l < ne01) {
const int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = src0[idx].s0;
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = src0[idx].s1;
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = src0[idx].s2;
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = src0[idx].s3;
} else {
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = 0.0f;
}
}
for (int l = 0; l < BN; l += loadstride_b) {
const int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
if (loadc_b + l < ne11) {
const int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
} else {
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = 0.0f;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = 0.0f;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = 0.0f;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = 0.0f;
}
}
barrier(CLK_LOCAL_MEM_FENCE);

View File

@ -0,0 +1,154 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#define LOAD_VEC_A 4
#define LOAD_VEC_B 4
#define BM 64
#define BN 64
#define BK 32
#define TM 4
#define TN 8
kernel void kernel_mul_mm_q8_0_f32_l4_lm(
global char4 * src0_q,
global half * src0_d,
global float4 * src1,
ulong offset1,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne11,
int ne12,
int stride_a,
int stride_b,
int stride_d,
int batch_stride_a,
int batch_stride_b,
int batch_stride_d,
int r2,
int r3
) {
src1 = (global float4*)((global char*)src1 + offset1);
dst = (global float *)((global char*)dst + offsetd);
local float buf_a[BM * BK];
local float buf_b[BN * BK];
const int batch_idx = get_global_id(2);
const int i13 = batch_idx / ne12;
const int i12 = batch_idx % ne12;
const int i03 = i13 / r3;
const int i02 = i12 / r2;
const int batch_idx_a = i03 * ne02 + i02;
const int ir = get_group_id(0);
const int ic = get_group_id(1);
const int tid = get_local_id(0);
const int th_r = tid % (BM / TM);
const int th_c = tid / (BM / TM);
const int loadr_a = get_local_id(0) % (BK / LOAD_VEC_A);
const int loadc_a = get_local_id(0) / (BK / LOAD_VEC_A);
const int loadr_b = get_local_id(0) % (BK / LOAD_VEC_B);
const int loadc_b = get_local_id(0) / (BK / LOAD_VEC_B);
const int loadstride_a = get_local_size(0) * LOAD_VEC_A / BK;
const int loadstride_b = get_local_size(0) * LOAD_VEC_B / BK;
int pos_a = (batch_idx_a * batch_stride_a + ir * BM * stride_a) / LOAD_VEC_A;
int pos_b = (batch_idx * batch_stride_b + ic * BN * stride_b) / LOAD_VEC_B;
float sums[TM * TN];
float cache_a[TM];
float cache_b[TN];
for (int i = 0; i < TM * TN; i++) {
sums[i] = 0.0f;
}
for (int block = 0; block < ne00; block += BK) {
for (int l = 0; l < BM; l += loadstride_a) {
if (loadc_a + l < ne01) {
int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
int ib = idx / 8;
int iqs = idx % 8;
float d = (float)src0_d[ib];
global char4 * qs = src0_q + ib*8 + iqs;
char4 q = *qs;
float4 v = convert_float4(q)*d;
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = v.s0;
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = v.s1;
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = v.s2;
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = v.s3;
} else {
buf_a[(loadr_a * LOAD_VEC_A + 0) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * LOAD_VEC_A + 1) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * LOAD_VEC_A + 2) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * LOAD_VEC_A + 3) * BM + loadc_a + l] = 0.0f;
}
}
for (int l = 0; l < BN; l += loadstride_b) {
if (loadc_b + l < ne11) {
int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
} else {
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = 0.0f;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = 0.0f;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = 0.0f;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = 0.0f;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
pos_a += BK / LOAD_VEC_A;
pos_b += BK / LOAD_VEC_B;
for (int i = 0; i < BK; i++) {
for (int j = 0; j < TM; j++) {
cache_a[j] = buf_a[(i) * BM + th_r * TM + j];
}
for (int j = 0; j < TN; j++) {
cache_b[j] = buf_b[(i) * BN + th_c * TN + j];
}
for (int cc = 0; cc < TN; cc++) {
for (int cr = 0; cr < TM; cr++) {
const int sums_idx = cc*TM + cr;
sums[sums_idx] = mad(cache_a[cr], cache_b[cc], sums[sums_idx]);
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
const int dr = ir * BM + th_r * TM;
const int dc = ic * BN + th_c * TN;
const int offsets = batch_idx * batch_stride_d;
for (int cc = 0; cc < TN; cc++) {
for (int cr = 0; cr < TM; cr++) {
if (dr + cr < ne01 && dc + cc < ne11) {
dst[offsets + (dc + cc) * stride_d + dr + cr] = sums[cc * TM + cr];
}
}
}
}

View File

@ -18,6 +18,7 @@
#include "concat.hpp"
#include "conv.hpp"
#include "convert.hpp"
#include "count-equal.hpp"
#include "cpy.hpp"
#include "dequantize.hpp"
#include "dmmv.hpp"
@ -28,6 +29,7 @@
#include "mmvq.hpp"
#include "norm.hpp"
#include "outprod.hpp"
#include "pad.hpp"
#include "quantize.hpp"
#include "quants.hpp"
#include "rope.hpp"

View File

@ -303,10 +303,6 @@ inline void ggml_sycl_op_sub(ggml_backend_sycl_context & ctx, ggml_tensor *dst)
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_sub>>(ctx, dst->src[0], dst->src[1], dst);
}
inline void ggml_sycl_op_count_equal(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_count_equal>>(ctx, dst->src[0], dst->src[1], dst);
}
inline void ggml_sycl_op_mul(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(ctx, dst->src[0], dst->src[1], dst);
@ -332,11 +328,6 @@ void ggml_sycl_sub(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_sub(ctx, dst);
}
void ggml_sycl_count_equal(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
ggml_sycl_op_count_equal(ctx, dst);
}
void ggml_sycl_mul(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
ggml_sycl_op_mul(ctx, dst);

View File

@ -16,12 +16,6 @@ static __dpct_inline__ float op_sub(const float a, const float b) {
return a - b;
}
static __dpct_inline__ float op_count_equal(const float a, const float b) {
return (a == b) ? 1.0f : 0.0f;
}
void ggml_sycl_count_equal(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
static __dpct_inline__ float op_mul(const float a, const float b) {
return a * b;
}

View File

@ -195,7 +195,8 @@ struct optimize_feature {
struct sycl_device_info {
int cc; // compute capability
// int nsm; // number of streaming multiprocessors
int nsm; // number of streaming multiprocessors (CUDA) maps to the maximum
// number of compute units on a SYCL device.
// size_t smpb; // max. shared memory per block
size_t smpbo; // max. shared memory per block (with opt-in)
bool vmm; // virtual memory support

View File

@ -0,0 +1,79 @@
#include "count-equal.hpp"
#include <cstdint>
template <typename T>
static void count_equal(const T *__restrict__ x, const T *__restrict__ y,
int64_t *__restrict__ dst, const int64_t dk,
const int64_t k) {
auto item_ct1 = sycl::ext::oneapi::this_work_item::get_nd_item<3>();
const int64_t i0 = (int64_t)item_ct1.get_group(2) * dk;
const int64_t i1 = sycl::min(i0 + dk, k);
int nequal = 0;
for (int64_t i = i0 + item_ct1.get_local_id(2); i < i1; i += WARP_SIZE) {
const T xi = x[i];
const T yi = y[i];
nequal += xi == yi;
}
nequal = warp_reduce_sum(nequal);
if (item_ct1.get_local_id(2) != 0) {
return;
}
dpct::atomic_fetch_add<sycl::access::address_space::generic_space>(
(int *)dst, nequal);
}
void ggml_sycl_count_equal(ggml_backend_sycl_context &ctx, ggml_tensor *dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == src1->type);
GGML_ASSERT( dst->type == GGML_TYPE_I64);
GGML_ASSERT(ggml_are_same_shape(src0, src1));
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(dst));
int64_t * dst_d = (int64_t *) dst->data;
dpct::queue_ptr stream = ctx.stream();
const int id = get_current_device_id();
const int nsm = ggml_sycl_info().devices[id].nsm;
const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne < (1 << 30) && "atomicAdd implementation only supports int");
const int64_t dne =
GGML_PAD((ne + 4 * nsm - 1) / (4 * nsm), SYCL_COUNT_EQUAL_CHUNK_SIZE);
SYCL_CHECK(CHECK_TRY_ERROR(stream->memset(dst_d, 0, ggml_nbytes(dst))));
const dpct::dim3 block_dims(WARP_SIZE, 1, 1);
const dpct::dim3 block_nums(
std::min((int64_t)4 * nsm, (ne + SYCL_COUNT_EQUAL_CHUNK_SIZE - 1) /
SYCL_COUNT_EQUAL_CHUNK_SIZE),
1, 1);
switch (src0->type) {
case GGML_TYPE_I32: {
const int *src0_d = (const int *)src0->data;
const int *src1_d = (const int *)src1->data;
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
count_equal(src0_d, src1_d, dst_d, dne, ne);
GGML_UNUSED(item_ct1);
});
} break;
default:
GGML_ASSERT(false);
break;
}
}

View File

@ -0,0 +1,9 @@
#ifndef GGML_SYCL_COUNT_EQUAL_HPP
#define GGML_SYCL_COUNT_EQUAL_HPP
#include "common.hpp"
#define SYCL_COUNT_EQUAL_CHUNK_SIZE 128
void ggml_sycl_count_equal(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
#endif //GGML_SYCL_COUNT_EQUAL_HPP

View File

@ -328,26 +328,6 @@ static void upscale(const T *x, T *dst, const int nb00, const int nb01,
dst[index] = *(const T *)((const char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
}
template <typename T>
static void pad(const T *x, T *dst, const int ne0, const int ne00, const int ne01, const int ne02,
const sycl::nd_item<3> &item_ct1) {
int nidx = SYCL_LOCAL_ID_CALC(item_ct1, 2);
if (nidx >= ne0) {
return;
}
// operation
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
if (nidx < ne00 && item_ct1.get_group(1) < (size_t) ne01 && item_ct1.get_group(0) < (size_t) ne02) {
int offset_src = nidx + item_ct1.get_group(1) * ne00 +
item_ct1.get_group(0) * ne00 * ne01;
dst[offset_dst] = x[offset_src];
} else {
dst[offset_dst] = static_cast<T>(0.0f);
}
}
template<typename T>
static void clamp(const T * x, T * dst, const float min, const float max, const int k,
const sycl::nd_item<1> &item_ct1) {
@ -431,18 +411,6 @@ static void upscale_sycl(const T *x, T *dst, const int nb00, const int nb01,
});
}
template<typename T>
static void pad_sycl(const T *x, T *dst, const int ne00,
const int ne01, const int ne02, const int ne0,
const int ne1, const int ne2, queue_ptr stream) {
int num_blocks = ceil_div(ne0, SYCL_PAD_BLOCK_SIZE);
sycl::range<3> gridDim(ne2, ne1, num_blocks);
stream->parallel_for(
sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) { pad(x, dst, ne0, ne00, ne01, ne02, item_ct1); });
}
template<typename KernelInvoker, typename... Args>
static inline void dispatch_ggml_sycl_op_unary(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
#if defined (GGML_SYCL_F16)
@ -596,40 +564,6 @@ static inline void dispatch_ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx
}
}
template<typename KernelInvoker, typename... Args>
static inline void dispatch_ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
#if defined (GGML_SYCL_F16)
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
#else
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
#endif
GGML_ASSERT(dst->src[0]->type == dst->type);
GGML_ASSERT(dst->src[0]->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
switch (dst->type) {
#if defined (GGML_SYCL_F16)
case GGML_TYPE_F16:
{
auto data_pts = cast_data<sycl::half>(dst);
kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->ne[0], (int)dst->src[0]->ne[1], (int)dst->src[0]->ne[2], (int)dst->ne[0],
(int)dst->ne[1], (int)dst->ne[2], main_stream, std::forward<Args>(args)...);
break;
}
#endif
case GGML_TYPE_F32:
{
auto data_pts = cast_data<float>(dst);
kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->ne[0], (int)dst->src[0]->ne[1], (int)dst->src[0]->ne[2], (int)dst->ne[0],
(int)dst->ne[1], (int)dst->ne[2], main_stream, std::forward<Args>(args)...);
break;
}
default:
GGML_ABORT("GGML tensor type not supported!\n");
}
}
} // namespace ggml_sycl_detail
@ -919,14 +853,6 @@ static inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_te
});
}
static inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_pad(ctx, dst,
[](const auto* src, auto* dst_ptr, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2,
queue_ptr stream) {
ggml_sycl_detail::pad_sycl(src, dst_ptr, ne00, ne01, ne02, ne0, ne1, ne2, stream);
});
}
static inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
float min_val;
float max_val;
@ -1119,10 +1045,6 @@ void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_upscale(ctx, dst);
}
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_pad(ctx, dst);
}
void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);

View File

@ -67,8 +67,6 @@ void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst);

View File

@ -85,9 +85,11 @@ static ggml_sycl_device_info ggml_sycl_init() {
info.devices[i].cc =
100 * prop.get_major_version() + 10 * prop.get_minor_version();
info.devices[i].nsm = prop.get_max_compute_units();
info.devices[i].opt_feature.reorder = device.ext_oneapi_architecture_is(syclex::arch_category::intel_gpu);
info.max_work_group_sizes[i] = prop.get_max_work_group_size();
info.devices[i].smpbo = prop.get_local_mem_size();
info.max_work_group_sizes[i] = prop.get_max_work_group_size();
}
for (int id = 0; id < info.device_count; ++id) {
@ -1512,60 +1514,70 @@ static inline void ggml_sycl_swap(T & a, T & b) {
template <ggml_sort_order order>
__dpct_inline__ static void
k_argsort_f32_i32(const float *x, int *dst, const int ncols, int ncols_pad,
const sycl::nd_item<3> &item_ct1, uint8_t *dpct_local) {
const int tasks_per_thread, const sycl::nd_item<3> &item_ct1,
uint8_t *dpct_local) {
// bitonic sort
int col = item_ct1.get_local_id(2);
int col_index = item_ct1.get_local_id(2);
int row = item_ct1.get_group(1);
if (col >= ncols_pad) {
return;
for (int i = 0; i < tasks_per_thread; i++) {
int col = col_index * tasks_per_thread + i;
if (col >= ncols_pad) {
return;
}
}
const float * x_row = x + row * ncols;
auto dst_row = (int *)dpct_local;
// initialize indices
dst_row[col] = col;
for (int i=0;i<tasks_per_thread;i++){
int col = col_index*tasks_per_thread+i;
dst_row[col] = col;
}
item_ct1.barrier(sycl::access::fence_space::local_space);
for (int k = 2; k <= ncols_pad; k *= 2) {
for (int j = k / 2; j > 0; j /= 2) {
int ixj = col ^ j;
if (ixj > col) {
if ((col & k) == 0) {
if (dst_row[col] >= ncols ||
(dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
) {
ggml_sycl_swap(dst_row[col], dst_row[ixj]);
}
} else {
if (dst_row[ixj] >= ncols ||
(dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
) {
ggml_sycl_swap(dst_row[col], dst_row[ixj]);
for (int i = 0; i < tasks_per_thread; i++) {
int col = col_index * tasks_per_thread + i;
int ixj = col ^ j;
if (ixj > col) {
if ((col & k) == 0) {
if (dst_row[col] >= ncols ||
(dst_row[ixj] < ncols &&
(order == GGML_SORT_ORDER_ASC
? x_row[dst_row[col]] > x_row[dst_row[ixj]]
: x_row[dst_row[col]] <
x_row[dst_row[ixj]]))) {
ggml_sycl_swap(dst_row[col], dst_row[ixj]);
}
} else {
if (dst_row[ixj] >= ncols ||
(dst_row[col] < ncols &&
(order == GGML_SORT_ORDER_ASC
? x_row[dst_row[col]] < x_row[dst_row[ixj]]
: x_row[dst_row[col]] >
x_row[dst_row[ixj]]))) {
ggml_sycl_swap(dst_row[col], dst_row[ixj]);
}
}
}
item_ct1.barrier(sycl::access::fence_space::local_space);
}
/*
DPCT1118:1: SYCL group functions and algorithms must be encountered
in converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
}
}
// copy the result to dst without the padding
if (col < ncols) {
dst[row * ncols + col] = dst_row[col];
for (int i = 0; i < tasks_per_thread; i++) {
int col = col_index * tasks_per_thread + i;
if (col < ncols) {
dst[row * ncols + col] = dst_row[col];
}
}
}
static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
const sycl::nd_item<3> &item_ct1) {
const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
@ -1738,11 +1750,20 @@ static int next_power_of_2(int x) {
static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
const int nrows, ggml_sort_order order,
queue_ptr stream) {
queue_ptr stream, int device) {
// bitonic sort requires ncols to be power of 2
const int ncols_pad = next_power_of_2(ncols);
const sycl::range<3> block_dims(1, 1, ncols_pad);
int nth = 1;
int max_block_size = ggml_sycl_info().max_work_group_sizes[device];
while (nth < ncols_pad && nth < max_block_size)
nth *= 2;
if (nth > max_block_size)
nth = max_block_size;
const int tasks_per_thread = ncols_pad / nth;
const sycl::range<3> block_dims(1, 1, nth);
const sycl::range<3> block_nums(1, nrows, 1);
const size_t shared_mem = ncols_pad * sizeof(int);
@ -1755,8 +1776,9 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_argsort_f32_i32<GGML_SORT_ORDER_ASC>(
x, dst, ncols, ncols_pad, item_ct1,
dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
x, dst, ncols, ncols_pad, tasks_per_thread, item_ct1,
dpct_local_acc_ct1
.get_multi_ptr<sycl::access::decorated::no>()
.get());
});
});
@ -1769,8 +1791,9 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_argsort_f32_i32<GGML_SORT_ORDER_DESC>(
x, dst, ncols, ncols_pad, item_ct1,
dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
x, dst, ncols, ncols_pad, tasks_per_thread, item_ct1,
dpct_local_acc_ct1
.get_multi_ptr<sycl::access::decorated::no>()
.get());
});
});
@ -2128,6 +2151,30 @@ inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, ggml_tensor *
sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
}
inline void ggml_sycl_op_mean(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
float * dst_dd = static_cast<float *>(dst->data);
const int64_t ncols = dst->src[0]->ne[0];
const int64_t nrows = ggml_nrows(dst->src[0]);
sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
main_stream->parallel_for(
sycl::range<1>(nrows),
[=](sycl::id<1> row) {
dst_dd[row] /= ncols;
}
);
}
inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_I32);
@ -2142,7 +2189,8 @@ inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, ggml_tensor *
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
argsort_f32_i32_sycl(src0_dd, (int *) dst_dd, ncols, nrows, order, main_stream);
argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order,
main_stream, ctx.device);
}
inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
@ -3511,6 +3559,12 @@ static void ggml_sycl_sum_rows(ggml_backend_sycl_context & ctx, ggml_tensor * ds
ggml_sycl_op_sum_rows(ctx, dst);
}
static void ggml_sycl_mean(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
ggml_sycl_op_mean(ctx, dst);
}
static void ggml_sycl_argsort(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
GGML_ASSERT(ggml_is_contiguous(dst->src[0]));
@ -3760,6 +3814,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_OP_SUM_ROWS:
ggml_sycl_sum_rows(ctx, dst);
break;
case GGML_OP_MEAN:
ggml_sycl_mean(ctx, dst);
break;
case GGML_OP_ARGSORT:
ggml_sycl_argsort(ctx, dst);
break;
@ -4407,14 +4464,14 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
return op->src[0]->type == GGML_TYPE_F32 && op->op_params[0] == GGML_SCALE_MODE_NEAREST;
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGSORT:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_POOL_2D:
case GGML_OP_ACC:
return true;
case GGML_OP_PAD:
return (ggml_get_op_params_i32(op, 0) == 0) && (ggml_get_op_params_i32(op, 2) == 0) &&
(ggml_get_op_params_i32(op, 4) == 0) && (ggml_get_op_params_i32(op, 6) == 0);
return ggml_is_contiguous(op->src[0]);
case GGML_OP_LEAKY_RELU:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_RWKV_WKV6:

View File

@ -0,0 +1,97 @@
//
// MIT license
// Copyright (C) 2025 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//#include "common.hpp"
#include "pad.hpp"
static void pad_f32(const float * src, float * dst,
const int lp0, const int rp0, const int lp1, const int rp1,
const int lp2, const int rp2, const int lp3, const int rp3,
const int ne0, const int ne1, const int ne2, const int ne3) {
auto item_ct1 = sycl::ext::oneapi::this_work_item::get_nd_item<3>();
int i0 = item_ct1.get_local_id(2) +
item_ct1.get_group(2) * item_ct1.get_local_range(2);
int i1 = item_ct1.get_group(1);
int i2 = item_ct1.get_group(0) % ne2;
int i3 = item_ct1.get_group(0) / ne2;
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
// operation
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
if ((i0 >= lp0 && i0 < ne0 - rp0) &&
(i1 >= lp1 && i1 < ne1 - rp1) &&
(i2 >= lp2 && i2 < ne2 - rp2) &&
(i3 >= lp3 && i3 < ne3 - rp3)) {
const int64_t i00 = i0 - lp0;
const int64_t i01 = i1 - lp1;
const int64_t i02 = i2 - lp2;
const int64_t i03 = i3 - lp3;
const int64_t ne02 = ne2 - lp2 - rp2;
const int64_t ne01 = ne1 - lp1 - rp1;
const int64_t ne00 = ne0 - lp0 - rp0;
const int64_t src_idx = i03 * (ne00 * ne01 * ne02) +
i02 * (ne00 * ne01) + i01 * ne00 + i00;
dst[dst_idx] = src[src_idx];
} else {
dst[dst_idx] = 0.0f;
}
}
static void pad_f32_sycl(const float *src, float *dst, const int lp0,
const int rp0, const int lp1, const int rp1,
const int lp2, const int rp2, const int lp3,
const int rp3, const int ne0, const int ne1,
const int ne2, const int ne3,
dpct::queue_ptr stream) {
int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
dpct::dim3 gridDim(num_blocks, ne1, ne2 * ne3);
stream->parallel_for(
sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
pad_f32(src, dst, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, ne0, ne1,
ne2, ne3);
});
}
void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
dpct::queue_ptr stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
const int32_t lp0 = ((const int32_t*)(dst->op_params))[0];
const int32_t rp0 = ((const int32_t*)(dst->op_params))[1];
const int32_t lp1 = ((const int32_t*)(dst->op_params))[2];
const int32_t rp1 = ((const int32_t*)(dst->op_params))[3];
const int32_t lp2 = ((const int32_t*)(dst->op_params))[4];
const int32_t rp2 = ((const int32_t*)(dst->op_params))[5];
const int32_t lp3 = ((const int32_t*)(dst->op_params))[6];
const int32_t rp3 = ((const int32_t*)(dst->op_params))[7];
pad_f32_sycl(src0_d, dst_d,
lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3,
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
}
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_pad(ctx, dst);
}

View File

@ -0,0 +1,24 @@
//
// MIT license
// Copyright (C) 2025 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
#ifndef GGML_SYCL_PAD_HPP
#define GGML_SYCL_PAD_HPP
#include "common.hpp"
#define SYCL_PAD_BLOCK_SIZE 256
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
#endif // GGML_SYCL_PAD_HPP

View File

@ -1,9 +1,18 @@
cmake_minimum_required(VERSION 3.19)
cmake_policy(SET CMP0114 NEW)
cmake_policy(SET CMP0116 NEW)
if (POLICY CMP0147)
# Parallel build custom build steps
cmake_policy(SET CMP0147 NEW)
endif()
find_package(Vulkan COMPONENTS glslc REQUIRED)
if (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
# Parallel build object files
add_definitions(/MP)
endif()
function(detect_host_compiler)
if (CMAKE_HOST_SYSTEM_NAME STREQUAL "Windows")
find_program(HOST_C_COMPILER NAMES cl gcc clang NO_CMAKE_FIND_ROOT_PATH)

View File

@ -2649,11 +2649,13 @@ static void ggml_vk_load_shaders(vk_device& device) {
} \
}
CREATE_FA(GGML_TYPE_F32, f32, FA_SCALAR, )
CREATE_FA(GGML_TYPE_F16, f16, FA_SCALAR, )
CREATE_FA(GGML_TYPE_Q4_0, q4_0, FA_SCALAR, )
CREATE_FA(GGML_TYPE_Q8_0, q8_0, FA_SCALAR, )
#if defined(VK_KHR_cooperative_matrix) && defined(GGML_VULKAN_COOPMAT_GLSLC_SUPPORT)
if (device->coopmat1_fa_support) {
CREATE_FA(GGML_TYPE_F32, f32, FA_COOPMAT1, _cm1)
CREATE_FA(GGML_TYPE_F16, f16, FA_COOPMAT1, _cm1)
CREATE_FA(GGML_TYPE_Q4_0, q4_0, FA_COOPMAT1, _cm1)
CREATE_FA(GGML_TYPE_Q8_0, q8_0, FA_COOPMAT1, _cm1)
@ -2661,6 +2663,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
#endif
#if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
if (device->coopmat2) {
CREATE_FA(GGML_TYPE_F32, f32, FA_COOPMAT2, _cm2)
CREATE_FA(GGML_TYPE_F16, f16, FA_COOPMAT2, _cm2)
CREATE_FA(GGML_TYPE_Q4_0, q4_0, FA_COOPMAT2, _cm2)
CREATE_FA(GGML_TYPE_Q4_1, q4_1, FA_COOPMAT2, _cm2)
@ -7457,8 +7460,16 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
}
const uint32_t q_stride = (uint32_t)(nbq1 / ggml_type_size(q->type));
const uint32_t k_stride = (uint32_t)(nbk1 / ggml_type_size(k->type));
const uint32_t v_stride = (uint32_t)(nbv1 / ggml_type_size(v->type));
uint32_t k_stride = (uint32_t)(nbk1 / ggml_type_size(k->type));
uint32_t v_stride = (uint32_t)(nbv1 / ggml_type_size(v->type));
// For F32, the shader treats it as a block of size 4 (for vec4 loads)
if (k->type == GGML_TYPE_F32) {
k_stride /= 4;
}
if (v->type == GGML_TYPE_F32) {
v_stride /= 4;
}
uint32_t alignment = fa_align(path, HSK, HSV, k->type, small_rows);
bool aligned = (KV % alignment) == 0 &&
@ -12660,6 +12671,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
}
switch (op->src[1]->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
// supported in scalar and coopmat2 paths

View File

@ -1,6 +1,18 @@
#include "types.glsl"
layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufF32 {
vec4 block;
};
float16_t dequantFuncF32(const in decodeBufF32 bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{
const vec4 v = bl.block;
const uint idx = coordInBlock[1];
const f16vec4 vf16 = f16vec4(v);
return vf16[idx];
}
layout(buffer_reference, std430, buffer_reference_align = 2) buffer decodeBufQ4_0 {
block_q4_0_packed16 block;
};
@ -717,4 +729,6 @@ float16_t dequantFuncMXFP4(const in decodeBufMXFP4 bl, const in uint blockCoords
#define dequantFuncA dequantFuncIQ4_NL
#elif defined(DATA_A_MXFP4)
#define dequantFuncA dequantFuncMXFP4
#elif defined(DATA_A_F32)
#define dequantFuncA dequantFuncF32
#endif

View File

@ -64,13 +64,31 @@ layout (binding = 4) readonly buffer S {float data_s[];};
layout (binding = 5) writeonly buffer O {D_TYPE data_o[];};
#if defined(A_TYPE_PACKED16)
#define BINDING_IDX_K 0
#define BINDING_IDX_V 1
#if defined(DATA_A_F32)
layout (binding = 1) readonly buffer K_PACKED {vec4 k_data_packed[];} k_packed;
layout (binding = 2) readonly buffer V_PACKED {vec4 v_data_packed[];} v_packed;
#elif defined(A_TYPE_PACKED16)
layout (binding = 1) readonly buffer K_PACKED16 {A_TYPE_PACKED16 k_data_packed16[];} k_packed;
layout (binding = 2) readonly buffer V_PACKED16 {A_TYPE_PACKED16 v_data_packed16[];} v_packed;
#endif
#if defined(DATA_A_F32)
#undef BLOCK_SIZE
#define BLOCK_SIZE 4
#define BLOCK_BYTE_SIZE 16
vec4 dequantize4(uint ib, uint iqs, uint a_offset, uint binding_idx) {
// iqs is currently always zero in the flash attention shaders
if (binding_idx == BINDING_IDX_K) {
return k_packed.k_data_packed[a_offset + ib];
} else {
return v_packed.v_data_packed[a_offset + ib];
}
}
#endif
#if defined(DATA_A_Q4_0)
#define BLOCK_BYTE_SIZE 18

View File

@ -313,12 +313,12 @@ void main() {
sums[i] = coopmat<ACC_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator>(0.0f);
}
#else
ACC_TYPE sums[WMITER * TM * WNITER * TN];
ACC_TYPE_VEC2 sums[WMITER * TM * WNITER * TN/2];
FLOAT_TYPE_VEC2 cache_a[WMITER * TM];
FLOAT_TYPE_VEC2 cache_b[TN];
FLOAT_TYPE_VEC2 cache_b;
[[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) {
sums[i] = ACC_TYPE(0.0f);
[[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN/2; i++) {
sums[i] = ACC_TYPE_VEC2(0.0f, 0.0f);
}
#endif
@ -360,20 +360,22 @@ void main() {
cache_a[wsir * TM + j] = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * SHMEM_STRIDE + i];
}
}
[[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
[[unroll]] for (uint j = 0; j < TN; j++) {
cache_b[j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * SHMEM_STRIDE + i];
}
[[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
[[unroll]] for (uint cc = 0; cc < TN; cc++) {
[[unroll]] for (uint cr = 0; cr < TM; cr++) {
const uint sums_idx = (wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr;
sums[sums_idx] = fma(ACC_TYPE(cache_a[wsir * TM + cr].x), ACC_TYPE(cache_b[cc].x), fma(ACC_TYPE(cache_a[wsir * TM + cr].y), ACC_TYPE(cache_b[cc].y), sums[sums_idx]));
[[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
[[unroll]] for (uint cc = 0; cc < TN; cc++) {
cache_b = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + cc) * SHMEM_STRIDE + i];
[[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
[[unroll]] for (uint cr = 0; cr < TM / 2; cr++) {
// [WNITER][TN][WMITER][TM / 2] -> [wsic][cc][wsir][cr]
const uint sums_idx = (wsic * TN + cc) * WMITER * (TM / 2) + wsir * (TM / 2) + cr;
sums[sums_idx].x = fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr ].x), ACC_TYPE(cache_b.x), fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr ].y), ACC_TYPE(cache_b.y), sums[sums_idx].x));
sums[sums_idx].y = fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr + 1].x), ACC_TYPE(cache_b.x), fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr + 1].y), ACC_TYPE(cache_b.y), sums[sums_idx].y));
}
}
}
}
}
#endif
@ -388,8 +390,9 @@ void main() {
}
}
#else
[[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) {
sums[i] = clamp(sums[i], -ACC_TYPE_MAX, ACC_TYPE_MAX);
[[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN/2; i++) {
sums[i].x = clamp(sums[i].x, -ACC_TYPE_MAX, ACC_TYPE_MAX);
sums[i].y = clamp(sums[i].y, -ACC_TYPE_MAX, ACC_TYPE_MAX);
}
#endif
#endif
@ -463,14 +466,21 @@ void main() {
const u16vec2 row_idx = row_ids[row_i - ic * BN];
#endif // MUL_MAT_ID
[[unroll]] for (uint cr = 0; cr < TM; cr++) {
[[unroll]] for (uint cr = 0; cr < TM / 2; cr++) {
const uint sums_idx = (wsic * TN + cc) * WMITER * (TM / 2) + wsir * (TM / 2) + cr;
#ifdef MUL_MAT_ID
if (dr_warp + cr < p.M) {
data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
if (dr_warp + 2 * cr < p.M) {
data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr_warp + 2 * cr] = D_TYPE(sums[sums_idx].x);
}
if (dr_warp + 2 * cr + 1 < p.M) {
data_d[row_idx.y * p.batch_stride_d + row_idx.x * p.stride_d + dr_warp + 2 * cr + 1] = D_TYPE(sums[sums_idx].y);
}
#else
if (dr_warp + cr < p.M && dc_warp + cc < p.N) {
data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
if (dr_warp + 2 * cr < p.M && dc_warp + cc < p.N) {
data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + 2 * cr] = D_TYPE(sums[sums_idx].x);
}
if (dr_warp + 2 * cr + 1 < p.M && dc_warp + cc < p.N) {
data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + 2 * cr + 1] = D_TYPE(sums[sums_idx].y);
}
#endif // MUL_MAT_ID
}

View File

@ -611,9 +611,6 @@ void process_shaders() {
}
for (const auto& tname : type_names) {
if (tname == "f32") {
continue;
}
if (tname == "bf16") continue;
#if defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
@ -630,7 +627,7 @@ void process_shaders() {
if (tname == "f16") {
string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm1.comp",
merge_maps(fa_base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"COOPMAT", "1"}}), true, true, false, f16acc);
} else if (tname == "q4_0" || tname == "q8_0") {
} else if (tname == "q4_0" || tname == "q8_0" || tname == "f32") {
std::string data_a_key = "DATA_A_" + to_uppercase(tname);
string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm1.comp",
merge_maps(fa_base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname)}, {"COOPMAT", "1"}}), true, true, false, f16acc);
@ -639,7 +636,7 @@ void process_shaders() {
if (tname == "f16") {
string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn.comp",
merge_maps(fa_base_dict, {{"Q_TYPE", "float"}, {"D_TYPE", "float"}}), true, false, false, f16acc);
} else if (tname == "q4_0" || tname == "q8_0") {
} else if (tname == "q4_0" || tname == "q8_0" || tname == "f32") {
std::string data_a_key = "DATA_A_" + to_uppercase(tname);
string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn.comp",
merge_maps(fa_base_dict, {{data_a_key, "1"}, {"Q_TYPE", "float"}, {"D_TYPE", "float"}, {"BLOCK_SIZE", "QUANT_K_"+to_uppercase(tname) }}), true, false, false, f16acc);

View File

@ -1144,9 +1144,13 @@ static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
"EXP",
"GELU_ERF",
"XIELU",
"FLOOR",
"CEIL",
"ROUND",
"TRUNC",
};
static_assert(GGML_UNARY_OP_COUNT == 16, "GGML_UNARY_OP_COUNT != 16");
static_assert(GGML_UNARY_OP_COUNT == 20, "GGML_UNARY_OP_COUNT != 20");
static const char * GGML_GLU_OP_NAME[GGML_GLU_OP_COUNT] = {
"REGLU",
@ -2749,6 +2753,62 @@ static struct ggml_tensor * ggml_glu_impl(
return result;
}
// ggml_floor
struct ggml_tensor * ggml_floor(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_FLOOR);
}
struct ggml_tensor * ggml_floor_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_FLOOR);
}
// ggml_ceil
struct ggml_tensor * ggml_ceil(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_CEIL);
}
struct ggml_tensor * ggml_ceil_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_CEIL);
}
//ggml_round
struct ggml_tensor * ggml_round(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_ROUND);
}
struct ggml_tensor * ggml_round_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ROUND);
}
//ggml_trunc
struct ggml_tensor * ggml_trunc(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_TRUNC);
}
struct ggml_tensor * ggml_trunc_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TRUNC);
}
struct ggml_tensor * ggml_glu(
struct ggml_context * ctx,
struct ggml_tensor * a,

View File

@ -91,6 +91,7 @@ def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None
tensor.tensor_type not in (
gguf.GGMLQuantizationType.F32,
gguf.GGMLQuantizationType.F16,
gguf.GGMLQuantizationType.BF16,
):
raise ValueError(f"Cannot handle type {tensor.tensor_type.name} for tensor {repr(tensor.name)}")
logger.info(f"* Preparing to convert from {file_endian} to {order}")
@ -148,6 +149,11 @@ def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None
# restore old shape in case it's ever used
tensor.data.resize(oldshape)
elif tensor.tensor_type == gguf.GGMLQuantizationType.BF16:
# Special case for BF16
# It is 2-bytes data, but by default view loads it as 1-byte data.
# Change to correct view before byteswapping.
tensor.data.view(dtype=np.uint16).byteswap(inplace=True)
else:
# Handle other tensor types
tensor.data.byteswap(inplace=True)

View File

@ -5,6 +5,7 @@
#include <map>
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_CLIP, "clip" }, // dummy, only used by llama-quantize
{ LLM_ARCH_LLAMA, "llama" },
{ LLM_ARCH_LLAMA4, "llama4" },
{ LLM_ARCH_DECI, "deci" },
@ -275,6 +276,10 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
};
static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_NAMES = {
{
LLM_ARCH_CLIP,
{},
},
{
LLM_ARCH_LLAMA,
{

View File

@ -9,6 +9,7 @@
//
enum llm_arch {
LLM_ARCH_CLIP,
LLM_ARCH_LLAMA,
LLM_ARCH_LLAMA4,
LLM_ARCH_DECI,

View File

@ -261,12 +261,17 @@ void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
}
}
static void print_mask(float * data, int64_t n_tokens, int64_t n_kv, int64_t n_swa, llama_swa_type swa_type) {
static void print_mask(const float * data, int64_t n_tokens, int64_t n_kv, int64_t n_swa, llama_swa_type swa_type) {
LLAMA_LOG_DEBUG("%s: === Attention mask ===\n", __func__);
const char * swa_type_str = (swa_type == LLAMA_SWA_TYPE_NONE) ? "LLAMA_SWA_TYPE_NONE" :
(swa_type == LLAMA_SWA_TYPE_STANDARD) ? "LLAMA_SWA_TYPE_STANDARD" :
(swa_type == LLAMA_SWA_TYPE_CHUNKED) ? "LLAMA_SWA_TYPE_CHUNKED" :
(swa_type == LLAMA_SWA_TYPE_SYMMETRIC) ? "LLAMA_SWA_TYPE_SYMMETRIC" : "unknown";
const char * swa_type_str = "unknown";
switch (swa_type) {
case LLAMA_SWA_TYPE_NONE: swa_type_str = "LLAMA_SWA_TYPE_NONE"; break;
case LLAMA_SWA_TYPE_STANDARD: swa_type_str = "LLAMA_SWA_TYPE_STANDARD"; break;
case LLAMA_SWA_TYPE_CHUNKED: swa_type_str = "LLAMA_SWA_TYPE_CHUNKED"; break;
case LLAMA_SWA_TYPE_SYMMETRIC: swa_type_str = "LLAMA_SWA_TYPE_SYMMETRIC"; break;
};
LLAMA_LOG_DEBUG("%s: n_swa : %d, n_kv: %d, swq_type: %s\n", __func__, (int)n_swa, (int)n_kv, swa_type_str);
LLAMA_LOG_DEBUG("%s: '0' = can attend, '∞' = masked\n", __func__);
LLAMA_LOG_DEBUG("%s: Rows = query tokens, Columns = key/value tokens\n\n", __func__);
@ -295,50 +300,67 @@ void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
const int64_t n_kv = ubatch->n_tokens;
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(kq_mask);
GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
const auto fill_mask = [&](float * data, int n_swa, llama_swa_type swa_type) {
for (int h = 0; h < 1; ++h) {
for (int i1 = 0; i1 < n_tokens; ++i1) {
const llama_seq_id s1 = ubatch->seq_id[i1][0];
const llama_pos p1 = ubatch->pos[i1];
float * data = (float *) kq_mask->data;
const uint64_t idst = h*(n_kv*n_tokens) + i1*n_kv;
// [TAG_NO_CACHE_ISWA]
GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "TODO: implement");
for (int h = 0; h < 1; ++h) {
for (int i1 = 0; i1 < n_tokens; ++i1) {
const llama_seq_id s1 = ubatch->seq_id[i1][0];
for (int i0 = 0; i0 < n_tokens; ++i0) {
float f = -INFINITY;
for (int s = 0; s < ubatch->n_seq_id[i0]; ++s) {
for (int i0 = 0; i0 < n_tokens; ++i0) {
const llama_seq_id s0 = ubatch->seq_id[i0][0];
const llama_pos p0 = ubatch->pos[i0];
// mask different sequences
if (s0 != s1) {
continue; // skip different sequences
continue;
}
if (cparams.causal_attn && ubatch->pos[i0] > ubatch->pos[i1]) {
continue; // skip future tokens for causal attention
// mask future tokens
if (cparams.causal_attn && p0 > p1) {
continue;
}
// TODO: this does not take into account that some layers are SWA and others are note (i.e. iSWA) [TAG_NO_CACHE_ISWA]
//if (hparams.is_masked_swa(ubatch->pos[i0], ubatch->pos[i1])) {
// continue; // skip masked tokens for SWA
//}
// TODO: reimplement this like in llama_kv_cache_unified
if (hparams.use_alibi) {
f = -std::abs(ubatch->pos[i0] - ubatch->pos[i1]);
} else {
f = 0.0f;
// apply SWA if any
if (llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1)) {
continue;
}
data[idst + i0] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f;
}
data[h*(n_kv*n_tokens) + i1*n_kv + i0] = f;
}
}
};
{
GGML_ASSERT(self_kq_mask);
GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask->buffer));
float * data = (float *) self_kq_mask->data;
std::fill(data, data + ggml_nelements(self_kq_mask), -INFINITY);
fill_mask(data, 0, LLAMA_SWA_TYPE_NONE);
if (debug) {
print_mask(data, n_tokens, n_kv, 0, LLAMA_SWA_TYPE_NONE);
}
}
if (debug) {
print_mask(data, n_tokens, n_kv, hparams.n_swa, hparams.swa_type);
if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
GGML_ASSERT(self_kq_mask_swa);
GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask_swa->buffer));
float * data = (float *) self_kq_mask_swa->data;
std::fill(data, data + ggml_nelements(self_kq_mask_swa), -INFINITY);
fill_mask(data, hparams.n_swa, hparams.swa_type);
if (debug) {
print_mask(data, n_tokens, n_kv, hparams.n_swa, hparams.swa_type);
}
}
}
@ -1299,12 +1321,9 @@ ggml_tensor * llm_graph_context::build_attn_mha(
k = ggml_permute(ctx0, k, 0, 2, 1, 3);
v = ggml_permute(ctx0, v, 0, 2, 1, 3);
const auto n_kv = k->ne[1];
ggml_tensor * cur;
// TODO: replace hardcoded padding with ggml-provided padding
if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
if (cparams.flash_attn && kq_b == nullptr) {
GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");
if (v_trans) {
@ -1419,10 +1438,20 @@ llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() con
auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);
// note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
inp->kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
ggml_set_input(inp->kq_mask);
inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
ggml_set_input(inp->self_kq_mask);
inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD), 1, 1);
ggml_set_input(inp->self_kq_mask_swa);
inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
} else {
inp->self_kq_mask_swa = nullptr;
inp->self_kq_mask_swa_cnv = nullptr;
}
return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
}
@ -1447,7 +1476,9 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_build_forward_expand(gf, k_cur);
ggml_build_forward_expand(gf, v_cur);
const auto & kq_mask = inp->get_kq_mask();
const bool is_swa = hparams.is_swa(il);
const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
// [TAG_NO_CACHE_PAD]
// TODO: if ubatch.equal_seqs() == true, we can split the three tensors below into ubatch.n_seqs_unq streams

View File

@ -257,10 +257,14 @@ public:
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * get_kq_mask() const { return kq_mask_cnv; }
ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }
ggml_tensor * kq_mask = nullptr; // F32 [n_tokens, n_batch, 1, 1]
ggml_tensor * kq_mask_cnv = nullptr; // [n_tokens, n_batch, 1, 1]
// n_tokens == n_batch
ggml_tensor * self_kq_mask = nullptr; // F32 [n_tokens, n_batch/n_stream, 1, n_stream]
ggml_tensor * self_kq_mask_cnv = nullptr; // [n_tokens, n_batch/n_stream, 1, n_stream]
ggml_tensor * self_kq_mask_swa = nullptr; // F32 [n_tokens, n_batch/n_stream, 1, n_stream]
ggml_tensor * self_kq_mask_swa_cnv = nullptr; // [n_tokens, n_batch/n_stream, 1, n_stream]
const llama_hparams hparams;
const llama_cparams cparams;

View File

@ -140,7 +140,11 @@ uint32_t llama_hparams::n_embd_s() const {
}
bool llama_hparams::is_recurrent(uint32_t il) const {
return recurrent_layer_arr[il];
if (il < n_layer) {
return recurrent_layer_arr[il];
}
GGML_ABORT("%s: il (%u) out of bounds (n_layer: %u)\n", __func__, il, n_layer);
}
uint32_t llama_hparams::n_pos_per_embd() const {

View File

@ -478,7 +478,8 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_GENERAL_NAME, name, false);
// everything past this point is not vocab-related
if (hparams.vocab_only) {
// for CLIP models, we only need to load tensors, no hparams
if (hparams.vocab_only || ml.get_arch() == LLM_ARCH_CLIP) {
return;
}
@ -11358,8 +11359,8 @@ struct llm_build_gemma3n_iswa : public llm_graph_context {
}
};
struct llm_build_gemma_embedding_iswa : public llm_graph_context {
llm_build_gemma_embedding_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
struct llm_build_gemma_embedding : public llm_graph_context {
llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
ggml_tensor * cur;
@ -11376,8 +11377,7 @@ struct llm_build_gemma_embedding_iswa : public llm_graph_context {
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// TODO: support cacheless iSWA embeddings [TAG_NO_CACHE_ISWA]
auto * inp_attn = build_attn_inp_kv_iswa();
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
@ -16313,10 +16313,10 @@ struct llm_build_granite_hybrid : public llm_graph_context_mamba {
}
ggml_tensor * build_layer_ffn(
ggml_tensor * cur,
ggml_tensor * inpSA,
const llama_model & model,
const int il) {
ggml_tensor * cur,
ggml_tensor * inpSA,
const llama_model & model,
const int il) {
// For Granite architectures - scale residual
if (hparams.f_residual_scale) {
@ -19378,7 +19378,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
case LLM_ARCH_NOMIC_BERT_MOE:
case LLM_ARCH_NEO_BERT:
case LLM_ARCH_WAVTOKENIZER_DEC:
//case LLM_ARCH_GEMMA_EMBEDDING: // TODO: disabled until the cacheless SWA logic is fixed [TAG_NO_CACHE_ISWA]
case LLM_ARCH_GEMMA_EMBEDDING:
case LLM_ARCH_DREAM:
case LLM_ARCH_LLADA:
case LLM_ARCH_LLADA_MOE:
@ -19671,7 +19671,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
} break;
case LLM_ARCH_GEMMA_EMBEDDING:
{
llm = std::make_unique<llm_build_gemma_embedding_iswa>(*this, params);
llm = std::make_unique<llm_build_gemma_embedding>(*this, params);
} break;
case LLM_ARCH_STARCODER2:
{
@ -20014,6 +20014,7 @@ int32_t llama_n_head(const llama_model * model) {
llama_rope_type llama_model_rope_type(const llama_model * model) {
switch (model->arch) {
// these models do not use RoPE
case LLM_ARCH_CLIP:
case LLM_ARCH_GPT2:
case LLM_ARCH_GPTJ:
case LLM_ARCH_MPT:

View File

@ -1995,6 +1995,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
});
}
bool is_clip_model = false;
for (const auto * it : tensors) {
const struct ggml_tensor * tensor = it->tensor;
@ -2008,12 +2009,14 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
qs.has_output = true;
}
is_clip_model |= name.rfind("mm.", 0) == 0; // check the "mm." prefix
}
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
// sanity checks for models that have attention layers
if (qs.n_attention_wv != 0)
if (qs.n_attention_wv != 0 && !is_clip_model)
{
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
// attention layers have a non-zero number of kv heads
@ -2139,6 +2142,9 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
bool quantize = ggml_n_dims(tensor) >= 2 && is_quantizable(name, model.arch, params);
quantize &= params->quantize_output_tensor || name != "output.weight";
// do not quantize specific multimodal tensors
quantize &= name.find(".position_embd.") == std::string::npos;
ggml_type new_type;
void * new_data;
size_t new_size;

View File

@ -124,6 +124,9 @@ static int llama_model_load(const std::string & fname, std::vector<std::string>
} catch(const std::exception & e) {
throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
}
if (model.arch == LLM_ARCH_CLIP) {
throw std::runtime_error("CLIP cannot be used as main model, use it with --mmproj instead");
}
try {
model.load_vocab(ml);
} catch(const std::exception & e) {
@ -312,6 +315,7 @@ struct llama_model * llama_model_load_from_splits(
LLAMA_LOG_ERROR("%s: list of splits is empty\n", __func__);
return nullptr;
}
splits.reserve(n_paths);
for (size_t i = 0; i < n_paths; ++i) {
splits.push_back(paths[i]);
}

View File

@ -4588,20 +4588,31 @@ struct test_topk_moe: public test_case {
struct test_sum : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const std::array<int64_t, 4> permute;
bool _use_permute;
std::string vars() override {
return VARS_TO_STR2(type, ne);
std::string v = VARS_TO_STR2(type, ne);
if (_use_permute) v += "," + VAR_TO_STR(permute);
return v;
}
test_sum(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 5, 4, 3})
: type(type), ne(ne) {}
std::array<int64_t, 4> ne = {10, 5, 4, 3},
std::array<int64_t, 4> permute = {0, 0, 0, 0})
: type(type), ne(ne), permute(permute),
_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(a);
ggml_set_name(a, "a");
if (_use_permute) {
a = ggml_permute(ctx, a, permute[0], permute[1], permute[2], permute[3]);
ggml_set_name(a, "a_permuted");
}
ggml_tensor * out = ggml_sum(ctx, a);
ggml_set_name(out, "out");
@ -6354,6 +6365,19 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
}
}
#if 0
{
// Test paths in OpenCL
std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096};
std::vector<int> ks = {896, 1536, 4096};
for (auto n : ns) {
for (auto k : ks) {
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1}));
}
}
}
#endif
#if 1
for (ggml_type type_a : base_types) {
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
@ -6724,6 +6748,9 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_sum());
test_cases.emplace_back(new test_sum_rows());
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
@ -6734,6 +6761,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
@ -6779,7 +6807,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
for (int nb : { 1, 3, 32, 35, }) {
for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
test_cases.emplace_back(new test_flash_attn_ext(
hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
// run fewer test cases permuted
@ -6911,7 +6939,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
}
// qwen3-30b-a3b
for (int bs : {1, 4, 8, 32, 64, 128, 512}) {
for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
for (ggml_type type_b : {GGML_TYPE_F32}) {
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
@ -6919,6 +6947,15 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
}
}
for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
for (ggml_type type_b : {GGML_TYPE_F32}) {
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
}
}
}
// gpt-oss-20b
for (int bs : {1, 4, 8, 512}) {
for (ggml_type type_a : {GGML_TYPE_MXFP4}) {

View File

@ -524,6 +524,64 @@ static void test_json_with_dumped_args() {
R"({"foo": "bar", "args": {"arg1": [)",
R"({"foo":"bar","args":"{\"arg1\":["})"
);
// Unicode tests
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\u)",
R"({"foo":"bar","args":"{\"arg1\":\"\\u"})"
);
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\u0)",
R"({"foo":"bar","args":"{\"arg1\":\"\\u0"})"
);
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\u00)",
R"({"foo":"bar","args":"{\"arg1\":\"\\u00"})"
);
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\u000)",
R"({"foo":"bar","args":"{\"arg1\":\"\\u000"})"
);
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\u0000)",
R"({"foo":"bar","args":"{\"arg1\":\"\\u0000"})"
);
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\ud8)",
R"({"foo":"bar","args":"{\"arg1\":\"\\ud8"})"
);
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\ud80)",
R"({"foo":"bar","args":"{\"arg1\":\"\\ud80"})"
);
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\ud800)",
R"({"foo":"bar","args":"{\"arg1\":\"\\ud800"})"
);
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\ud800\)",
R"({"foo":"bar","args":"{\"arg1\":\"\\ud800\\"})"
);
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\ud800\u)",
R"({"foo":"bar","args":"{\"arg1\":\"\\ud800\\u"})"
);
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\ud800\ud)",
R"({"foo":"bar","args":"{\"arg1\":\"\\ud800\\ud"})"
);
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\ud800\udc)",
R"({"foo":"bar","args":"{\"arg1\":\"\\ud800\\udc"})"
);
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\ud800\udc0)",
R"({"foo":"bar","args":"{\"arg1\":\"\\ud800\\udc0"})"
);
test_with_args(
R"({"foo": "bar", "args": {"arg1": "\ud800\udc00)",
R"({"foo":"bar","args":"{\"arg1\":\"\\ud800\\udc00"})"
);
}
static void test_positions() {

View File

@ -58,7 +58,7 @@ static void test_json_healing() {
for (const auto & input : inputs) {
common_json out;
assert_equals(true, common_json_parse(input, "$foo", out));
assert_equals<std::string>(expected, out.json.dump());
assert_equals<std::string>(expected, out.json.dump(/* indent */ -1, /* indent_char */ ' ', /* ensure_ascii */ true));
assert_equals<std::string>(expected_marker, out.healing_marker.json_dump_marker);
}
};
@ -228,6 +228,56 @@ static void test_json_healing() {
R"({"key":"$foo"})",
R"(:"$foo)"
);
// Test unicode escape sequences
test(
{
R"({"a":"\u)",
},
R"({"a":"\u0000$foo"})",
R"(0000$foo)"
);
test(
{
R"({"a":"\u00)",
},
R"({"a":"\u0000$foo"})",
R"(00$foo)"
);
test(
{
R"({"a":"\ud300)",
},
R"({"a":"\ud300$foo"})",
R"($foo)"
);
test(
{
R"({"a":"\ud800)",
},
R"({"a":"\ud800\udc00$foo"})",
R"(\udc00$foo)"
);
test(
{
R"({"a":"\ud800\)",
},
R"({"a":"\ud800\udc00$foo"})",
R"(udc00$foo)"
);
test(
{
R"({"a":"\ud800\u)",
},
R"({"a":"\ud800\udc00$foo"})",
R"(dc00$foo)"
);
test(
{
R"({"a":"\ud800\udc00)",
},
R"({"a":"\ud800\udc00$foo"})",
R"($foo)"
);
}
int main() {

Binary file not shown.

View File

@ -1585,23 +1585,31 @@ struct server_prompt_cache {
}
}
// average size per token
const float size_per_token = std::max<float>(1.0f, float(size()) / (std::max<size_t>(1, n_tokens())));
// dynamically increase the token limit if it can fit in the memory limit
const size_t limit_tokens_cur = limit_size > 0 ? std::max<size_t>(limit_tokens, limit_size/size_per_token) : limit_tokens;
if (limit_tokens > 0) {
while (states.size() > 1 && n_tokens() > limit_tokens) {
while (states.size() > 1 && n_tokens() > limit_tokens_cur) {
if (states.empty()) {
break;
}
SRV_WRN(" - cache token limit reached, removing oldest entry (size = %.3f MiB)\n", states.front().size() / (1024.0 * 1024.0));
SRV_WRN(" - cache token limit (%zu, est: %zu) reached, removing oldest entry (size = %.3f MiB)\n",
limit_tokens, limit_tokens_cur, states.front().size() / (1024.0 * 1024.0));
states.pop_front();
}
}
SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens)\n",
states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens);
SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens, %zu est)\n",
states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens, limit_tokens_cur);
for (const auto & state : states) {
SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n", (const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n",
(const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
}
}
};
@ -3804,7 +3812,7 @@ struct server_context {
if (slot.n_past > 0 && slot.n_past < (int) slot.prompt.tokens.size()) {
const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
if (pos_min == -1) {
SLT_ERR(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d\n", slot.n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min);
SLT_ERR(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d\n", slot.n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min);
GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
}
@ -3831,14 +3839,14 @@ struct server_context {
{
const auto token = slot.prompt.tokens[i];
const auto piece = common_token_to_piece(ctx, token);
const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
ss0 << piece;
st0 << std::setw(8) << token;
}
{
const auto token = slot.task->tokens[i];
const auto piece = common_token_to_piece(ctx, token);
const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
ss1 << piece;
st1 << std::setw(8) << token;
}
@ -3852,7 +3860,7 @@ struct server_context {
}
if (pos_min > pos_min_thold) {
SLT_WRN(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", slot.n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min, n_swa);
SLT_WRN(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", slot.n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min, n_swa);
// search for a context checkpoint
const auto it = std::find_if(
@ -4020,7 +4028,7 @@ struct server_context {
}
}
// SLT_INF(slot, "new cache_tokens: %s\n", slot.cache_tokens.str().c_str());
// SLT_INF(slot, "new slot.prompt.tokens: %s\n", slot.slot.prompt.tokens.str().c_str());
SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_past / slot.n_prompt_tokens());
@ -5401,15 +5409,6 @@ int main(int argc, char ** argv) {
const json body = json::parse(req.body);
// TODO: implement
//int top_n = 1;
//if (body.count("top_n") != 1) {
// top_n = body.at("top_n");
//} else {
// res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
// return;
//}
// if true, use TEI API format, otherwise use Jina API format
// Jina: https://jina.ai/reranker/
// TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
@ -5434,6 +5433,8 @@ int main(int argc, char ** argv) {
return;
}
int top_n = json_value(body, "top_n", (int)documents.size());
// create and queue the task
json responses = json::array();
bool error = false;
@ -5474,7 +5475,8 @@ int main(int argc, char ** argv) {
body,
responses,
is_tei_format,
documents);
documents,
top_n);
res_ok(res, root);
};

View File

@ -102,3 +102,45 @@ def test_rerank_usage(query, doc1, doc2, n_tokens):
assert res.status_code == 200
assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens']
assert res.body['usage']['prompt_tokens'] == n_tokens
@pytest.mark.parametrize("top_n,expected_len", [
(None, len(TEST_DOCUMENTS)), # no top_n parameter
(2, 2),
(4, 4),
(99, len(TEST_DOCUMENTS)), # higher than available docs
])
def test_rerank_top_n(top_n, expected_len):
global server
server.start()
data = {
"query": "Machine learning is",
"documents": TEST_DOCUMENTS,
}
if top_n is not None:
data["top_n"] = top_n
res = server.make_request("POST", "/rerank", data=data)
assert res.status_code == 200
assert len(res.body["results"]) == expected_len
@pytest.mark.parametrize("top_n,expected_len", [
(None, len(TEST_DOCUMENTS)), # no top_n parameter
(2, 2),
(4, 4),
(99, len(TEST_DOCUMENTS)), # higher than available docs
])
def test_rerank_tei_top_n(top_n, expected_len):
global server
server.start()
data = {
"query": "Machine learning is",
"texts": TEST_DOCUMENTS,
}
if top_n is not None:
data["top_n"] = top_n
res = server.make_request("POST", "/rerank", data=data)
assert res.status_code == 200
assert len(res.body) == expected_len

View File

@ -849,47 +849,44 @@ static json format_response_rerank(
const json & request,
const json & ranks,
bool is_tei_format,
std::vector<std::string> & texts) {
json res;
if (is_tei_format) {
// TEI response format
res = json::array();
bool return_text = json_value(request, "return_text", false);
for (const auto & rank : ranks) {
int index = json_value(rank, "index", 0);
json elem = json{
{"index", index},
{"score", json_value(rank, "score", 0.0)},
};
if (return_text) {
elem["text"] = std::move(texts[index]);
}
res.push_back(elem);
}
} else {
// Jina response format
json results = json::array();
int32_t n_tokens = 0;
for (const auto & rank : ranks) {
results.push_back(json{
{"index", json_value(rank, "index", 0)},
{"relevance_score", json_value(rank, "score", 0.0)},
});
n_tokens += json_value(rank, "tokens_evaluated", 0);
}
res = json{
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage", json{
{"prompt_tokens", n_tokens},
{"total_tokens", n_tokens}
}},
{"results", results}
std::vector<std::string> & texts,
int top_n) {
int32_t n_tokens = 0;
bool return_text = is_tei_format && json_value(request, "return_text", false);
std::vector<json> elements; // Temporary vector to hold unsorted elements
std::string score_label = is_tei_format ? "score" : "relevance_score";
for (const auto & rank : ranks) {
int index = json_value(rank, "index", 0);
json elem = json{
{"index", index},
{score_label, json_value(rank, "score", 0.0)},
};
n_tokens += json_value(rank, "tokens_evaluated", 0);
if (return_text) {
elem["text"] = std::move(texts[index]);
}
elements.push_back(elem);
}
std::sort(elements.begin(), elements.end(), [score_label](const json& a, const json& b) {
return json_value(a, score_label, 0.0) > json_value(b, score_label, 0.0);
});
elements.resize(std::min(top_n, (int)elements.size()));
json results = elements;
if (is_tei_format) return results;
json res = json{
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage", json{
{"prompt_tokens", n_tokens},
{"total_tokens", n_tokens}
}},
{"results", results}
};
return res;
}
@ -1240,9 +1237,10 @@ public:
// allowed to resize ^ ^
// disallowed to resize ^ ^ ^
if (n > 0) {
llama_token last_token = tokens[n - 1];
// make sure we never remove tokens in the middle of an image
if (last_token == LLAMA_TOKEN_NULL) {
// note that the case where we keep a full image at the end is allowed:
// tokens[n - 1] == LLAMA_TOKEN_NULL && tokens[n] != LLAMA_TOKEN_NULL
if (tokens[n - 1] == LLAMA_TOKEN_NULL && tokens[n] == LLAMA_TOKEN_NULL) {
find_chunk(n - 1); // will throw an error if the token is not begin-of-chunk
}
}

View File

@ -50,6 +50,7 @@
"eslint-plugin-svelte": "^3.0.0",
"fflate": "^0.8.2",
"globals": "^16.0.0",
"mdast": "^3.0.0",
"mdsvex": "^0.12.3",
"playwright": "^1.53.0",
"prettier": "^3.4.2",
@ -66,6 +67,7 @@
"tw-animate-css": "^1.3.5",
"typescript": "^5.0.0",
"typescript-eslint": "^8.20.0",
"unified": "^11.0.5",
"uuid": "^13.0.0",
"vite": "^7.0.4",
"vite-plugin-devtools-json": "^0.2.0",
@ -2128,6 +2130,66 @@
"node": ">=14.0.0"
}
},
"node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@emnapi/core": {
"version": "1.4.3",
"dev": true,
"inBundle": true,
"license": "MIT",
"optional": true,
"dependencies": {
"@emnapi/wasi-threads": "1.0.2",
"tslib": "^2.4.0"
}
},
"node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@emnapi/runtime": {
"version": "1.4.3",
"dev": true,
"inBundle": true,
"license": "MIT",
"optional": true,
"dependencies": {
"tslib": "^2.4.0"
}
},
"node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@emnapi/wasi-threads": {
"version": "1.0.2",
"dev": true,
"inBundle": true,
"license": "MIT",
"optional": true,
"dependencies": {
"tslib": "^2.4.0"
}
},
"node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@napi-rs/wasm-runtime": {
"version": "0.2.11",
"dev": true,
"inBundle": true,
"license": "MIT",
"optional": true,
"dependencies": {
"@emnapi/core": "^1.4.3",
"@emnapi/runtime": "^1.4.3",
"@tybys/wasm-util": "^0.9.0"
}
},
"node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@tybys/wasm-util": {
"version": "0.9.0",
"dev": true,
"inBundle": true,
"license": "MIT",
"optional": true,
"dependencies": {
"tslib": "^2.4.0"
}
},
"node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/tslib": {
"version": "2.8.0",
"dev": true,
"inBundle": true,
"license": "0BSD",
"optional": true
},
"node_modules/@tailwindcss/oxide-win32-arm64-msvc": {
"version": "4.1.11",
"resolved": "https://registry.npmjs.org/@tailwindcss/oxide-win32-arm64-msvc/-/oxide-win32-arm64-msvc-4.1.11.tgz",
@ -4946,6 +5008,13 @@
"url": "https://github.com/sponsors/wooorm"
}
},
"node_modules/mdast": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/mdast/-/mdast-3.0.0.tgz",
"integrity": "sha512-xySmf8g4fPKMeC07jXGz971EkLbWAJ83s4US2Tj9lEdnZ142UP5grN73H1Xd3HzrdbU5o9GYYP/y8F9ZSwLE9g==",
"dev": true,
"license": "MIT"
},
"node_modules/mdast-util-find-and-replace": {
"version": "3.0.2",
"resolved": "https://registry.npmjs.org/mdast-util-find-and-replace/-/mdast-util-find-and-replace-3.0.2.tgz",

View File

@ -52,6 +52,7 @@
"eslint-plugin-svelte": "^3.0.0",
"fflate": "^0.8.2",
"globals": "^16.0.0",
"mdast": "^3.0.0",
"mdsvex": "^0.12.3",
"playwright": "^1.53.0",
"prettier": "^3.4.2",
@ -68,6 +69,7 @@
"tw-animate-css": "^1.3.5",
"typescript": "^5.0.0",
"typescript-eslint": "^8.20.0",
"unified": "^11.0.5",
"uuid": "^13.0.0",
"vite": "^7.0.4",
"vite-plugin-devtools-json": "^0.2.0",

View File

@ -2,8 +2,9 @@
import { Check, X } from '@lucide/svelte';
import { Card } from '$lib/components/ui/card';
import { Button } from '$lib/components/ui/button';
import { ChatAttachmentsList } from '$lib/components/app';
import { ChatAttachmentsList, MarkdownContent } from '$lib/components/app';
import { INPUT_CLASSES } from '$lib/constants/input-classes';
import { config } from '$lib/stores/settings.svelte';
import ChatMessageActions from './ChatMessageActions.svelte';
interface Props {
@ -55,6 +56,7 @@
let isMultiline = $state(false);
let messageElement: HTMLElement | undefined = $state();
const currentConfig = config();
$effect(() => {
if (!messageElement || !message.content.trim()) return;
@ -123,9 +125,18 @@
class="max-w-[80%] rounded-[1.125rem] bg-primary px-3.75 py-1.5 text-primary-foreground data-[multiline]:py-2.5"
data-multiline={isMultiline ? '' : undefined}
>
<span bind:this={messageElement} class="text-md whitespace-pre-wrap">
{message.content}
</span>
{#if currentConfig.renderUserContentAsMarkdown}
<div bind:this={messageElement} class="text-md">
<MarkdownContent
class="markdown-user-content text-primary-foreground"
content={message.content}
/>
</div>
{:else}
<span bind:this={messageElement} class="text-md whitespace-pre-wrap">
{message.content}
</span>
{/if}
</Card>
{/if}

Some files were not shown because too many files have changed in this diff Show More