Merge remote-tracking branch 'origin/master' into kimi-k2.5
This commit is contained in:
commit
f13b383843
|
|
@ -4,7 +4,7 @@
|
|||
# the module `{ pkgs ... }: { /* config */ }` implicitly uses
|
||||
# `_module.args.pkgs` (defined in this case by flake-parts).
|
||||
perSystem =
|
||||
{ system, ... }:
|
||||
{ lib, system, ... }:
|
||||
{
|
||||
_module.args = {
|
||||
# Note: bringing up https://zimbatm.com/notes/1000-instances-of-nixpkgs
|
||||
|
|
@ -33,7 +33,7 @@
|
|||
"CUDA EULA"
|
||||
"cuDNN EULA"
|
||||
]
|
||||
) (p.meta.licenses or [ p.meta.license ]);
|
||||
) (p.meta.licenses or (lib.toList p.meta.license));
|
||||
};
|
||||
# Ensure dependencies use ROCm consistently
|
||||
pkgsRocm = import inputs.nixpkgs {
|
||||
|
|
|
|||
|
|
@ -54,6 +54,7 @@ RUN apt-get update \
|
|||
build-essential \
|
||||
git \
|
||||
python3 \
|
||||
python3-dev \
|
||||
python3-pip \
|
||||
python3-wheel \
|
||||
&& pip install --break-system-packages --upgrade setuptools \
|
||||
|
|
|
|||
|
|
@ -293,6 +293,7 @@ jobs:
|
|||
cmake -B build \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
|
||||
|
||||
|
|
@ -303,6 +304,7 @@ jobs:
|
|||
cmake -B build \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DGGML_OPENMP=OFF
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
|
||||
|
|
@ -466,7 +468,7 @@ jobs:
|
|||
export GGML_VK_VISIBLE_DEVICES=0
|
||||
export GGML_VK_DISABLE_F16=1
|
||||
# This is using llvmpipe and runs slower than other backends
|
||||
ctest -L main --verbose --timeout 4200
|
||||
ctest -L main --verbose --timeout 4800
|
||||
|
||||
ubuntu-24-cmake-webgpu:
|
||||
runs-on: ubuntu-24.04
|
||||
|
|
@ -1532,7 +1534,7 @@ jobs:
|
|||
- name: Test
|
||||
id: ggml-ci
|
||||
run: |
|
||||
LLAMA_ARG_THREADS=$(nproc) bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_HIGH_PERF=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
|
||||
ggml-ci-arm64-cpu-high-perf:
|
||||
runs-on: ubuntu-22.04-arm
|
||||
|
|
@ -1558,7 +1560,7 @@ jobs:
|
|||
- name: Test
|
||||
id: ggml-ci
|
||||
run: |
|
||||
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_HIGH_PERF=1 GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
|
||||
ggml-ci-arm64-cpu-high-perf-sve:
|
||||
runs-on: ubuntu-22.04-arm
|
||||
|
|
|
|||
|
|
@ -36,7 +36,7 @@ jobs:
|
|||
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
|
||||
sanitizer: [ADDRESS, UNDEFINED] # THREAD is very slow
|
||||
build_type: [RelWithDebInfo]
|
||||
include:
|
||||
- build_type: Release
|
||||
|
|
@ -45,7 +45,7 @@ jobs:
|
|||
- build_type: Release
|
||||
sanitizer: ""
|
||||
extra_args: "LLAMA_ARG_BACKEND_SAMPLING=1"
|
||||
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- name: Dependencies
|
||||
|
|
@ -72,7 +72,15 @@ jobs:
|
|||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_BUILD_BORINGSSL=ON -DGGML_SCHED_NO_REALLOC=ON
|
||||
cmake -B build \
|
||||
-DLLAMA_BUILD_BORINGSSL=ON \
|
||||
-DGGML_SCHED_NO_REALLOC=ON \
|
||||
-DGGML_SANITIZE_ADDRESS=${{ matrix.sanitizer == 'ADDRESS' }} \
|
||||
-DGGML_SANITIZE_THREAD=${{ matrix.sanitizer == 'THREAD' }} \
|
||||
-DGGML_SANITIZE_UNDEFINED=${{ matrix.sanitizer == 'UNDEFINED' }} \
|
||||
-DLLAMA_SANITIZE_ADDRESS=${{ matrix.sanitizer == 'ADDRESS' }} \
|
||||
-DLLAMA_SANITIZE_THREAD=${{ matrix.sanitizer == 'THREAD' }} \
|
||||
-DLLAMA_SANITIZE_UNDEFINED=${{ matrix.sanitizer == 'UNDEFINED' }}
|
||||
cmake --build build --config ${{ matrix.build_type }} -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
|
||||
|
||||
- name: Python setup
|
||||
|
|
@ -88,7 +96,7 @@ jobs:
|
|||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) && matrix.build_type == 'Release' }}
|
||||
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) }}
|
||||
run: |
|
||||
cd tools/server/tests
|
||||
export ${{ matrix.extra_args }}
|
||||
|
|
|
|||
|
|
@ -164,29 +164,6 @@ llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
|
|||
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
|
||||
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
|
||||
|
||||
if (NOT MSVC)
|
||||
if (LLAMA_SANITIZE_THREAD)
|
||||
message(STATUS "Using -fsanitize=thread")
|
||||
|
||||
add_compile_options(-fsanitize=thread)
|
||||
link_libraries (-fsanitize=thread)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_ADDRESS)
|
||||
message(STATUS "Using -fsanitize=address")
|
||||
|
||||
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
|
||||
link_libraries (-fsanitize=address)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_UNDEFINED)
|
||||
message(STATUS "Using -fsanitize=undefined")
|
||||
|
||||
add_compile_options(-fsanitize=undefined)
|
||||
link_libraries (-fsanitize=undefined)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
include("cmake/license.cmake")
|
||||
license_add_file("llama.cpp" "LICENSE")
|
||||
|
||||
|
|
|
|||
|
|
@ -27,6 +27,7 @@
|
|||
/examples/batched.swift/ @ggerganov
|
||||
/examples/batched/ @ggerganov
|
||||
/examples/convert-llama2c-to-ggml/ @ggerganov
|
||||
/examples/debug/ @danbev @pwilkin
|
||||
/examples/deprecation-warning/ @ggerganov
|
||||
/examples/diffusion/ @am17an
|
||||
/examples/embedding/ @ggerganov
|
||||
|
|
|
|||
2
LICENSE
2
LICENSE
|
|
@ -1,6 +1,6 @@
|
|||
MIT License
|
||||
|
||||
Copyright (c) 2023-2024 The ggml authors
|
||||
Copyright (c) 2023-2026 The ggml authors
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ g++ --version
|
|||
g++ (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
|
||||
|
||||
nvidia-smi
|
||||
Sun Nov 2 10:43:25 2025
|
||||
Thu Feb 5 13:49:40 2026
|
||||
+-----------------------------------------------------------------------------------------+
|
||||
| NVIDIA-SMI 580.95.05 Driver Version: 580.95.05 CUDA Version: 13.0 |
|
||||
+-----------------------------------------+------------------------+----------------------+
|
||||
|
|
@ -17,7 +17,7 @@ Sun Nov 2 10:43:25 2025
|
|||
| | | MIG M. |
|
||||
|=========================================+========================+======================|
|
||||
| 0 NVIDIA GB10 On | 0000000F:01:00.0 Off | N/A |
|
||||
| N/A 35C P8 4W / N/A | Not Supported | 0% Default |
|
||||
| N/A 47C P0 13W / N/A | Not Supported | 0% Default |
|
||||
| | | N/A |
|
||||
+-----------------------------------------+------------------------+----------------------+
|
||||
```
|
||||
|
|
@ -29,46 +29,46 @@ Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF
|
|||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.374 | 1369.01 | 0.383 | 83.64 | 0.757 | 719.01 |
|
||||
| 512 | 32 | 2 | 1088 | 0.274 | 3741.35 | 0.659 | 97.14 | 0.933 | 1166.66 |
|
||||
| 512 | 32 | 4 | 2176 | 0.526 | 3896.47 | 0.817 | 156.73 | 1.342 | 1621.08 |
|
||||
| 512 | 32 | 8 | 4352 | 1.044 | 3925.10 | 0.987 | 259.44 | 2.030 | 2143.56 |
|
||||
| 512 | 32 | 16 | 8704 | 2.076 | 3945.84 | 1.248 | 410.32 | 3.324 | 2618.60 |
|
||||
| 512 | 32 | 32 | 17408 | 4.170 | 3929.28 | 1.630 | 628.40 | 5.799 | 3001.76 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.083 | 3782.66 | 0.394 | 81.21 | 1.477 | 2795.13 |
|
||||
| 4096 | 32 | 2 | 8256 | 2.166 | 3782.72 | 0.725 | 88.28 | 2.891 | 2856.14 |
|
||||
| 4096 | 32 | 4 | 16512 | 4.333 | 3780.88 | 0.896 | 142.82 | 5.230 | 3157.38 |
|
||||
| 4096 | 32 | 8 | 33024 | 8.618 | 3802.14 | 1.155 | 221.69 | 9.773 | 3379.08 |
|
||||
| 4096 | 32 | 16 | 66048 | 17.330 | 3781.73 | 1.598 | 320.34 | 18.928 | 3489.45 |
|
||||
| 4096 | 32 | 32 | 132096 | 34.671 | 3780.48 | 2.336 | 438.35 | 37.007 | 3569.51 |
|
||||
| 8192 | 32 | 1 | 8224 | 2.233 | 3668.56 | 0.438 | 72.98 | 2.671 | 3078.44 |
|
||||
| 8192 | 32 | 2 | 16448 | 4.425 | 3702.95 | 0.756 | 84.66 | 5.181 | 3174.95 |
|
||||
| 8192 | 32 | 4 | 32896 | 8.859 | 3698.64 | 0.967 | 132.38 | 9.826 | 3347.72 |
|
||||
| 8192 | 32 | 8 | 65792 | 17.714 | 3699.57 | 1.277 | 200.52 | 18.991 | 3464.35 |
|
||||
| 8192 | 32 | 16 | 131584 | 35.494 | 3692.84 | 1.841 | 278.12 | 37.335 | 3524.46 |
|
||||
| 8192 | 32 | 32 | 263168 | 70.949 | 3694.82 | 2.798 | 365.99 | 73.747 | 3568.53 |
|
||||
| 512 | 32 | 1 | 544 | 0.270 | 1895.57 | 0.399 | 80.13 | 0.669 | 812.60 |
|
||||
| 512 | 32 | 2 | 1088 | 0.230 | 4451.23 | 0.583 | 109.71 | 0.813 | 1337.56 |
|
||||
| 512 | 32 | 4 | 2176 | 0.437 | 4688.87 | 0.820 | 156.03 | 1.257 | 1730.91 |
|
||||
| 512 | 32 | 8 | 4352 | 0.863 | 4744.23 | 0.942 | 271.79 | 1.805 | 2410.73 |
|
||||
| 512 | 32 | 16 | 8704 | 1.725 | 4748.19 | 1.173 | 436.38 | 2.899 | 3002.85 |
|
||||
| 512 | 32 | 32 | 17408 | 3.437 | 4767.38 | 1.503 | 681.49 | 4.939 | 3524.40 |
|
||||
| 4096 | 32 | 1 | 4128 | 0.907 | 4513.91 | 0.407 | 78.54 | 1.315 | 3139.56 |
|
||||
| 4096 | 32 | 2 | 8256 | 1.796 | 4560.42 | 0.625 | 102.37 | 2.422 | 3409.45 |
|
||||
| 4096 | 32 | 4 | 16512 | 3.596 | 4555.66 | 0.888 | 144.11 | 4.485 | 3681.93 |
|
||||
| 4096 | 32 | 8 | 33024 | 7.184 | 4561.44 | 1.098 | 233.11 | 8.282 | 3987.51 |
|
||||
| 4096 | 32 | 16 | 66048 | 14.369 | 4560.82 | 1.503 | 340.74 | 15.872 | 4161.30 |
|
||||
| 4096 | 32 | 32 | 132096 | 28.760 | 4557.52 | 2.162 | 473.59 | 30.922 | 4271.95 |
|
||||
| 8192 | 32 | 1 | 8224 | 1.859 | 4405.59 | 0.430 | 74.36 | 2.290 | 3591.61 |
|
||||
| 8192 | 32 | 2 | 16448 | 3.698 | 4430.02 | 0.656 | 97.59 | 4.354 | 3777.47 |
|
||||
| 8192 | 32 | 4 | 32896 | 7.403 | 4426.10 | 0.957 | 133.82 | 8.360 | 3934.97 |
|
||||
| 8192 | 32 | 8 | 65792 | 14.802 | 4427.63 | 1.222 | 209.44 | 16.024 | 4105.87 |
|
||||
| 8192 | 32 | 16 | 131584 | 29.596 | 4428.67 | 1.741 | 294.13 | 31.337 | 4199.00 |
|
||||
| 8192 | 32 | 32 | 263168 | 59.169 | 4430.42 | 2.619 | 390.92 | 61.789 | 4259.17 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 3714.25 ± 20.36 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 86.58 ± 0.43 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 3445.17 ± 17.85 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 81.72 ± 0.53 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 3218.78 ± 11.34 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.86 ± 0.64 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 2732.83 ± 7.17 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 71.57 ± 0.51 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 2119.75 ± 12.81 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 62.33 ± 0.24 |
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 4505.82 ± 12.90 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 83.43 ± 0.59 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 4158.34 ± 18.84 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 79.22 ± 0.60 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 3993.81 ± 17.55 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 75.22 ± 1.05 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 3449.98 ± 12.13 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 70.36 ± 0.37 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 2689.42 ± 18.89 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 61.65 ± 0.30 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
build: 11fb327bf (7941)
|
||||
|
||||
## ggml-org/gpt-oss-120b-GGUF
|
||||
|
||||
|
|
@ -77,46 +77,46 @@ Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF
|
|||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.571 | 897.18 | 0.543 | 58.96 | 1.113 | 488.60 |
|
||||
| 512 | 32 | 2 | 1088 | 0.593 | 1725.37 | 1.041 | 61.45 | 1.635 | 665.48 |
|
||||
| 512 | 32 | 4 | 2176 | 1.043 | 1963.15 | 1.334 | 95.95 | 2.377 | 915.36 |
|
||||
| 512 | 32 | 8 | 4352 | 2.099 | 1951.63 | 1.717 | 149.07 | 3.816 | 1140.45 |
|
||||
| 512 | 32 | 16 | 8704 | 4.207 | 1947.12 | 2.311 | 221.56 | 6.518 | 1335.35 |
|
||||
| 512 | 32 | 32 | 17408 | 8.422 | 1945.36 | 3.298 | 310.46 | 11.720 | 1485.27 |
|
||||
| 4096 | 32 | 1 | 4128 | 2.138 | 1915.88 | 0.571 | 56.09 | 2.708 | 1524.12 |
|
||||
| 4096 | 32 | 2 | 8256 | 4.266 | 1920.25 | 1.137 | 56.27 | 5.404 | 1527.90 |
|
||||
| 4096 | 32 | 4 | 16512 | 8.564 | 1913.02 | 1.471 | 86.99 | 10.036 | 1645.29 |
|
||||
| 4096 | 32 | 8 | 33024 | 17.092 | 1917.19 | 1.979 | 129.33 | 19.071 | 1731.63 |
|
||||
| 4096 | 32 | 16 | 66048 | 34.211 | 1915.65 | 2.850 | 179.66 | 37.061 | 1782.15 |
|
||||
| 4096 | 32 | 32 | 132096 | 68.394 | 1916.44 | 4.381 | 233.72 | 72.775 | 1815.13 |
|
||||
| 8192 | 32 | 1 | 8224 | 4.349 | 1883.45 | 0.620 | 51.65 | 4.969 | 1655.04 |
|
||||
| 8192 | 32 | 2 | 16448 | 8.674 | 1888.83 | 1.178 | 54.33 | 9.852 | 1669.48 |
|
||||
| 8192 | 32 | 4 | 32896 | 17.351 | 1888.55 | 1.580 | 81.01 | 18.931 | 1737.68 |
|
||||
| 8192 | 32 | 8 | 65792 | 34.743 | 1886.31 | 2.173 | 117.80 | 36.916 | 1782.20 |
|
||||
| 8192 | 32 | 16 | 131584 | 69.413 | 1888.29 | 3.297 | 155.28 | 72.710 | 1809.70 |
|
||||
| 8192 | 32 | 32 | 263168 | 138.903 | 1887.24 | 5.004 | 204.63 | 143.907 | 1828.73 |
|
||||
| 512 | 32 | 1 | 544 | 0.445 | 1151.80 | 0.560 | 57.14 | 1.005 | 541.53 |
|
||||
| 512 | 32 | 2 | 1088 | 0.472 | 2169.85 | 0.874 | 73.27 | 1.345 | 808.65 |
|
||||
| 512 | 32 | 4 | 2176 | 0.826 | 2480.33 | 1.299 | 98.51 | 2.125 | 1023.94 |
|
||||
| 512 | 32 | 8 | 4352 | 1.644 | 2491.67 | 1.608 | 159.18 | 3.252 | 1338.20 |
|
||||
| 512 | 32 | 16 | 8704 | 3.292 | 2488.35 | 2.117 | 241.85 | 5.409 | 1609.13 |
|
||||
| 512 | 32 | 32 | 17408 | 6.604 | 2481.07 | 2.898 | 353.31 | 9.502 | 1832.04 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.698 | 2412.65 | 0.580 | 55.21 | 2.277 | 1812.66 |
|
||||
| 4096 | 32 | 2 | 8256 | 3.399 | 2409.88 | 0.934 | 68.53 | 4.333 | 1905.27 |
|
||||
| 4096 | 32 | 4 | 16512 | 6.823 | 2401.21 | 1.411 | 90.72 | 8.234 | 2005.30 |
|
||||
| 4096 | 32 | 8 | 33024 | 13.574 | 2413.97 | 1.841 | 139.07 | 15.415 | 2142.31 |
|
||||
| 4096 | 32 | 16 | 66048 | 27.176 | 2411.52 | 2.609 | 196.26 | 29.785 | 2217.49 |
|
||||
| 4096 | 32 | 32 | 132096 | 54.359 | 2411.23 | 3.905 | 262.20 | 58.264 | 2267.19 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.491 | 2346.81 | 0.613 | 52.23 | 4.103 | 2004.21 |
|
||||
| 8192 | 32 | 2 | 16448 | 6.939 | 2361.03 | 0.981 | 65.21 | 7.921 | 2076.56 |
|
||||
| 8192 | 32 | 4 | 32896 | 13.888 | 2359.40 | 1.511 | 84.71 | 15.399 | 2136.21 |
|
||||
| 8192 | 32 | 8 | 65792 | 27.756 | 2361.18 | 2.034 | 125.86 | 29.790 | 2208.56 |
|
||||
| 8192 | 32 | 16 | 131584 | 55.554 | 2359.34 | 3.021 | 169.49 | 58.575 | 2246.41 |
|
||||
| 8192 | 32 | 32 | 263168 | 111.036 | 2360.89 | 4.537 | 225.72 | 115.573 | 2277.08 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 1919.36 ± 5.01 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 60.40 ± 0.30 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 1825.30 ± 6.37 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 56.94 ± 0.29 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1739.19 ± 6.00 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 52.51 ± 0.42 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1536.75 ± 4.27 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 49.33 ± 0.27 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1255.85 ± 3.26 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 42.99 ± 0.18 |
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2443.91 ± 7.47 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 58.72 ± 0.20 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2309.84 ± 3.63 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 55.67 ± 0.35 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2216.68 ± 10.16 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 52.87 ± 0.43 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1956.31 ± 6.39 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 49.45 ± 0.20 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1567.08 ± 11.79 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 42.76 ± 0.14 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
build: 11fb327bf (7941)
|
||||
|
||||
## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
|
||||
|
||||
|
|
@ -125,46 +125,46 @@ Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
|
|||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.398 | 1285.90 | 0.530 | 60.41 | 0.928 | 586.27 |
|
||||
| 512 | 32 | 2 | 1088 | 0.386 | 2651.65 | 0.948 | 67.50 | 1.334 | 815.38 |
|
||||
| 512 | 32 | 4 | 2176 | 0.666 | 3076.37 | 1.209 | 105.87 | 1.875 | 1160.71 |
|
||||
| 512 | 32 | 8 | 4352 | 1.325 | 3091.39 | 1.610 | 158.98 | 2.935 | 1482.65 |
|
||||
| 512 | 32 | 16 | 8704 | 2.664 | 3075.58 | 2.150 | 238.19 | 4.813 | 1808.39 |
|
||||
| 512 | 32 | 32 | 17408 | 5.336 | 3070.31 | 2.904 | 352.59 | 8.240 | 2112.50 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.444 | 2836.81 | 0.581 | 55.09 | 2.025 | 2038.81 |
|
||||
| 4096 | 32 | 2 | 8256 | 2.872 | 2852.14 | 1.084 | 59.06 | 3.956 | 2086.99 |
|
||||
| 4096 | 32 | 4 | 16512 | 5.744 | 2852.32 | 1.440 | 88.90 | 7.184 | 2298.47 |
|
||||
| 4096 | 32 | 8 | 33024 | 11.463 | 2858.68 | 2.068 | 123.78 | 13.531 | 2440.65 |
|
||||
| 4096 | 32 | 16 | 66048 | 22.915 | 2859.95 | 3.018 | 169.67 | 25.933 | 2546.90 |
|
||||
| 4096 | 32 | 32 | 132096 | 45.956 | 2852.10 | 4.609 | 222.18 | 50.565 | 2612.39 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.063 | 2674.72 | 0.693 | 46.20 | 3.755 | 2189.92 |
|
||||
| 8192 | 32 | 2 | 16448 | 6.109 | 2681.87 | 1.214 | 52.71 | 7.323 | 2245.98 |
|
||||
| 8192 | 32 | 4 | 32896 | 12.197 | 2686.63 | 1.682 | 76.11 | 13.878 | 2370.30 |
|
||||
| 8192 | 32 | 8 | 65792 | 24.409 | 2684.94 | 2.556 | 100.17 | 26.965 | 2439.95 |
|
||||
| 8192 | 32 | 16 | 131584 | 48.753 | 2688.50 | 3.994 | 128.20 | 52.747 | 2494.64 |
|
||||
| 8192 | 32 | 32 | 263168 | 97.508 | 2688.42 | 6.528 | 156.86 | 104.037 | 2529.57 |
|
||||
| 512 | 32 | 1 | 544 | 0.393 | 1303.73 | 0.548 | 58.36 | 0.941 | 578.10 |
|
||||
| 512 | 32 | 2 | 1088 | 0.387 | 2648.68 | 0.910 | 70.35 | 1.296 | 839.27 |
|
||||
| 512 | 32 | 4 | 2176 | 0.659 | 3107.63 | 1.302 | 98.33 | 1.961 | 1109.77 |
|
||||
| 512 | 32 | 8 | 4352 | 1.322 | 3099.35 | 1.669 | 153.42 | 2.990 | 1455.43 |
|
||||
| 512 | 32 | 16 | 8704 | 2.639 | 3104.63 | 2.212 | 231.44 | 4.851 | 1794.32 |
|
||||
| 512 | 32 | 32 | 17408 | 5.284 | 3100.80 | 2.955 | 346.53 | 8.239 | 2112.93 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.417 | 2890.36 | 0.598 | 53.51 | 2.015 | 2048.45 |
|
||||
| 4096 | 32 | 2 | 8256 | 2.829 | 2895.62 | 1.019 | 62.82 | 3.848 | 2145.60 |
|
||||
| 4096 | 32 | 4 | 16512 | 5.656 | 2896.96 | 1.528 | 83.79 | 7.183 | 2298.71 |
|
||||
| 4096 | 32 | 8 | 33024 | 11.338 | 2890.02 | 2.127 | 120.36 | 13.465 | 2452.53 |
|
||||
| 4096 | 32 | 16 | 66048 | 22.709 | 2885.96 | 3.104 | 164.97 | 25.812 | 2558.79 |
|
||||
| 4096 | 32 | 32 | 132096 | 45.301 | 2893.35 | 4.723 | 216.80 | 50.024 | 2640.63 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.022 | 2711.09 | 0.678 | 47.20 | 3.700 | 2222.89 |
|
||||
| 8192 | 32 | 2 | 16448 | 6.039 | 2713.01 | 1.149 | 55.70 | 7.188 | 2288.21 |
|
||||
| 8192 | 32 | 4 | 32896 | 12.050 | 2719.35 | 1.785 | 71.69 | 13.835 | 2377.67 |
|
||||
| 8192 | 32 | 8 | 65792 | 24.113 | 2717.90 | 2.629 | 97.39 | 26.741 | 2460.31 |
|
||||
| 8192 | 32 | 16 | 131584 | 48.178 | 2720.58 | 4.099 | 124.91 | 52.277 | 2517.06 |
|
||||
| 8192 | 32 | 32 | 263168 | 96.401 | 2719.31 | 6.696 | 152.93 | 103.097 | 2552.63 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2925.55 ± 4.25 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 62.80 ± 0.27 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2531.01 ± 6.79 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 55.86 ± 0.33 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 2244.39 ± 5.33 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 45.95 ± 0.33 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1783.17 ± 3.68 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 39.07 ± 0.10 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1241.90 ± 3.13 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 29.92 ± 0.06 |
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2986.97 ± 18.87 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 61.06 ± 0.23 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2633.45 ± 6.26 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 54.77 ± 0.28 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2354.14 ± 3.84 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 48.02 ± 0.40 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1908.86 ± 4.25 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 40.23 ± 0.10 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1348.17 ± 2.00 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 30.21 ± 0.04 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
build: 11fb327bf (7941)
|
||||
|
||||
## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
|
||||
|
||||
|
|
@ -173,46 +173,46 @@ Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
|
|||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.211 | 2421.57 | 1.055 | 30.33 | 1.266 | 429.57 |
|
||||
| 512 | 32 | 2 | 1088 | 0.419 | 2441.34 | 1.130 | 56.65 | 1.549 | 702.32 |
|
||||
| 512 | 32 | 4 | 2176 | 0.873 | 2345.54 | 1.174 | 108.99 | 2.048 | 1062.74 |
|
||||
| 512 | 32 | 8 | 4352 | 1.727 | 2371.85 | 1.254 | 204.22 | 2.980 | 1460.19 |
|
||||
| 512 | 32 | 16 | 8704 | 3.452 | 2373.22 | 1.492 | 343.16 | 4.944 | 1760.56 |
|
||||
| 512 | 32 | 32 | 17408 | 6.916 | 2368.93 | 1.675 | 611.51 | 8.591 | 2026.36 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.799 | 2277.26 | 1.084 | 29.51 | 2.883 | 1431.91 |
|
||||
| 4096 | 32 | 2 | 8256 | 3.577 | 2290.01 | 1.196 | 53.50 | 4.774 | 1729.51 |
|
||||
| 4096 | 32 | 4 | 16512 | 7.172 | 2284.36 | 1.313 | 97.50 | 8.485 | 1946.00 |
|
||||
| 4096 | 32 | 8 | 33024 | 14.341 | 2284.96 | 1.520 | 168.46 | 15.860 | 2082.18 |
|
||||
| 4096 | 32 | 16 | 66048 | 28.675 | 2285.44 | 1.983 | 258.21 | 30.658 | 2154.33 |
|
||||
| 4096 | 32 | 32 | 132096 | 57.354 | 2285.32 | 2.640 | 387.87 | 59.994 | 2201.82 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.701 | 2213.75 | 1.119 | 28.59 | 4.820 | 1706.34 |
|
||||
| 8192 | 32 | 2 | 16448 | 7.410 | 2211.19 | 1.272 | 50.31 | 8.682 | 1894.56 |
|
||||
| 8192 | 32 | 4 | 32896 | 14.802 | 2213.83 | 1.460 | 87.68 | 16.261 | 2022.96 |
|
||||
| 8192 | 32 | 8 | 65792 | 29.609 | 2213.35 | 1.781 | 143.74 | 31.390 | 2095.93 |
|
||||
| 8192 | 32 | 16 | 131584 | 59.229 | 2212.96 | 2.495 | 205.17 | 61.725 | 2131.79 |
|
||||
| 8192 | 32 | 32 | 263168 | 118.449 | 2213.15 | 3.714 | 275.75 | 122.162 | 2154.25 |
|
||||
| 512 | 32 | 1 | 544 | 0.212 | 2420.12 | 1.100 | 29.10 | 1.311 | 414.85 |
|
||||
| 512 | 32 | 2 | 1088 | 0.428 | 2393.89 | 1.185 | 54.00 | 1.613 | 674.56 |
|
||||
| 512 | 32 | 4 | 2176 | 0.894 | 2290.41 | 1.229 | 104.17 | 2.123 | 1025.02 |
|
||||
| 512 | 32 | 8 | 4352 | 1.758 | 2330.36 | 1.319 | 194.15 | 3.076 | 1414.70 |
|
||||
| 512 | 32 | 16 | 8704 | 3.508 | 2335.21 | 1.543 | 331.90 | 5.051 | 1723.33 |
|
||||
| 512 | 32 | 32 | 17408 | 7.035 | 2328.93 | 1.738 | 589.21 | 8.773 | 1984.29 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.831 | 2237.25 | 1.125 | 28.44 | 2.956 | 1396.42 |
|
||||
| 4096 | 32 | 2 | 8256 | 3.642 | 2249.48 | 1.253 | 51.07 | 4.895 | 1686.64 |
|
||||
| 4096 | 32 | 4 | 16512 | 7.274 | 2252.26 | 1.380 | 92.72 | 8.655 | 1907.81 |
|
||||
| 4096 | 32 | 8 | 33024 | 14.576 | 2248.09 | 1.617 | 158.29 | 16.193 | 2039.37 |
|
||||
| 4096 | 32 | 16 | 66048 | 29.138 | 2249.17 | 2.081 | 246.01 | 31.219 | 2115.63 |
|
||||
| 4096 | 32 | 32 | 132096 | 58.275 | 2249.19 | 2.814 | 363.87 | 61.089 | 2162.34 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.757 | 2180.26 | 1.184 | 27.03 | 4.941 | 1664.37 |
|
||||
| 8192 | 32 | 2 | 16448 | 7.522 | 2178.05 | 1.341 | 47.73 | 8.863 | 1855.77 |
|
||||
| 8192 | 32 | 4 | 32896 | 15.043 | 2178.25 | 1.548 | 82.69 | 16.591 | 1982.74 |
|
||||
| 8192 | 32 | 8 | 65792 | 30.111 | 2176.49 | 1.937 | 132.13 | 32.048 | 2052.90 |
|
||||
| 8192 | 32 | 16 | 131584 | 60.405 | 2169.90 | 2.706 | 189.21 | 63.111 | 2084.97 |
|
||||
| 8192 | 32 | 32 | 263168 | 120.439 | 2176.58 | 3.993 | 256.46 | 124.432 | 2114.96 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2272.74 ± 4.68 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 30.66 ± 0.02 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2107.80 ± 9.55 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 29.71 ± 0.05 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1937.80 ± 6.75 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 28.86 ± 0.04 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1641.12 ± 1.78 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 27.24 ± 0.04 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1296.02 ± 2.67 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 23.78 ± 0.03 |
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2250.28 ± 6.41 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 29.43 ± 0.02 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2100.19 ± 8.96 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 28.61 ± 0.02 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2007.56 ± 4.16 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 27.38 ± 0.09 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1779.11 ± 6.42 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 25.72 ± 0.03 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1471.23 ± 1.71 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 22.51 ± 0.02 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
build: 11fb327bf (7941)
|
||||
|
||||
## ggml-org/gemma-3-4b-it-qat-GGUF
|
||||
|
||||
|
|
@ -221,44 +221,91 @@ Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF
|
|||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.094 | 5434.73 | 0.394 | 81.21 | 0.488 | 1114.15 |
|
||||
| 512 | 32 | 2 | 1088 | 0.168 | 6091.68 | 0.498 | 128.52 | 0.666 | 1633.41 |
|
||||
| 512 | 32 | 4 | 2176 | 0.341 | 6010.68 | 0.542 | 236.37 | 0.882 | 2466.43 |
|
||||
| 512 | 32 | 8 | 4352 | 0.665 | 6161.46 | 0.678 | 377.74 | 1.342 | 3241.72 |
|
||||
| 512 | 32 | 16 | 8704 | 1.323 | 6193.19 | 0.902 | 567.41 | 2.225 | 3911.74 |
|
||||
| 512 | 32 | 32 | 17408 | 2.642 | 6202.03 | 1.231 | 832.03 | 3.872 | 4495.36 |
|
||||
| 4096 | 32 | 1 | 4128 | 0.701 | 5840.49 | 0.439 | 72.95 | 1.140 | 3621.23 |
|
||||
| 4096 | 32 | 2 | 8256 | 1.387 | 5906.82 | 0.574 | 111.48 | 1.961 | 4210.12 |
|
||||
| 4096 | 32 | 4 | 16512 | 2.758 | 5940.33 | 0.651 | 196.58 | 3.409 | 4843.33 |
|
||||
| 4096 | 32 | 8 | 33024 | 5.491 | 5967.56 | 0.876 | 292.40 | 6.367 | 5187.12 |
|
||||
| 4096 | 32 | 16 | 66048 | 10.978 | 5969.58 | 1.275 | 401.69 | 12.253 | 5390.38 |
|
||||
| 4096 | 32 | 32 | 132096 | 21.944 | 5972.93 | 1.992 | 514.16 | 23.936 | 5518.73 |
|
||||
| 8192 | 32 | 1 | 8224 | 1.402 | 5841.91 | 0.452 | 70.73 | 1.855 | 4434.12 |
|
||||
| 8192 | 32 | 2 | 16448 | 2.793 | 5865.34 | 0.637 | 100.55 | 3.430 | 4795.51 |
|
||||
| 8192 | 32 | 4 | 32896 | 5.564 | 5889.64 | 0.770 | 166.26 | 6.334 | 5193.95 |
|
||||
| 8192 | 32 | 8 | 65792 | 11.114 | 5896.44 | 1.122 | 228.07 | 12.237 | 5376.51 |
|
||||
| 8192 | 32 | 16 | 131584 | 22.210 | 5901.38 | 1.789 | 286.15 | 24.000 | 5482.74 |
|
||||
| 8192 | 32 | 32 | 263168 | 44.382 | 5906.56 | 3.044 | 336.38 | 47.426 | 5549.02 |
|
||||
| 512 | 32 | 1 | 544 | 0.092 | 5566.97 | 0.412 | 77.63 | 0.504 | 1078.95 |
|
||||
| 512 | 32 | 2 | 1088 | 0.161 | 6345.67 | 0.522 | 122.70 | 0.683 | 1593.06 |
|
||||
| 512 | 32 | 4 | 2176 | 0.325 | 6309.87 | 0.562 | 227.68 | 0.887 | 2453.87 |
|
||||
| 512 | 32 | 8 | 4352 | 0.643 | 6374.42 | 0.685 | 373.67 | 1.328 | 3277.94 |
|
||||
| 512 | 32 | 16 | 8704 | 1.277 | 6413.64 | 0.915 | 559.47 | 2.192 | 3970.01 |
|
||||
| 512 | 32 | 32 | 17408 | 2.518 | 6506.57 | 1.249 | 819.61 | 3.767 | 4620.64 |
|
||||
| 4096 | 32 | 1 | 4128 | 0.674 | 6079.68 | 0.453 | 70.60 | 1.127 | 3662.88 |
|
||||
| 4096 | 32 | 2 | 8256 | 1.335 | 6137.82 | 0.627 | 102.03 | 1.962 | 4208.11 |
|
||||
| 4096 | 32 | 4 | 16512 | 2.657 | 6167.35 | 0.749 | 170.92 | 3.405 | 4848.71 |
|
||||
| 4096 | 32 | 8 | 33024 | 5.307 | 6173.91 | 0.974 | 262.89 | 6.281 | 5257.53 |
|
||||
| 4096 | 32 | 16 | 66048 | 10.610 | 6176.96 | 1.379 | 371.42 | 11.988 | 5509.40 |
|
||||
| 4096 | 32 | 32 | 132096 | 21.213 | 6178.89 | 2.122 | 482.50 | 23.335 | 5660.82 |
|
||||
| 8192 | 32 | 1 | 8224 | 1.359 | 6027.34 | 0.467 | 68.52 | 1.826 | 4503.48 |
|
||||
| 8192 | 32 | 2 | 16448 | 2.699 | 6069.68 | 0.653 | 98.03 | 3.352 | 4906.68 |
|
||||
| 8192 | 32 | 4 | 32896 | 5.366 | 6106.74 | 0.818 | 156.55 | 6.184 | 5319.96 |
|
||||
| 8192 | 32 | 8 | 65792 | 10.755 | 6093.50 | 1.174 | 218.04 | 11.929 | 5515.22 |
|
||||
| 8192 | 32 | 16 | 131584 | 21.484 | 6100.82 | 1.829 | 279.90 | 23.314 | 5644.11 |
|
||||
| 8192 | 32 | 32 | 263168 | 42.950 | 6103.40 | 3.058 | 334.91 | 46.008 | 5720.05 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 5810.04 ± 21.71 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 84.54 ± 0.18 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 5288.04 ± 3.54 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 78.82 ± 1.37 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 4960.43 ± 16.64 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.13 ± 0.30 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 4495.92 ± 31.11 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 72.37 ± 0.29 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 3746.90 ± 40.01 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 63.02 ± 0.20 |
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 5948.74 ± 10.61 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 81.05 ± 0.20 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 5652.69 ± 34.29 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 76.37 ± 0.58 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 5509.57 ± 40.69 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 71.61 ± 0.80 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 5340.86 ± 36.92 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 70.89 ± 0.34 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 5023.30 ± 13.52 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 62.28 ± 0.30 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
build: 11fb327bf (7941)
|
||||
|
||||
## ggml-org/GLM-4.7-Flash-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/GLM-4.7-Flash-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.433 | 1181.83 | 0.693 | 46.16 | 1.126 | 482.94 |
|
||||
| 512 | 32 | 2 | 1088 | 0.439 | 2334.46 | 1.034 | 61.89 | 1.473 | 738.75 |
|
||||
| 512 | 32 | 4 | 2176 | 0.772 | 2654.46 | 1.459 | 87.76 | 2.230 | 975.77 |
|
||||
| 512 | 32 | 8 | 4352 | 1.541 | 2658.78 | 2.043 | 125.31 | 3.583 | 1214.47 |
|
||||
| 512 | 32 | 16 | 8704 | 3.083 | 2656.91 | 2.675 | 191.42 | 5.758 | 1511.62 |
|
||||
| 512 | 32 | 32 | 17408 | 6.159 | 2660.12 | 3.615 | 283.24 | 9.774 | 1780.98 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.915 | 2139.30 | 0.725 | 44.14 | 2.640 | 1563.83 |
|
||||
| 4096 | 32 | 2 | 8256 | 3.834 | 2136.40 | 1.119 | 57.21 | 4.953 | 1666.81 |
|
||||
| 4096 | 32 | 4 | 16512 | 7.636 | 2145.72 | 1.631 | 78.49 | 9.266 | 1781.93 |
|
||||
| 4096 | 32 | 8 | 33024 | 15.295 | 2142.40 | 2.344 | 109.21 | 17.639 | 1872.20 |
|
||||
| 4096 | 32 | 16 | 66048 | 30.573 | 2143.62 | 3.773 | 135.70 | 34.346 | 1923.04 |
|
||||
| 4096 | 32 | 32 | 132096 | 61.282 | 2138.82 | 5.795 | 176.71 | 67.077 | 1969.31 |
|
||||
| 8192 | 32 | 1 | 8224 | 4.510 | 1816.24 | 0.760 | 42.11 | 5.270 | 1560.44 |
|
||||
| 8192 | 32 | 2 | 16448 | 9.036 | 1813.19 | 1.206 | 53.06 | 10.242 | 1605.91 |
|
||||
| 8192 | 32 | 4 | 32896 | 18.070 | 1813.43 | 1.783 | 71.80 | 19.852 | 1657.03 |
|
||||
| 8192 | 32 | 8 | 65792 | 36.125 | 1814.15 | 2.635 | 97.14 | 38.760 | 1697.41 |
|
||||
| 8192 | 32 | 16 | 131584 | 72.367 | 1811.20 | 4.954 | 103.34 | 77.322 | 1701.77 |
|
||||
| 8192 | 32 | 32 | 263168 | 144.501 | 1814.13 | 8.103 | 126.37 | 152.604 | 1724.51 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | dio | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | --: | --------------: | -------------------: |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 | 2364.18 ± 11.43 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 | 48.68 ± 0.12 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d4096 | 1684.13 ± 1.24 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d4096 | 44.62 ± 0.22 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d8192 | 1314.68 ± 1.41 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d8192 | 42.59 ± 0.11 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d16384 | 914.05 ± 3.32 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d16384 | 38.72 ± 0.13 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d32768 | 567.20 ± 0.90 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d32768 | 32.65 ± 0.09 |
|
||||
|
||||
build: 11fb327bf (7941)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,298 @@
|
|||
## System info
|
||||
|
||||
```bash
|
||||
uname -a
|
||||
Darwin gg-studio 25.2.0 Darwin Kernel Version 25.2.0: Tue Nov 18 21:07:05 PST 2025; root:xnu-12377.61.12~1/RELEASE_ARM64_T6020 arm64
|
||||
|
||||
g++ --version
|
||||
Apple clang version 17.0.0 (clang-1700.3.19.1)
|
||||
Target: arm64-apple-darwin25.2.0
|
||||
```
|
||||
|
||||
## ggml-org/gpt-oss-20b-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.215 | 2381.35 | 0.245 | 130.45 | 0.460 | 1181.81 |
|
||||
| 512 | 32 | 2 | 1088 | 0.379 | 2701.43 | 0.382 | 167.56 | 0.761 | 1429.67 |
|
||||
| 512 | 32 | 4 | 2176 | 0.721 | 2839.27 | 0.604 | 211.76 | 1.326 | 1641.32 |
|
||||
| 512 | 32 | 8 | 4352 | 1.433 | 2858.30 | 1.033 | 247.75 | 2.466 | 1764.57 |
|
||||
| 512 | 32 | 16 | 8704 | 2.853 | 2871.12 | 1.570 | 326.11 | 4.423 | 1967.77 |
|
||||
| 512 | 32 | 32 | 17408 | 5.699 | 2874.95 | 1.910 | 536.15 | 7.609 | 2287.88 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.552 | 2638.56 | 0.334 | 95.72 | 1.887 | 2188.00 |
|
||||
| 4096 | 32 | 2 | 8256 | 3.084 | 2655.88 | 0.404 | 158.54 | 3.488 | 2366.86 |
|
||||
| 4096 | 32 | 4 | 16512 | 6.151 | 2663.78 | 0.652 | 196.39 | 6.802 | 2427.37 |
|
||||
| 4096 | 32 | 8 | 33024 | 12.288 | 2666.77 | 1.135 | 225.47 | 13.423 | 2460.27 |
|
||||
| 4096 | 32 | 16 | 66048 | 24.563 | 2668.12 | 1.762 | 290.55 | 26.325 | 2508.97 |
|
||||
| 4096 | 32 | 32 | 132096 | 49.114 | 2668.73 | 2.398 | 426.94 | 51.512 | 2564.35 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.345 | 2448.78 | 0.275 | 116.46 | 3.620 | 2271.76 |
|
||||
| 8192 | 32 | 2 | 16448 | 6.665 | 2458.11 | 0.425 | 150.71 | 7.090 | 2319.91 |
|
||||
| 8192 | 32 | 4 | 32896 | 13.315 | 2460.92 | 0.691 | 185.21 | 14.006 | 2348.63 |
|
||||
| 8192 | 32 | 8 | 65792 | 26.611 | 2462.73 | 1.212 | 211.16 | 27.823 | 2364.62 |
|
||||
| 8192 | 32 | 16 | 131584 | 53.232 | 2462.27 | 1.919 | 266.83 | 55.151 | 2385.88 |
|
||||
| 8192 | 32 | 32 | 263168 | 110.455 | 2373.30 | 2.752 | 372.03 | 113.208 | 2324.64 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2713.40 ± 3.56 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 129.97 ± 3.90 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 2324.59 ± 3.01 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 123.38 ± 0.17 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1989.82 ± 30.11 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 117.39 ± 0.33 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 1556.54 ± 6.22 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 109.75 ± 0.42 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 1122.63 ± 1.45 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 98.25 ± 0.08 |
|
||||
|
||||
build: b828e18c7 (7948)
|
||||
|
||||
## ggml-org/gpt-oss-120b-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.426 | 1200.92 | 0.361 | 88.56 | 0.788 | 690.64 |
|
||||
| 512 | 32 | 2 | 1088 | 0.683 | 1500.14 | 0.545 | 117.35 | 1.228 | 886.02 |
|
||||
| 512 | 32 | 4 | 2176 | 1.204 | 1701.56 | 0.847 | 151.19 | 2.050 | 1061.34 |
|
||||
| 512 | 32 | 8 | 4352 | 2.402 | 1705.20 | 1.455 | 176.00 | 3.857 | 1128.45 |
|
||||
| 512 | 32 | 16 | 8704 | 4.802 | 1705.90 | 2.349 | 217.93 | 7.152 | 1217.08 |
|
||||
| 512 | 32 | 32 | 17408 | 9.593 | 1707.85 | 3.665 | 279.42 | 13.258 | 1313.01 |
|
||||
| 4096 | 32 | 1 | 4128 | 2.581 | 1587.08 | 0.390 | 82.12 | 2.970 | 1389.67 |
|
||||
| 4096 | 32 | 2 | 8256 | 5.124 | 1598.79 | 0.589 | 108.62 | 5.713 | 1445.10 |
|
||||
| 4096 | 32 | 4 | 16512 | 10.231 | 1601.47 | 0.928 | 137.98 | 11.158 | 1479.80 |
|
||||
| 4096 | 32 | 8 | 33024 | 20.468 | 1600.94 | 1.606 | 159.38 | 22.074 | 1496.04 |
|
||||
| 4096 | 32 | 16 | 66048 | 40.924 | 1601.42 | 2.639 | 193.99 | 43.563 | 1516.15 |
|
||||
| 4096 | 32 | 32 | 132096 | 81.819 | 1601.98 | 4.466 | 229.29 | 86.284 | 1530.94 |
|
||||
| 8192 | 32 | 1 | 8224 | 5.517 | 1484.74 | 0.409 | 78.16 | 5.927 | 1387.58 |
|
||||
| 8192 | 32 | 2 | 16448 | 11.008 | 1488.43 | 0.622 | 102.92 | 11.629 | 1414.34 |
|
||||
| 8192 | 32 | 4 | 32896 | 22.002 | 1489.29 | 0.987 | 129.66 | 22.990 | 1430.90 |
|
||||
| 8192 | 32 | 8 | 65792 | 46.051 | 1423.11 | 1.858 | 137.79 | 47.909 | 1373.27 |
|
||||
| 8192 | 32 | 16 | 131584 | 97.680 | 1341.85 | 2.872 | 178.28 | 100.552 | 1308.62 |
|
||||
| 8192 | 32 | 32 | 263168 | 176.407 | 1486.02 | 5.048 | 202.85 | 181.455 | 1450.32 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1648.69 ± 1.80 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 85.60 ± 0.52 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1429.86 ± 1.01 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 82.03 ± 0.12 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1257.90 ± 1.81 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 78.23 ± 0.33 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 1013.49 ± 0.70 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 73.20 ± 0.28 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 721.11 ± 0.58 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 65.52 ± 0.10 |
|
||||
|
||||
build: b828e18c7 (7948)
|
||||
|
||||
## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.243 | 2109.23 | 0.419 | 76.34 | 0.662 | 821.84 |
|
||||
| 512 | 32 | 2 | 1088 | 0.406 | 2521.40 | 0.575 | 111.36 | 0.981 | 1109.27 |
|
||||
| 512 | 32 | 4 | 2176 | 0.744 | 2751.65 | 0.841 | 152.22 | 1.585 | 1372.71 |
|
||||
| 512 | 32 | 8 | 4352 | 1.479 | 2770.20 | 1.330 | 192.48 | 2.809 | 1549.53 |
|
||||
| 512 | 32 | 16 | 8704 | 2.951 | 2776.20 | 2.572 | 199.05 | 5.523 | 1575.93 |
|
||||
| 512 | 32 | 32 | 17408 | 5.899 | 2777.64 | 2.603 | 393.34 | 8.502 | 2047.54 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.901 | 2154.15 | 0.474 | 67.58 | 2.375 | 1738.14 |
|
||||
| 4096 | 32 | 2 | 8256 | 3.788 | 2162.89 | 0.652 | 98.17 | 4.439 | 1859.69 |
|
||||
| 4096 | 32 | 4 | 16512 | 7.564 | 2166.18 | 0.990 | 129.24 | 8.554 | 1930.34 |
|
||||
| 4096 | 32 | 8 | 33024 | 15.121 | 2166.98 | 1.632 | 156.82 | 16.754 | 1971.12 |
|
||||
| 4096 | 32 | 16 | 66048 | 30.241 | 2167.09 | 3.166 | 161.72 | 33.407 | 1977.04 |
|
||||
| 4096 | 32 | 32 | 132096 | 60.474 | 2167.42 | 3.780 | 270.93 | 64.254 | 2055.86 |
|
||||
| 8192 | 32 | 1 | 8224 | 4.733 | 1730.92 | 0.483 | 66.29 | 5.215 | 1576.85 |
|
||||
| 8192 | 32 | 2 | 16448 | 9.459 | 1732.09 | 0.722 | 88.58 | 10.182 | 1615.46 |
|
||||
| 8192 | 32 | 4 | 32896 | 18.912 | 1732.65 | 1.120 | 114.26 | 20.032 | 1642.14 |
|
||||
| 8192 | 32 | 8 | 65792 | 37.797 | 1733.91 | 1.873 | 136.67 | 39.670 | 1658.49 |
|
||||
| 8192 | 32 | 16 | 131584 | 84.133 | 1557.92 | 3.718 | 137.72 | 87.850 | 1497.82 |
|
||||
| 8192 | 32 | 32 | 263168 | 157.550 | 1663.88 | 4.854 | 210.98 | 162.403 | 1620.46 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2453.11 ± 1.70 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 78.97 ± 0.46 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1569.46 ± 1.97 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 71.18 ± 0.37 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1145.51 ± 1.16 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 65.11 ± 0.36 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 741.04 ± 0.74 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 56.87 ± 0.14 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 431.31 ± 0.31 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 45.26 ± 0.11 |
|
||||
|
||||
build: b828e18c7 (7948)
|
||||
|
||||
## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.339 | 1509.22 | 0.409 | 78.17 | 0.749 | 726.67 |
|
||||
| 512 | 32 | 2 | 1088 | 0.646 | 1584.93 | 0.483 | 132.45 | 1.129 | 963.45 |
|
||||
| 512 | 32 | 4 | 2176 | 1.258 | 1627.50 | 0.585 | 218.67 | 1.844 | 1180.21 |
|
||||
| 512 | 32 | 8 | 4352 | 2.506 | 1634.41 | 1.005 | 254.83 | 3.511 | 1239.64 |
|
||||
| 512 | 32 | 16 | 8704 | 5.007 | 1635.99 | 1.595 | 321.07 | 6.602 | 1318.38 |
|
||||
| 512 | 32 | 32 | 17408 | 10.007 | 1637.19 | 1.676 | 611.12 | 11.683 | 1490.03 |
|
||||
| 4096 | 32 | 1 | 4128 | 2.730 | 1500.46 | 0.431 | 74.31 | 3.160 | 1306.12 |
|
||||
| 4096 | 32 | 2 | 8256 | 5.446 | 1504.33 | 0.524 | 122.04 | 5.970 | 1382.91 |
|
||||
| 4096 | 32 | 4 | 16512 | 10.875 | 1506.59 | 0.662 | 193.45 | 11.537 | 1431.28 |
|
||||
| 4096 | 32 | 8 | 33024 | 21.749 | 1506.61 | 1.158 | 221.11 | 22.907 | 1441.64 |
|
||||
| 4096 | 32 | 16 | 66048 | 43.477 | 1507.36 | 1.901 | 269.32 | 45.378 | 1455.49 |
|
||||
| 4096 | 32 | 32 | 132096 | 86.954 | 1507.37 | 2.325 | 440.42 | 89.279 | 1479.59 |
|
||||
| 8192 | 32 | 1 | 8224 | 5.940 | 1379.21 | 0.449 | 71.20 | 6.389 | 1287.20 |
|
||||
| 8192 | 32 | 2 | 16448 | 11.865 | 1380.84 | 0.559 | 114.59 | 12.424 | 1323.92 |
|
||||
| 8192 | 32 | 4 | 32896 | 23.723 | 1381.25 | 0.728 | 175.80 | 24.452 | 1345.35 |
|
||||
| 8192 | 32 | 8 | 65792 | 47.434 | 1381.63 | 1.279 | 200.09 | 48.713 | 1350.60 |
|
||||
| 8192 | 32 | 16 | 131584 | 94.864 | 1381.69 | 2.198 | 232.97 | 97.061 | 1355.68 |
|
||||
| 8192 | 32 | 32 | 263168 | 189.743 | 1381.57 | 3.052 | 335.50 | 192.795 | 1365.01 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1565.91 ± 0.86 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 79.68 ± 0.39 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1317.41 ± 1.02 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 74.70 ± 0.04 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1134.65 ± 0.76 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 71.31 ± 0.12 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 886.46 ± 0.78 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 65.93 ± 0.06 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 612.21 ± 0.30 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 56.83 ± 0.02 |
|
||||
|
||||
build: b828e18c7 (7948)
|
||||
|
||||
## ggml-org/gemma-3-4b-it-qat-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.186 | 2748.06 | 0.235 | 136.28 | 0.421 | 1291.78 |
|
||||
| 512 | 32 | 2 | 1088 | 0.342 | 2990.95 | 0.312 | 204.99 | 0.655 | 1662.15 |
|
||||
| 512 | 32 | 4 | 2176 | 0.662 | 3092.69 | 0.404 | 316.97 | 1.066 | 2041.21 |
|
||||
| 512 | 32 | 8 | 4352 | 1.317 | 3110.41 | 0.579 | 441.80 | 1.896 | 2294.97 |
|
||||
| 512 | 32 | 16 | 8704 | 2.625 | 3120.23 | 1.207 | 424.08 | 3.833 | 2270.93 |
|
||||
| 512 | 32 | 32 | 17408 | 5.242 | 3125.34 | 1.299 | 788.23 | 6.541 | 2661.19 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.408 | 2909.90 | 0.296 | 108.07 | 1.704 | 2422.95 |
|
||||
| 4096 | 32 | 2 | 8256 | 2.793 | 2933.40 | 0.325 | 197.00 | 3.118 | 2648.25 |
|
||||
| 4096 | 32 | 4 | 16512 | 5.567 | 2943.22 | 0.440 | 291.07 | 6.006 | 2749.05 |
|
||||
| 4096 | 32 | 8 | 33024 | 11.114 | 2948.23 | 0.640 | 400.26 | 11.754 | 2809.59 |
|
||||
| 4096 | 32 | 16 | 66048 | 22.217 | 2949.76 | 1.327 | 385.83 | 23.544 | 2805.26 |
|
||||
| 4096 | 32 | 32 | 132096 | 44.420 | 2950.77 | 1.553 | 659.30 | 45.973 | 2873.36 |
|
||||
| 8192 | 32 | 1 | 8224 | 2.860 | 2864.58 | 0.250 | 127.90 | 3.110 | 2644.42 |
|
||||
| 8192 | 32 | 2 | 16448 | 5.702 | 2873.63 | 0.335 | 191.07 | 6.036 | 2724.77 |
|
||||
| 8192 | 32 | 4 | 32896 | 11.383 | 2878.69 | 0.456 | 280.72 | 11.839 | 2778.63 |
|
||||
| 8192 | 32 | 8 | 65792 | 22.750 | 2880.75 | 0.671 | 381.48 | 23.421 | 2809.14 |
|
||||
| 8192 | 32 | 16 | 131584 | 45.484 | 2881.74 | 1.406 | 364.04 | 46.890 | 2806.22 |
|
||||
| 8192 | 32 | 32 | 263168 | 90.956 | 2882.10 | 1.793 | 570.98 | 92.749 | 2837.41 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2923.59 ± 3.10 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 134.28 ± 1.29 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 2748.21 ± 3.05 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 133.11 ± 0.08 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 2641.45 ± 2.31 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 125.85 ± 0.35 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 2446.20 ± 2.94 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 125.00 ± 0.12 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 2129.18 ± 7.43 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 113.14 ± 0.10 |
|
||||
|
||||
build: b828e18c7 (7948)
|
||||
|
||||
## ggml-org/GLM-4.7-Flash-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/GLM-4.7-Flash-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.326 | 1568.69 | 0.522 | 61.28 | 0.849 | 641.09 |
|
||||
| 512 | 32 | 2 | 1088 | 0.528 | 1939.42 | 0.744 | 86.07 | 1.272 | 855.63 |
|
||||
| 512 | 32 | 4 | 2176 | 0.968 | 2114.85 | 1.105 | 115.85 | 2.073 | 1049.56 |
|
||||
| 512 | 32 | 8 | 4352 | 1.928 | 2124.62 | 1.684 | 151.99 | 3.612 | 1204.82 |
|
||||
| 512 | 32 | 16 | 8704 | 3.844 | 2131.34 | 3.141 | 162.99 | 6.985 | 1246.11 |
|
||||
| 512 | 32 | 32 | 17408 | 7.683 | 2132.38 | 3.924 | 260.95 | 11.608 | 1499.71 |
|
||||
| 4096 | 32 | 1 | 4128 | 3.280 | 1248.75 | 0.723 | 44.29 | 4.003 | 1031.33 |
|
||||
| 4096 | 32 | 2 | 8256 | 6.545 | 1251.63 | 0.930 | 68.85 | 7.475 | 1104.53 |
|
||||
| 4096 | 32 | 4 | 16512 | 13.080 | 1252.64 | 1.454 | 88.03 | 14.534 | 1136.12 |
|
||||
| 4096 | 32 | 8 | 33024 | 26.154 | 1252.90 | 2.388 | 107.20 | 28.542 | 1157.04 |
|
||||
| 4096 | 32 | 16 | 66048 | 52.297 | 1253.14 | 4.724 | 108.37 | 57.022 | 1158.30 |
|
||||
| 4096 | 32 | 32 | 132096 | 104.578 | 1253.34 | 7.266 | 140.93 | 111.844 | 1181.08 |
|
||||
| 8192 | 32 | 1 | 8224 | 9.623 | 851.31 | 0.767 | 41.72 | 10.390 | 791.54 |
|
||||
| 8192 | 32 | 2 | 16448 | 20.916 | 783.32 | 1.148 | 55.74 | 22.064 | 745.45 |
|
||||
| 8192 | 32 | 4 | 32896 | 43.509 | 753.14 | 1.833 | 69.82 | 45.342 | 725.51 |
|
||||
| 8192 | 32 | 8 | 65792 | 79.621 | 823.10 | 3.180 | 80.50 | 82.801 | 794.58 |
|
||||
| 8192 | 32 | 16 | 131584 | 153.770 | 852.39 | 6.502 | 78.74 | 160.272 | 821.00 |
|
||||
| 8192 | 32 | 32 | 263168 | 307.539 | 852.39 | 10.839 | 94.48 | 318.378 | 826.59 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1629.33 ± 0.27 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 59.58 ± 0.13 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 732.67 ± 0.42 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 47.44 ± 0.15 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 474.33 ± 0.33 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 40.20 ± 0.20 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 277.46 ± 0.09 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 31.50 ± 0.93 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 151.44 ± 0.05 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 21.81 ± 0.01 |
|
||||
|
||||
build: b828e18c7 (7948)
|
||||
27
ci/run.sh
27
ci/run.sh
|
|
@ -635,6 +635,29 @@ function gg_check_build_requirements {
|
|||
fi
|
||||
}
|
||||
|
||||
function gg_run_test_backend_ops_cpu {
|
||||
cd ${SRC}
|
||||
|
||||
cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time ./bin/test-backend-ops -b CPU ) 2>&1 | tee -a $OUT/${ci}-test-backend-ops-cpu.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_test_backend_ops_cpu {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'Runs test-backend-ops for CPU backend\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '```\n'
|
||||
gg_printf '%s\n' "$(cat $OUT/${ci}-test-backend-ops-cpu.log)"
|
||||
gg_printf '```\n'
|
||||
gg_printf '\n'
|
||||
}
|
||||
|
||||
## main
|
||||
|
||||
export LLAMA_LOG_PREFIX=1
|
||||
|
|
@ -663,6 +686,10 @@ ret=0
|
|||
test $ret -eq 0 && gg_run ctest_debug
|
||||
test $ret -eq 0 && gg_run ctest_release
|
||||
|
||||
if [ ! -z ${GG_BUILD_HIGH_PERF} ]; then
|
||||
test $ret -eq 0 && gg_run test_backend_ops_cpu
|
||||
fi
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
test $ret -eq 0 && gg_run embd_bge_small
|
||||
test $ret -eq 0 && gg_run rerank_tiny
|
||||
|
|
|
|||
|
|
@ -32,4 +32,27 @@ function(llama_add_compile_flags)
|
|||
set(CXX_FLAGS "" PARENT_SCOPE)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
if (LLAMA_SANITIZE_THREAD)
|
||||
message(STATUS "Using -fsanitize=thread")
|
||||
|
||||
add_compile_options(-fsanitize=thread)
|
||||
link_libraries (-fsanitize=thread)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_ADDRESS)
|
||||
message(STATUS "Using -fsanitize=address")
|
||||
|
||||
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
|
||||
link_libraries (-fsanitize=address)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_UNDEFINED)
|
||||
message(STATUS "Using -fsanitize=undefined")
|
||||
|
||||
add_compile_options(-fsanitize=undefined)
|
||||
link_libraries (-fsanitize=undefined)
|
||||
endif()
|
||||
endif()
|
||||
endfunction()
|
||||
|
|
|
|||
|
|
@ -45,6 +45,8 @@ static float common_ggml_get_float_value(const uint8_t * data,
|
|||
return v;
|
||||
}
|
||||
|
||||
#define INDENT " "
|
||||
|
||||
template <bool abort>
|
||||
void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
|
||||
GGML_ASSERT(n > 0);
|
||||
|
|
@ -60,41 +62,41 @@ void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * n
|
|||
}
|
||||
}
|
||||
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
||||
LOG_ERR(" [\n");
|
||||
LOG(INDENT "[\n");
|
||||
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
|
||||
if (i2 == n && ne[2] > 2 * n) {
|
||||
LOG_ERR(" ..., \n");
|
||||
LOG(INDENT INDENT "..., \n");
|
||||
i2 = ne[2] - n;
|
||||
}
|
||||
LOG_ERR(" [\n");
|
||||
LOG(INDENT INDENT "[\n");
|
||||
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
|
||||
if (i1 == n && ne[1] > 2 * n) {
|
||||
LOG_ERR(" ..., \n");
|
||||
LOG(INDENT INDENT INDENT "..., \n");
|
||||
i1 = ne[1] - n;
|
||||
}
|
||||
LOG_ERR(" [");
|
||||
LOG(INDENT INDENT INDENT "[");
|
||||
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
|
||||
if (i0 == n && ne[0] > 2 * n) {
|
||||
LOG_ERR("..., ");
|
||||
LOG(" ..., ");
|
||||
i0 = ne[0] - n;
|
||||
}
|
||||
const float v = common_ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
|
||||
LOG_ERR("%12.4f", v);
|
||||
LOG("%12.4f", v);
|
||||
if (i0 < ne[0] - 1) {
|
||||
LOG_ERR(", ");
|
||||
LOG(", ");
|
||||
}
|
||||
}
|
||||
LOG_ERR("],\n");
|
||||
LOG(" ],\n");
|
||||
}
|
||||
LOG_ERR(" ],\n");
|
||||
LOG(INDENT INDENT "],\n");
|
||||
}
|
||||
LOG_ERR(" ]\n");
|
||||
LOG_ERR(" sum = %f\n", sum);
|
||||
LOG(INDENT "]\n");
|
||||
LOG(INDENT "sum = %f\n", sum);
|
||||
}
|
||||
|
||||
if constexpr (abort) {
|
||||
if (std::isnan(sum)) {
|
||||
LOG_ERR("encountered NaN - aborting\n");
|
||||
LOG("encountered NaN - aborting\n");
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
|
@ -137,9 +139,9 @@ template <bool abort_on_nan> bool common_debug_cb_eval(struct ggml_tensor * t, b
|
|||
}
|
||||
|
||||
if (matches_filter) {
|
||||
LOG_ERR("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type),
|
||||
ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "",
|
||||
common_ggml_ne_string(t).c_str());
|
||||
LOG("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type),
|
||||
ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "",
|
||||
common_ggml_ne_string(t).c_str());
|
||||
}
|
||||
|
||||
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
|
||||
|
|
|
|||
|
|
@ -144,6 +144,13 @@ value binary_expression::execute_impl(context & ctx) {
|
|||
return false;
|
||||
};
|
||||
|
||||
auto test_is_in = [&]() -> bool {
|
||||
func_args args(ctx);
|
||||
args.push_back(left_val);
|
||||
args.push_back(right_val);
|
||||
return global_builtins().at("test_is_in")(args)->as_bool();
|
||||
};
|
||||
|
||||
// Handle undefined and null values
|
||||
if (is_val<value_undefined>(left_val) || is_val<value_undefined>(right_val)) {
|
||||
if (is_val<value_undefined>(right_val) && (op.value == "in" || op.value == "not in")) {
|
||||
|
|
@ -223,19 +230,11 @@ value binary_expression::execute_impl(context & ctx) {
|
|||
return result;
|
||||
}
|
||||
} else if (is_val<value_array>(right_val)) {
|
||||
auto & arr = right_val->as_array();
|
||||
bool member = false;
|
||||
for (const auto & item : arr) {
|
||||
if (*left_val == *item) {
|
||||
member = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// case: 1 in [0, 1, 2]
|
||||
bool member = test_is_in();
|
||||
if (op.value == "in") {
|
||||
JJ_DEBUG("Checking membership: %s in Array is %d", left_val->type().c_str(), member);
|
||||
return mk_val<value_bool>(member);
|
||||
} else if (op.value == "not in") {
|
||||
JJ_DEBUG("Checking non-membership: %s not in Array is %d", left_val->type().c_str(), !member);
|
||||
return mk_val<value_bool>(!member);
|
||||
}
|
||||
}
|
||||
|
|
@ -252,22 +251,23 @@ value binary_expression::execute_impl(context & ctx) {
|
|||
|
||||
// String membership
|
||||
if (is_val<value_string>(left_val) && is_val<value_string>(right_val)) {
|
||||
auto left_str = left_val->as_string().str();
|
||||
auto right_str = right_val->as_string().str();
|
||||
// case: "a" in "abc"
|
||||
bool member = test_is_in();
|
||||
if (op.value == "in") {
|
||||
return mk_val<value_bool>(right_str.find(left_str) != std::string::npos);
|
||||
return mk_val<value_bool>(member);
|
||||
} else if (op.value == "not in") {
|
||||
return mk_val<value_bool>(right_str.find(left_str) == std::string::npos);
|
||||
return mk_val<value_bool>(!member);
|
||||
}
|
||||
}
|
||||
|
||||
// Value key in object
|
||||
if (is_val<value_object>(right_val)) {
|
||||
bool has_key = right_val->has_key(left_val);
|
||||
// case: key in {key: value}
|
||||
bool member = test_is_in();
|
||||
if (op.value == "in") {
|
||||
return mk_val<value_bool>(has_key);
|
||||
return mk_val<value_bool>(member);
|
||||
} else if (op.value == "not in") {
|
||||
return mk_val<value_bool>(!has_key);
|
||||
return mk_val<value_bool>(!member);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -393,6 +393,33 @@ const func_builtins & global_builtins() {
|
|||
{"test_is_lt", test_compare_fn<value_compare_op::lt>},
|
||||
{"test_is_lessthan", test_compare_fn<value_compare_op::lt>},
|
||||
{"test_is_ne", test_compare_fn<value_compare_op::ne>},
|
||||
{"test_is_in", [](const func_args & args) -> value {
|
||||
args.ensure_count(2);
|
||||
auto needle = args.get_pos(0);
|
||||
auto haystack = args.get_pos(1);
|
||||
if (is_val<value_undefined>(haystack)) {
|
||||
return mk_val<value_bool>(false);
|
||||
}
|
||||
if (is_val<value_array>(haystack)) {
|
||||
for (const auto & item : haystack->as_array()) {
|
||||
if (*needle == *item) {
|
||||
return mk_val<value_bool>(true);
|
||||
}
|
||||
}
|
||||
return mk_val<value_bool>(false);
|
||||
}
|
||||
if (is_val<value_string>(haystack)) {
|
||||
if (!is_val<value_string>(needle)) {
|
||||
throw raised_exception("'in' test expects args[1] as string when args[0] is string, got args[1] as " + needle->type());
|
||||
}
|
||||
return mk_val<value_bool>(
|
||||
haystack->as_string().str().find(needle->as_string().str()) != std::string::npos);
|
||||
}
|
||||
if (is_val<value_object>(haystack)) {
|
||||
return mk_val<value_bool>(haystack->has_key(needle));
|
||||
}
|
||||
throw raised_exception("'in' test expects iterable as first argument, got " + haystack->type());
|
||||
}},
|
||||
{"test_is_test", [](const func_args & args) -> value {
|
||||
args.ensure_vals<value_string>();
|
||||
auto & builtins = global_builtins();
|
||||
|
|
|
|||
|
|
@ -7,6 +7,18 @@
|
|||
#include <cstdio>
|
||||
#include <sstream>
|
||||
|
||||
// prime number used for LCG hash function (32 bit), it is near (sqrt(5) - 1)/2 * 2^32.
|
||||
#define LCG_FACTOR 2654435761UL
|
||||
|
||||
// Compute the LCG hash of a n-gram of size len at offset start.
|
||||
static uint32_t common_ngram_map_hash(const llama_tokens & tokens, size_t start, size_t len) {
|
||||
uint32_t hash = 0;
|
||||
for (size_t i = 0; i < len; ++i) {
|
||||
hash = hash * LCG_FACTOR + tokens[start + i];
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
|
||||
// Print the values of a sublist of `llama_tokens & inp` to a string in the form [v0, v1, v2, ...].
|
||||
static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length) {
|
||||
std::ostringstream oss;
|
||||
|
|
@ -35,21 +47,15 @@ static std::string common_tokens_to_str(const llama_tokens & inp, size_t start,
|
|||
* @return Vector of draft tokens, empty if no matching pattern is found
|
||||
*/
|
||||
llama_tokens common_ngram_simple_draft(
|
||||
common_ngram_simple_state & state,
|
||||
const common_ngram_simple_config & config,
|
||||
const llama_tokens & tokens, llama_token sampled) {
|
||||
|
||||
// Simple implementation of self-speculative decoding without a draft model.
|
||||
//
|
||||
const size_t cur_len = tokens.size();
|
||||
// Only check every check_rate tokens to save compute
|
||||
// i.e., perform check if (cur_len - idx_last_check) >= check_rate
|
||||
if (state.idx_last_check + state.config.check_rate > cur_len) {
|
||||
llama_tokens draft_tokens;
|
||||
return draft_tokens;
|
||||
}
|
||||
|
||||
size_t n_draft_min = state.config.size_ngram; // size of n-gram to lookup in token history
|
||||
size_t n_draft_max = state.config.size_mgram; // the m-gram following the found n-gram is used for draft
|
||||
const size_t n_draft_min = config.size_ngram; // size of n-gram to lookup in token history
|
||||
const size_t n_draft_max = config.size_mgram; // the m-gram following the found n-gram is used for draft
|
||||
|
||||
// vector for tokens we want to verify.
|
||||
// return empty vector if there is no match.
|
||||
|
|
@ -68,9 +74,6 @@ llama_tokens common_ngram_simple_draft(
|
|||
}
|
||||
pattern.push_back(sampled); // add the last token to the pattern
|
||||
|
||||
// We do a search in the token history.
|
||||
state.idx_last_check = cur_len;
|
||||
|
||||
size_t match_pos = 0; // we ignore position 0, position 0 == no match
|
||||
// search backwards, but skip the current match (we are currently there)
|
||||
for (size_t j = cur_len - n_draft_min - 1; j > 0; --j) {
|
||||
|
|
@ -115,6 +118,100 @@ llama_tokens common_ngram_simple_draft(
|
|||
// maximum number of counted values of a ngram map value.
|
||||
#define COMMON_NGRAM_MAX_VALUE_COUNT 16380
|
||||
|
||||
void common_ngram_map_begin(
|
||||
common_ngram_map & map, const llama_tokens & tokens) {
|
||||
size_t size_begin = tokens.size();
|
||||
|
||||
LOG_DBG("%s: begin, idx_last_draft=%zu, new begin=%zu, #keys=%zu\n", __func__,
|
||||
map.idx_last_check, size_begin, map.keys.size());
|
||||
|
||||
size_t count_map_entries_upd = 0;
|
||||
if (!map.key_map.empty() && size_begin < map.idx_last_check) {
|
||||
if (map.show_key_map_stats) {
|
||||
// Print statistics of hash map map_key.
|
||||
size_t count_nonzero = 0;
|
||||
uint32_t min_idx = UINT32_MAX;
|
||||
uint32_t max_idx = 0;
|
||||
for (size_t i = 0; i < map.key_map.size(); ++i) {
|
||||
uint32_t key_idx = map.key_map[i];
|
||||
if (key_idx != 0) {
|
||||
++count_nonzero;
|
||||
if (key_idx < min_idx) min_idx = key_idx;
|
||||
if (key_idx > max_idx) max_idx = key_idx;
|
||||
}
|
||||
}
|
||||
if (count_nonzero == 0) {
|
||||
min_idx = 0;
|
||||
}
|
||||
LOG_INF("%s: key_map stats: entries=%zu, min_idx=%u, max_idx=%u, key_map_last_idx=%u\n",
|
||||
__func__, count_nonzero, min_idx, max_idx, map.key_map_last_idx);
|
||||
}
|
||||
|
||||
// Update the map from hash to key index (clear outdated entries).
|
||||
for (size_t i = 0; i < map.key_map.size(); ++i) {
|
||||
uint32_t key_idx = map.key_map[i];
|
||||
if (key_idx >= map.size_last_begin) {
|
||||
map.key_map[i] = 0;
|
||||
count_map_entries_upd++;
|
||||
}
|
||||
}
|
||||
map.key_map_last_idx = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0;
|
||||
}
|
||||
|
||||
if (size_begin < map.idx_last_check && !map.keys.empty()) {
|
||||
// The next token generation will start at index size_begin.
|
||||
// The tokens between map.size_last_begin and size_begin are no longer valid.
|
||||
//
|
||||
// Refresh map: Remove all entries with index >= map.size_last_begin.
|
||||
size_t count_keys = map.keys.size();
|
||||
size_t count_keys_del = 0;
|
||||
size_t count_values_del = 0;
|
||||
for (int32_t i = map.keys.size() - 1; i >= 0; --i) {
|
||||
common_ngram_map_key & key = map.keys[i];
|
||||
if (key.key_idx >= map.size_last_begin) {
|
||||
// Delete the key.
|
||||
LOG_DBG("%s: delete key %d at index %zu (>= size_last_begin=%zu)\n", __func__, i, key.key_idx, map.size_last_begin);
|
||||
map.keys.erase(map.keys.begin() + i);
|
||||
count_keys_del++;
|
||||
continue;
|
||||
}
|
||||
if (map.key_only) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check the indices of the values.
|
||||
for (int16_t j = COMMON_NGRAM_MAX_VALUES - 1; j >= 0; --j) {
|
||||
common_ngram_map_value & value = key.values[j];
|
||||
if (value.value_idx >= map.size_last_begin) {
|
||||
// Delete the value.
|
||||
count_values_del++;
|
||||
|
||||
// Move all values after this value to the left.
|
||||
for (uint16_t k = j; k < COMMON_NGRAM_MAX_VALUES - 1; ++k) {
|
||||
key.values[k] = key.values[k + 1];
|
||||
}
|
||||
// Clear the last value.
|
||||
key.values[COMMON_NGRAM_MAX_VALUES - 1].value_idx = 0;
|
||||
key.values[COMMON_NGRAM_MAX_VALUES - 1].value_num = 0;
|
||||
}
|
||||
}
|
||||
if (key.values[0].value_idx == 0) {
|
||||
// No values left, delete the key.
|
||||
LOG_DBG("%s: delete key %d at index %zu (no values left)\n", __func__, i, key.key_idx);
|
||||
map.keys.erase(map.keys.begin() + i);
|
||||
count_keys_del++;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_INF("%s: refresh map: idx_last_draft=%zu, new begin=%zu, #keys_checked=%zu, #keys_del=%zu, #values_del=%zu, #hashes_upd=%zu\n", __func__,
|
||||
map.idx_last_check, size_begin,
|
||||
count_keys, count_keys_del, count_values_del, count_map_entries_upd);
|
||||
}
|
||||
|
||||
map.idx_last_check = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0;
|
||||
map.size_last_begin = size_begin;
|
||||
}
|
||||
|
||||
void common_ngram_map_draft(common_ngram_map & map,
|
||||
const llama_tokens & inp, llama_token sampled,
|
||||
llama_tokens & draft) {
|
||||
|
|
@ -129,6 +226,10 @@ void common_ngram_map_draft(common_ngram_map & map,
|
|||
if (cur_len < static_cast<size_t>(2 * n + m)) {
|
||||
return;
|
||||
}
|
||||
if (cur_len >= static_cast<size_t>(UINT32_MAX)) {
|
||||
// key_map uses uint32_t instead of size_t.
|
||||
GGML_ABORT("%s: cur_len exceeds UINT32_MAX: %zu", __func__, cur_len);
|
||||
}
|
||||
|
||||
// Only check every check_rate tokens to save compute
|
||||
// i.e., perform check if (cur_len - idx_last_check) >= check_rate
|
||||
|
|
@ -147,24 +248,92 @@ void common_ngram_map_draft(common_ngram_map & map,
|
|||
|
||||
// search for the key in the map
|
||||
size_t match_pos = 0;
|
||||
for (size_t j = cur_len - n - m - 1; j > 0; --j) {
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[j + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
if (map.size_last_begin > cur_len) {
|
||||
GGML_ABORT("%s: map.size_last_begin > cur_len: %zu > %zu", __func__, map.size_last_begin, cur_len);
|
||||
}
|
||||
if (!map.key_map.empty()) {
|
||||
// Search for the key in the map key_map from hash of ngrams to index of ngram.
|
||||
uint32_t idx_hash = (common_ngram_map_hash(key_tokens, 0, n) % map.key_map.size());
|
||||
uint32_t idx_key = map.key_map[idx_hash];
|
||||
if (idx_key != 0 && idx_key < cur_len - n - m - 1) {
|
||||
// Check if the key matches the key at idx_key (because of possible collisions).
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[idx_key + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
LOG_DBG("%s: key hash %x -> idx_key %d: match %d\n", __func__, idx_hash, idx_key, match ? 1 : 0);
|
||||
if (match) {
|
||||
match_pos = idx_key;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
match_pos = j;
|
||||
break;
|
||||
}
|
||||
if (match_pos == 0 && map.size_last_begin > (size_t) (n + m + 1)) {
|
||||
// Search for the key in [1, map.size_last_begin - n - m -1], descending.
|
||||
for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) {
|
||||
// Check if the key matches the key.
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[j + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
match_pos = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (match_pos == 0) {
|
||||
// In case of a reasoning chat, the part after size_last_begin may be deleted/reordered later.
|
||||
//
|
||||
// Search in [size_last_begin, cur_len - n - m - 1], descending.
|
||||
for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) {
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[j + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
match_pos = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (match_pos > 0) {
|
||||
LOG_INF("%s: cur_len = %zu, n = %d, m = %d, sz_tkns = %zu, sampled = %d, match_pos = %zu\n", __func__,
|
||||
LOG_DBG("%s: cur_len = %zu, n = %d, m = %d, sz_tkns = %zu, sampled = %d, match_pos = %zu\n", __func__,
|
||||
cur_len, n, m, key_tokens.size(), sampled, match_pos);
|
||||
}
|
||||
|
||||
if (!map.key_map.empty()) {
|
||||
// Add hashes of new ngrams in key_map.
|
||||
//
|
||||
// Use the same order as above.
|
||||
if (map.size_last_begin > (size_t) (n + m + 1)) {
|
||||
for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) {
|
||||
// compute hash and store index of ngram at idx j in the map.
|
||||
uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size());
|
||||
if (map.key_map[idx_hash] == 0) {
|
||||
map.key_map[idx_hash] = j; // collisions may occur
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) {
|
||||
// compute hash and store index of ngram at idx j in the map.
|
||||
uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size());
|
||||
if (map.key_map[idx_hash] == 0) {
|
||||
map.key_map[idx_hash] = j;
|
||||
}
|
||||
}
|
||||
map.key_map_last_idx = std::max(static_cast<uint32_t>(cur_len - n - m - 1), map.key_map_last_idx);
|
||||
}
|
||||
|
||||
if (match_pos == 0) {
|
||||
return;
|
||||
}
|
||||
|
|
@ -215,8 +384,8 @@ void common_ngram_map_draft(common_ngram_map & map,
|
|||
draft.push_back(inp[match_pos + n + i]);
|
||||
}
|
||||
|
||||
LOG_INF("%s: key_offset = %zu, key_num = %d, draft.size = %zu\n", __func__,
|
||||
key_offset, curr_key.key_num, draft.size());
|
||||
LOG_DBG("%s: key_idx = %zu, key_offset = %zu, key_num = %d, draft.size = %zu\n", __func__,
|
||||
curr_key.key_idx, key_offset, curr_key.key_num, draft.size());
|
||||
|
||||
map.last_draft_created = false;
|
||||
map.last_draft_key_idx = key_offset;
|
||||
|
|
@ -318,7 +487,7 @@ void common_ngram_map_draft(common_ngram_map & map,
|
|||
}
|
||||
}
|
||||
|
||||
if (sum_occur > 0 && max_occur < 3 * sum_occur) {
|
||||
if (sum_occur > 0 && max_occur < 2 * sum_occur) {
|
||||
// The most frequent value is not much more frequent than the other values.
|
||||
// We do not use the draft.
|
||||
return;
|
||||
|
|
|
|||
|
|
@ -9,6 +9,8 @@
|
|||
// 2. ngram_map: lookup of n-grams followed by m-grams in token history using a map.
|
||||
// The map is a vector of key n-grams, and for each key n-gram there is a list of value m-grams.
|
||||
//
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/18471
|
||||
//
|
||||
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
|
@ -25,23 +27,9 @@ struct common_ngram_simple_config {
|
|||
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
|
||||
};
|
||||
|
||||
// current state (and config) of n-gram simple.
|
||||
struct common_ngram_simple_state {
|
||||
common_ngram_simple_config config;
|
||||
|
||||
size_t idx_last_check = 0; // index of last check in context history (mutable)
|
||||
|
||||
common_ngram_simple_state(const common_ngram_simple_config & config)
|
||||
: config(config) {}
|
||||
};
|
||||
|
||||
// Searches for a n-gram in the history and checks whether a draft sequence should be generated.
|
||||
// state: the ngram simple state to search in.
|
||||
// inp: the tokens generated so far.
|
||||
// sampled: the token that was just sampled.
|
||||
// draft: vector to store the draft tokens, initially empty.
|
||||
llama_tokens common_ngram_simple_draft(
|
||||
common_ngram_simple_state & state,
|
||||
const common_ngram_simple_config & config,
|
||||
const llama_tokens & tokens, llama_token sampled);
|
||||
|
||||
|
||||
|
|
@ -51,10 +39,13 @@ llama_tokens common_ngram_simple_draft(
|
|||
// maximum number of m-gram values stored for each key n-gram.
|
||||
#define COMMON_NGRAM_MAX_VALUES 4
|
||||
|
||||
// number of entries in the (optional, size 0 to disable) map from ngram-hash to ngram-index.
|
||||
#define COMMON_NGRAM_HASH_MAP_SIZE 262144
|
||||
|
||||
// statistics of a m-gram after a known n-gram
|
||||
struct common_ngram_map_value {
|
||||
size_t value_idx = 0; // index of value m-gram in token-history (0 if unused)
|
||||
uint16_t value_num = 0; // number of occurences of this value m-gram after the key n-gram (0 in an unused values-slot)
|
||||
size_t value_idx = 0; // index of value m-gram in token-history (0 if unused)
|
||||
uint16_t value_num = 0; // number of occurences of this value m-gram after the key n-gram (0 in an unused values-slot)
|
||||
int16_t n_accepted = -1; // number of accepted tokens at last draft (-1 if unused)
|
||||
};
|
||||
|
||||
|
|
@ -74,23 +65,43 @@ struct common_ngram_map {
|
|||
|
||||
bool key_only; // true if only key n-grams are used, no values.
|
||||
|
||||
// first draft: vector only, no map.
|
||||
std::vector<common_ngram_map_key> keys; // key n-grams which occur several times in token-history
|
||||
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
|
||||
uint16_t min_hits; // minimum number of key hits to consider a draft
|
||||
|
||||
bool show_key_map_stats = false; // true, if statitics of the key_map should be printed.
|
||||
|
||||
common_ngram_map(uint16_t sz_key, uint16_t sz_value, bool only_keys,
|
||||
uint16_t check_rate, uint16_t min_hits)
|
||||
: size_key(sz_key), size_value(sz_value), key_only(only_keys),
|
||||
check_rate(check_rate), min_hits(min_hits) {}
|
||||
check_rate(check_rate), min_hits(min_hits) {
|
||||
key_map.resize(COMMON_NGRAM_HASH_MAP_SIZE); // 2^18 hash entries, 0 entries if key_map shouldn't be used
|
||||
}
|
||||
|
||||
// In reasoning chats the previous reasoning block will be removed from context history.
|
||||
// A rebuild of the ngram map is needed after that.
|
||||
|
||||
size_t size_last_begin = 0; // number of tokens at previous start of generation
|
||||
|
||||
bool last_draft_created = false; // true if a draft was created at last call.
|
||||
size_t last_draft_key_idx = 0; // index of last key used for draft generation.
|
||||
size_t last_draft_key_idx = 0; // index of last key used for draft generation (0 = no draft)
|
||||
uint16_t last_draft_value_idx = 0; // index of last value used for draft generation.
|
||||
|
||||
size_t idx_last_check = 0; // index of last check in context history
|
||||
|
||||
// optional map "hash to ngram-index" for faster lookup of n-grams. map is empty if unused.
|
||||
//
|
||||
// uint32_t instead of size_t (size of current histories is << UINT32_MAX)
|
||||
std::vector<uint32_t> key_map; // key_map[hash] = index of ngram in context window
|
||||
uint32_t key_map_last_idx = 0; // index of the last ngram added to key_map
|
||||
};
|
||||
|
||||
// Initialize the n-gram map with the given token history.
|
||||
// map: the ngram map to initialize.
|
||||
// tokens: the token history to base the map on.
|
||||
void common_ngram_map_begin(
|
||||
common_ngram_map & map,
|
||||
const llama_tokens & tokens);
|
||||
|
||||
// Searches for the n-gram in the history and checks whether a draft sequence should be generated.
|
||||
// map: the ngram map to search in.
|
||||
|
|
|
|||
|
|
@ -124,9 +124,9 @@ struct common_speculative_state {
|
|||
// TODO: track performance of most recent calls
|
||||
const bool gen_perf = true; // whether to generate performance stats.
|
||||
|
||||
// TODO: rename to t_draft_us
|
||||
// TODO: add t_begin_us, t_accept_us
|
||||
int64_t gen_duration_us = 0; // total time spent in this implementation in microseconds.
|
||||
int64_t t_begin_us = 0; // total time spent in refresh of this implementation in microseconds.
|
||||
int64_t t_draft_us = 0; // total time spent in generating drafts in this implementation in microseconds.
|
||||
int64_t t_accept_us = 0; // total time spent in accumulation of this implementation in microseconds.
|
||||
|
||||
common_speculative_state(enum common_speculative_type type) : type(type) {}
|
||||
|
||||
|
|
@ -463,12 +463,14 @@ struct common_speculative_state_eagle3 : public common_speculative_state {
|
|||
|
||||
// state of self-speculation (simple implementation, not ngram-map)
|
||||
struct common_speculative_state_ngram_simple : public common_speculative_state {
|
||||
common_ngram_simple_state state;
|
||||
common_ngram_simple_config config;
|
||||
|
||||
uint16_t check_id = 0; // used to control the frequency of generating drafts
|
||||
|
||||
common_speculative_state_ngram_simple(
|
||||
enum common_speculative_type type,
|
||||
common_ngram_simple_state state)
|
||||
: common_speculative_state(type), state(state) {}
|
||||
common_ngram_simple_config config)
|
||||
: common_speculative_state(type), config(config) {}
|
||||
|
||||
void begin(const llama_tokens & prompt) override {
|
||||
GGML_UNUSED(prompt);
|
||||
|
|
@ -479,7 +481,13 @@ struct common_speculative_state_ngram_simple : public common_speculative_state {
|
|||
const llama_tokens & prompt_tgt,
|
||||
llama_token id_last,
|
||||
llama_tokens & result) override {
|
||||
result = common_ngram_simple_draft(state, prompt_tgt, id_last);
|
||||
++check_id;
|
||||
if (check_id < config.check_rate) {
|
||||
return;
|
||||
}
|
||||
check_id = 0;
|
||||
|
||||
result = common_ngram_simple_draft(config, prompt_tgt, id_last);
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
|
|
@ -499,7 +507,7 @@ struct common_speculative_state_ngram_map_k : public common_speculative_state {
|
|||
: common_speculative_state(type), map(std::move(map)) {}
|
||||
|
||||
void begin(const llama_tokens & prompt) override {
|
||||
GGML_UNUSED(prompt);
|
||||
common_ngram_map_begin(map, prompt);
|
||||
}
|
||||
|
||||
void draft(
|
||||
|
|
@ -797,6 +805,42 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
|
|||
return it->second;
|
||||
}
|
||||
|
||||
bool common_speculative_is_compat(llama_context * ctx_tgt) {
|
||||
auto * mem = llama_get_memory(ctx_tgt);
|
||||
if (mem == nullptr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool res = true;
|
||||
|
||||
llama_memory_clear(mem, true);
|
||||
|
||||
// eval 2 tokens to check if the context is compatible
|
||||
std::vector<llama_token> tmp;
|
||||
tmp.push_back(0);
|
||||
tmp.push_back(0);
|
||||
|
||||
int ret = llama_decode(ctx_tgt, llama_batch_get_one(tmp.data(), tmp.size()));
|
||||
if (ret != 0) {
|
||||
LOG_ERR("%s: llama_decode() failed: %d\n", __func__, ret);
|
||||
res = false;
|
||||
goto done;
|
||||
}
|
||||
|
||||
// try to remove the last tokens
|
||||
if (!llama_memory_seq_rm(mem, 0, 1, -1)) {
|
||||
LOG_WRN("%s: the target context does not support partial sequence removal\n", __func__);
|
||||
res = false;
|
||||
goto done;
|
||||
}
|
||||
|
||||
done:
|
||||
llama_memory_clear(mem, true);
|
||||
llama_synchronize(ctx_tgt);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// initialization of the speculative decoding system
|
||||
//
|
||||
common_speculative * common_speculative_init(
|
||||
|
|
@ -889,14 +933,14 @@ common_speculative * common_speculative_init(
|
|||
uint16_t mgram_size_value = ngram_map.size_value;
|
||||
uint16_t check_rate = ngram_map.check_rate;
|
||||
|
||||
auto config_simple = common_ngram_simple_config{
|
||||
auto config_simple = common_ngram_simple_config {
|
||||
/* .size_ngram = */ ngram_size_key,
|
||||
/* .size_mgram = */ mgram_size_value,
|
||||
/* .check_rate = */ check_rate
|
||||
};
|
||||
auto state = std::make_unique<common_speculative_state_ngram_simple>(
|
||||
/* .type = */ config.type,
|
||||
/* .state = */ common_ngram_simple_state(config_simple)
|
||||
/* .state = */ config_simple
|
||||
);
|
||||
impls.push_back(std::move(state));
|
||||
break;
|
||||
|
|
@ -951,6 +995,7 @@ void common_speculative_begin(common_speculative * spec, const llama_tokens & pr
|
|||
}
|
||||
|
||||
for (auto & impl : spec->impls) {
|
||||
common_time_meas tm(impl->t_begin_us, !impl->gen_perf);
|
||||
impl->begin(prompt);
|
||||
}
|
||||
}
|
||||
|
|
@ -966,14 +1011,9 @@ llama_tokens common_speculative_draft(
|
|||
|
||||
for (auto & impl : spec->impls) {
|
||||
{
|
||||
const int64_t t_start_us = impl->gen_perf ? ggml_time_us() : 0;
|
||||
|
||||
common_time_meas tm(impl->t_draft_us, !impl->gen_perf);
|
||||
impl->draft(params, prompt_tgt, id_last, result);
|
||||
|
||||
const int64_t t_now_us = impl->gen_perf ? ggml_time_us() : 0;
|
||||
|
||||
impl->drafts_call_count++;
|
||||
impl->gen_duration_us += t_now_us - t_start_us; // accumulate duration for this implementation
|
||||
}
|
||||
|
||||
if (!result.empty()) {
|
||||
|
|
@ -1001,12 +1041,15 @@ void common_speculative_accept(common_speculative * spec, uint16_t n_accepted) {
|
|||
|
||||
GGML_ASSERT(impl);
|
||||
|
||||
if (n_accepted > 0) {
|
||||
impl->drafts_accepted_count++;
|
||||
impl->drafts_accepted_tokens += n_accepted;
|
||||
}
|
||||
{
|
||||
common_time_meas tm(impl->t_accept_us, !impl->gen_perf);
|
||||
if (n_accepted > 0) {
|
||||
impl->drafts_accepted_count++;
|
||||
impl->drafts_accepted_tokens += n_accepted;
|
||||
}
|
||||
|
||||
impl->accept(n_accepted);
|
||||
impl->accept(n_accepted);
|
||||
}
|
||||
}
|
||||
|
||||
void common_speculative_print_stats(const common_speculative * spec) {
|
||||
|
|
@ -1018,13 +1061,14 @@ void common_speculative_print_stats(const common_speculative * spec) {
|
|||
std::string str_perf;
|
||||
if (impl->gen_perf) {
|
||||
std::ostringstream oss;
|
||||
oss << std::fixed << std::setprecision(3) << impl->gen_duration_us / 1000.0;
|
||||
str_perf = ", dur = " + oss.str() + " ms";
|
||||
oss << std::fixed << std::setprecision(3) << impl->t_begin_us / 1000.0 << ", ";
|
||||
oss << std::fixed << std::setprecision(3) << impl->t_draft_us / 1000.0 << ", ";
|
||||
oss << std::fixed << std::setprecision(3) << impl->t_accept_us / 1000.0;
|
||||
str_perf = ", dur(b,g,a) = " + oss.str() + " ms";
|
||||
} else {
|
||||
str_perf = "";
|
||||
}
|
||||
|
||||
// TODO: report time for begin() and accept()
|
||||
LOG_INF("statistics %s: #calls = %zu, #gen drafts = %zu, #acc drafts = %zu, #gen tokens = %zu, #acc tokens = %zu%s\n",
|
||||
common_speculative_type_to_str(impl->type).c_str(),
|
||||
impl->drafts_call_count,
|
||||
|
|
|
|||
|
|
@ -14,6 +14,10 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
|
|||
// convert type to string
|
||||
std::string common_speculative_type_to_str(enum common_speculative_type type);
|
||||
|
||||
// check if the llama_context is compatible for speculative decoding
|
||||
// note: clears the memory of the context
|
||||
bool common_speculative_is_compat(llama_context * ctx_tgt);
|
||||
|
||||
common_speculative * common_speculative_init(
|
||||
common_params_speculative & params,
|
||||
llama_context * ctx_tgt);
|
||||
|
|
|
|||
|
|
@ -586,6 +586,10 @@ class ModelBase:
|
|||
gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
|
||||
gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
|
||||
gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
|
||||
# Kimi KDA conv weights should be F32
|
||||
gguf.MODEL_TENSOR.SSM_CONV1D_Q,
|
||||
gguf.MODEL_TENSOR.SSM_CONV1D_K,
|
||||
gguf.MODEL_TENSOR.SSM_CONV1D_V,
|
||||
)
|
||||
)
|
||||
or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
|
||||
|
|
@ -903,10 +907,10 @@ class TextModel(ModelBase):
|
|||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
|
||||
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
|
||||
logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
|
||||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||||
if (n_experts := self.find_hparam(["num_local_experts", "num_experts"], optional=True)) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
logger.info(f"gguf: expert count = {n_experts}")
|
||||
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
|
||||
if (n_experts_used := self.find_hparam(["num_experts_per_tok", "num_experts_per_token"], optional=True)) is not None:
|
||||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||||
logger.info(f"gguf: experts used count = {n_experts_used}")
|
||||
if (n_expert_groups := self.hparams.get("n_group")) is not None:
|
||||
|
|
@ -916,7 +920,7 @@ class TextModel(ModelBase):
|
|||
self.gguf_writer.add_expert_group_used_count(n_group_used)
|
||||
logger.info(f"gguf: expert groups used count = {n_group_used}")
|
||||
|
||||
if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
|
||||
if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func", "moe_router_activation", "moe_router_activation_func"], optional=True)) is not None:
|
||||
if score_func == "sigmoid":
|
||||
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
|
||||
elif score_func == "softmax":
|
||||
|
|
@ -5021,6 +5025,221 @@ class CodeShellModel(TextModel):
|
|||
self.gguf_writer.add_rope_scaling_factor(1.0)
|
||||
|
||||
|
||||
@ModelBase.register("KimiLinearModel", "KimiLinearForCausalLM")
|
||||
class KimiLinearModel(TextModel):
|
||||
"""Kimi-Linear model with hybrid MLA+KDA architecture"""
|
||||
model_arch = gguf.MODEL_ARCH.KIMI_LINEAR
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
def set_vocab(self):
|
||||
try:
|
||||
self._set_vocab_gpt2()
|
||||
return
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
|
||||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||||
|
||||
if tokpre == "kimi-k2":
|
||||
# Build merges list using the approach similar to HunYuanMoE
|
||||
merges = []
|
||||
vocab = {}
|
||||
mergeable_ranks = tokenizer.model._mergeable_ranks
|
||||
for token, rank in mergeable_ranks.items():
|
||||
vocab[QwenModel.token_bytes_to_string(token)] = rank
|
||||
if len(token) == 1:
|
||||
continue
|
||||
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
|
||||
if len(merged) == 2:
|
||||
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
|
||||
# Build token list
|
||||
vocab_size = self.hparams["vocab_size"]
|
||||
special_tokens = tokenizer.special_tokens
|
||||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
|
||||
tokens: list[str] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
tokens.append(f"[PAD{i}]")
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
else:
|
||||
token = reverse_vocab[i]
|
||||
tokens.append(token)
|
||||
if i in special_tokens.values():
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_token_merges(merges)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
# override eos id in config.json with tiktoken eos id
|
||||
self.gguf_writer.add_eos_token_id(tokenizer.eos_id)
|
||||
else:
|
||||
raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
# note: To enable MLA KV cache, attention needs to be converted into MQA (ie: GQA with 1 group)
|
||||
self.hparams["num_key_value_heads"] = 1
|
||||
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
|
||||
|
||||
# KDA & MLA params
|
||||
# Get ssm_d_conv from linear_attn_config.short_conv_kernel_size or ssm_d_conv
|
||||
linear_attn_config = self.hparams["linear_attn_config"]
|
||||
# n_head == 0 for KDA layers, n_head > 0 for MLA layers
|
||||
# full_attention_layers list will be used to distingush layer type
|
||||
_num_kv_heads = list()
|
||||
_full_attn_layers = linear_attn_config["full_attn_layers"]
|
||||
for il in range(self.hparams["num_hidden_layers"]):
|
||||
if il + 1 in _full_attn_layers:
|
||||
_num_kv_heads.append(self.hparams["num_key_value_heads"])
|
||||
else:
|
||||
_num_kv_heads.append(0)
|
||||
assert len(_num_kv_heads) == self.hparams["num_hidden_layers"]
|
||||
self.gguf_writer.add_head_count_kv(_num_kv_heads)
|
||||
|
||||
if (ssm_d_conv := linear_attn_config.get("short_conv_kernel_size")) is not None:
|
||||
self.gguf_writer.add_ssm_conv_kernel(ssm_d_conv)
|
||||
if (kda_head_dim := linear_attn_config.get("head_dim")) is not None:
|
||||
self.gguf_writer.add_kda_head_dim(kda_head_dim)
|
||||
|
||||
# MLA params - use add_* methods that handle arch substitution
|
||||
# Support both HuggingFace naming (q_lora_rank, kv_lora_rank) and internal naming (n_lora_q, n_lora_kv)
|
||||
if (q_lora_rank := self.find_hparam(["q_lora_rank", "n_lora_q"], optional=True)) is not None:
|
||||
self.gguf_writer.add_q_lora_rank(q_lora_rank)
|
||||
# To enable MLA KV cache, MLA needs to be converted into MQA with larger heads, then decompresses to MHA
|
||||
kv_lora_rank = self.find_hparam(["kv_lora_rank", "n_lora_kv"], optional=False)
|
||||
self.gguf_writer.add_kv_lora_rank(kv_lora_rank)
|
||||
|
||||
# MLA head dimensions
|
||||
# Support HuggingFace naming: qk_nope_head_dim, qk_rope_head_dim, v_head_dim
|
||||
qk_nope_head_dim = self.hparams.get("qk_nope_head_dim")
|
||||
# Rotation - use qk_rope_head_dim for Kimi
|
||||
qk_rope_head_dim = self.find_hparam(["qk_rope_head_dim", "n_rot"], optional=False)
|
||||
self.gguf_writer.add_rope_dimension_count(qk_rope_head_dim)
|
||||
self.gguf_writer.add_key_length(kv_lora_rank + qk_rope_head_dim)
|
||||
v_head_dim = self.hparams.get("v_head_dim")
|
||||
|
||||
# Calculate n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim
|
||||
if (n_embd_head_k_mla := self.find_hparam(["n_embd_head_k_mla"], optional=True)) is not None:
|
||||
self.gguf_writer.add_key_length_mla(n_embd_head_k_mla)
|
||||
elif qk_nope_head_dim is not None:
|
||||
n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim
|
||||
self.gguf_writer.add_key_length_mla(n_embd_head_k_mla)
|
||||
|
||||
# n_embd_head_v_mla = v_head_dim
|
||||
if (n_embd_head_v_mla := self.hparams.get("n_embd_head_v_mla")) is not None:
|
||||
self.gguf_writer.add_value_length_mla(n_embd_head_v_mla)
|
||||
elif v_head_dim is not None:
|
||||
self.gguf_writer.add_value_length_mla(v_head_dim)
|
||||
|
||||
# moe_intermediate_size (1024 for Kimi)
|
||||
self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
|
||||
# num_shared_experts (1 for Kimi)
|
||||
self.gguf_writer.add_expert_shared_count(self.hparams["num_shared_experts"])
|
||||
# first_k_dense_replace (1 for Kimi - first layer uses dense MLP)
|
||||
self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
|
||||
# Routed scaling factor (expert_weights_scale = 2.446 for Kimi)
|
||||
self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
|
||||
|
||||
def prepare_tensors(self):
|
||||
super().prepare_tensors()
|
||||
if self._experts is not None:
|
||||
experts = [k for d in self._experts for k in d.keys()]
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
logger.info(f"Processing {name}: shape before = {tuple(data_torch.shape)}")
|
||||
|
||||
# Handle KDA conv1d weights
|
||||
# HuggingFace/vLLM stores as [d_inner, d_conv] (2D), memory layout: conv_step changes fastest
|
||||
# llama.cpp expects ggml ne = [d_conv, 1, d_inner, 1], memory layout: ne[0]=d_conv changes fastest
|
||||
# GGUF reverses numpy shape when writing, so numpy (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1]
|
||||
# Memory layouts match: both have conv_step (d_conv) changing fastest
|
||||
if name.endswith((".q_conv1d.weight", ".k_conv1d.weight", ".v_conv1d.weight")):
|
||||
# HF shape: [d_inner, d_conv] e.g. [4096, 4]
|
||||
# Target numpy shape: (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1]
|
||||
if data_torch.ndim == 2:
|
||||
d_inner, d_conv = data_torch.shape
|
||||
# Reshape to (1, d_inner, 1, d_conv) - memory layout preserved (d_conv fastest)
|
||||
data_torch = data_torch.reshape(1, d_inner, 1, d_conv)
|
||||
logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]")
|
||||
elif data_torch.ndim == 3:
|
||||
# Already 3D [d_inner, 1, d_conv] from unsqueeze
|
||||
d_inner, _, d_conv = data_torch.shape
|
||||
data_torch = data_torch.reshape(1, d_inner, 1, d_conv)
|
||||
logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, 1, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]")
|
||||
|
||||
# Kimi specific bias
|
||||
if name.endswith("e_score_correction_bias"):
|
||||
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
|
||||
|
||||
# Handle A_log: iHF stores as [1, 1, num_heads, 1]
|
||||
# llama.cpp expects ggml ne = [1, num_heads, 1, 1]
|
||||
# GGUF reverses numpy shape: numpy (1, 1, num_heads, 1) -> ggml ne = [1, num_heads, 1, 1]
|
||||
if name.endswith(".A_log"):
|
||||
data_torch = -torch.exp(data_torch)
|
||||
if name.endswith(".dt_bias"):
|
||||
name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
|
||||
logger.info("Changed dt_bias to dt_proj.bias")
|
||||
|
||||
# process the experts separately
|
||||
if name.find("block_sparse_moe.experts") != -1:
|
||||
n_experts = self.find_hparam(["num_local_experts", "num_experts"], optional=False)
|
||||
assert bid is not None
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
# merge the experts into a single 3d tensor
|
||||
# w1: gate, w2: down, w3: up
|
||||
for wid, tname in [("w1", gguf.MODEL_TENSOR.FFN_GATE_EXP),
|
||||
("w2", gguf.MODEL_TENSOR.FFN_DOWN_EXP),
|
||||
("w3", gguf.MODEL_TENSOR.FFN_UP_EXP)]:
|
||||
datas: list[Tensor] = []
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
|
||||
datas.append(self._experts[bid][ename])
|
||||
del self._experts[bid][ename]
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
new_name = self.format_tensor_name(tname, bid)
|
||||
yield from super().modify_tensors(data_torch, new_name, bid)
|
||||
return
|
||||
|
||||
# note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
|
||||
if name.endswith("kv_b_proj.weight"):
|
||||
name_kb = name.replace("kv_b_proj", "k_b_proj")
|
||||
name_vb = name.replace("kv_b_proj", "v_b_proj")
|
||||
n_head_kv = self.hparams["num_key_value_heads"]
|
||||
v_head_dim = self.find_hparam(["n_embd_head_v_mla", "v_head_dim"], optional=False)
|
||||
qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
|
||||
logger.info("Split kv_b n_head_kv %d\n" % n_head_kv)
|
||||
assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
|
||||
kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
|
||||
k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
|
||||
k_b = k_b.transpose(1, 2)
|
||||
yield from super().modify_tensors(k_b, name_kb, bid)
|
||||
yield from super().modify_tensors(v_b, name_vb, bid)
|
||||
return
|
||||
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("InternLM2ForCausalLM")
|
||||
class InternLM2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.INTERNLM2
|
||||
|
|
@ -7702,6 +7921,135 @@ class MimoV2Model(TextModel):
|
|||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("Step3p5ForCausalLM")
|
||||
class Step35Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.STEP35
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
rope_theta = self.hparams.get("rope_theta")
|
||||
if isinstance(rope_theta, list):
|
||||
self.hparams["rope_theta"] = float(rope_theta[0])
|
||||
self.hparams["local_rope_theta"] = float(rope_theta[1])
|
||||
self.rope_parameters["rope_theta"] = self.hparams["rope_theta"]
|
||||
self.rope_parameters["sliding_attention"] = {"rope_theta": self.hparams["local_rope_theta"]}
|
||||
|
||||
super().set_gguf_parameters()
|
||||
|
||||
layer_types = self.hparams.get("layer_types") or []
|
||||
partial_rotary_factors = self.hparams.get("partial_rotary_factors") or []
|
||||
attn_other = self.hparams.get("attention_other_setting") or {}
|
||||
|
||||
n_head_base = self.hparams["num_attention_heads"]
|
||||
n_kv_base = self.hparams["num_attention_groups"]
|
||||
|
||||
n_head_swa = attn_other.get("num_attention_heads", n_head_base)
|
||||
n_kv_swa = attn_other.get("num_attention_groups", n_kv_base)
|
||||
|
||||
layer_types = layer_types[: self.block_count]
|
||||
partial_rotary_factors = partial_rotary_factors[: self.block_count]
|
||||
assert [1.0 if lt == "sliding_attention" else 0.5 for lt in layer_types] == partial_rotary_factors
|
||||
head_arr = [n_head_swa if lt == "sliding_attention" else n_head_base for lt in layer_types]
|
||||
kv_arr = [n_kv_swa if lt == "sliding_attention" else n_kv_base for lt in layer_types]
|
||||
swa_pat = [lt == "sliding_attention" for lt in layer_types]
|
||||
|
||||
self.gguf_writer.add_head_count(head_arr)
|
||||
self.gguf_writer.add_head_count_kv(kv_arr)
|
||||
|
||||
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
|
||||
self.gguf_writer.add_sliding_window_pattern(swa_pat)
|
||||
|
||||
self.gguf_writer.add_value_length(self.hparams["head_dim"])
|
||||
|
||||
# MoE params
|
||||
self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
|
||||
self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
|
||||
self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
|
||||
self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["share_expert_dim"])
|
||||
|
||||
if (moe_router_scaling_factor := self.hparams.get("moe_router_scaling_factor")) is not None:
|
||||
self.gguf_writer.add_expert_weights_scale(moe_router_scaling_factor)
|
||||
if (norm_expert_weight := self.hparams.get("norm_expert_weight")) is not None:
|
||||
self.gguf_writer.add_expert_weights_norm(norm_expert_weight)
|
||||
|
||||
# leading dense blocks
|
||||
leading_dense = 0
|
||||
moe_layers_enum = self.hparams.get("moe_layers_enum")
|
||||
if isinstance(moe_layers_enum, str) and moe_layers_enum.strip():
|
||||
moe_layers = sorted(int(i) for i in moe_layers_enum.strip().split(","))
|
||||
if moe_layers:
|
||||
leading_dense = max(0, moe_layers[0])
|
||||
self.gguf_writer.add_leading_dense_block_count(leading_dense)
|
||||
self.gguf_writer.add_moe_every_n_layers(int(self.hparams.get("moe_every_n_layer", 1)))
|
||||
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-5))
|
||||
|
||||
# Optional per-layer SwiGLU clamps.
|
||||
if (limits := self.hparams.get("swiglu_limits")) is not None:
|
||||
limits_f = [0.0 if v is None else float(v) for v in limits[: self.block_count]]
|
||||
self.gguf_writer.add_swiglu_clamp_exp(limits_f)
|
||||
if (limits_shared := self.hparams.get("swiglu_limits_shared")) is not None:
|
||||
limits_shared_f = [0.0 if v is None else float(v) for v in limits_shared[: self.block_count]]
|
||||
self.gguf_writer.add_swiglu_clamp_shexp(limits_shared_f)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
|
||||
# remove mtp layers
|
||||
if (m := re.match(r"model\.layers\.(\d+)\.", name)) is not None:
|
||||
il = int(m.group(1))
|
||||
n_main = int(self.hparams.get("num_hidden_layers", self.block_count))
|
||||
if il >= n_main:
|
||||
return
|
||||
if name.endswith("norm.weight"):
|
||||
data_torch += 1.0
|
||||
# Map router bias (expert selection bias) to a GGUF bias tensor
|
||||
if name.endswith(".moe.router_bias"):
|
||||
name += ".bias"
|
||||
|
||||
if name.endswith((".self_attn.g_proj.weight", ".moe.gate.weight", ".moe.up_proj.weight", ".moe.gate_proj.weight", ".moe.down_proj.weight")):
|
||||
data_torch = data_torch.squeeze().contiguous()
|
||||
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
# Step35 can optionally use Llama-3 style RoPE scaling (HF: rope_scaling.rope_type == "llama3").
|
||||
# llama.cpp represents this via a single extra tensor: "rope_freqs.weight" (aka MODEL_TENSOR.ROPE_FREQS).
|
||||
rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
|
||||
rope_type = rope_params.get("rope_type") or ""
|
||||
if rope_type.lower() != "llama3":
|
||||
return
|
||||
|
||||
# Step35 configs can carry per-layer rope_theta as a list; for llama3 rope factors we use the base value.
|
||||
rope_theta = self.hparams.get("rope_theta", 10000.0)
|
||||
if isinstance(rope_theta, list):
|
||||
rope_theta = rope_theta[0]
|
||||
base = float(rope_theta)
|
||||
if (dim := self.hparams.get("head_dim")) is None:
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
dim = int(dim)
|
||||
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = float(rope_params.get("factor", 8.0))
|
||||
low_freq_factor = float(rope_params.get("low_freq_factor", 1.0))
|
||||
high_freq_factor = float(rope_params.get("high_freq_factor", 4.0))
|
||||
old_context_len = int(rope_params.get("original_max_position_embeddings", self.hparams.get("original_max_position_embeddings", 8192)))
|
||||
|
||||
low_freq_wavelen = old_context_len / low_freq_factor
|
||||
high_freq_wavelen = old_context_len / high_freq_factor
|
||||
|
||||
rope_factors: list[float] = []
|
||||
for freq in freqs:
|
||||
wavelen = 2 * math.pi / float(freq)
|
||||
if wavelen < high_freq_wavelen:
|
||||
rope_factors.append(1.0)
|
||||
elif wavelen > low_freq_wavelen:
|
||||
rope_factors.append(factor)
|
||||
else:
|
||||
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||||
rope_factors.append(1.0 / ((1.0 - smooth) / factor + smooth))
|
||||
|
||||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
|
||||
|
||||
|
||||
@ModelBase.register("PanguEmbeddedForCausalLM")
|
||||
class PanguEmbeddedModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.PANGU_EMBED
|
||||
|
|
|
|||
|
|
@ -22,12 +22,11 @@
|
|||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over Intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
### Llama.cpp + SYCL
|
||||
|
||||
The llama.cpp SYCL backend is primarily designed for **Intel GPUs**.
|
||||
SYCL cross-platform capabilities enable support for Nvidia GPUs as well, with limited support for AMD.
|
||||
SYCL cross-platform capabilities enable support for other vendor GPUs as well.
|
||||
|
||||
## Recommended Release
|
||||
|
||||
|
|
@ -42,6 +41,9 @@ The following releases are verified and recommended:
|
|||
|
||||
## News
|
||||
|
||||
- 2026.02
|
||||
- Remove support for Nvidia & AMD GPU, because the oneAPI plugin for Nvidia & AMD GPU is unavailable: download/installation channels are out of work. User can't build up the software for Nvidia & AMD GPU.
|
||||
|
||||
- 2025.11
|
||||
- Support malloc memory on device more than 4GB.
|
||||
|
||||
|
|
@ -111,15 +113,15 @@ On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the
|
|||
|-------------------------------|---------|---------------------------------------|
|
||||
| Intel Data Center Max Series | Support | Max 1550, 1100 |
|
||||
| Intel Data Center Flex Series | Support | Flex 170 |
|
||||
| Intel Arc A-Series | Support | Arc A770, Arc A730M, Arc A750 |
|
||||
| Intel Arc B-Series | Support | Arc B580 |
|
||||
| Intel Arc A-Series | Support | Arc A770, Arc A730M, Arc A750 |
|
||||
| Intel Arc B-Series | Support | Arc B580 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake, Lunar Lake |
|
||||
| Intel iGPU | Support | iGPU in 13700k, 13400, i5-1250P, i7-1260P, i7-1165G7 |
|
||||
|
||||
*Notes:*
|
||||
|
||||
- **Memory**
|
||||
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-cli`.
|
||||
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-completion`.
|
||||
- Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU.
|
||||
|
||||
- **Execution Unit (EU)**
|
||||
|
|
@ -127,20 +129,7 @@ On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the
|
|||
|
||||
### Other Vendor GPU
|
||||
|
||||
**Verified devices**
|
||||
|
||||
| Nvidia GPU | Status | Verified Model |
|
||||
|--------------------------|-----------|----------------|
|
||||
| Ampere Series | Supported | A100, A4000 |
|
||||
| Ampere Series *(Mobile)* | Supported | RTX 40 Series |
|
||||
|
||||
| AMD GPU | Status | Verified Model |
|
||||
|--------------------------|--------------|----------------|
|
||||
| Radeon Pro | Experimental | W6800 |
|
||||
| Radeon RX | Experimental | 6700 XT |
|
||||
|
||||
Note: AMD GPU support is highly experimental and is incompatible with F16.
|
||||
Additionally, it only supports GPUs with a sub_group_size (warp size) of 32.
|
||||
NA
|
||||
|
||||
## Docker
|
||||
|
||||
|
|
@ -149,11 +138,11 @@ The docker build option is currently limited to *Intel GPU* targets.
|
|||
### Build image
|
||||
|
||||
```sh
|
||||
# Using FP16
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
|
||||
|
||||
# Using FP32
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=OFF" --target light -f .devops/intel.Dockerfile .
|
||||
|
||||
# Using FP16
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
|
||||
```
|
||||
|
||||
*Notes*:
|
||||
|
|
@ -212,14 +201,6 @@ Platform #0: Intel(R) OpenCL HD Graphics
|
|||
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
|
||||
```
|
||||
|
||||
- **Nvidia GPU**
|
||||
|
||||
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.
|
||||
|
||||
- **AMD GPU**
|
||||
|
||||
To target AMD GPUs with SYCL, the ROCm stack must be installed first.
|
||||
|
||||
2. **Install Intel® oneAPI Base toolkit**
|
||||
|
||||
SYCL backend depends on:
|
||||
|
|
@ -248,23 +229,6 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
|
|||
|2025.1|
|
||||
|2024.1|
|
||||
|
||||
- **Adding support to Nvidia GPUs**
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
|
||||
|
||||
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
|
||||
|
||||
```sh
|
||||
git clone https://github.com/oneapi-src/oneDNN.git
|
||||
cd oneDNN
|
||||
cmake -GNinja -Bbuild-nvidia -DDNNL_CPU_RUNTIME=DPCPP -DDNNL_GPU_RUNTIME=DPCPP -DDNNL_GPU_VENDOR=NVIDIA -DONEDNN_BUILD_GRAPH=OFF -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake --build build-nvidia --config Release
|
||||
```
|
||||
|
||||
- **Adding support to AMD GPUs**
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
|
||||
|
||||
3. **Verify installation and environment**
|
||||
|
||||
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
|
||||
|
|
@ -285,25 +249,6 @@ When targeting an intel GPU, the user should expect one or more devices among th
|
|||
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) UHD Graphics 730 OpenCL 3.0 NEO [24.39.31294]
|
||||
```
|
||||
|
||||
- **Nvidia GPU**
|
||||
|
||||
Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`cuda:gpu`] as below:
|
||||
|
||||
```
|
||||
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[opencl:cpu][opencl:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[cuda:gpu][cuda:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.5]
|
||||
```
|
||||
|
||||
- **AMD GPU**
|
||||
|
||||
For AMD GPUs we should expect at least one SYCL-HIP device [`hip:gpu`]:
|
||||
|
||||
```
|
||||
[opencl:cpu][opencl:0] Intel(R) OpenCL, 12th Gen Intel(R) Core(TM) i9-12900K OpenCL 3.0 (Build 0) [2024.18.6.0.02_160000]
|
||||
[hip:gpu][hip:0] AMD HIP BACKEND, AMD Radeon PRO W6800 gfx1030 [HIP 60140.9]
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
#### Intel GPU
|
||||
|
|
@ -332,47 +277,6 @@ It is possible to come across some precision issues when running tests that stem
|
|||
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
|
||||
as `-cl-fp32-correctly-rounded-divide-sqrt`
|
||||
|
||||
#### Nvidia GPU
|
||||
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Build LLAMA with Nvidia BLAS acceleration through SYCL
|
||||
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
|
||||
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
|
||||
|
||||
# Option 2: Use FP16
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
|
||||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
It is possible to come across some precision issues when running tests that stem from using faster
|
||||
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.
|
||||
|
||||
#### AMD GPU
|
||||
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Build LLAMA with rocBLAS acceleration through SYCL
|
||||
|
||||
## AMD
|
||||
# Use FP32, FP16 is not supported
|
||||
# Find your GGML_SYCL_DEVICE_ARCH with rocminfo, under the key 'Name:'
|
||||
GGML_SYCL_DEVICE_ARCH=gfx90a # Example architecture
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
### III. Run the inference
|
||||
|
||||
#### Retrieve and prepare model
|
||||
|
|
@ -423,16 +327,12 @@ Choose one of following methods to run.
|
|||
- Use device 0:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run-llama2.sh 0
|
||||
# OR
|
||||
./examples/sycl/run-llama3.sh 0
|
||||
./examples/sycl/test.sh -mg 0
|
||||
```
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run-llama2.sh
|
||||
# OR
|
||||
./examples/sycl/run-llama3.sh
|
||||
./examples/sycl/test.sh
|
||||
```
|
||||
|
||||
2. Command line
|
||||
|
|
@ -455,13 +355,13 @@ Examples:
|
|||
- Use device 0:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm none -mg 0
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm none -mg 0 --mmap
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm layer
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm layer --mmap
|
||||
```
|
||||
|
||||
*Notes:*
|
||||
|
|
@ -577,13 +477,13 @@ Or, use CMake presets to build:
|
|||
|
||||
```sh
|
||||
cmake --preset x64-windows-sycl-release
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-cli
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-completion
|
||||
|
||||
cmake -DGGML_SYCL_F16=ON --preset x64-windows-sycl-release
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-cli
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-completion
|
||||
|
||||
cmake --preset x64-windows-sycl-debug
|
||||
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
|
||||
cmake --build build-x64-windows-sycl-debug -j --target llama-completion
|
||||
```
|
||||
|
||||
#### 3. Visual Studio
|
||||
|
|
@ -608,7 +508,7 @@ You can use Visual Studio to open the `llama.cpp` folder directly as a CMake pro
|
|||
- For a minimal experimental setup, you can build only the inference executable using:
|
||||
|
||||
```Powershell
|
||||
cmake --build build --config Release -j --target llama-cli
|
||||
cmake --build build --config Release -j --target llama-completion
|
||||
```
|
||||
|
||||
##### - Generating a Visual Studio Solution
|
||||
|
|
@ -714,13 +614,7 @@ Choose one of following methods to run.
|
|||
1. Script
|
||||
|
||||
```
|
||||
examples\sycl\win-run-llama-2.bat
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
examples\sycl\win-run-llama-3.bat
|
||||
examples\sycl\win-test.bat
|
||||
```
|
||||
|
||||
2. Command line
|
||||
|
|
@ -744,13 +638,13 @@ Examples:
|
|||
- Use device 0:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm none -mg 0
|
||||
build\bin\llama-completion.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm none -mg 0 --mmap
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm layer
|
||||
build\bin\llama-completion.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm layer --mmap
|
||||
```
|
||||
|
||||
|
||||
|
|
@ -776,15 +670,15 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
|||
| Name | Value | Function |
|
||||
|--------------------|---------------------------------------|---------------------------------------------|
|
||||
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path. |
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
|
||||
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* | Set the SYCL target device type. |
|
||||
| GGML_SYCL_DEVICE_ARCH | Optional | Set the SYCL device architecture. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
|
||||
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. (1.) |
|
||||
| GGML_SYCL_GRAPH | ON *(default)* \|OFF *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
|
||||
| GGML_SYCL_GRAPH | OFF *(default)* \|ON *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
|
||||
| GGML_SYCL_DNN | ON *(default)* \|OFF *(Optional)* | Enable build with oneDNN. |
|
||||
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
|
||||
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
|
||||
|
||||
1. FP16 is recommended for better prompt processing performance on quantized models. Performance is equivalent in text generation but set `GGML_SYCL_F16=OFF` if you are experiencing issues with FP16 builds.
|
||||
1. FP32 or FP16 have different performance impact to LLM. Recommended to test them for better prompt processing performance on your models. You need to rebuild the code after change `GGML_SYCL_F16=OFF/ON`.
|
||||
|
||||
#### Runtime
|
||||
|
||||
|
|
@ -792,7 +686,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
|||
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
|
||||
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features for Intel GPUs. (Recommended to 1 for intel devices older than Gen 10) |
|
||||
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
|
||||
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because SYCL Graph is still on development, no better performance. |
|
||||
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
|
||||
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
|
||||
| UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS | 0 (default) or 1 | Support malloc device memory more than 4GB.|
|
||||
|
|
|
|||
|
|
@ -1,10 +1,5 @@
|
|||
{
|
||||
"version": 5,
|
||||
"cmakeMinimumRequired": {
|
||||
"major": 3,
|
||||
"minor": 28,
|
||||
"patch": 0
|
||||
},
|
||||
"configurePresets": [
|
||||
{
|
||||
"name": "arm64-android-snapdragon",
|
||||
|
|
|
|||
|
|
@ -128,7 +128,7 @@ However, additional settings are required for generating and signing HTP Ops lib
|
|||
> $env:HEXAGON_HTP_CERT="c:\Users\MyUsers\Certs\ggml-htp-v1.pfx"
|
||||
> $env:WINDOWS_SDK_BIN="C:\Program Files (x86)\Windows Kits\10\bin\10.0.26100.0\arm64"
|
||||
|
||||
> cmake --preset arm64-windows-snapdragon -B build-wos
|
||||
> cmake --preset arm64-windows-snapdragon-release -B build-wos
|
||||
...
|
||||
> cmake --install build-wos --prefix pkg-snapdragon
|
||||
```
|
||||
|
|
|
|||
|
|
@ -252,9 +252,7 @@ CUDA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.ggu
|
|||
|
||||
The environment variable [`CUDA_SCALE_LAUNCH_QUEUES`](https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/environment-variables.html#cuda-scale-launch-queues) controls the size of CUDA's command buffer, which determines how many GPU operations can be queued before the CPU must wait for the GPU to catch up. A larger buffer reduces CPU-side stalls and allows more work to be queued on a GPU.
|
||||
|
||||
**Default behavior:** llama.cpp automatically sets `CUDA_SCALE_LAUNCH_QUEUES=4x`, which increases the CUDA command buffer to 4 times its default size. This optimization is particularly beneficial for **Multi-GPU setups with pipeline parallelism**, where it significantly improves prompt processing throughput by allowing more operations to be enqueued across GPUs.
|
||||
|
||||
See PR [#19042](https://github.com/ggml-org/llama.cpp/pull/19042) for performance benchmarks and technical details.
|
||||
Consider setting `CUDA_SCALE_LAUNCH_QUEUES=4x`, which increases the CUDA command buffer to 4 times its default size. This optimization is particularly beneficial for **Multi-GPU setups with pipeline parallelism**, where it significantly improves prompt processing throughput by allowing more operations to be enqueued across GPUs.
|
||||
|
||||
### Unified Memory
|
||||
|
||||
|
|
|
|||
|
|
@ -9,7 +9,7 @@ Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch m
|
|||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
|
|
|
|||
|
|
@ -8,11 +8,11 @@ Download [MiniCPM-o-4](https://huggingface.co/openbmb/MiniCPM-o-4) PyTorch model
|
|||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-
|
|||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch m
|
|||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
|
|
|
|||
|
|
@ -8,11 +8,11 @@ Download [MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4) PyTorch model
|
|||
### Build llama.cpp
|
||||
Readme modification time: 20250731
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
|
|
|
|||
|
|
@ -8,11 +8,11 @@ Download [MiniCPM-V-4_5](https://huggingface.co/openbmb/MiniCPM-V-4_5) PyTorch m
|
|||
### Build llama.cpp
|
||||
Readme modification time: 20250826
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ Legend:
|
|||
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ |
|
||||
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
|
||||
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ |
|
||||
|
|
@ -113,7 +113,7 @@ Legend:
|
|||
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TRI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
|
|
|
|||
|
|
@ -77,8 +77,8 @@
|
|||
"SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","FLOOR","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","ROUND","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","ROUND","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","TRUNC","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
|
|
@ -161,8 +161,8 @@
|
|||
"SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","FLOOR","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","ROUND","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","ROUND","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","TRUNC","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
|
|
@ -9677,168 +9677,168 @@
|
|||
"SYCL0","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","1","yes","SYCL"
|
||||
"SYCL0","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","1","yes","SYCL"
|
||||
"SYCL0","ARGSORT","type=f32,ne=[2,8,8192,1],order=1","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[12,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[12,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
|
|
@ -9847,16 +9847,16 @@
|
|||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
|
|
@ -9865,16 +9865,16 @@
|
|||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
|
|
@ -9883,16 +9883,16 @@
|
|||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
|
|
@ -9901,16 +9901,16 @@
|
|||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
|
|
@ -9919,16 +9919,16 @@
|
|||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
|
|
@ -9937,51 +9937,51 @@
|
|||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=0","support","1","yes","SYCL"
|
||||
"SYCL0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=1","support","1","yes","SYCL"
|
||||
"SYCL0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest","support","1","yes","SYCL"
|
||||
|
|
|
|||
|
Can't render this file because it is too large.
|
|
|
@ -6,7 +6,7 @@ llama.cpp supports speculative decoding, a technique that can significantly acce
|
|||
|
||||
## Implementations
|
||||
|
||||
The `llama-server` application supports several implementations of speculative decoding:
|
||||
The `llama-server` application supports several implementations of speculative decoding. An implementation with draft model can be mixed with an implementation without draft model.
|
||||
|
||||
### Draft Model (`draft`)
|
||||
|
||||
|
|
@ -32,12 +32,21 @@ An example to use this approach can be the rewriting of source code by a LLM.
|
|||
|
||||
This implementation looks for the last n-gram in history that matches the current n-gram and creates a draft using the m tokens following the matched n-gram. It is the simplest self-speculative approach with minimal overhead.
|
||||
|
||||
```
|
||||
llama-server [...] --spec-type ngram-simple --draft-max 64
|
||||
```
|
||||
|
||||
#### n-gram Map Key (`ngram-map-k`)
|
||||
|
||||
This implementation looks for the current n-gram of size n (called the _key_) in the token history. If the key n-gram is followed by the same m tokens (called the _mgram_) multiple times, it creates a draft using these m tokens. This approach requires a minimum number of occurrences (argument `--spec-ngram-min-hits`) before generating drafts.
|
||||
This implementation looks for the current n-gram of size n (called the _key_) in the token history. If the key n-gram is followed by the same m tokens (called the _mgram_) multiple times, it creates a draft using these m tokens. This approach requires a minimum number of occurrences (argument `--spec-ngram-min-hits`, default is 1) before generating drafts.
|
||||
|
||||
The number of accepted tokens is stored for each used n-gram.
|
||||
|
||||
**Example:**
|
||||
```
|
||||
llama-server [...] --spec-type ngram-map-k --draft-max 64
|
||||
```
|
||||
|
||||
#### n-gram Map Key-4-Values (`ngram-map-k4v`)
|
||||
|
||||
This experimental implementation looks for the current n-gram of size n (called the _key_) in the token history. For each key, up to four _values_ (n-grams of size m, called _mgrams_) are tracked. An internal statistic counts the occurrences of each mgram after the key n-gram. If one mgram is significantly more frequent than the others, it is used as the draft.
|
||||
|
|
@ -45,17 +54,65 @@ This experimental implementation looks for the current n-gram of size n (called
|
|||
The number of accepted tokens is stored for each used n-gram.
|
||||
|
||||
**Example:** Server options to be used if there are a lot of longer repetitions.
|
||||
```bash
|
||||
llama-server [...] --spec-type ngram-map-k4v --spec-ngram-size-n 8 --spec-ngram-size-m 8 --spec-ngram-min-hits 2
|
||||
```
|
||||
llama-server [...] --spec-type ngram-map-k4v --spec-ngram-size-n 8 --spec-ngram-size-m 8 --spec-ngram-min-hits 2 --draft-max 64
|
||||
```
|
||||
|
||||
### n-gram Mod (`ngram-mod`)
|
||||
|
||||
Add basic ngram hasher for speculative decoding:
|
||||
|
||||
- For each ngram, compute a hash using LCG
|
||||
- For each computed hash, store the next token
|
||||
- During speculation, iteratively compute the rolling hash of the last n tokens and pick the next token from the storage
|
||||
|
||||
Some characteristics:
|
||||
|
||||
- Lightweight (~16 MB)
|
||||
- Constant memory and complexity
|
||||
- Can generate variable draft lengths (i.e. m is not fixed)
|
||||
|
||||
Currently, a single hash pool is shared across all server slots, so different requests can benefit from each other.
|
||||
|
||||
**Sample usage:**
|
||||
|
||||
```
|
||||
# notes:
|
||||
# - small `n` are not recommended
|
||||
# - MoEs require long drafts
|
||||
# - dense models: can reduce `--draft-min` and `--draft-max`
|
||||
|
||||
llama-server ... --spec-type ngram-mod --spec-ngram-size-n 24 --draft-min 48 --draft-max 64
|
||||
```
|
||||
|
||||
Applications:
|
||||
|
||||
- Iterating over a block of text/code (e.g. in llama.vim)
|
||||
- Reasoning models (when they have to repeat their thinking in the final answer)
|
||||
- Summarization
|
||||
|
||||
Example Video:
|
||||
|
||||
- See #19164
|
||||
|
||||
### Differences between ngram-simple, ngram-map and ngram-mod
|
||||
|
||||
- ngram-simple looks for a previous matching n-gram and inserts the following m-gram.
|
||||
- ngram-map-k looks for a previous matching n-gram and inserts the following m-gram but uses an internal hash-map of n-grams in the current context window.
|
||||
- ngram-mod uses a hash pool which is shared across all server slots. The hash pool is a map from n-gram hash to the next token (not the next m-gram as in ngram-map).
|
||||
|
||||
## Command-Line Options
|
||||
|
||||
If a draft model is combined with a draftless decoding the draftless decoding has higher precedence.
|
||||
|
||||
```
|
||||
--spec-type [none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v]
|
||||
--draft, --draft-n, --draft-max N number of tokens to draft for speculative decoding (default: 16)
|
||||
(env: LLAMA_ARG_DRAFT_MAX)
|
||||
--draft-min, --draft-n-min N minimum number of draft tokens to use for speculative decoding
|
||||
(default: 0)
|
||||
(env: LLAMA_ARG_DRAFT_MIN)
|
||||
[...]
|
||||
--spec-type [none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v|ngram-mod]
|
||||
type of speculative decoding to use when no draft model is provided
|
||||
(default: none)
|
||||
--spec-ngram-size-n N ngram size N for ngram-simple/ngram-map speculative decoding, length
|
||||
|
|
@ -78,6 +135,7 @@ Specifies a type of speculative decoding without draft model.
|
|||
| `ngram-simple` | Use simple n-gram pattern matching |
|
||||
| `ngram-map-k` | Use n-gram pattern matching with n-gram-keys |
|
||||
| `ngram-map-k4v` | Use n-gram pattern matching with n-gram-keys and up to four m-gram values (experimental) |
|
||||
| `ngram-mod` | Use basic ngram hasher for speculative decoding with shared pool |
|
||||
|
||||
**Example:** Server-instance used to refactor source code.
|
||||
```bash
|
||||
|
|
@ -112,9 +170,15 @@ statistics ngram_simple: #calls = 15, #gen drafts = 5, #acc drafts = 5, #gen tok
|
|||
statistics draft: #calls = 10, #gen drafts = 10, #acc drafts = 10, #gen tokens = 110, #acc tokens = 98
|
||||
```
|
||||
|
||||
```
|
||||
draft acceptance rate = 0.70312 ( 90 accepted / 128 generated)
|
||||
statistics ngram_mod: #calls = 810, #gen drafts = 15, #acc drafts = 15, #gen tokens = 960, #acc tokens = 730, dur(b,g,a) = 0.149, 0.347, 0.005 ms
|
||||
```
|
||||
|
||||
- `#calls`: number of calls of this implementations
|
||||
- `#gen drafts`: number of drafts generated by this implementation
|
||||
- `#acc drafts`: number of drafts accepted (partially) by the main model
|
||||
- `#gen tokens`: number of tokens generated by this implementation (including rejected tokens)
|
||||
- `#acc tokens`: number of tokens accepted by the main model
|
||||
- `dur(b,g,a): durations of begin (new prompt), generation and accumulation (process acceptance).
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
# Migration notice for binary filenames
|
||||
|
||||
> [!IMPORTANT]
|
||||
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809)
|
||||
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggml-org/llama.cpp/pull/7809)
|
||||
|
||||
This migration was important, but it is a breaking change that may not always be immediately obvious to users.
|
||||
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@ int main(int argc, char** argv) {
|
|||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "WARNING: The binary '%s' is deprecated.\n", filename.c_str());
|
||||
fprintf(stdout, " Please use '%s' instead.\n", replacement_filename.c_str());
|
||||
fprintf(stdout, " See https://github.com/ggerganov/llama.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n");
|
||||
fprintf(stdout, " See https://github.com/ggml-org/llama.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n");
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
return EXIT_FAILURE;
|
||||
|
|
|
|||
|
|
@ -402,7 +402,7 @@ class SchemaConverter:
|
|||
Transforms a regular expression pattern into a GBNF rule.
|
||||
|
||||
Input: https://json-schema.org/understanding-json-schema/reference/regular_expressions
|
||||
Output: https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md
|
||||
Output: https://github.com/ggml-org/llama.cpp/blob/master/grammars/README.md
|
||||
|
||||
Unsupported features: negative/positive lookaheads, greedy/non-greedy modifiers.
|
||||
|
||||
|
|
|
|||
|
|
@ -33,11 +33,14 @@ DEVICE ?= auto
|
|||
causal-convert-model-bf16: OUTTYPE=bf16
|
||||
causal-convert-model-bf16: causal-convert-model
|
||||
|
||||
causal-convert-model-debug: DEBUG=--debug
|
||||
causal-convert-model-debug: causal-convert-model
|
||||
|
||||
causal-convert-model:
|
||||
$(call validate_model_path,causal-convert-model)
|
||||
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
|
||||
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
|
||||
./scripts/causal/convert-model.sh
|
||||
./scripts/causal/convert-model.sh $(DEBUG)
|
||||
|
||||
causal-convert-mm-model-bf16: OUTTYPE=bf16
|
||||
causal-convert-mm-model-bf16: MM_OUTTYPE=f16
|
||||
|
|
|
|||
|
|
@ -4,12 +4,17 @@ set -e
|
|||
|
||||
# Parse command line arguments
|
||||
MMPROJ=""
|
||||
DEBUG=""
|
||||
while [[ $# -gt 0 ]]; do
|
||||
case $1 in
|
||||
--mmproj)
|
||||
MMPROJ="--mmproj"
|
||||
shift
|
||||
;;
|
||||
--debug)
|
||||
DEBUG="1"
|
||||
shift
|
||||
;;
|
||||
*)
|
||||
shift
|
||||
;;
|
||||
|
|
@ -28,7 +33,12 @@ echo "Data type: ${TYPE}"
|
|||
echo "Converted model path:: ${CONVERTED_MODEL}"
|
||||
echo "Metadata override: ${METADATA_OVERRIDE}"
|
||||
|
||||
CMD_ARGS=("python" "../../convert_hf_to_gguf.py" "--verbose")
|
||||
if [[ -n "$DEBUG" ]]; then
|
||||
CMD_ARGS=("python" "-m" "pdb")
|
||||
else
|
||||
CMD_ARGS=("python")
|
||||
fi
|
||||
CMD_ARGS+=("../../convert_hf_to_gguf.py" "--verbose")
|
||||
CMD_ARGS+=("${MODEL_PATH}")
|
||||
CMD_ARGS+=("--outfile" "${CONVERTED_MODEL}")
|
||||
CMD_ARGS+=("--outtype" "${TYPE}")
|
||||
|
|
|
|||
|
|
@ -0,0 +1,159 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
from safetensors import safe_open
|
||||
|
||||
|
||||
MODEL_SAFETENSORS_FILE = "model.safetensors"
|
||||
MODEL_SAFETENSORS_INDEX = "model.safetensors.index.json"
|
||||
|
||||
|
||||
def get_weight_map(model_path: Path) -> Optional[dict[str, str]]:
|
||||
index_file = model_path / MODEL_SAFETENSORS_INDEX
|
||||
|
||||
if index_file.exists():
|
||||
with open(index_file, 'r') as f:
|
||||
index = json.load(f)
|
||||
return index.get("weight_map", {})
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_all_tensor_names(model_path: Path) -> list[str]:
|
||||
weight_map = get_weight_map(model_path)
|
||||
|
||||
if weight_map is not None:
|
||||
return list(weight_map.keys())
|
||||
|
||||
single_file = model_path / MODEL_SAFETENSORS_FILE
|
||||
if single_file.exists():
|
||||
try:
|
||||
with safe_open(single_file, framework="pt", device="cpu") as f:
|
||||
return list(f.keys())
|
||||
except Exception as e:
|
||||
print(f"Error reading {single_file}: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
print(f"Error: No safetensors files found in {model_path}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def find_tensor_file(model_path: Path, tensor_name: str) -> Optional[str]:
|
||||
weight_map = get_weight_map(model_path)
|
||||
|
||||
if weight_map is not None:
|
||||
return weight_map.get(tensor_name)
|
||||
|
||||
single_file = model_path / MODEL_SAFETENSORS_FILE
|
||||
if single_file.exists():
|
||||
return single_file.name
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def normalize_tensor_name(tensor_name: str) -> str:
|
||||
normalized = re.sub(r'\.\d+\.', '.#.', tensor_name)
|
||||
normalized = re.sub(r'\.\d+$', '.#', normalized)
|
||||
return normalized
|
||||
|
||||
|
||||
def list_all_tensors(model_path: Path, unique: bool = False):
|
||||
tensor_names = get_all_tensor_names(model_path)
|
||||
|
||||
if unique:
|
||||
seen = set()
|
||||
for tensor_name in sorted(tensor_names):
|
||||
normalized = normalize_tensor_name(tensor_name)
|
||||
if normalized not in seen:
|
||||
seen.add(normalized)
|
||||
print(normalized)
|
||||
else:
|
||||
for tensor_name in sorted(tensor_names):
|
||||
print(tensor_name)
|
||||
|
||||
|
||||
def print_tensor_info(model_path: Path, tensor_name: str):
|
||||
tensor_file = find_tensor_file(model_path, tensor_name)
|
||||
|
||||
if tensor_file is None:
|
||||
print(f"Error: Could not find tensor '{tensor_name}' in model index")
|
||||
print(f"Model path: {model_path}")
|
||||
sys.exit(1)
|
||||
|
||||
file_path = model_path / tensor_file
|
||||
|
||||
try:
|
||||
with safe_open(file_path, framework="pt", device="cpu") as f:
|
||||
if tensor_name in f.keys():
|
||||
tensor_slice = f.get_slice(tensor_name)
|
||||
shape = tensor_slice.get_shape()
|
||||
print(f"Tensor: {tensor_name}")
|
||||
print(f"File: {tensor_file}")
|
||||
print(f"Shape: {shape}")
|
||||
else:
|
||||
print(f"Error: Tensor '{tensor_name}' not found in {tensor_file}")
|
||||
sys.exit(1)
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: The file '{file_path}' was not found.")
|
||||
sys.exit(1)
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Print tensor information from a safetensors model"
|
||||
)
|
||||
parser.add_argument(
|
||||
"tensor_name",
|
||||
nargs="?", # optional (if --list is used for example)
|
||||
help="Name of the tensor to inspect"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-m", "--model-path",
|
||||
type=Path,
|
||||
help="Path to the model directory (default: MODEL_PATH environment variable)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-l", "--list",
|
||||
action="store_true",
|
||||
help="List unique tensor patterns in the model (layer numbers replaced with #)"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
model_path = args.model_path
|
||||
if model_path is None:
|
||||
model_path_str = os.environ.get("MODEL_PATH")
|
||||
if model_path_str is None:
|
||||
print("Error: --model-path not provided and MODEL_PATH environment variable not set")
|
||||
sys.exit(1)
|
||||
model_path = Path(model_path_str)
|
||||
|
||||
if not model_path.exists():
|
||||
print(f"Error: Model path does not exist: {model_path}")
|
||||
sys.exit(1)
|
||||
|
||||
if not model_path.is_dir():
|
||||
print(f"Error: Model path is not a directory: {model_path}")
|
||||
sys.exit(1)
|
||||
|
||||
if args.list:
|
||||
list_all_tensors(model_path, unique=True)
|
||||
else:
|
||||
if args.tensor_name is None:
|
||||
print("Error: tensor_name is required when not using --list")
|
||||
sys.exit(1)
|
||||
print_tensor_info(model_path, args.tensor_name)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
@ -18,13 +18,14 @@ CONTEXT=4096
|
|||
#support malloc device memory more than 4GB.
|
||||
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
LOAD_MODE='--mmap'
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
echo "use $GGML_SYCL_DEVICE as main GPU"
|
||||
#use signle GPU only
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none ${LOAD_MODE}
|
||||
|
||||
else
|
||||
#use multiple GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT}
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} ${LOAD_MODE}
|
||||
fi
|
||||
|
|
|
|||
|
|
@ -1,31 +0,0 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
# MIT license
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# If you want more control, DPC++ Allows selecting a specific device through the
|
||||
# following environment variable
|
||||
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
|
||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||
|
||||
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
MODEL_FILE=models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
|
||||
NGL=99 # Layers offloaded to the GPU. If the device runs out of memory, reduce this value according to the model you are using.
|
||||
CONTEXT=4096
|
||||
|
||||
#support malloc device memory more than 4GB.
|
||||
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
echo "Using $GGML_SYCL_DEVICE as the main GPU"
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
|
||||
else
|
||||
#use multiple GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT}
|
||||
fi
|
||||
|
|
@ -0,0 +1,130 @@
|
|||
#!/bin/bash
|
||||
|
||||
# MIT license
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
Help() {
|
||||
cat << EOF
|
||||
Usage: $(basename "$0") [OPTIONS]
|
||||
|
||||
This script processes files with specified options.
|
||||
|
||||
Options:
|
||||
-h, --help Display this help message and exit.
|
||||
-c, --context <value> Set context length. Bigger need more memory.
|
||||
-p, --promote <value> Prompt to start generation with.
|
||||
-m, --model <value> Full model file path.
|
||||
-mg,--main-gpu <value> Set main GPU ID (0 - n) for single GPU mode.
|
||||
-sm,--split-mode <value> How to split the model across multiple GPUs, one of:
|
||||
- none: use one GPU only
|
||||
- layer (default): split layers and KV across GPUs
|
||||
- row: split rows across GPUs
|
||||
-ngl,--n-gpu-layers <value> Max. number of layers to store in VRAM (default: -1)
|
||||
-lv,--log-verbosity <value> Set the verbosity threshold. Messages with a higher verbosity will be
|
||||
ignored. Values:
|
||||
- 0: generic output
|
||||
- 1: error
|
||||
- 2: warning
|
||||
- 3: info
|
||||
- 4: debug
|
||||
|
||||
|
||||
EOF
|
||||
}
|
||||
|
||||
BIN_FILE=./build/bin/llama-completion
|
||||
SEED=0
|
||||
GPUS_SETTING=""
|
||||
|
||||
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
MODEL_FILE=models/llama-2-7b.Q4_0.gguf
|
||||
NGL=99
|
||||
CONTEXT=4096
|
||||
GGML_SYCL_DEVICE=-1
|
||||
SPLIT_MODE=layer
|
||||
LOG_VERBOSE=3
|
||||
while [[ $# -gt 0 ]]; do
|
||||
case "$1" in
|
||||
-c|--context)
|
||||
CONTEXT=$2
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-p|--promote)
|
||||
# Option that is a simple flag (boolean)
|
||||
INPUT_PROMPT="$2"
|
||||
# Shift once to consume the option flag
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-m|--model)
|
||||
MODEL_FILE="$2"
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-mg|--main-gpu)
|
||||
GGML_SYCL_DEVICE=$2
|
||||
SPLIT_MODE=none
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-sm|--split-mode)
|
||||
SPLIT_MODE=$2
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-ngl|--n-gpu-layers)
|
||||
NGL=$2
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-lv|--log-verbosity)
|
||||
LOG_VERBOSE=$2
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-h|--help)
|
||||
Help
|
||||
exit 0
|
||||
;;
|
||||
*)
|
||||
# Handle unknown options or stop processing options
|
||||
echo "Invalid option: $1"
|
||||
# Optional: exit script or shift to treat remaining as positional args
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
|
||||
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
|
||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||
|
||||
#support malloc device memory more than 4GB.
|
||||
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
echo "UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=${UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS}"
|
||||
|
||||
if [ $GGML_SYCL_DEVICE -ne -1 ]; then
|
||||
echo "Use $GGML_SYCL_DEVICE as main GPU"
|
||||
#use signle GPU only
|
||||
GPUS_SETTING="-mg $GGML_SYCL_DEVICE -sm ${SPLIT_MODE}"
|
||||
export ONEAPI_DEVICE_SELECTOR="level_zero:${$GGML_SYCL_DEVICE}"
|
||||
echo "ONEAPI_DEVICE_SELECTOR=${ONEAPI_DEVICE_SELECTOR}"
|
||||
else
|
||||
echo "Use all Intel GPUs, including iGPU & dGPU"
|
||||
fi
|
||||
|
||||
echo "run cmd: ZES_ENABLE_SYSMAN=1 ${BIN_FILE} -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s ${SEED} -c ${CONTEXT} ${GPUS_SETTING} -lv ${LOG_VERBOSE} --mmap "
|
||||
ZES_ENABLE_SYSMAN=1 ${BIN_FILE} -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s ${SEED} -c ${CONTEXT} ${GPUS_SETTING} -lv ${LOG_VERBOSE} --mmap
|
||||
|
||||
|
|
@ -7,5 +7,5 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
|||
|
||||
:: support malloc device memory more than 4GB.
|
||||
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0
|
||||
set LOAD_MODE="--mmap"
|
||||
.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0 %LOAD_MODE%
|
||||
|
|
|
|||
|
|
@ -7,5 +7,5 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
|||
|
||||
:: support malloc device memory more than 4GB.
|
||||
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
.\build\bin\llama-completion.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -no-cnv -p %INPUT2% -n 400 -s 0 -e -ngl 99
|
||||
set LOAD_MODE="--mmap"
|
||||
.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0 %LOAD_MODE%
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
|
||||
cmake_minimum_required(VERSION 3.14...3.28) # for add_link_options and implicit target directories.
|
||||
project("ggml" C CXX ASM)
|
||||
|
||||
### GGML Version
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
|
|
|||
|
|
@ -19,6 +19,9 @@ extern "C" {
|
|||
// abort ggml_graph_compute when true
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
|
||||
// use only reference implementations
|
||||
bool use_ref;
|
||||
};
|
||||
|
||||
// numa strategies
|
||||
|
|
@ -132,6 +135,8 @@ extern "C" {
|
|||
GGML_BACKEND_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_use_ref(ggml_backend_t backend_cpu, bool use_ref);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);
|
||||
|
|
|
|||
|
|
@ -7,8 +7,6 @@
|
|||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_REMOTING_FRONTEND_NAME "RemotingFrontend"
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_virtgpu_reg();
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
// This documentation is still a work in progress.
|
||||
// If you wish some specific topics to be covered, feel free to drop a comment:
|
||||
//
|
||||
// https://github.com/ggerganov/whisper.cpp/issues/40
|
||||
// https://github.com/ggml-org/whisper.cpp/issues/40
|
||||
//
|
||||
// ## Overview
|
||||
//
|
||||
|
|
|
|||
|
|
@ -258,6 +258,7 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor *
|
|||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
|
||||
if (backend->iface.set_tensor_async == NULL) {
|
||||
ggml_backend_synchronize(backend);
|
||||
ggml_backend_tensor_set(tensor, data, offset, size);
|
||||
} else {
|
||||
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
|
||||
|
|
@ -271,6 +272,7 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
|
|||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
|
||||
if (backend->iface.get_tensor_async == NULL) {
|
||||
ggml_backend_synchronize(backend);
|
||||
ggml_backend_tensor_get(tensor, data, offset, size);
|
||||
} else {
|
||||
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
|
|
|||
|
|
@ -268,9 +268,9 @@ static inline __m256 quad_fp16_delta_float(const float x0, const float y0, const
|
|||
_mm_set1_ps(GGML_CPU_FP16_TO_FP32(x0) * GGML_CPU_FP16_TO_FP32(y0)));
|
||||
}
|
||||
|
||||
static inline __m256 quad_mx_delta_float(const int8_t x0, const float y0, const int8_t x1, const float y1) {
|
||||
return _mm256_set_m128(_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x1) * GGML_CPU_FP16_TO_FP32(y1)),
|
||||
_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x0) * GGML_CPU_FP16_TO_FP32(y0)));
|
||||
static inline __m256 quad_mx_delta_float(const uint8_t x0, const float y0, const uint8_t x1, const float y1) {
|
||||
return _mm256_set_m128(_mm_set1_ps(GGML_CPU_E8M0_TO_FP32_HALF(x1) * GGML_CPU_FP16_TO_FP32(y1)),
|
||||
_mm_set1_ps(GGML_CPU_E8M0_TO_FP32_HALF(x0) * GGML_CPU_FP16_TO_FP32(y0)));
|
||||
}
|
||||
#endif
|
||||
#elif defined(__SSSE3__)
|
||||
|
|
@ -782,6 +782,7 @@ void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
|||
|
||||
__m256 accum1 = _mm256_setzero_ps();
|
||||
__m256 accum2 = _mm256_setzero_ps();
|
||||
|
||||
for (; ib + 1 < nb; ib += 2) {
|
||||
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[ib + 0].qs);
|
||||
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[ib + 1].qs);
|
||||
|
|
@ -795,10 +796,10 @@ void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
|||
const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
|
||||
const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
|
||||
const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
|
||||
accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 0].e)),
|
||||
_mm256_cvtepi32_ps(p_1), accum1);
|
||||
accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 1].e)),
|
||||
_mm256_cvtepi32_ps(p_2), accum2);
|
||||
const __m256 scale0 = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_CPU_E8M0_TO_FP32_HALF(x[ib + 0].e));
|
||||
const __m256 scale1 = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_CPU_E8M0_TO_FP32_HALF(x[ib + 1].e));
|
||||
accum1 = _mm256_fmadd_ps(scale0, _mm256_cvtepi32_ps(p_1), accum1);
|
||||
accum2 = _mm256_fmadd_ps(scale1, _mm256_cvtepi32_ps(p_2), accum2);
|
||||
}
|
||||
|
||||
sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
|
||||
|
|
@ -830,7 +831,7 @@ void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
|||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e);
|
||||
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_CPU_E8M0_TO_FP32_HALF(x[ib].e);
|
||||
int sumi1 = 0;
|
||||
int sumi2 = 0;
|
||||
for (int j = 0; j < QK_MXFP4/2; ++j) {
|
||||
|
|
@ -3817,4 +3818,3 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
|||
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -24,6 +24,9 @@ struct ggml_compute_params {
|
|||
void * wdata;
|
||||
|
||||
struct ggml_threadpool * threadpool;
|
||||
|
||||
// use reference implementation
|
||||
bool use_ref;
|
||||
};
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@
|
|||
#include "ggml-backend.h"
|
||||
#include "traits.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "quants.h"
|
||||
#include "ggml-threading.h"
|
||||
|
|
@ -76,6 +75,9 @@
|
|||
// precomputed f32 table for f16 (256 KB) (simd-mappings.h)
|
||||
float ggml_table_f32_f16[1 << 16];
|
||||
|
||||
// precomputed f32 table for e8m0 half (1 KB) (simd-mappings.h)
|
||||
float ggml_table_f32_e8m0_half[1 << 8];
|
||||
|
||||
#if defined(__ARM_ARCH)
|
||||
struct ggml_arm_arch_features_type {
|
||||
int sve_cnt;
|
||||
|
|
@ -2867,12 +2869,20 @@ struct ggml_cplan ggml_graph_plan(
|
|||
} break;
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
{
|
||||
const int64_t neq2 = node->src[0]->ne[2]; // number of query heads
|
||||
const int64_t DK = node->src[1]->ne[0];
|
||||
const int64_t DV = node->src[2]->ne[0];
|
||||
|
||||
// Tiled flash attention scratch (tile sizes defined in common.h)
|
||||
// Per-thread: Q_q + KQ + mask + VKQ32 + V32 + padding
|
||||
cur = sizeof(float)*(GGML_FA_TILE_Q*DK + 2*GGML_FA_TILE_Q*GGML_FA_TILE_KV + GGML_FA_TILE_Q*DV + GGML_FA_TILE_KV*DV)*n_tasks;
|
||||
size_t prefill = sizeof(float)*(GGML_FA_TILE_Q*DK + 2*GGML_FA_TILE_Q*GGML_FA_TILE_KV + GGML_FA_TILE_Q*DV + GGML_FA_TILE_KV*DV)*n_tasks;
|
||||
|
||||
// Decode path: n_kv_chunks = n_tasks (one chunk per thread)
|
||||
// Per-thread: VKQ accmulator (DV), partial M, partial S + intra-thread scratch for V, Q and VKQ
|
||||
size_t n_chunks = n_tasks;
|
||||
size_t decode = sizeof(float)*(neq2*n_chunks*(2+DV) + n_tasks*(DK + 2*DV));
|
||||
|
||||
cur += MAX(prefill, decode);
|
||||
} break;
|
||||
case GGML_OP_FLASH_ATTN_BACK:
|
||||
{
|
||||
|
|
@ -2929,11 +2939,12 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
|||
set_numa_thread_affinity(state->ith);
|
||||
|
||||
struct ggml_compute_params params = {
|
||||
/*.ith =*/ state->ith,
|
||||
/*.nth =*/ atomic_load_explicit(&tp->n_graph, memory_order_relaxed) & GGML_THREADPOOL_N_THREADS_MASK,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
/*.threadpool=*/ tp,
|
||||
/*.ith =*/ state->ith,
|
||||
/*.nth =*/ atomic_load_explicit(&tp->n_graph, memory_order_relaxed) & GGML_THREADPOOL_N_THREADS_MASK,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
/*.threadpool =*/ tp,
|
||||
/*.use_ref =*/ cplan->use_ref,
|
||||
};
|
||||
|
||||
GGML_PRINT_DEBUG("thread #%d compute-start cplan %p last-graph %d \n", state->ith, cplan, state->last_graph);
|
||||
|
|
@ -3673,6 +3684,11 @@ void ggml_cpu_init(void) {
|
|||
ggml_table_gelu_quick_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_quick_f32(f));
|
||||
}
|
||||
|
||||
// initialize E8M0 half table (256 entries)
|
||||
for (int i = 0; i < (1 << 8); ++i) {
|
||||
ggml_table_f32_e8m0_half[i] = GGML_E8M0_TO_FP32_HALF(i);
|
||||
}
|
||||
|
||||
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
|
||||
|
||||
GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0);
|
||||
|
|
|
|||
|
|
@ -105,6 +105,8 @@ struct ggml_backend_cpu_context {
|
|||
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
|
||||
bool use_ref; // use reference implementation
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cpu_get_name(ggml_backend_t backend) {
|
||||
|
|
@ -143,6 +145,7 @@ static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend
|
|||
|
||||
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
|
||||
cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
cpu_plan->cplan.use_ref = cpu_ctx->use_ref;
|
||||
|
||||
return cpu_plan;
|
||||
}
|
||||
|
|
@ -182,6 +185,7 @@ static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, s
|
|||
|
||||
cplan.abort_callback = cpu_ctx->abort_callback;
|
||||
cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
cplan.use_ref = cpu_ctx->use_ref;
|
||||
|
||||
return ggml_graph_compute(cgraph, &cplan);
|
||||
}
|
||||
|
|
@ -223,6 +227,7 @@ ggml_backend_t ggml_backend_cpu_init(void) {
|
|||
ctx->work_size = 0;
|
||||
ctx->abort_callback = NULL;
|
||||
ctx->abort_callback_data = NULL;
|
||||
ctx->use_ref = false;
|
||||
|
||||
ggml_backend_t cpu_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_cpu_guid(),
|
||||
|
|
@ -270,6 +275,13 @@ void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_
|
|||
ctx->abort_callback_data = abort_callback_data;
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_use_ref(ggml_backend_t backend_cpu, bool use_ref) {
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
||||
ctx->use_ref = use_ref;
|
||||
}
|
||||
|
||||
// CPU backend - device
|
||||
|
||||
struct ggml_backend_cpu_device_context {
|
||||
|
|
@ -646,6 +658,9 @@ static void * ggml_backend_cpu_get_proc_address(ggml_backend_reg_t reg, const ch
|
|||
if (strcmp(name, "ggml_backend_cpu_is_numa") == 0) {
|
||||
return (void *)ggml_is_numa;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_cpu_set_use_ref") == 0) {
|
||||
return (void *)ggml_backend_cpu_set_use_ref;
|
||||
}
|
||||
|
||||
// threadpool - TODO: move to ggml-base
|
||||
if (strcmp(name, "ggml_threadpool_new") == 0) {
|
||||
|
|
|
|||
|
|
@ -8042,12 +8042,14 @@ void ggml_compute_forward_top_k(
|
|||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_flash_attn_ext
|
||||
|
||||
static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst,
|
||||
int ir0, int ir1) {
|
||||
int ir0, int ir1,
|
||||
int64_t ic_start, int64_t ic_end,
|
||||
float * partials, int64_t partial_stride) {
|
||||
|
||||
const bool write_partials = (partials != nullptr);
|
||||
const ggml_tensor * q = dst->src[0];
|
||||
const ggml_tensor * k = dst->src[1];
|
||||
const ggml_tensor * v = dst->src[2];
|
||||
|
|
@ -8124,7 +8126,6 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
|||
|
||||
int ith = params->ith;
|
||||
|
||||
// loop over n_batch and n_head
|
||||
for (int ir = ir0; ir < ir1; ++ir) {
|
||||
// q indices
|
||||
const int iq3 = ir/(neq2*neq1);
|
||||
|
|
@ -8165,7 +8166,7 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
|||
// loop over n_kv and n_head_kv
|
||||
// ref: https://arxiv.org/pdf/2112.05682.pdf
|
||||
|
||||
for (int64_t ic = 0; ic < nek1; ++ic) {
|
||||
for (int64_t ic = ic_start; ic < ic_end; ++ic) {
|
||||
const float mv = mp ? slope*GGML_CPU_FP16_TO_FP32(mp[ic]) : 0.0f;
|
||||
if (mv == -INFINITY) {
|
||||
continue;
|
||||
|
|
@ -8238,8 +8239,8 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
|||
}
|
||||
}
|
||||
|
||||
// sinks
|
||||
if (sinks) {
|
||||
// sinks - apply only on the first kv-chunk
|
||||
if (sinks && ic_start == 0) {
|
||||
const float s = ((float *)((char *) sinks->data))[h];
|
||||
|
||||
float ms = 1.0f;
|
||||
|
|
@ -8247,6 +8248,7 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
|||
|
||||
if (s > M) {
|
||||
ms = expf(M - s);
|
||||
M = s;
|
||||
ggml_vec_scale_f32(DV, VKQ32, ms);
|
||||
} else {
|
||||
vs = expf(s - M);
|
||||
|
|
@ -8255,20 +8257,26 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
|||
S = S*ms + vs;
|
||||
}
|
||||
|
||||
// V /= S
|
||||
const float S_inv = S == 0.0f ? 0.0f : 1.0f/S;
|
||||
ggml_vec_scale_f32(DV, VKQ32, S_inv);
|
||||
if (write_partials) {
|
||||
// Write M, S, VKQ to partials for later reduction
|
||||
// partials layout: [M, S, VKQ[DV]] per query head
|
||||
float * partial = partials + ir * partial_stride;
|
||||
partial[0] = M;
|
||||
partial[1] = S;
|
||||
memcpy(partial + 2, VKQ32, DV * sizeof(float));
|
||||
} else {
|
||||
// V /= S
|
||||
const float S_inv = S == 0.0f ? 0.0f : 1.0f/S;
|
||||
ggml_vec_scale_f32(DV, VKQ32, S_inv);
|
||||
|
||||
// dst indices
|
||||
const int i1 = iq1;
|
||||
const int i2 = iq2;
|
||||
const int i3 = iq3;
|
||||
// dst indices
|
||||
const int i1 = iq1;
|
||||
const int i2 = iq2;
|
||||
const int i3 = iq3;
|
||||
|
||||
// original
|
||||
//memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
|
||||
|
||||
// permute(0, 2, 1, 3)
|
||||
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
|
||||
// permute(0, 2, 1, 3)
|
||||
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -8546,6 +8554,78 @@ static void ggml_compute_forward_flash_attn_ext_tiled(
|
|||
}
|
||||
}
|
||||
|
||||
// Reduction function: combines partial results across KV chunks
|
||||
// Partials layout in wdata: [n_q_heads][n_chunks][2 + DV]
|
||||
static void ggml_flash_attn_ext_reduce_partials(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst,
|
||||
const int64_t n_chunks,
|
||||
const int64_t chunk_size) {
|
||||
|
||||
const ggml_tensor * q = dst->src[0];
|
||||
const ggml_tensor * k = dst->src[1];
|
||||
const ggml_tensor * v = dst->src[2];
|
||||
|
||||
const int64_t DK = k->ne[0];
|
||||
const int64_t DV = v->ne[0];
|
||||
const int64_t nek1 = k->ne[1];
|
||||
const int64_t n_q_heads = q->ne[2];
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t wdata_per_thread = DK + 2*DV + CACHE_LINE_SIZE_F32;
|
||||
float * thread_wdata = (float *) params->wdata + ith * wdata_per_thread;
|
||||
|
||||
const int64_t partials_offset = nth * (DK + 2*DV + CACHE_LINE_SIZE_F32);
|
||||
const int64_t partial_size = 2 + DV;
|
||||
const float * partials_base = (const float *) params->wdata + partials_offset;
|
||||
|
||||
// Output layout
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
const int64_t ne2 = dst->ne[2];
|
||||
const size_t nb1 = dst->nb[1];
|
||||
|
||||
// Each thread reduces a subset of query heads
|
||||
for (int64_t q_head = ith; q_head < n_q_heads; q_head += nth) {
|
||||
float M_final = -INFINITY;
|
||||
float S_final = 0.0f;
|
||||
float * VKQ_final = thread_wdata;
|
||||
memset(VKQ_final, 0, DV * sizeof(float));
|
||||
|
||||
// Combine partials from all chunks
|
||||
for (int64_t chunk_idx = 0; chunk_idx < n_chunks; ++chunk_idx) {
|
||||
const int64_t ic_start = chunk_idx * chunk_size;
|
||||
if (ic_start >= nek1) continue;
|
||||
|
||||
const float * partial = partials_base + (q_head * n_chunks + chunk_idx) * partial_size;
|
||||
const float M_chunk = partial[0];
|
||||
const float S_chunk = partial[1];
|
||||
const float * VKQ_chunk = partial + 2;
|
||||
|
||||
if (S_chunk == 0.0f) continue;
|
||||
|
||||
const float M_new = fmaxf(M_final, M_chunk);
|
||||
const float scale_old = expf(M_final - M_new);
|
||||
const float scale_new = expf(M_chunk - M_new);
|
||||
|
||||
for (int64_t d = 0; d < DV; ++d) {
|
||||
VKQ_final[d] = VKQ_final[d] * scale_old + VKQ_chunk[d] * scale_new;
|
||||
}
|
||||
S_final = S_final * scale_old + S_chunk * scale_new;
|
||||
M_final = M_new;
|
||||
}
|
||||
|
||||
// Normalize and write to output
|
||||
if (S_final != 0.0f) {
|
||||
const float S_inv = 1.0f / S_final;
|
||||
ggml_vec_scale_f32(DV, VKQ_final, S_inv);
|
||||
}
|
||||
// iq1=0, iq3=0 for decode
|
||||
memcpy((char *) dst->data + (0*ne2*ne1 + q_head + 0*ne1)*nb1, VKQ_final, nb1);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
|
@ -8567,6 +8647,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
|||
const int64_t DV = nev0;
|
||||
const int64_t N = neq1;
|
||||
|
||||
|
||||
GGML_ASSERT(ne0 == DV);
|
||||
GGML_ASSERT(ne2 == N);
|
||||
|
||||
|
|
@ -8587,60 +8668,92 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
|||
GGML_ASSERT(nb1 <= nb2);
|
||||
GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// parallelize by q rows using ggml_vec_dot_f32
|
||||
|
||||
// total rows in q
|
||||
const int64_t nr = neq1*neq2*neq3;
|
||||
|
||||
// rows per thread
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
// disable for NUMA
|
||||
const bool disable_chunking = ggml_is_numa();
|
||||
// When use_ref is set, force the vec-only reference implementation (no tiling, no KV-chunking)
|
||||
const bool use_ref = params->use_ref;
|
||||
|
||||
// 4x chunks per thread
|
||||
int nth_scaled = nth * 4;
|
||||
int64_t chunk_size = (nr + nth_scaled - 1) / nth_scaled;
|
||||
int64_t nchunk = (nr + chunk_size - 1) / chunk_size;
|
||||
|
||||
if (nth == 1 || nchunk < nth || disable_chunking) {
|
||||
nchunk = nth;
|
||||
}
|
||||
|
||||
if (ith == 0) {
|
||||
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
|
||||
ggml_threadpool_chunk_set(params->threadpool, nth);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
// The number of elements in each chunk
|
||||
const int64_t dr = (nr + nchunk - 1) / nchunk;
|
||||
|
||||
static constexpr int64_t KV_TILE_SZ = ggml_fa_tile_config::KV;
|
||||
static constexpr int64_t Q_TILE_SZ = ggml_fa_tile_config::Q;
|
||||
const bool kv_is_f32_or_f16 = (k->type == GGML_TYPE_F32 || k->type == GGML_TYPE_F16);
|
||||
const bool use_tiled = (q->type == GGML_TYPE_F32 &&
|
||||
kv_is_f32_or_f16 &&
|
||||
k->type == v->type &&
|
||||
nek1 % KV_TILE_SZ == 0 &&
|
||||
neq1 >= Q_TILE_SZ); // Only use tiled for batch >= tile size
|
||||
const bool use_split_kv_path = !use_ref && (neq1 == 1 && neq3 == 1) && kv_is_f32_or_f16 && (k->type == v->type) && q->type == GGML_TYPE_F32 && nek1 >= 512;
|
||||
|
||||
// The first chunk comes from our thread_id, the rest will get auto-assigned.
|
||||
int current_chunk = ith;
|
||||
if (use_split_kv_path) {
|
||||
const int64_t chunk_size = (nek1 + nth - 1) / nth;
|
||||
|
||||
while (current_chunk < nchunk) {
|
||||
const int64_t ir0 = dr * current_chunk;
|
||||
const int64_t ir1 = MIN(ir0 + dr, nr);
|
||||
// Partials buffer layout: [q_head][kv_chunk][M, S, VKQ]
|
||||
const int64_t partial_size = 2 + DV;
|
||||
float * partials_base = (float *) params->wdata + nth * (DK + 2*DV + CACHE_LINE_SIZE_F32);
|
||||
|
||||
if (use_tiled) {
|
||||
ggml_compute_forward_flash_attn_ext_tiled(params, dst, ir0, ir1);
|
||||
const int64_t ic_start = ith * chunk_size;
|
||||
const int64_t ic_end = std::min(ic_start + chunk_size, nek1);
|
||||
|
||||
const int64_t partial_stride = nth * partial_size;
|
||||
float * chunk_partials = partials_base + ith * partial_size;
|
||||
|
||||
if (ic_start < nek1) {
|
||||
for (int64_t q_head = 0; q_head < neq2; q_head++) {
|
||||
ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
||||
params, dst, q_head, q_head + 1, ic_start, ic_end,
|
||||
chunk_partials, partial_stride);
|
||||
}
|
||||
} else {
|
||||
ggml_compute_forward_flash_attn_ext_f16_one_chunk(params, dst, ir0, ir1);
|
||||
for (int64_t q_head = 0; q_head < neq2; q_head++) {
|
||||
float * q_partials = chunk_partials + q_head * partial_stride;
|
||||
q_partials[0] = -INFINITY; // M
|
||||
q_partials[1] = 0.0f; // S
|
||||
}
|
||||
}
|
||||
|
||||
current_chunk = ggml_threadpool_chunk_add(params->threadpool, 1);
|
||||
ggml_barrier(params->threadpool);
|
||||
ggml_flash_attn_ext_reduce_partials(params, dst, nth, chunk_size);
|
||||
} else {
|
||||
|
||||
// total rows in q
|
||||
const int64_t nr = neq1*neq2*neq3;
|
||||
|
||||
// disable for NUMA
|
||||
const bool disable_chunking = ggml_is_numa();
|
||||
|
||||
// 4x chunks per thread
|
||||
int nth_scaled = nth * 4;
|
||||
int64_t chunk_size = (nr + nth_scaled - 1) / nth_scaled;
|
||||
int64_t nchunk = (nr + chunk_size - 1) / chunk_size;
|
||||
|
||||
if (nth == 1 || nchunk < nth || disable_chunking) {
|
||||
nchunk = nth;
|
||||
}
|
||||
|
||||
if (ith == 0) {
|
||||
ggml_threadpool_chunk_set(params->threadpool, nth);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
const int64_t dr = (nr + nchunk - 1) / nchunk;
|
||||
|
||||
static constexpr int64_t KV_TILE_SZ = ggml_fa_tile_config::KV;
|
||||
static constexpr int64_t Q_TILE_SZ = ggml_fa_tile_config::Q;
|
||||
const bool use_tiled = !use_ref &&
|
||||
(q->type == GGML_TYPE_F32 &&
|
||||
kv_is_f32_or_f16 &&
|
||||
k->type == v->type &&
|
||||
nek1 % KV_TILE_SZ == 0 &&
|
||||
neq1 >= Q_TILE_SZ);
|
||||
|
||||
int current_chunk = ith;
|
||||
|
||||
while (current_chunk < nchunk) {
|
||||
const int64_t ir0 = dr * current_chunk;
|
||||
const int64_t ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
if (use_tiled) {
|
||||
ggml_compute_forward_flash_attn_ext_tiled(params, dst, ir0, ir1);
|
||||
} else {
|
||||
ggml_compute_forward_flash_attn_ext_f16_one_chunk(params, dst, ir0, ir1, 0, nek1, nullptr, 0);
|
||||
}
|
||||
|
||||
current_chunk = ggml_threadpool_chunk_add(params->threadpool, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -116,6 +116,17 @@ extern "C" {
|
|||
// defined in ggml-cpu.c, initialized in ggml_cpu_init()
|
||||
extern float ggml_table_f32_f16[1 << 16];
|
||||
|
||||
// precomputed f32 table for e8m0 half (1 KB)
|
||||
// defined in ggml-cpu.c, initialized in ggml_cpu_init()
|
||||
extern float ggml_table_f32_e8m0_half[1 << 8];
|
||||
|
||||
// Use lookup table for E8M0 on x86 (faster than bit manipulation)
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||||
#define GGML_CPU_E8M0_TO_FP32_HALF(x) ggml_table_f32_e8m0_half[(uint8_t)(x)]
|
||||
#else
|
||||
#define GGML_CPU_E8M0_TO_FP32_HALF(x) GGML_E8M0_TO_FP32_HALF(x)
|
||||
#endif
|
||||
|
||||
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
|
||||
// so we define GGML_CPU_FP16_TO_FP32 and GGML_CPU_FP32_TO_FP16 elsewhere for NEON.
|
||||
// This is also true for POWER9.
|
||||
|
|
|
|||
|
|
@ -2279,13 +2279,19 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
|
||||
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
if (ne2 == 1) {
|
||||
static_assert(MMVQ_MAX_BATCH_SIZE == MMVF_MAX_BATCH_SIZE);
|
||||
if (ne2 <= MMVQ_MAX_BATCH_SIZE) {
|
||||
if (ggml_is_quantized(src0->type)) {
|
||||
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst);
|
||||
if (ne2 <= 4) {
|
||||
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst);
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
ggml_cuda_mul_mat_vec_f(ctx, src0, src1, ids, dst);
|
||||
if (GGML_CUDA_CC_IS_AMD(cc)) {
|
||||
ggml_cuda_mul_mat_vec_f(ctx, src0, src1, ids, dst);
|
||||
return;
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_use_mmq(src0->type, cc, ne12, /*n_experts=*/ne02)) {
|
||||
|
|
@ -2973,8 +2979,7 @@ static bool ggml_cuda_graph_node_properties_match(ggml_tensor * node, ggml_cuda_
|
|||
}
|
||||
}
|
||||
|
||||
if ((node->op == GGML_OP_SCALE || node->op == GGML_OP_GLU) &&
|
||||
memcmp(props->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
|
||||
if (memcmp(props->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
@ -5049,16 +5054,6 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
|||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
if (!initialized) {
|
||||
// Set CUDA_SCALE_LAUNCH_QUEUES before any CUDA API call to improve multi-GPU pipeline parallelism performance
|
||||
// PR: https://github.com/ggml-org/llama.cpp/pull/19042
|
||||
if (getenv("CUDA_SCALE_LAUNCH_QUEUES") == nullptr) {
|
||||
#ifdef _WIN32
|
||||
_putenv_s("CUDA_SCALE_LAUNCH_QUEUES", "4x");
|
||||
#else
|
||||
setenv("CUDA_SCALE_LAUNCH_QUEUES", "4x", 0); // don't overwrite if already set
|
||||
#endif // _WIN32
|
||||
}
|
||||
|
||||
ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
|
||||
const int min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;
|
||||
|
||||
|
|
|
|||
|
|
@ -3697,13 +3697,20 @@ static __global__ void mul_mat_q(
|
|||
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
|
||||
}
|
||||
|
||||
|
||||
template <ggml_type type, int mmq_x, bool need_check>
|
||||
static __global__ void mul_mat_q_stream_k_fixup(
|
||||
const int32_t * ids_dst, const int32_t * expert_bounds, float * __restrict__ dst, const float * __restrict__ tmp_last_tile,
|
||||
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_col_dst,
|
||||
const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst,
|
||||
const int ncols_max) {
|
||||
static __global__ void mul_mat_q_stream_k_fixup(const int32_t * ids_dst,
|
||||
const int32_t * expert_bounds,
|
||||
float * __restrict__ dst,
|
||||
const float * __restrict__ tmp_last_tile,
|
||||
const int ncols_x,
|
||||
const int nrows_x,
|
||||
const int ncols_dst,
|
||||
const size_t stride_col_dst,
|
||||
const int nchannels_y,
|
||||
const size_t stride_channel_dst,
|
||||
const int nsamples_y,
|
||||
const size_t stride_sample_dst,
|
||||
const int ncols_max) {
|
||||
constexpr int mmq_y = get_mmq_y_device();
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
constexpr int ITER_K = get_iter_k(type);
|
||||
|
|
|
|||
|
|
@ -4,26 +4,48 @@
|
|||
#include "mmvf.cuh"
|
||||
#include "convert.cuh"
|
||||
|
||||
template <typename T, typename type_acc, int ncols_dst, int block_size, bool has_fusion = false>
|
||||
template <typename T, typename type_acc, int ncols_dst, int block_size, bool has_fusion = false, bool is_multi_token_id = false>
|
||||
static __global__ void mul_mat_vec_f(
|
||||
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst,
|
||||
const int ncols2, const int nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst,
|
||||
const int ncols2, const uint3 nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst,
|
||||
const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
|
||||
const int ids_stride) {
|
||||
const int row = blockIdx.x;
|
||||
// for MUL_MAT_ID - blockIdx.y = n_expert_used, blockIdx.z = ncols_dst (tokens)
|
||||
const int channel_dst = blockIdx.y;
|
||||
const int channel_x = ids ? ids[channel_dst] : fastdiv((uint32_t) channel_dst, channel_ratio);
|
||||
const int channel_y = ids ? channel_dst % nchannels_y : channel_dst;
|
||||
const int sample_dst = blockIdx.z;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
int token_idx;
|
||||
int channel_x;
|
||||
int channel_y;
|
||||
int sample_dst;
|
||||
|
||||
if constexpr (is_multi_token_id) {
|
||||
// Multi-token MUL_MAT_ID path, adding these in the normal path causes a perf regression for n_tokens=1 case
|
||||
token_idx = blockIdx.z;
|
||||
channel_x = ids[channel_dst + token_idx * ids_stride];
|
||||
channel_y = fastmodulo(channel_dst, nchannels_y);
|
||||
sample_dst = 0;
|
||||
} else {
|
||||
token_idx = ids ? blockIdx.z : 0;
|
||||
channel_x = ids ? ids[blockIdx.y + token_idx * ids_stride] : fastdiv((uint32_t) channel_dst, channel_ratio);
|
||||
channel_y = ids ? fastmodulo(blockIdx.y, nchannels_y) : channel_dst;
|
||||
sample_dst = ids ? 0 : blockIdx.z;
|
||||
}
|
||||
|
||||
const int sample_x = fastdiv((uint32_t) sample_dst, sample_ratio);
|
||||
const int sample_y = sample_dst;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
|
||||
x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row*stride_row;
|
||||
y += int64_t(sample_y) *stride_sample_y + channel_y *stride_channel_y;
|
||||
dst += int64_t(sample_dst)*stride_sample_dst + channel_dst*stride_channel_dst;
|
||||
if constexpr (is_multi_token_id) {
|
||||
y += token_idx*stride_col_y2*2;
|
||||
dst += token_idx*stride_col_dst;
|
||||
}
|
||||
|
||||
bool use_gate = false;
|
||||
bool use_bias = false;
|
||||
|
|
@ -56,8 +78,10 @@ static __global__ void mul_mat_vec_f(
|
|||
if (use_gate) {
|
||||
gate_x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row*stride_row;
|
||||
}
|
||||
|
||||
const int channel_bias = ids ? channel_x : channel_dst;
|
||||
|
||||
if constexpr (has_fusion) {
|
||||
const int channel_bias = ids ? channel_x : channel_dst;
|
||||
if (use_bias) {
|
||||
x_bias += int64_t(sample_dst)*stride_sample_dst + channel_bias*stride_channel_dst;
|
||||
}
|
||||
|
|
@ -349,36 +373,36 @@ static __global__ void mul_mat_vec_f(
|
|||
}
|
||||
}
|
||||
|
||||
template<typename T, typename type_acc, int ncols_dst, int block_size>
|
||||
template<typename T, typename type_acc, int ncols_dst, int block_size, bool is_multi_token_id = false>
|
||||
static void mul_mat_vec_f_switch_fusion(
|
||||
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
|
||||
const int64_t ncols, const int64_t nrows,
|
||||
const int64_t ncols, const uint3 nchannels_y,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
|
||||
const dim3 & block_dims, const dim3 & block_nums, const int nbytes_shared, const cudaStream_t stream) {
|
||||
const dim3 & block_dims, const dim3 & block_nums, const int nbytes_shared, const int ids_stride, const cudaStream_t stream) {
|
||||
|
||||
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
|
||||
if constexpr (ncols_dst == 1) {
|
||||
if (has_fusion) {
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, block_size, true><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, block_size, true, is_multi_token_id><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, fusion, dst, ncols, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1");
|
||||
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, block_size><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, block_size, false, is_multi_token_id><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, fusion, dst, ncols, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride);
|
||||
|
||||
}
|
||||
|
||||
template <typename T, typename type_acc, int ncols_dst>
|
||||
template <typename T, typename type_acc, int ncols_dst, bool is_multi_token_id = false>
|
||||
void launch_mul_mat_vec_f_cuda(
|
||||
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
|
||||
const int64_t ncols, const int64_t nrows,
|
||||
|
|
@ -386,12 +410,13 @@ void launch_mul_mat_vec_f_cuda(
|
|||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
const int64_t nsamples_or_ntokens, const int64_t ids_stride, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % 2 == 0);
|
||||
GGML_ASSERT(stride_row % 2 == 0);
|
||||
GGML_ASSERT(stride_col_y % 2 == 0);
|
||||
GGML_ASSERT(ids || nchannels_dst % nchannels_x == 0);
|
||||
GGML_ASSERT( nsamples_dst % nsamples_x == 0);
|
||||
const uint3 nchannels_y_fd = ids ? init_fastdiv_values(nchannels_y) : make_uint3(0, 0, 0);
|
||||
const uint3 channel_ratio_fd = ids ? make_uint3(0, 0, 0) : init_fastdiv_values(nchannels_dst / nchannels_x);
|
||||
const uint3 sample_ratio_fd = init_fastdiv_values(nsamples_dst / nsamples_x);
|
||||
|
||||
|
|
@ -415,56 +440,56 @@ void launch_mul_mat_vec_f_cuda(
|
|||
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
|
||||
|
||||
const int nbytes_shared = warp_size*sizeof(float) + (has_fusion ? warp_size*sizeof(float) : 0);
|
||||
const dim3 block_nums(nrows, nchannels_dst, nsamples_dst);
|
||||
const dim3 block_nums(nrows, nchannels_dst, nsamples_or_ntokens);
|
||||
const dim3 block_dims(block_size_best, 1, 1);
|
||||
switch (block_size_best) {
|
||||
case 32: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 32>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 32, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 64: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 64>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 64, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 96: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 96>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 96, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 128: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 128>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 128, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 160: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 160>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 160, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 192: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 192>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 192, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 224: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 224>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 224, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 256: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 256>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 256, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("fatal error");
|
||||
|
|
@ -480,55 +505,88 @@ static void mul_mat_vec_f_cuda_switch_ncols_dst(
|
|||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
const int64_t ids_stride, cudaStream_t stream) {
|
||||
|
||||
const bool has_ids = ids != nullptr;
|
||||
|
||||
if (has_ids && ncols_dst > 1) {
|
||||
// Multi-token MUL_MAT_ID path only - single-token goes through regular path below
|
||||
constexpr int c_ncols_dst = 1;
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, c_ncols_dst, true>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
ncols_dst, ids_stride, stream);
|
||||
return;
|
||||
}
|
||||
|
||||
if (has_ids) {
|
||||
// Single-token MUL_MAT_ID path
|
||||
constexpr int c_ncols_dst = 1;
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, c_ncols_dst>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
ncols_dst, ids_stride, stream);
|
||||
return;
|
||||
}
|
||||
|
||||
switch (ncols_dst) {
|
||||
case 1:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 1>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 2:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 2>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 3:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 3>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 4:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 4>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 5:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 5>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 6:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 6>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 7:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 7>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 8:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 8>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
|
|
@ -544,21 +602,21 @@ static void mul_mat_vec_f_cuda(
|
|||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
enum ggml_prec prec, cudaStream_t stream) {
|
||||
const int64_t ids_stride, enum ggml_prec prec, cudaStream_t stream) {
|
||||
|
||||
if constexpr(std::is_same_v<T, half>) {
|
||||
if (prec == GGML_PREC_DEFAULT) {
|
||||
mul_mat_vec_f_cuda_switch_ncols_dst<T, half>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
return;
|
||||
}
|
||||
}
|
||||
mul_mat_vec_f_cuda_switch_ncols_dst<T, float>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
|
||||
|
|
@ -573,7 +631,7 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor
|
|||
const size_t ts_src1 = ggml_type_size(src1->type);
|
||||
const size_t ts_dst = ggml_type_size(dst->type);
|
||||
|
||||
GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for batch size 1.
|
||||
GGML_ASSERT(!ids || ne12 <= MMVF_MAX_BATCH_SIZE);
|
||||
GGML_ASSERT(ne13 == ne3);
|
||||
|
||||
GGML_ASSERT( nb00 == ts_src0);
|
||||
|
|
@ -626,29 +684,31 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor
|
|||
const int64_t ncols_dst = ids ? ne2 : ne1;
|
||||
const int64_t nchannels_y = ids ? ne11 : ne12;
|
||||
const int64_t nchannels_dst = ids ? ne1 : ne2;
|
||||
const int64_t stride_col_dst = ids ? s2 : s1;
|
||||
const int64_t stride_col_y = ids ? s12 : s11;
|
||||
const int64_t stride_channel_dst = ids ? s1 : s2;
|
||||
const int64_t stride_channel_y = ids ? s11 : s12;
|
||||
|
||||
GGML_ASSERT(!ids || ncols_dst == 1);
|
||||
const int64_t ids_stride = ids ? ids->nb[1] / ggml_type_size(ids->type) : 0;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
|
||||
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03, s13, s3, prec, ctx.stream());
|
||||
ne03, ne3, s03, s13, s3, ids_stride, prec, ctx.stream());
|
||||
} break;
|
||||
case GGML_TYPE_F16: {
|
||||
const half * src0_d = (const half *) src0->data;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
|
||||
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03, s13, s3, prec, ctx.stream());
|
||||
ne03, ne3, s03, s13, s3, ids_stride, prec, ctx.stream());
|
||||
} break;
|
||||
case GGML_TYPE_BF16: {
|
||||
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0->data;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
|
||||
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03, s13, s3, prec, ctx.stream());
|
||||
ne03, ne3, s03, s13, s3, ids_stride, prec, ctx.stream());
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
|
||||
|
|
@ -695,19 +755,19 @@ void ggml_cuda_op_mul_mat_vec_f(
|
|||
const float * src0_d = (const float *) src0_dd_i;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, 0, prec, stream);
|
||||
} break;
|
||||
case GGML_TYPE_F16: {
|
||||
const half * src0_d = (const half *) src0_dd_i;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, 0, prec, stream);
|
||||
} break;
|
||||
case GGML_TYPE_BF16: {
|
||||
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0_dd_i;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, 0, prec, stream);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
|
||||
|
|
|
|||
|
|
@ -1,5 +1,7 @@
|
|||
#include "common.cuh"
|
||||
|
||||
#define MMVF_MAX_BATCH_SIZE 8 // Max. batch size for which to use MMVF kernels.
|
||||
|
||||
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
|
||||
const ggml_cuda_mm_fusion_args_host * fusion = nullptr);
|
||||
|
||||
|
|
|
|||
|
|
@ -137,15 +137,15 @@ static constexpr __host__ __device__ int calc_rows_per_block(int ncols_dst, int
|
|||
return 1;
|
||||
}
|
||||
|
||||
// tell the compiler to use as many registers as it wants, see nwarps definition below
|
||||
template <ggml_type type, int ncols_dst, bool has_fusion>
|
||||
template <ggml_type type, int ncols_dst, bool has_fusion, bool is_multi_token_id = false>
|
||||
__launch_bounds__(calc_nwarps(ncols_dst, get_device_table_id())*ggml_cuda_get_physical_warp_size(), 1)
|
||||
static __global__ void mul_mat_vec_q(
|
||||
const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst,
|
||||
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
|
||||
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
|
||||
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
|
||||
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst) {
|
||||
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst,
|
||||
const uint32_t ids_stride) {
|
||||
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
constexpr int qi = ggml_cuda_type_traits<type>::qi;
|
||||
|
|
@ -162,11 +162,25 @@ static __global__ void mul_mat_vec_q(
|
|||
const int blocks_per_row_x = ncols_x / qk;
|
||||
constexpr int blocks_per_iter = vdr * nwarps*warp_size / qi;
|
||||
|
||||
// The MUL_MAT_ID code path with ids != nullptr is only implemented for ncols_dst == 1.
|
||||
const uint32_t channel_dst = blockIdx.y;
|
||||
const uint32_t channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : fastdiv(channel_dst, channel_ratio);
|
||||
const uint32_t channel_y = ncols_dst == 1 && ids ? fastmodulo(channel_dst, nchannels_y) : channel_dst;
|
||||
const uint32_t sample_dst = blockIdx.z;
|
||||
|
||||
uint32_t token_idx = 0;
|
||||
uint32_t channel_x;
|
||||
uint32_t channel_y;
|
||||
uint32_t sample_dst;
|
||||
|
||||
if constexpr (is_multi_token_id) {
|
||||
// Multi-token MUL_MAT_ID path, adding these in the normal path causes a perf regression for n_tokens=1 case
|
||||
token_idx = blockIdx.z;
|
||||
channel_x = ids[channel_dst + token_idx * ids_stride];
|
||||
channel_y = fastmodulo(channel_dst, nchannels_y);
|
||||
sample_dst = 0;
|
||||
} else {
|
||||
channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : fastdiv(channel_dst, channel_ratio);
|
||||
channel_y = ncols_dst == 1 && ids ? fastmodulo(channel_dst, nchannels_y) : channel_dst;
|
||||
sample_dst = blockIdx.z;
|
||||
}
|
||||
|
||||
const uint32_t sample_x = fastdiv(sample_dst, sample_ratio);
|
||||
const uint32_t sample_y = sample_dst;
|
||||
|
||||
|
|
@ -188,11 +202,11 @@ static __global__ void mul_mat_vec_q(
|
|||
active_glu = fusion.glu_op;
|
||||
}
|
||||
|
||||
const uint32_t channel_bias = ids ? channel_x : channel_dst;
|
||||
|
||||
float x_biases[ncols_dst] = { 0.0f };
|
||||
float gate_biases[ncols_dst] = { 0.0f };
|
||||
if constexpr (has_fusion) {
|
||||
const uint32_t channel_bias = ids ? channel_x : channel_dst;
|
||||
if (use_bias) {
|
||||
x_bias = x_bias + sample_dst*stride_sample_dst + channel_bias*stride_channel_dst + row0;
|
||||
// 1. Hide latency by prefetching bias and gate here
|
||||
|
|
@ -222,6 +236,9 @@ static __global__ void mul_mat_vec_q(
|
|||
float tmp_gate[ncols_dst][rows_per_cuda_block] = {{0.0f}};
|
||||
|
||||
const block_q8_1 * y = ((const block_q8_1 *) vy) + sample_y*stride_sample_y + channel_y*stride_channel_y;
|
||||
if constexpr (is_multi_token_id) {
|
||||
y += token_idx*stride_col_y;
|
||||
}
|
||||
const int kbx_offset = sample_x*stride_sample_x + channel_x*stride_channel_x + row0*stride_row_x;
|
||||
|
||||
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
|
||||
|
|
@ -275,6 +292,10 @@ static __global__ void mul_mat_vec_q(
|
|||
|
||||
dst += sample_dst*stride_sample_dst + channel_dst*stride_channel_dst + row0;
|
||||
|
||||
if constexpr (is_multi_token_id) {
|
||||
dst += token_idx*stride_col_dst;
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
|
|
@ -335,40 +356,41 @@ static __global__ void mul_mat_vec_q(
|
|||
}
|
||||
|
||||
static std::pair<dim3, dim3> calc_launch_params(
|
||||
const int ncols_dst, const int nrows_x, const int nchannels_y, const int nsamples_y,
|
||||
const int ncols_dst, const int nrows_x, const int nchannels_dst, const int nsamples_or_ntokens,
|
||||
const int warp_size, const mmvq_parameter_table_id table_id) {
|
||||
const int64_t nblocks = (nrows_x + calc_rows_per_block(ncols_dst, table_id) - 1) / calc_rows_per_block(ncols_dst, table_id);
|
||||
const dim3 block_nums(nblocks, nchannels_y, nsamples_y);
|
||||
const dim3 block_nums(nblocks, nchannels_dst, nsamples_or_ntokens);
|
||||
const dim3 block_dims(warp_size, calc_nwarps(ncols_dst, table_id), 1);
|
||||
return {block_nums, block_dims};
|
||||
}
|
||||
|
||||
template<ggml_type type, int c_ncols_dst>
|
||||
template<ggml_type type, int c_ncols_dst, bool is_multi_token_id = false>
|
||||
static void mul_mat_vec_q_switch_fusion(
|
||||
const void * vx, const void * vy, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
|
||||
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
|
||||
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
|
||||
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
|
||||
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst,
|
||||
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared, cudaStream_t stream) {
|
||||
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared,
|
||||
const uint32_t ids_stride, cudaStream_t stream) {
|
||||
|
||||
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
|
||||
if constexpr (c_ncols_dst == 1) {
|
||||
if (has_fusion) {
|
||||
mul_mat_vec_q<type, c_ncols_dst, true><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
mul_mat_vec_q<type, c_ncols_dst, true, is_multi_token_id><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1");
|
||||
|
||||
mul_mat_vec_q<type, c_ncols_dst, false><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
mul_mat_vec_q<type, c_ncols_dst, false, is_multi_token_id><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride);
|
||||
}
|
||||
|
||||
template <ggml_type type>
|
||||
|
|
@ -379,7 +401,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
|||
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
|
||||
const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int nsamples_x, const int nsamples_dst, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
const int ids_stride, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0);
|
||||
GGML_ASSERT(ncols_dst <= MMVQ_MAX_BATCH_SIZE);
|
||||
|
|
@ -393,8 +415,19 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
|||
const mmvq_parameter_table_id table_id = get_device_table_id(ggml_cuda_info().devices[device].cc);
|
||||
|
||||
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
|
||||
const bool has_ids = ids != nullptr;
|
||||
|
||||
if (has_ids && ncols_dst > 1) {
|
||||
// Multi-token MUL_MAT_ID path only - single-token goes through regular path below
|
||||
constexpr int c_ncols_dst = 1;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, ncols_dst, warp_size, table_id);
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst, true>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(!ids || ncols_dst == 1);
|
||||
switch (ncols_dst) {
|
||||
case 1: {
|
||||
constexpr int c_ncols_dst = 1;
|
||||
|
|
@ -402,7 +435,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
|||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 2: {
|
||||
constexpr int c_ncols_dst = 2;
|
||||
|
|
@ -410,7 +443,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
|||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 3: {
|
||||
constexpr int c_ncols_dst = 3;
|
||||
|
|
@ -418,7 +451,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
|||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 4: {
|
||||
constexpr int c_ncols_dst = 4;
|
||||
|
|
@ -426,7 +459,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
|||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 5: {
|
||||
constexpr int c_ncols_dst = 5;
|
||||
|
|
@ -434,7 +467,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
|||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 6: {
|
||||
constexpr int c_ncols_dst = 6;
|
||||
|
|
@ -442,7 +475,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
|||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 7: {
|
||||
constexpr int c_ncols_dst = 7;
|
||||
|
|
@ -450,7 +483,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
|||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 8: {
|
||||
constexpr int c_ncols_dst = 8;
|
||||
|
|
@ -458,7 +491,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
|||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
|
|
@ -474,127 +507,127 @@ static void mul_mat_vec_q_switch_type(
|
|||
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
|
||||
const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int nsamples_x, const int nsamples_dst, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
const int ids_stride, cudaStream_t stream) {
|
||||
switch (type_x) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_0>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_1>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_0>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_1>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q8_0>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_MXFP4:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_MXFP4>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q2_K>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q3_K>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_K>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_K>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q6_K>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XXS>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XS>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_S>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_XXS>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_S>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_M>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_NL>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_XS>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_S>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
|
|
@ -622,7 +655,7 @@ void ggml_cuda_mul_mat_vec_q(
|
|||
GGML_ASSERT( nb0 == ts_dst);
|
||||
GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type));
|
||||
|
||||
GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for batch size 1.
|
||||
GGML_ASSERT(!ids || ne12 <= MMVQ_MAX_BATCH_SIZE);
|
||||
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
|
||||
|
|
@ -693,11 +726,13 @@ void ggml_cuda_mul_mat_vec_q(
|
|||
const int64_t stride_channel_dst = ids ? s1 : s2;
|
||||
const int64_t stride_channel_y = ids ? s11 : s12;
|
||||
|
||||
const int64_t ids_stride = ids ? ids->nb[1] / ggml_type_size(ids->type) : 0;
|
||||
|
||||
mul_mat_vec_q_switch_type(
|
||||
src0->data, src0->type, src1_q8_1.get(), ids_d, fusion_local, dst_d, ne00,
|
||||
ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
|
||||
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03, s13, s3, stream);
|
||||
ne03, ne3, s03, s13, s3, ids_stride, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_mul_mat_vec_q(
|
||||
|
|
@ -726,7 +761,7 @@ void ggml_cuda_op_mul_mat_vec_q(
|
|||
ggml_cuda_mm_fusion_args_device fusion_local{};
|
||||
mul_mat_vec_q_switch_type(
|
||||
src0_dd_i, src0->type, src1_ddq_i, nullptr, fusion_local, dst_dd_i, ne00, row_diff, src1_ncols, stride_row_x, stride_col_y, nrows_dst,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, stream);
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, stream);
|
||||
|
||||
GGML_UNUSED_VARS(src1, dst, src1_ddf_i, src1_ncols, src1_padded_row_size);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -71,7 +71,7 @@ else()
|
|||
# disabling fast math is needed in order to pass tests/test-backend-ops
|
||||
# note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1
|
||||
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
|
||||
# ref: https://github.com/ggml-org/whisper.cpp/issues/1720
|
||||
# note: adding -g causes segmentation fault during compile
|
||||
#set(XC_FLAGS -fno-fast-math -fno-inline -g)
|
||||
set(XC_FLAGS -fno-fast-math -fno-inline)
|
||||
|
|
|
|||
|
|
@ -15,14 +15,22 @@ typedef struct ggml_metal * ggml_metal_t;
|
|||
ggml_metal_t ggml_metal_init(ggml_metal_device_t dev);
|
||||
void ggml_metal_free(ggml_metal_t ctx);
|
||||
|
||||
const char * ggml_metal_get_name(ggml_metal_t ctx);
|
||||
|
||||
void ggml_metal_synchronize(ggml_metal_t ctx);
|
||||
|
||||
void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
bool ggml_metal_cpy_tensor_async(ggml_metal_t ctx_src, ggml_metal_t ctx_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
enum ggml_status ggml_metal_graph_compute (ggml_metal_t ctx, struct ggml_cgraph * gf);
|
||||
void ggml_metal_graph_optimize(ggml_metal_t ctx, struct ggml_cgraph * gf);
|
||||
|
||||
void ggml_metal_event_record(ggml_metal_t ctx, ggml_metal_event_t ev);
|
||||
void ggml_metal_event_wait (ggml_metal_t ctx, ggml_metal_event_t ev);
|
||||
|
||||
ggml_metal_event_t ggml_metal_get_ev_cpy(ggml_metal_t ctx);
|
||||
|
||||
void ggml_metal_set_n_cb (ggml_metal_t ctx, int n_cb);
|
||||
void ggml_metal_set_abort_callback (ggml_metal_t ctx, ggml_abort_callback abort_callback, void * user_data);
|
||||
bool ggml_metal_supports_family (ggml_metal_t ctx, int family);
|
||||
|
|
|
|||
|
|
@ -24,9 +24,13 @@ struct ggml_metal_command_buffer {
|
|||
};
|
||||
|
||||
struct ggml_metal {
|
||||
char name[128];
|
||||
|
||||
ggml_metal_device_t dev;
|
||||
ggml_metal_library_t lib;
|
||||
|
||||
ggml_metal_event_t ev_cpy; // for async copies
|
||||
|
||||
dispatch_queue_t d_queue;
|
||||
|
||||
// additional, inference-time compiled pipelines
|
||||
|
|
@ -117,7 +121,11 @@ ggml_metal_t ggml_metal_init(ggml_metal_device_t dev) {
|
|||
}
|
||||
}
|
||||
|
||||
//const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev);
|
||||
res->ev_cpy = ggml_metal_device_event_init(dev);
|
||||
|
||||
const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev);
|
||||
|
||||
snprintf(res->name, sizeof(res->name), "%s", props_dev->name);
|
||||
|
||||
res->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
|
||||
|
||||
|
|
@ -206,9 +214,15 @@ void ggml_metal_free(ggml_metal_t ctx) {
|
|||
|
||||
dispatch_release(ctx->d_queue);
|
||||
|
||||
ggml_metal_device_event_free(ctx->dev, ctx->ev_cpy);
|
||||
|
||||
free(ctx);
|
||||
}
|
||||
|
||||
const char * ggml_metal_get_name(ggml_metal_t ctx) {
|
||||
return ctx->name;
|
||||
}
|
||||
|
||||
void ggml_metal_synchronize(ggml_metal_t ctx) {
|
||||
// wait for any backend operations to finish
|
||||
if (ctx->cmd_buf_last) {
|
||||
|
|
@ -273,8 +287,8 @@ void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor,
|
|||
// wrap the source data into a Metal buffer
|
||||
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
|
||||
id<MTLBuffer> buf_src = [device newBufferWithBytes:data
|
||||
length:size
|
||||
options:MTLResourceStorageModeShared];
|
||||
length:size
|
||||
options:MTLResourceStorageModeShared];
|
||||
|
||||
GGML_ASSERT(buf_src);
|
||||
|
||||
|
|
@ -316,9 +330,9 @@ void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * te
|
|||
@autoreleasepool {
|
||||
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
|
||||
id<MTLBuffer> buf_dst = [device newBufferWithBytesNoCopy:data
|
||||
length:size
|
||||
options:MTLResourceStorageModeShared
|
||||
deallocator:nil];
|
||||
length:size
|
||||
options:MTLResourceStorageModeShared
|
||||
deallocator:nil];
|
||||
|
||||
GGML_ASSERT(buf_dst);
|
||||
|
||||
|
|
@ -356,9 +370,52 @@ void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * te
|
|||
}
|
||||
}
|
||||
|
||||
bool ggml_metal_cpy_tensor_async(ggml_metal_t ctx_src, ggml_metal_t ctx_dst, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
@autoreleasepool {
|
||||
struct ggml_metal_buffer_id bid_src = ggml_metal_get_buffer_id(src);
|
||||
struct ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(dst);
|
||||
|
||||
if (bid_src.metal == nil || bid_dst.metal == nil) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// queue the copy operation into the Metal context
|
||||
// this will be queued at the end, after any currently ongoing GPU operations
|
||||
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx_src->dev);
|
||||
id<MTLCommandBuffer> cmd_buf = [queue commandBuffer];
|
||||
id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
|
||||
|
||||
[encoder copyFromBuffer:bid_src.metal
|
||||
sourceOffset:bid_src.offs
|
||||
toBuffer:bid_dst.metal
|
||||
destinationOffset:bid_dst.offs
|
||||
size:ggml_nbytes(src)];
|
||||
|
||||
[encoder endEncoding];
|
||||
|
||||
ggml_metal_event_t ev_cpy = ggml_metal_get_ev_cpy(ctx_src);
|
||||
ggml_metal_event_record(ctx_src, ev_cpy);
|
||||
|
||||
[cmd_buf commit];
|
||||
|
||||
// do not wait here for completion
|
||||
//[cmd_buf waitUntilCompleted];
|
||||
|
||||
// instead, remember a reference to the command buffer and wait for it later if needed
|
||||
[ctx_src->cmd_bufs_ext addObject:cmd_buf];
|
||||
ctx_src->cmd_buf_last = cmd_buf;
|
||||
|
||||
[cmd_buf retain];
|
||||
|
||||
ggml_metal_event_wait(ctx_dst, ev_cpy);
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph * gf) {
|
||||
// number of nodes encoded by the main thread (empirically determined)
|
||||
const int n_main = 64;
|
||||
const int n_main = MAX(64, 0.1*gf->n_nodes);
|
||||
|
||||
// number of threads in addition to the main thread
|
||||
const int n_cb = ctx->n_cb;
|
||||
|
|
@ -530,6 +587,42 @@ void ggml_metal_graph_optimize(ggml_metal_t ctx, struct ggml_cgraph * gf) {
|
|||
//printf("%s: graph optimize took %.3f ms\n", __func__, (ggml_time_us() - t_start) / 1000.0);
|
||||
}
|
||||
|
||||
void ggml_metal_event_record(ggml_metal_t ctx, ggml_metal_event_t ev) {
|
||||
@autoreleasepool {
|
||||
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx->dev);
|
||||
id<MTLCommandBuffer> cmd_buf = [queue commandBuffer];
|
||||
|
||||
ggml_metal_event_encode_signal(ev, cmd_buf);
|
||||
|
||||
[cmd_buf commit];
|
||||
|
||||
[ctx->cmd_bufs_ext addObject:cmd_buf];
|
||||
ctx->cmd_buf_last = cmd_buf;
|
||||
|
||||
[cmd_buf retain];
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_metal_event_wait(ggml_metal_t ctx, ggml_metal_event_t ev) {
|
||||
@autoreleasepool {
|
||||
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx->dev);
|
||||
id<MTLCommandBuffer> cmd_buf = [queue commandBuffer];
|
||||
|
||||
ggml_metal_event_encode_wait(ev, cmd_buf);
|
||||
|
||||
[cmd_buf commit];
|
||||
|
||||
[ctx->cmd_bufs_ext addObject:cmd_buf];
|
||||
ctx->cmd_buf_last = cmd_buf;
|
||||
|
||||
[cmd_buf retain];
|
||||
}
|
||||
}
|
||||
|
||||
ggml_metal_event_t ggml_metal_get_ev_cpy(ggml_metal_t ctx) {
|
||||
return ctx->ev_cpy;
|
||||
}
|
||||
|
||||
void ggml_metal_set_n_cb(ggml_metal_t ctx, int n_cb) {
|
||||
if (ctx->n_cb != n_cb) {
|
||||
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_COMMAND_BUFFERS);
|
||||
|
|
|
|||
|
|
@ -17,10 +17,12 @@ struct ggml_metal_device_deleter {
|
|||
|
||||
typedef std::unique_ptr<ggml_metal_device, ggml_metal_device_deleter> ggml_metal_device_ptr;
|
||||
|
||||
ggml_metal_device_t ggml_metal_device_get(void) {
|
||||
static ggml_metal_device_ptr ctx { ggml_metal_device_init() };
|
||||
ggml_metal_device_t ggml_metal_device_get(int device) {
|
||||
static std::vector<ggml_metal_device_ptr> devs;
|
||||
|
||||
return ctx.get();
|
||||
devs.emplace_back(ggml_metal_device_init(device));
|
||||
|
||||
return devs.back().get();
|
||||
}
|
||||
|
||||
struct ggml_metal_pipelines {
|
||||
|
|
@ -174,6 +176,26 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_set_rows(ggml_me
|
|||
return res;
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_diag(ggml_metal_library_t lib, const ggml_tensor * op) {
|
||||
char base[256];
|
||||
char name[256];
|
||||
|
||||
const int n = op->src[0]->ne[0];
|
||||
|
||||
snprintf(base, 256, "kernel_diag_%s", ggml_type_name(op->src[0]->type));
|
||||
snprintf(name, 256, "%s_n=%d", base, n);
|
||||
|
||||
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
|
||||
if (!res.pipeline) {
|
||||
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
|
||||
}
|
||||
|
||||
res.nsg = 1;
|
||||
res.smem = 0;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_repeat(ggml_metal_library_t lib, ggml_type tsrc) {
|
||||
char base[256];
|
||||
char name[256];
|
||||
|
|
@ -532,6 +554,36 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rwkv(ggml_metal_
|
|||
return res;
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_solve_tri(ggml_metal_library_t lib, const ggml_tensor * op) {
|
||||
char base[256];
|
||||
char name[256];
|
||||
|
||||
const int nsg = 8;
|
||||
const int n = op->src[1]->ne[1];
|
||||
const int k = op->src[1]->ne[0];
|
||||
|
||||
snprintf(base, 256, "kernel_solve_tri_%s", ggml_type_name(op->src[0]->type));
|
||||
snprintf(name, 256, "%s_nsg=%d_n=%d_k=%d", base, nsg, n, k);
|
||||
|
||||
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
|
||||
if (!res.pipeline) {
|
||||
ggml_metal_cv_t cv = ggml_metal_cv_init();
|
||||
|
||||
ggml_metal_cv_set_int16(cv, nsg, FC_SOLVE_TRI + 0);
|
||||
ggml_metal_cv_set_int16(cv, n, FC_SOLVE_TRI + 1);
|
||||
ggml_metal_cv_set_int16(cv, k, FC_SOLVE_TRI + 2);
|
||||
|
||||
res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
|
||||
|
||||
ggml_metal_cv_free(cv);
|
||||
}
|
||||
|
||||
res.nsg = nsg;
|
||||
res.smem = GGML_PAD(GGML_PAD(n, 32)*nsg*sizeof(float), 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv_ext(ggml_metal_library_t lib, ggml_type tsrc0, ggml_type tsrc1, int nsg, int nxpsg, int r1ptg) {
|
||||
char base[256];
|
||||
char name[256];
|
||||
|
|
|
|||
|
|
@ -108,6 +108,7 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pool_1d
|
|||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pool_2d (ggml_metal_library_t lib, const struct ggml_tensor * op, enum ggml_op_pool op_pool);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_get_rows (ggml_metal_library_t lib, enum ggml_type tsrc);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_set_rows (ggml_metal_library_t lib, enum ggml_type tidx, enum ggml_type tdst);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_diag (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_repeat (ggml_metal_library_t lib, enum ggml_type tsrc);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_unary (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_glu (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
|
|
@ -121,6 +122,7 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_conv
|
|||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_conv_batched (ggml_metal_library_t lib, const struct ggml_tensor * op, int ssm_conv_bs);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_scan (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rwkv (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_solve_tri (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv_ext (ggml_metal_library_t lib, enum ggml_type tsrc0, enum ggml_type tsrc1, int nsg, int nxpsg, int r1ptg);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mm (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
|
|
@ -205,7 +207,9 @@ void ggml_metal_rsets_free(ggml_metal_rsets_t rsets);
|
|||
//
|
||||
|
||||
struct ggml_metal_device_props {
|
||||
int device;
|
||||
char name[128];
|
||||
char desc[128];
|
||||
|
||||
size_t max_buffer_size;
|
||||
size_t max_working_set_size;
|
||||
|
|
@ -224,11 +228,15 @@ struct ggml_metal_device_props {
|
|||
int op_offload_min_batch_size;
|
||||
};
|
||||
|
||||
ggml_metal_device_t ggml_metal_device_init(void);
|
||||
typedef struct ggml_metal_event * ggml_metal_event_t;
|
||||
|
||||
void ggml_metal_event_encode_signal(ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf);
|
||||
void ggml_metal_event_encode_wait (ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf);
|
||||
|
||||
ggml_metal_device_t ggml_metal_device_init(int device);
|
||||
void ggml_metal_device_free(ggml_metal_device_t dev);
|
||||
|
||||
// return a singleton that is automatically destroyed when the program exits
|
||||
ggml_metal_device_t ggml_metal_device_get(void);
|
||||
ggml_metal_device_t ggml_metal_device_get(int device);
|
||||
|
||||
void * ggml_metal_device_get_obj (ggml_metal_device_t dev); // id<MTLDevice>
|
||||
void * ggml_metal_device_get_queue(ggml_metal_device_t dev); // id<MTLCommandQueue>
|
||||
|
|
@ -240,6 +248,10 @@ void ggml_metal_device_rsets_rm (ggml_metal_device_t dev, ggml_metal_rset_t rset
|
|||
|
||||
void ggml_metal_device_rsets_keep_alive(ggml_metal_device_t dev);
|
||||
|
||||
ggml_metal_event_t ggml_metal_device_event_init(ggml_metal_device_t dev);
|
||||
void ggml_metal_device_event_free(ggml_metal_device_t dev, ggml_metal_event_t ev);
|
||||
void ggml_metal_device_event_synchronize(ggml_metal_device_t dev, ggml_metal_event_t ev);
|
||||
|
||||
void ggml_metal_device_get_memory(ggml_metal_device_t dev, size_t * free, size_t * total);
|
||||
bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_tensor * op);
|
||||
|
||||
|
|
|
|||
|
|
@ -24,9 +24,6 @@
|
|||
static const NSInteger MTLGPUFamilyMetal3_GGML = 5001;
|
||||
static const NSInteger MTLGPUFamilyMetal4_GGML = 5002;
|
||||
|
||||
// virtual address for GPU memory allocations
|
||||
static atomic_uintptr_t g_addr_device = 0x000000400ULL;
|
||||
|
||||
#if !GGML_METAL_EMBED_LIBRARY
|
||||
// Here to assist with NSBundle Path Hack
|
||||
@interface GGMLMetalClass : NSObject
|
||||
|
|
@ -523,6 +520,9 @@ struct ggml_metal_device {
|
|||
ggml_metal_library_t library;
|
||||
|
||||
struct ggml_metal_device_props props;
|
||||
|
||||
// virtual address for GPU memory allocations
|
||||
atomic_uintptr_t addr_virt;
|
||||
};
|
||||
|
||||
//
|
||||
|
|
@ -618,7 +618,7 @@ void ggml_metal_rsets_free(ggml_metal_rsets_t rsets) {
|
|||
free(rsets);
|
||||
}
|
||||
|
||||
ggml_metal_device_t ggml_metal_device_init(void) {
|
||||
ggml_metal_device_t ggml_metal_device_init(int device) {
|
||||
ggml_metal_device_t dev = calloc(1, sizeof(struct ggml_metal_device));
|
||||
|
||||
assert(dev != NULL);
|
||||
|
|
@ -632,6 +632,9 @@ ggml_metal_device_t ggml_metal_device_init(void) {
|
|||
GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__);
|
||||
}
|
||||
|
||||
dev->addr_virt = 0x000000400ULL;
|
||||
|
||||
dev->props.device = device;
|
||||
dev->props.has_simdgroup_reduction = [dev->mtl_device supportsFamily:MTLGPUFamilyApple7];
|
||||
dev->props.has_simdgroup_reduction |= [dev->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
|
||||
|
||||
|
|
@ -792,7 +795,8 @@ ggml_metal_device_t ggml_metal_device_init(void) {
|
|||
dev->props.max_working_set_size = dev->mtl_device.maxBufferLength;
|
||||
}
|
||||
|
||||
strncpy(dev->props.name, [[dev->mtl_device name] UTF8String], sizeof(dev->props.name) - 1);
|
||||
snprintf(dev->props.name, sizeof(dev->props.name), "%s%d", "MTL", device);
|
||||
snprintf(dev->props.desc, sizeof(dev->props.desc), "%s", [[dev->mtl_device name] UTF8String]);
|
||||
|
||||
dev->library = ggml_metal_library_init(dev);
|
||||
if (!dev->library) {
|
||||
|
|
@ -922,6 +926,59 @@ void ggml_metal_device_rsets_keep_alive(ggml_metal_device_t dev) {
|
|||
atomic_store_explicit(&dev->rsets->d_loop, 2*dev->rsets->keep_alive_s, memory_order_relaxed);
|
||||
}
|
||||
|
||||
struct ggml_metal_event {
|
||||
void * obj; // id<MTLEvent>
|
||||
|
||||
atomic_int value;
|
||||
};
|
||||
|
||||
void ggml_metal_event_encode_signal(ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf_raw) {
|
||||
id<MTLEvent> event = (id<MTLEvent>)ev->obj;
|
||||
|
||||
id<MTLCommandBuffer> cmd_buf = (id<MTLCommandBuffer>) cmd_buf_raw;
|
||||
|
||||
[cmd_buf encodeSignalEvent:event value:atomic_fetch_add_explicit(&ev->value, 1, memory_order_relaxed) + 1];
|
||||
}
|
||||
|
||||
void ggml_metal_event_encode_wait(ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf_raw) {
|
||||
id<MTLEvent> event = (id<MTLEvent>)ev->obj;
|
||||
|
||||
id<MTLCommandBuffer> cmd_buf = (id<MTLCommandBuffer>) cmd_buf_raw;
|
||||
|
||||
[cmd_buf encodeWaitForEvent:event value:atomic_load_explicit(&ev->value, memory_order_relaxed)];
|
||||
}
|
||||
|
||||
ggml_metal_event_t ggml_metal_device_event_init(ggml_metal_device_t dev) {
|
||||
id<MTLEvent> event = [dev->mtl_device newEvent];
|
||||
|
||||
ggml_metal_event_t ev = calloc(1, sizeof(struct ggml_metal_event));
|
||||
|
||||
ev->obj = (__bridge void *)event;
|
||||
ev->value = 0;
|
||||
|
||||
return ev;
|
||||
}
|
||||
|
||||
void ggml_metal_device_event_free(ggml_metal_device_t dev, ggml_metal_event_t ev) {
|
||||
id<MTLEvent> event = ev->obj;
|
||||
[event release];
|
||||
|
||||
free(ev);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
void ggml_metal_device_event_synchronize(ggml_metal_device_t dev, ggml_metal_event_t ev) {
|
||||
@autoreleasepool {
|
||||
id<MTLEvent> event = ev->obj;
|
||||
|
||||
id<MTLCommandBuffer> cmd_buf = [dev->mtl_queue commandBuffer];
|
||||
[cmd_buf encodeWaitForEvent:event value:atomic_load_explicit(&ev->value, memory_order_relaxed)];
|
||||
[cmd_buf commit];
|
||||
[cmd_buf waitUntilCompleted];
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_metal_device_get_memory(ggml_metal_device_t dev, size_t * free, size_t * total) {
|
||||
if (@available(macOS 10.12, iOS 16.0, *)) {
|
||||
*total = dev->mtl_device.recommendedMaxWorkingSetSize;
|
||||
|
|
@ -1096,6 +1153,7 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
|
|||
case GGML_OP_RWKV_WKV6:
|
||||
case GGML_OP_RWKV_WKV7:
|
||||
return true;
|
||||
case GGML_OP_SOLVE_TRI:
|
||||
case GGML_OP_MUL_MAT:
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
return has_simdgroup_reduction;
|
||||
|
|
@ -1177,6 +1235,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
|
|||
return false;
|
||||
};
|
||||
}
|
||||
case GGML_OP_DIAG:
|
||||
return true;
|
||||
case GGML_OP_OPT_STEP_ADAMW:
|
||||
case GGML_OP_OPT_STEP_SGD:
|
||||
return has_simdgroup_reduction;
|
||||
|
|
@ -1344,8 +1404,8 @@ ggml_metal_buffer_t ggml_metal_buffer_init(ggml_metal_device_t dev, size_t size,
|
|||
res->all_data = ggml_metal_host_malloc(size_aligned);
|
||||
res->is_shared = true;
|
||||
} else {
|
||||
// use virtual address from g_addr_device counter
|
||||
res->all_data = (void *) atomic_fetch_add_explicit(&g_addr_device, size_aligned, memory_order_relaxed);
|
||||
// use virtual address
|
||||
res->all_data = (void *) atomic_fetch_add_explicit(&dev->addr_virt, size_aligned, memory_order_relaxed);
|
||||
res->is_shared = false;
|
||||
}
|
||||
res->all_size = size_aligned;
|
||||
|
|
|
|||
|
|
@ -78,13 +78,14 @@
|
|||
#define FC_MUL_MM 700
|
||||
#define FC_ROPE 800
|
||||
#define FC_SSM_CONV 900
|
||||
#define FC_COUNT_EQUAL 1000
|
||||
#define FC_SOLVE_TRI 1000
|
||||
#define FC_COUNT_EQUAL 1100
|
||||
|
||||
// op-specific constants
|
||||
#define OP_FLASH_ATTN_EXT_NQPTG 8
|
||||
#define OP_FLASH_ATTN_EXT_NQPSG 8
|
||||
#define OP_FLASH_ATTN_EXT_NCPSG 64
|
||||
|
||||
#define OP_FLASH_ATTN_EXT_VEC_NQPTG 1
|
||||
#define OP_FLASH_ATTN_EXT_VEC_NQPSG 1
|
||||
#define OP_FLASH_ATTN_EXT_VEC_NCPSG 32
|
||||
|
||||
// kernel argument structs
|
||||
|
|
@ -733,6 +734,33 @@ typedef struct {
|
|||
uint64_t nb0;
|
||||
} ggml_metal_kargs_ssm_scan;
|
||||
|
||||
typedef struct {
|
||||
int32_t ne00;
|
||||
int32_t ne01;
|
||||
int32_t ne02;
|
||||
int32_t ne03;
|
||||
uint64_t nb00;
|
||||
uint64_t nb01;
|
||||
uint64_t nb02;
|
||||
uint64_t nb03;
|
||||
int32_t ne10;
|
||||
int32_t ne11;
|
||||
int32_t ne12;
|
||||
int32_t ne13;
|
||||
uint64_t nb10;
|
||||
uint64_t nb11;
|
||||
uint64_t nb12;
|
||||
uint64_t nb13;
|
||||
int32_t ne0;
|
||||
int32_t ne1;
|
||||
int32_t ne2;
|
||||
int32_t ne3;
|
||||
uint64_t nb0;
|
||||
uint64_t nb1;
|
||||
uint64_t nb2;
|
||||
uint64_t nb3;
|
||||
} ggml_metal_kargs_solve_tri;
|
||||
|
||||
typedef struct {
|
||||
int32_t ne00t;
|
||||
int32_t ne00;
|
||||
|
|
@ -764,6 +792,25 @@ typedef struct {
|
|||
uint64_t nb3;
|
||||
} ggml_metal_kargs_set_rows;
|
||||
|
||||
typedef struct {
|
||||
int32_t ne00;
|
||||
int32_t ne01;
|
||||
int32_t ne02;
|
||||
int32_t ne03;
|
||||
uint64_t nb00;
|
||||
uint64_t nb01;
|
||||
uint64_t nb02;
|
||||
uint64_t nb03;
|
||||
int32_t ne0;
|
||||
int32_t ne1;
|
||||
int32_t ne2;
|
||||
int32_t ne3;
|
||||
uint64_t nb0;
|
||||
uint64_t nb1;
|
||||
uint64_t nb2;
|
||||
uint64_t nb3;
|
||||
} ggml_metal_kargs_diag;
|
||||
|
||||
typedef struct {
|
||||
int64_t ne00;
|
||||
int64_t ne01;
|
||||
|
|
|
|||
|
|
@ -341,6 +341,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
|
|||
{
|
||||
n_fuse = ggml_metal_op_rwkv(ctx, idx);
|
||||
} break;
|
||||
case GGML_OP_SOLVE_TRI:
|
||||
{
|
||||
n_fuse = ggml_metal_op_solve_tri(ctx, idx);
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
n_fuse = ggml_metal_op_mul_mat(ctx, idx);
|
||||
|
|
@ -357,6 +361,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
|
|||
{
|
||||
n_fuse = ggml_metal_op_set_rows(ctx, idx);
|
||||
} break;
|
||||
case GGML_OP_DIAG:
|
||||
{
|
||||
n_fuse = ggml_metal_op_diag(ctx, idx);
|
||||
} break;
|
||||
case GGML_OP_L2_NORM:
|
||||
{
|
||||
n_fuse = ggml_metal_op_l2_norm(ctx, idx);
|
||||
|
|
@ -1255,6 +1263,48 @@ int ggml_metal_op_set_rows(ggml_metal_op_t ctx, int idx) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
int ggml_metal_op_diag(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_tensor * op = ctx->node(idx);
|
||||
|
||||
ggml_metal_library_t lib = ctx->lib;
|
||||
ggml_metal_encoder_t enc = ctx->enc;
|
||||
|
||||
GGML_TENSOR_LOCALS(int32_t, ne0, op->src[0], ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
|
||||
GGML_TENSOR_LOCALS(int32_t, ne, op, ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
|
||||
|
||||
ggml_metal_kargs_diag args = {
|
||||
/*.ne00 =*/ne00,
|
||||
/*.ne01 =*/ne01,
|
||||
/*.ne02 =*/ne02,
|
||||
/*.ne03 =*/ne03,
|
||||
/*.nb00 =*/nb00,
|
||||
/*.nb01 =*/nb01,
|
||||
/*.nb02 =*/nb02,
|
||||
/*.nb03 =*/nb03,
|
||||
/*.ne0 =*/ne0,
|
||||
/*.ne1 =*/ne1,
|
||||
/*.ne2 =*/ne2,
|
||||
/*.ne3 =*/ne3,
|
||||
/*.nb0 =*/nb0,
|
||||
/*.nb1 =*/nb1,
|
||||
/*.nb2 =*/nb2,
|
||||
/*.nb3 =*/nb3,
|
||||
};
|
||||
|
||||
auto pipeline = ggml_metal_library_get_pipeline_diag(lib, op);
|
||||
|
||||
ggml_metal_encoder_set_pipeline(enc, pipeline);
|
||||
ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0);
|
||||
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 1);
|
||||
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op), 2);
|
||||
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, ne1, ne2, ne3, 32, 1, 1);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ggml_metal_op_soft_max(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_tensor * op = ctx->node(idx);
|
||||
|
||||
|
|
@ -1557,6 +1607,63 @@ int ggml_metal_op_rwkv(ggml_metal_op_t ctx, int idx) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
int ggml_metal_op_solve_tri(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_tensor * op = ctx->node(idx);
|
||||
|
||||
ggml_metal_library_t lib = ctx->lib;
|
||||
ggml_metal_encoder_t enc = ctx->enc;
|
||||
|
||||
GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
|
||||
GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
|
||||
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
|
||||
|
||||
ggml_metal_kargs_solve_tri args = {
|
||||
/*.ne00 =*/ ne00,
|
||||
/*.ne01 =*/ ne01,
|
||||
/*.ne02 =*/ ne02,
|
||||
/*.ne03 =*/ ne03,
|
||||
/*.nb00 =*/ nb00,
|
||||
/*.nb01 =*/ nb01,
|
||||
/*.nb02 =*/ nb02,
|
||||
/*.nb03 =*/ nb03,
|
||||
/*.ne10 =*/ ne10,
|
||||
/*.ne11 =*/ ne11,
|
||||
/*.ne12 =*/ ne12,
|
||||
/*.ne13 =*/ ne13,
|
||||
/*.nb10 =*/ nb10,
|
||||
/*.nb11 =*/ nb11,
|
||||
/*.nb12 =*/ nb12,
|
||||
/*.nb13 =*/ nb13,
|
||||
/*.ne0 =*/ ne0,
|
||||
/*.ne1 =*/ ne1,
|
||||
/*.ne2 =*/ ne2,
|
||||
/*.ne3 =*/ ne3,
|
||||
/*.nb0 =*/ nb0,
|
||||
/*.nb1 =*/ nb1,
|
||||
/*.nb2 =*/ nb2,
|
||||
/*.nb3 =*/ nb3,
|
||||
};
|
||||
|
||||
auto pipeline = ggml_metal_library_get_pipeline_solve_tri(lib, op);
|
||||
|
||||
ggml_metal_encoder_set_pipeline(enc, pipeline);
|
||||
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
|
||||
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
|
||||
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
|
||||
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
|
||||
|
||||
const int nsg = pipeline.nsg;
|
||||
|
||||
ggml_metal_encoder_set_threadgroup_memory_size(enc, pipeline.smem, 0);
|
||||
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, (ne10 + nsg - 1)/nsg, ne02, ne03, 32, nsg, 1);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ggml_metal_op_cpy(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_tensor * op = ctx->node(idx);
|
||||
|
||||
|
|
@ -2295,7 +2402,7 @@ size_t ggml_metal_op_flash_attn_ext_extra_blk(const ggml_tensor * op) {
|
|||
// return res;
|
||||
//}
|
||||
|
||||
const int nqptg = is_vec ? OP_FLASH_ATTN_EXT_VEC_NQPTG : OP_FLASH_ATTN_EXT_NQPTG;
|
||||
const int nqptg = is_vec ? OP_FLASH_ATTN_EXT_VEC_NQPSG : OP_FLASH_ATTN_EXT_NQPSG;
|
||||
const int ncpsg = is_vec ? OP_FLASH_ATTN_EXT_VEC_NCPSG : OP_FLASH_ATTN_EXT_NCPSG;
|
||||
|
||||
const int64_t ne1 = (ne01 + nqptg - 1)/nqptg;
|
||||
|
|
@ -2411,7 +2518,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
|||
|
||||
if (!ggml_metal_op_flash_attn_ext_use_vec(op)) {
|
||||
// half8x8 kernel
|
||||
const int nqptg = OP_FLASH_ATTN_EXT_NQPTG; // queries per threadgroup
|
||||
const int nqptg = OP_FLASH_ATTN_EXT_NQPSG; // queries per threadgroup
|
||||
const int ncpsg = OP_FLASH_ATTN_EXT_NCPSG; // cache values per simdgroup
|
||||
|
||||
GGML_ASSERT(nqptg <= 32);
|
||||
|
|
@ -2578,9 +2685,9 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
|||
#undef FATTN_SMEM
|
||||
} else {
|
||||
// half4x4 kernel
|
||||
const int nqptg = OP_FLASH_ATTN_EXT_VEC_NQPTG; // queries per threadgroup
|
||||
const int nqptg = OP_FLASH_ATTN_EXT_VEC_NQPSG; // queries per threadgroup
|
||||
const int ncpsg = OP_FLASH_ATTN_EXT_VEC_NCPSG; // cache values per simdgroup !! sync with kernel template arguments !!
|
||||
const int nkpsg = 1*ncpsg;
|
||||
const int nhptg = 1; // heads per threadgroup
|
||||
|
||||
GGML_ASSERT(nqptg <= 32);
|
||||
GGML_ASSERT(nqptg % 1 == 0);
|
||||
|
|
@ -2632,6 +2739,9 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
|||
ggml_metal_op_concurrency_reset(ctx);
|
||||
}
|
||||
|
||||
// note: for simplicity assume the K is larger or equal than V
|
||||
GGML_ASSERT(ne10 >= ne20);
|
||||
|
||||
// ne00 + 2*ncpsg*(nsg)
|
||||
// for each query, we load it as f16 in shared memory (ne00)
|
||||
// and store the soft_max values and the mask
|
||||
|
|
@ -2639,28 +2749,9 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
|||
// ne20*(nsg)
|
||||
// each simdgroup has a full f32 head vector in shared mem to accumulate results
|
||||
//
|
||||
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + 2*GGML_PAD(ne20, 128)*(nsg))*(sizeof(float)/2), 16))
|
||||
|
||||
int64_t nsgmax = 2;
|
||||
while (true) {
|
||||
const size_t smem = FATTN_SMEM(nsgmax);
|
||||
// avoid using more than half of the threadgroup memory - can cause slow downs especially for large head sizes
|
||||
if (smem > props_dev->max_theadgroup_memory_size/2) {
|
||||
break;
|
||||
}
|
||||
nsgmax *= 2;
|
||||
}
|
||||
nsgmax /= 2;
|
||||
|
||||
// simdgroups per threadgroup (a.k.a. warps)
|
||||
//const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32)));
|
||||
const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) 1024/32)));
|
||||
#define FATTN_SMEM(nsg) (GGML_PAD(((GGML_PAD(ne00, 128) + 4*ncpsg + 2*GGML_PAD(ne20, 128))*(nsg))*(sizeof(float)/2), 16))
|
||||
|
||||
int64_t nsg = 1;
|
||||
while (nsg <= nsgt) {
|
||||
nsg *= 2;
|
||||
}
|
||||
nsg /= 2;
|
||||
|
||||
// workgroups
|
||||
// each workgroup handles nsg*nkpsg cache values
|
||||
|
|
@ -2673,7 +2764,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
|||
} else {
|
||||
nwg = 32;
|
||||
nsg = 1;
|
||||
while (2*nwg*nsg*nkpsg < ne11 && nsg < 4) {
|
||||
while (2*nwg*nsg*ncpsg < ne11 && nsg < 4) {
|
||||
nsg *= 2;
|
||||
}
|
||||
}
|
||||
|
|
@ -2739,7 +2830,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
|||
|
||||
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
|
||||
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg, 32, nsg, 1);
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, (ne02 + nhptg - 1)/nhptg, ne03*nwg, 32, nsg, 1);
|
||||
} else {
|
||||
// sanity checks
|
||||
assert(ggml_metal_op_flash_attn_ext_extra_tmp(op) != 0);
|
||||
|
|
@ -2752,7 +2843,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
|||
ggml_metal_encoder_set_buffer(enc, bid_tmp, 7);
|
||||
|
||||
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg, 32, nsg, 1);
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, (ne02 + nhptg - 1)/nhptg, ne03*nwg, 32, nsg, 1);
|
||||
|
||||
// sync the 2 kernels
|
||||
ggml_metal_op_concurrency_reset(ctx);
|
||||
|
|
|
|||
|
|
@ -56,10 +56,12 @@ int ggml_metal_op_sum_rows (ggml_metal_op_t ctx, int idx);
|
|||
int ggml_metal_op_cumsum (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_get_rows (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_set_rows (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_diag (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_soft_max (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_ssm_conv (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_ssm_scan (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_rwkv (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_solve_tri (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_cpy (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_pool_1d (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_pool_2d (ggml_metal_op_t ctx, int idx);
|
||||
|
|
|
|||
|
|
@ -7,11 +7,15 @@
|
|||
#include "ggml-metal-context.h"
|
||||
#include "ggml-metal-ops.h"
|
||||
|
||||
// globals
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
|
||||
// initialized in ggml_backend_metal_reg
|
||||
static ggml_backend_reg g_ggml_metal_reg;
|
||||
static ggml_backend_device g_ggml_metal_device;
|
||||
#define GGML_METAL_NAME "MTL"
|
||||
#define GGML_METAL_MAX_DEVICES 16
|
||||
|
||||
// number of Metal devices
|
||||
// note: can be overriden with GGML_METAL_DEVICES env to simulate virtual devices
|
||||
static int g_devices = 1;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// backend interface
|
||||
|
|
@ -165,10 +169,28 @@ static ggml_backend_buffer_i ggml_backend_metal_buffer_private_i = {
|
|||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
static bool ggml_backend_buffer_is_metal(ggml_backend_buffer_t buffer) {
|
||||
return buffer->iface.free_buffer == ggml_backend_metal_buffer_shared_free_buffer ||
|
||||
buffer->iface.free_buffer == ggml_backend_metal_buffer_private_free_buffer;
|
||||
}
|
||||
|
||||
//
|
||||
// buffer types
|
||||
//
|
||||
|
||||
struct ggml_backend_metal_buffer_type {
|
||||
int device;
|
||||
std::string name;
|
||||
};
|
||||
|
||||
struct ggml_backend_metal_buffer_type_deleter {
|
||||
void operator()(ggml_backend_metal_buffer_type * ctx) const {
|
||||
delete ctx;
|
||||
}
|
||||
};
|
||||
|
||||
typedef std::unique_ptr<ggml_backend_metal_buffer_type, ggml_backend_metal_buffer_type_deleter> ggml_backend_metal_buffer_type_ptr;
|
||||
|
||||
// common method for allocating shread or private Metal buffers
|
||||
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size, bool shared) {
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)buft->device->context;
|
||||
|
|
@ -218,9 +240,9 @@ static size_t ggml_backend_metal_buffer_type_get_alloc_size(ggml_backend_buffer_
|
|||
// default (shared) buffer type
|
||||
|
||||
static const char * ggml_backend_metal_buffer_type_shared_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "Metal";
|
||||
ggml_backend_metal_buffer_type * ctx = (ggml_backend_metal_buffer_type *)buft->context;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_shared_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
|
|
@ -249,29 +271,54 @@ static bool ggml_backend_metal_buffer_type_shared_is_host(ggml_backend_buffer_ty
|
|||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_shared(void) {
|
||||
static ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_shared_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_shared_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_shared_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_shared_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_shared_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_shared_is_host,
|
||||
},
|
||||
/* .device = */ &g_ggml_metal_device,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_shared(int device) {
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
return &ggml_backend_buffer_type_metal;
|
||||
static std::vector<ggml_backend_buffer_type> bufts;
|
||||
static std::vector<ggml_backend_metal_buffer_type_ptr> ctxs;
|
||||
|
||||
static bool initialized = false;
|
||||
if (!initialized) {
|
||||
bufts.reserve(g_devices);
|
||||
ctxs.reserve(g_devices);
|
||||
|
||||
for (int i = 0; i < g_devices; ++i) {
|
||||
ggml_backend_metal_buffer_type * raw_ctx =
|
||||
new ggml_backend_metal_buffer_type {
|
||||
/* .device = */ i,
|
||||
/* .name = */ GGML_METAL_NAME + std::to_string(i),
|
||||
};
|
||||
ctxs.emplace_back(raw_ctx);
|
||||
|
||||
ggml_backend_buffer_type buft = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_shared_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_shared_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_shared_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_shared_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_shared_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_shared_is_host,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_metal_reg(), i),
|
||||
/* .context = */ raw_ctx,
|
||||
};
|
||||
|
||||
bufts.emplace_back(buft);
|
||||
}
|
||||
|
||||
initialized = true;
|
||||
}
|
||||
|
||||
return &bufts[device];
|
||||
}
|
||||
|
||||
// default (private) buffer type
|
||||
|
||||
static const char * ggml_backend_metal_buffer_type_private_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "Metal_Private";
|
||||
ggml_backend_metal_buffer_type * ctx = (ggml_backend_metal_buffer_type *)buft->context;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_private_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
|
|
@ -300,29 +347,53 @@ static bool ggml_backend_metal_buffer_type_private_is_host(ggml_backend_buffer_t
|
|||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_private(void) {
|
||||
static ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_private_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_private_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_private_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_private_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_private_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_private_is_host,
|
||||
},
|
||||
/* .device = */ &g_ggml_metal_device,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_private(int device) {
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
return &ggml_backend_buffer_type_metal;
|
||||
static std::vector<ggml_backend_buffer_type> bufts;
|
||||
static std::vector<ggml_backend_metal_buffer_type_ptr> ctxs;
|
||||
|
||||
static bool initialized = false;
|
||||
if (!initialized) {
|
||||
bufts.reserve(g_devices);
|
||||
ctxs.reserve(g_devices);
|
||||
|
||||
for (int i = 0; i < g_devices; ++i) {
|
||||
ggml_backend_metal_buffer_type * raw_ctx = new ggml_backend_metal_buffer_type{
|
||||
/* .device = */ i,
|
||||
/* .name = */ GGML_METAL_NAME + std::to_string(i) + "_Private"
|
||||
};
|
||||
ctxs.emplace_back(raw_ctx);
|
||||
|
||||
ggml_backend_buffer_type buft = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_private_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_private_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_private_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_private_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_private_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_private_is_host,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_metal_reg(), i),
|
||||
/* .context = */ raw_ctx,
|
||||
};
|
||||
|
||||
bufts.emplace_back(buft);
|
||||
}
|
||||
|
||||
initialized = true;
|
||||
}
|
||||
|
||||
return &bufts[device];
|
||||
}
|
||||
|
||||
// mapped buffer type
|
||||
|
||||
static const char * ggml_backend_metal_buffer_type_mapped_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "Metal_Mapped";
|
||||
ggml_backend_metal_buffer_type * ctx = (ggml_backend_metal_buffer_type *)buft->context;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_mapped_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
|
|
@ -352,31 +423,55 @@ static bool ggml_backend_metal_buffer_type_mapped_is_host(ggml_backend_buffer_ty
|
|||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_mapped(void) {
|
||||
// note: not obvious, but this buffer type still needs to implement .alloc_buffer:
|
||||
// https://github.com/ggml-org/llama.cpp/pull/15832#discussion_r2333177099
|
||||
static ggml_backend_buffer_type ggml_backend_buffer_type_mapped_metal = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_mapped_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_mapped_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_mapped_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_mapped_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_mapped_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_mapped_is_host,
|
||||
},
|
||||
/* .device = */ &g_ggml_metal_device,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_mapped(int device) {
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
return &ggml_backend_buffer_type_mapped_metal;
|
||||
static std::vector<ggml_backend_buffer_type> bufts;
|
||||
static std::vector<ggml_backend_metal_buffer_type_ptr> ctxs;
|
||||
|
||||
static bool initialized = false;
|
||||
if (!initialized) {
|
||||
bufts.reserve(g_devices);
|
||||
ctxs.reserve(g_devices);
|
||||
|
||||
for (int i = 0; i < g_devices; ++i) {
|
||||
ggml_backend_metal_buffer_type * raw_ctx = new ggml_backend_metal_buffer_type{
|
||||
/* .device = */ i,
|
||||
/* .name = */ GGML_METAL_NAME + std::to_string(i) + "_Mapped"
|
||||
};
|
||||
ctxs.emplace_back(raw_ctx);
|
||||
|
||||
// note: not obvious, but this buffer type still needs to implement .alloc_buffer:
|
||||
// https://github.com/ggml-org/llama.cpp/pull/15832#discussion_r2333177099
|
||||
ggml_backend_buffer_type buft = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_mapped_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_mapped_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_mapped_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_mapped_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_mapped_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_mapped_is_host,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_metal_reg(), i),
|
||||
/* .context = */ raw_ctx,
|
||||
};
|
||||
|
||||
bufts.emplace_back(buft);
|
||||
}
|
||||
|
||||
initialized = true;
|
||||
}
|
||||
|
||||
return &bufts[device];
|
||||
}
|
||||
|
||||
// backend
|
||||
|
||||
static const char * ggml_backend_metal_name(ggml_backend_t backend) {
|
||||
return "Metal";
|
||||
ggml_metal_t ctx = (ggml_metal_t)backend->context;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
return ggml_metal_get_name(ctx);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_free(ggml_backend_t backend) {
|
||||
|
|
@ -409,12 +504,24 @@ static void ggml_backend_metal_get_tensor_async(ggml_backend_t backend, const gg
|
|||
}
|
||||
|
||||
static bool ggml_backend_metal_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
return false;
|
||||
if (!ggml_backend_is_metal(backend_src) || !ggml_backend_is_metal(backend_dst)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_UNUSED(backend_src);
|
||||
GGML_UNUSED(backend_dst);
|
||||
GGML_UNUSED(src);
|
||||
GGML_UNUSED(dst);
|
||||
if (!ggml_backend_buffer_is_metal(src->buffer) || !ggml_backend_buffer_is_metal(dst->buffer)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_metal_t ctx_src = (ggml_metal_t)backend_src->context;
|
||||
ggml_metal_t ctx_dst = (ggml_metal_t)backend_dst->context;
|
||||
|
||||
//ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
|
||||
//ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
|
||||
|
||||
//ggml_metal_buffer_t buf_ctx_src = (ggml_metal_buffer_t)buf_src->context;
|
||||
//ggml_metal_buffer_t buf_ctx_dst = (ggml_metal_buffer_t)buf_dst->context;
|
||||
|
||||
return ggml_metal_cpy_tensor_async(ctx_src, ctx_dst, src, dst);
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
|
|
@ -423,6 +530,20 @@ static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend,
|
|||
return ggml_metal_graph_compute(ctx, cgraph);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
|
||||
ggml_metal_t ctx = (ggml_metal_t)backend->context;
|
||||
ggml_metal_event_t ev = (ggml_metal_event_t)event->context;
|
||||
|
||||
ggml_metal_event_record(ctx, ev);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
|
||||
ggml_metal_t ctx = (ggml_metal_t)backend->context;
|
||||
ggml_metal_event_t ev = (ggml_metal_event_t)event->context;
|
||||
|
||||
ggml_metal_event_wait(ctx, ev);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_metal_t ctx = (ggml_metal_t)backend->context;
|
||||
|
||||
|
|
@ -435,7 +556,6 @@ static void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
|
|||
ggml_metal_t ctx = (ggml_metal_t)backend->context;
|
||||
|
||||
ggml_metal_set_n_cb(ctx, n_cb);
|
||||
|
||||
}
|
||||
|
||||
static ggml_backend_i ggml_backend_metal_i = {
|
||||
|
|
@ -450,12 +570,8 @@ static ggml_backend_i ggml_backend_metal_i = {
|
|||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
||||
|
||||
// the events API is needed only for multi-GPU setups, so likely no need to implement it for Metal
|
||||
// in any case, these docs seem relevant if we ever decide to implement it:
|
||||
// https://developer.apple.com/documentation/metal/mtlcommandbuffer#Synchronizing-Passes-with-Events
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .event_record = */ ggml_backend_metal_event_record,
|
||||
/* .event_wait = */ ggml_backend_metal_event_wait,
|
||||
/* .graph_optimize = */ ggml_backend_metal_graph_optimize,
|
||||
};
|
||||
|
||||
|
|
@ -519,15 +635,17 @@ void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
|
|||
// backend device
|
||||
|
||||
static const char * ggml_backend_metal_device_get_name(ggml_backend_dev_t dev) {
|
||||
return "Metal";
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx_dev);
|
||||
|
||||
return props_dev->name;
|
||||
}
|
||||
|
||||
static const char * ggml_backend_metal_device_get_description(ggml_backend_dev_t dev) {
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
|
||||
|
||||
return ggml_metal_device_get_props(ctx_dev)->name;
|
||||
return ggml_metal_device_get_props(ctx_dev)->desc;
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
|
|
@ -550,14 +668,14 @@ static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, ggml_bac
|
|||
ggml_backend_metal_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
|
||||
props->caps = {
|
||||
/* .async = */ true,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ true,
|
||||
/* .events = */ false,
|
||||
/* .async = */ true,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ true,
|
||||
/* .events = */ true,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_metal_device_init(ggml_backend_dev_t dev, const char * params) {
|
||||
static ggml_backend_t ggml_backend_metal_device_init_backend(ggml_backend_dev_t dev, const char * params) {
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
|
||||
|
||||
ggml_metal_t ctx = ggml_metal_init(ctx_dev);
|
||||
|
|
@ -587,7 +705,7 @@ static ggml_backend_buffer_type_t ggml_backend_metal_device_get_buffer_type(ggml
|
|||
|
||||
const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx_dev);
|
||||
|
||||
return props_dev->use_shared_buffers ? ggml_backend_metal_buffer_type_shared() : ggml_backend_metal_buffer_type_private();
|
||||
return props_dev->use_shared_buffers ? ggml_backend_metal_buffer_type_shared(props_dev->device) : ggml_backend_metal_buffer_type_private(props_dev->device);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_metal_device_buffer_mapped(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
||||
|
|
@ -595,7 +713,9 @@ static ggml_backend_buffer_t ggml_backend_metal_device_buffer_mapped(ggml_backen
|
|||
|
||||
ggml_metal_buffer_t res = ggml_metal_buffer_map(ctx_dev, ptr, size, max_tensor_size);
|
||||
|
||||
return ggml_backend_buffer_init(ggml_backend_metal_buffer_type_mapped(), ggml_backend_metal_buffer_shared_i, res, size);
|
||||
const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx_dev);
|
||||
|
||||
return ggml_backend_buffer_init(ggml_backend_metal_buffer_type_mapped(props_dev->device), ggml_backend_metal_buffer_shared_i, res, size);
|
||||
}
|
||||
|
||||
static bool ggml_backend_metal_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
|
||||
|
|
@ -606,9 +726,10 @@ static bool ggml_backend_metal_device_supports_op(ggml_backend_dev_t dev, const
|
|||
|
||||
static bool ggml_backend_metal_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return
|
||||
buft->device == dev && (
|
||||
buft->iface.get_name == ggml_backend_metal_buffer_type_shared_get_name ||
|
||||
buft->iface.get_name == ggml_backend_metal_buffer_type_private_get_name ||
|
||||
buft->iface.get_name == ggml_backend_metal_buffer_type_mapped_get_name;
|
||||
buft->iface.get_name == ggml_backend_metal_buffer_type_mapped_get_name);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
|
@ -632,45 +753,97 @@ static bool ggml_backend_metal_device_offload_op(ggml_backend_dev_t dev, const g
|
|||
get_op_batch_size(op) >= ggml_metal_device_get_props(ctx_dev)->op_offload_min_batch_size;
|
||||
}
|
||||
|
||||
static ggml_backend_event_t ggml_backend_metal_device_event_new(ggml_backend_dev_t dev) {
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
|
||||
|
||||
ggml_metal_event_t event = ggml_metal_device_event_init(ctx_dev);
|
||||
GGML_ASSERT(event);
|
||||
|
||||
ggml_backend_event_t ev = new ggml_backend_event {
|
||||
/* .device = */ dev,
|
||||
/* .context = */ event,
|
||||
};
|
||||
|
||||
return ev;
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_device_event_free(ggml_backend_dev_t dev, ggml_backend_event_t event) {
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
|
||||
|
||||
ggml_metal_event_t ev = (ggml_metal_event_t)event->context;
|
||||
|
||||
ggml_metal_device_event_free(ctx_dev, ev);
|
||||
|
||||
delete event;
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) {
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
|
||||
|
||||
ggml_metal_event_t evt = (ggml_metal_event_t)event->context;
|
||||
|
||||
ggml_metal_device_event_synchronize(ctx_dev, evt);
|
||||
}
|
||||
|
||||
static ggml_backend_device_i ggml_backend_metal_device_i = {
|
||||
/* .get_name = */ ggml_backend_metal_device_get_name,
|
||||
/* .get_description = */ ggml_backend_metal_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_metal_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_metal_device_get_type,
|
||||
/* .get_props = */ ggml_backend_metal_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_metal_device_init,
|
||||
/* .init_backend = */ ggml_backend_metal_device_init_backend,
|
||||
/* .get_buffer_type = */ ggml_backend_metal_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ NULL,
|
||||
/* .buffer_from_host_ptr = */ ggml_backend_metal_device_buffer_mapped,
|
||||
/* .supports_op = */ ggml_backend_metal_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_metal_device_supports_buft,
|
||||
/* .offload_op = */ ggml_backend_metal_device_offload_op,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
/* .event_new = */ ggml_backend_metal_device_event_new,
|
||||
/* .event_free = */ ggml_backend_metal_device_event_free,
|
||||
/* .event_synchronize = */ ggml_backend_metal_device_event_synchronize,
|
||||
};
|
||||
|
||||
// backend registry
|
||||
|
||||
struct ggml_backend_metal_reg {
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
};
|
||||
|
||||
typedef struct ggml_backend_metal_reg * ggml_backend_metal_reg_t;
|
||||
|
||||
static ggml_backend_metal_reg_t ggml_backend_metal_reg_init(void) {
|
||||
ggml_backend_metal_reg_t ctx = new struct ggml_backend_metal_reg;
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_reg_free(ggml_backend_metal_reg_t ctx) {
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
struct ggml_backend_metal_reg_deleter {
|
||||
void operator()(ggml_backend_metal_reg_t ctx) {
|
||||
ggml_backend_metal_reg_free(ctx);
|
||||
}
|
||||
};
|
||||
|
||||
typedef std::unique_ptr<struct ggml_backend_metal_reg, ggml_backend_metal_reg_deleter> ggml_backend_metal_reg_ptr;
|
||||
|
||||
static const char * ggml_backend_metal_reg_get_name(ggml_backend_reg_t reg) {
|
||||
return "Metal";
|
||||
return GGML_METAL_NAME;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_metal_reg_device_count(ggml_backend_reg_t reg) {
|
||||
return 1;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
ggml_backend_metal_reg_t ctx = (ggml_backend_metal_reg_t)reg->context;
|
||||
return ctx->devices.size();
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_metal_reg_device_get(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(index == 0);
|
||||
|
||||
return &g_ggml_metal_device;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(index);
|
||||
ggml_backend_metal_reg_t ctx = (ggml_backend_metal_reg_t)reg->context;
|
||||
GGML_ASSERT(index < ctx->devices.size());
|
||||
return ctx->devices[index];
|
||||
}
|
||||
|
||||
static ggml_backend_feature g_ggml_backend_metal_features[] = {
|
||||
|
|
@ -698,27 +871,67 @@ static void * ggml_backend_metal_get_proc_address(ggml_backend_reg_t reg, const
|
|||
|
||||
static ggml_backend_reg_i ggml_backend_metal_reg_i = {
|
||||
/* .get_name = */ ggml_backend_metal_reg_get_name,
|
||||
/* .device_count = */ ggml_backend_metal_reg_device_count,
|
||||
/* .device_get = */ ggml_backend_metal_reg_device_get,
|
||||
/* .get_device_count = */ ggml_backend_metal_reg_device_count,
|
||||
/* .get_device = */ ggml_backend_metal_reg_device_get,
|
||||
/* .get_proc_address = */ ggml_backend_metal_get_proc_address,
|
||||
};
|
||||
|
||||
ggml_backend_reg_t ggml_backend_metal_reg(void) {
|
||||
{
|
||||
g_ggml_metal_reg = {
|
||||
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
||||
/* .iface = */ ggml_backend_metal_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
static ggml_backend_dev_t ggml_backend_metal_device_init(ggml_backend_reg_t reg, int device) {
|
||||
return new ggml_backend_device {
|
||||
/* .iface = */ ggml_backend_metal_device_i,
|
||||
/* .reg = */ reg,
|
||||
/* .context = */ ggml_metal_device_get(device),
|
||||
};
|
||||
}
|
||||
|
||||
g_ggml_metal_device = {
|
||||
/* .iface = */ ggml_backend_metal_device_i,
|
||||
/* .reg = */ &g_ggml_metal_reg,
|
||||
/* .context = */ ggml_metal_device_get(),
|
||||
};
|
||||
static void ggml_backend_metal_device_free(ggml_backend_dev_t dev) {
|
||||
delete dev;
|
||||
}
|
||||
|
||||
struct ggml_backend_device_deleter {
|
||||
void operator()(ggml_backend_dev_t ctx) {
|
||||
ggml_backend_metal_device_free(ctx);
|
||||
}
|
||||
};
|
||||
|
||||
typedef std::unique_ptr<ggml_backend_device, ggml_backend_device_deleter> ggml_backend_device_ptr;
|
||||
|
||||
ggml_backend_reg_t ggml_backend_metal_reg(void) {
|
||||
static ggml_backend_reg reg;
|
||||
static bool initialized = false;
|
||||
|
||||
{
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
const char * env = getenv("GGML_METAL_DEVICES");
|
||||
if (env) {
|
||||
g_devices = atoi(env);
|
||||
}
|
||||
|
||||
static std::vector<ggml_backend_device_ptr> devs;
|
||||
|
||||
if (!initialized) {
|
||||
static ggml_backend_metal_reg_ptr reg_ctx(ggml_backend_metal_reg_init());
|
||||
|
||||
for (int i = 0; i < g_devices; ++i) {
|
||||
auto * dev = ggml_backend_metal_device_init(®, i);
|
||||
devs.emplace_back(dev);
|
||||
|
||||
reg_ctx->devices.push_back(dev);
|
||||
}
|
||||
|
||||
reg = {
|
||||
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
||||
/* .iface = */ ggml_backend_metal_reg_i,
|
||||
/* .context = */ reg_ctx.get(),
|
||||
};
|
||||
}
|
||||
|
||||
initialized = true;
|
||||
}
|
||||
|
||||
return &g_ggml_metal_reg;
|
||||
return ®
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_IMPL(ggml_backend_metal_reg)
|
||||
|
|
|
|||
|
|
@ -2737,6 +2737,83 @@ kernel void kernel_rwkv_wkv7_f32(
|
|||
}
|
||||
}
|
||||
|
||||
constant short FC_solve_tri_nsg [[function_constant(FC_SOLVE_TRI + 0)]];
|
||||
constant short FC_solve_tri_n [[function_constant(FC_SOLVE_TRI + 1)]];
|
||||
constant short FC_solve_tri_k [[function_constant(FC_SOLVE_TRI + 2)]];
|
||||
|
||||
kernel void kernel_solve_tri_f32(
|
||||
constant ggml_metal_kargs_solve_tri & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device char * dst,
|
||||
threadgroup char * shmem [[threadgroup(0)]],
|
||||
ushort3 tgpig[[threadgroup_position_in_grid]],
|
||||
ushort sgitg[[simdgroup_index_in_threadgroup]],
|
||||
ushort tiisg[[thread_index_in_simdgroup]],
|
||||
ushort3 ntg[[threads_per_threadgroup]]) {
|
||||
constexpr short NW = N_SIMDWIDTH;
|
||||
|
||||
const short NSG = FC_solve_tri_nsg;
|
||||
const short N = FC_solve_tri_n;
|
||||
const short K = FC_solve_tri_k;
|
||||
const short NP = PAD2(N, NW);
|
||||
|
||||
const int32_t ne02 = args.ne02;
|
||||
const int32_t ne03 = args.ne03;
|
||||
|
||||
const int32_t i03 = tgpig.z;
|
||||
const int32_t i02 = tgpig.y;
|
||||
const int32_t i01 = tgpig.x*NSG + sgitg;
|
||||
|
||||
threadgroup float * sh0 = (threadgroup float *) shmem;
|
||||
|
||||
device const float * src0_ptr = (device const float *)(src0 + i02 * args.nb02 + i03 * args.nb03) + sgitg*N;
|
||||
device const float * src1_ptr = (device const float *)(src1 + i02 * args.nb12 + i03 * args.nb13) + i01;
|
||||
device float * dst_ptr = (device float *)(dst + i02 * args.nb2 + i03 * args.nb3) + i01;
|
||||
|
||||
for (short rr = 0; rr < N; rr += NSG) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
{
|
||||
threadgroup float * sh0_cur = sh0 + sgitg*NP;
|
||||
|
||||
for (short t = 0; t*NW < N; ++t) {
|
||||
const short idx = t*NW + tiisg;
|
||||
sh0_cur[idx] = src0_ptr[idx];
|
||||
}
|
||||
|
||||
src0_ptr += NSG*N;
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
if (i01 >= args.ne10) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (short ir = 0; ir < NSG && rr + ir < N; ++ir) {
|
||||
const short r = rr + ir;
|
||||
|
||||
threadgroup float * sh0_cur = sh0 + ir*NP;
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
for (short t = 0; t*NW < r; ++t) {
|
||||
const short idx = t*NW + tiisg;
|
||||
sum += sh0_cur[idx] * dst_ptr[idx*K] * (idx < r);
|
||||
}
|
||||
|
||||
sum = simd_sum(sum);
|
||||
|
||||
if (tiisg == 0) {
|
||||
const float diag = sh0_cur[r];
|
||||
|
||||
dst_ptr[r*K] = (src1_ptr[r*K] - sum) / diag;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_argmax_f32(
|
||||
constant ggml_metal_kargs_argmax & args,
|
||||
device const char * src0,
|
||||
|
|
@ -5208,6 +5285,7 @@ constant int32_t FC_flash_attn_ext_blk_ncpsg [[function_constant(FC_FLASH_ATTN_E
|
|||
// scan the blocks of the mask that are not masked
|
||||
// 0 - masked (i.e. full of -INF, skip)
|
||||
// 1 - not masked (i.e. at least one element of the mask is not -INF)
|
||||
// 2 - all zero
|
||||
kernel void kernel_flash_attn_ext_blk(
|
||||
constant ggml_metal_kargs_flash_attn_ext_blk & args,
|
||||
device const char * mask,
|
||||
|
|
@ -5229,27 +5307,29 @@ kernel void kernel_flash_attn_ext_blk(
|
|||
|
||||
device const half * mask_src = (device const half *) (mask + (i1*Q)*args.nb31 + i2*args.nb32 + i3*args.nb33) + i0*C + tiisg;
|
||||
|
||||
// fast route
|
||||
if (res == 0) {
|
||||
if (simd_max(*mask_src) > -MAXHALF/2) {
|
||||
res = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// detailed check of the elements of the block
|
||||
if ((C > NW || Q > 1) && res == 0) {
|
||||
half m = -MAXHALF;
|
||||
half mmin = MAXHALF;
|
||||
half mmax = -MAXHALF;
|
||||
|
||||
FOR_UNROLL (short j = 0; j < Q; ++j) {
|
||||
FOR_UNROLL (short ii = 0; ii < C/NW; ++ii) {
|
||||
m = max(m, mask_src[ii*NW]);
|
||||
mmin = min(mmin, mask_src[ii*NW]);
|
||||
mmax = max(mmax, mask_src[ii*NW]);
|
||||
}
|
||||
|
||||
mask_src += args.nb31/2;
|
||||
}
|
||||
|
||||
if (simd_max(m) > -MAXHALF/2) {
|
||||
res = 1;
|
||||
mmin = simd_min(mmin);
|
||||
mmax = simd_max(mmax);
|
||||
|
||||
if (mmax > -MAXHALF) {
|
||||
if (mmin == 0.0 && mmax == 0.0) {
|
||||
res = 2;
|
||||
} else {
|
||||
res = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -5491,9 +5571,13 @@ void kernel_flash_attn_ext_impl(
|
|||
ic = 0;
|
||||
}
|
||||
|
||||
char blk_cur = 1;
|
||||
|
||||
// read the mask into shared mem
|
||||
if (FC_flash_attn_ext_has_mask) {
|
||||
if (blk[ic0] == 0) {
|
||||
blk_cur = blk[ic0];
|
||||
|
||||
if (blk_cur == 0) {
|
||||
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
|
||||
pm2[jj] += NW;
|
||||
}
|
||||
|
|
@ -5501,16 +5585,22 @@ void kernel_flash_attn_ext_impl(
|
|||
continue;
|
||||
}
|
||||
|
||||
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
|
||||
const short j = jj*NSG + sgitg;
|
||||
if (blk_cur == 1) {
|
||||
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
|
||||
const short j = jj*NSG + sgitg;
|
||||
|
||||
if (FC_flash_attn_ext_bc_mask) {
|
||||
sm2[j*SH + tiisg] = (iq1 + j) < args.ne31 ? pm2[jj][tiisg] : half2(-MAXHALF, -MAXHALF);
|
||||
} else {
|
||||
sm2[j*SH + tiisg] = pm2[jj][tiisg];
|
||||
if (FC_flash_attn_ext_bc_mask) {
|
||||
sm2[j*SH + tiisg] = (iq1 + j) < args.ne31 ? pm2[jj][tiisg] : half2(-MAXHALF, -MAXHALF);
|
||||
} else {
|
||||
sm2[j*SH + tiisg] = pm2[jj][tiisg];
|
||||
}
|
||||
|
||||
pm2[jj] += NW;
|
||||
}
|
||||
} else if (blk_cur == 2) {
|
||||
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
|
||||
pm2[jj] += NW;
|
||||
}
|
||||
|
||||
pm2[jj] += NW;
|
||||
}
|
||||
|
||||
#if 0
|
||||
|
|
@ -5675,10 +5765,12 @@ void kernel_flash_attn_ext_impl(
|
|||
}
|
||||
|
||||
// mqk = mqk + slope*mask
|
||||
if (FC_flash_attn_ext_has_bias) {
|
||||
s2 += s2_t(sm2[j*SH + tiisg])*slope;
|
||||
} else {
|
||||
s2 += s2_t(sm2[j*SH + tiisg]);
|
||||
if (blk_cur != 2) {
|
||||
if (FC_flash_attn_ext_has_bias) {
|
||||
s2 += s2_t(sm2[j*SH + tiisg])*slope;
|
||||
} else {
|
||||
s2 += s2_t(sm2[j*SH + tiisg]);
|
||||
}
|
||||
}
|
||||
|
||||
M[jj] = simd_max(max(M[jj], max(s2[0], s2[1])));
|
||||
|
|
@ -5931,7 +6023,7 @@ template<
|
|||
void (*deq_v)(device const vd4x4_t *, short, thread v4x4_t &),
|
||||
short DK, // K head size
|
||||
short DV, // V head size
|
||||
short Q = OP_FLASH_ATTN_EXT_NQPTG, // queries per threadgroup
|
||||
short Q = OP_FLASH_ATTN_EXT_NQPSG, // queries per threadgroup
|
||||
short C = OP_FLASH_ATTN_EXT_NCPSG> // cache items per threadgroup
|
||||
kernel void kernel_flash_attn_ext(
|
||||
constant ggml_metal_kargs_flash_attn_ext & args,
|
||||
|
|
@ -6141,11 +6233,10 @@ template<
|
|||
void (*deq_v_t4)(device const vd4_t *, short, thread v4_t &),
|
||||
short DK, // K head size
|
||||
short DV, // V head size
|
||||
short NE, // head elements per thread
|
||||
short Q, // queries per threadgroup
|
||||
short C, // cache items per threadgroup
|
||||
short NSG> // number of simd groups
|
||||
void kernel_flash_attn_ext_vec_impl(
|
||||
short NE = 4, // head elements per thread
|
||||
short Q = OP_FLASH_ATTN_EXT_VEC_NQPSG, // queries per threadgroup
|
||||
short C = OP_FLASH_ATTN_EXT_VEC_NCPSG> // cache items per threadgroup
|
||||
kernel void kernel_flash_attn_ext_vec(
|
||||
constant ggml_metal_kargs_flash_attn_ext_vec & args,
|
||||
device const char * q,
|
||||
device const char * k,
|
||||
|
|
@ -6162,6 +6253,7 @@ void kernel_flash_attn_ext_vec_impl(
|
|||
static_assert(DV % 32 == 0, "DV must be divisible by 32");
|
||||
|
||||
#define NWG (FC_flash_attn_ext_vec_nwg)
|
||||
#define NSG (FC_flash_attn_ext_vec_nsg)
|
||||
|
||||
#define NS10 (FC_flash_attn_ext_vec_ns10)
|
||||
#define NS20 (FC_flash_attn_ext_vec_ns20)
|
||||
|
|
@ -6190,12 +6282,12 @@ void kernel_flash_attn_ext_vec_impl(
|
|||
|
||||
const short T = PK + NSG*SH; // shared memory size per query in (half)
|
||||
|
||||
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*PK); // holds the query data
|
||||
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*PK); // same as above but in q4_t
|
||||
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*PK); // scratch buffer for attention
|
||||
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*PK); // same as above but in s4_t
|
||||
threadgroup half * sm = (threadgroup half *) (shmem_f16 + sgitg*SH + 2*C + Q*PK); // scratch buffer for mask
|
||||
threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 2*sgitg*PV + Q*T); // scratch buffer for the results
|
||||
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*PK); // holds the query data
|
||||
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*PK); // same as above but in q4_t
|
||||
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + NSG*PK); // scratch buffer for attention
|
||||
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + NSG*PK); // same as above but in s4_t
|
||||
threadgroup half * sm = (threadgroup half *) (shmem_f16 + sgitg*SH + 2*C + NSG*PK); // scratch buffer for mask
|
||||
threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 2*sgitg*PV + NSG*PK + NSG*SH); // scratch buffer for the results
|
||||
|
||||
// store the result for all queries in shared memory (the O matrix from the paper)
|
||||
so4 += tiisg;
|
||||
|
|
@ -6213,11 +6305,13 @@ void kernel_flash_attn_ext_vec_impl(
|
|||
// load heads from Q to shared memory
|
||||
device const float4 * q4 = (device const float4 *) ((device const char *) q);
|
||||
|
||||
for (short i = tiisg; i < PK4; i += NW) {
|
||||
if (iq1 < args.ne01 && i < DK4) {
|
||||
sq4[i] = (q4_t) q4[i];
|
||||
} else {
|
||||
sq4[i] = (q4_t) 0.0f;
|
||||
if (iq1 < args.ne01) {
|
||||
for (short i = tiisg; i < PK4; i += NW) {
|
||||
if (i < DK4) {
|
||||
sq4[i] = (q4_t) q4[i];
|
||||
} else {
|
||||
sq4[i] = (q4_t) 0.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -6295,7 +6389,7 @@ void kernel_flash_attn_ext_vec_impl(
|
|||
}
|
||||
|
||||
// skip -INF blocks
|
||||
if (simd_max(sm[tiisg]) == -INFINITY) {
|
||||
if (simd_max(sm[tiisg]) <= -MAXHALF) {
|
||||
continue;
|
||||
}
|
||||
|
||||
|
|
@ -6569,57 +6663,11 @@ void kernel_flash_attn_ext_vec_impl(
|
|||
}
|
||||
|
||||
#undef NWG
|
||||
#undef NSG
|
||||
#undef NS10
|
||||
#undef NS20
|
||||
}
|
||||
|
||||
template<
|
||||
typename q4_t, // query types in shared memory
|
||||
typename k4_t, // key types in shared memory
|
||||
typename v4_t, // value types in shared memory
|
||||
typename qk_t, // Q*K types
|
||||
typename s_t, // soft-max types
|
||||
typename s4_t,
|
||||
typename o4_t, // attention accumulation types
|
||||
typename kd4_t, // key type in device memory
|
||||
short nl_k,
|
||||
void (*deq_k_t4)(device const kd4_t *, short, thread k4_t &),
|
||||
typename vd4_t, // value type in device memory
|
||||
short nl_v,
|
||||
void (*deq_v_t4)(device const vd4_t *, short, thread v4_t &),
|
||||
short DK, // K head size
|
||||
short DV, // V head size
|
||||
short NE = 4, // head elements per thread
|
||||
short Q = OP_FLASH_ATTN_EXT_VEC_NQPTG, // queries per threadgroup
|
||||
short C = OP_FLASH_ATTN_EXT_VEC_NCPSG> // cache items per threadgroup
|
||||
kernel void kernel_flash_attn_ext_vec(
|
||||
constant ggml_metal_kargs_flash_attn_ext_vec & args,
|
||||
device const char * q,
|
||||
device const char * k,
|
||||
device const char * v,
|
||||
device const char * mask,
|
||||
device const char * sinks,
|
||||
device const char * pad,
|
||||
device char * dst,
|
||||
threadgroup half * shmem_f16 [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
ushort tiisg[[thread_index_in_simdgroup]],
|
||||
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
#define FWD_TMPL q4_t, k4_t, v4_t, qk_t, s_t, s4_t, o4_t, kd4_t, nl_k, deq_k_t4, vd4_t, nl_v, deq_v_t4, DK, DV, NE, Q, C
|
||||
#define FWD_ARGS args, q, k, v, mask, sinks, pad, dst, shmem_f16, tgpig, tiisg, sgitg
|
||||
switch (FC_flash_attn_ext_vec_nsg) {
|
||||
// note: disabled cases to reduce library load time
|
||||
case 1: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 1>(FWD_ARGS); break;
|
||||
case 2: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 2>(FWD_ARGS); break;
|
||||
case 4: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 4>(FWD_ARGS); break;
|
||||
//case 8: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 8>(FWD_ARGS); break;
|
||||
//case 16: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 16>(FWD_ARGS); break;
|
||||
//case 32: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 32>(FWD_ARGS); break;
|
||||
}
|
||||
#undef FWD_TMPL
|
||||
#undef FWD_ARGS
|
||||
}
|
||||
|
||||
// note: I think the s_t can be half instead of float, because the Q*K scaling is done before storing to shared mem
|
||||
// in the other (non-vec) kernel, we need s_t to also be float because we scale during the soft_max
|
||||
//
|
||||
|
|
@ -8782,6 +8830,26 @@ kernel void kernel_set_rows_f(
|
|||
}
|
||||
}
|
||||
|
||||
kernel void kernel_diag_f32(
|
||||
constant ggml_metal_kargs_diag & args,
|
||||
device const char * src0,
|
||||
device char * dst,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
ushort tiitg[[thread_index_in_threadgroup]]) {
|
||||
constexpr short NW = N_SIMDWIDTH;
|
||||
|
||||
const int32_t i3 = tgpig.z;
|
||||
const int32_t i2 = tgpig.y;
|
||||
const int32_t i1 = tgpig.x;
|
||||
|
||||
device const float * src0_ptr = (device const float *)(src0 + i2*args.nb02 + i3*args.nb03);
|
||||
device float * dst_ptr = (device float *)(dst + i1*args.nb01 + i2*args.nb2 + i3*args.nb3);
|
||||
|
||||
for (int i0 = tiitg; i0 < args.ne0; i0 += NW) {
|
||||
dst_ptr[i0] = i0 == i1 ? src0_ptr[i0] : 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
constant bool FC_mul_mm_bc_inp [[function_constant(FC_MUL_MM + 0)]];
|
||||
constant bool FC_mul_mm_bc_out [[function_constant(FC_MUL_MM + 1)]];
|
||||
|
||||
|
|
|
|||
|
|
@ -453,7 +453,6 @@ struct ggml_backend_opencl_context {
|
|||
cl_program program_rms_norm;
|
||||
cl_program program_group_norm;
|
||||
cl_program program_rope;
|
||||
cl_program program_scale;
|
||||
cl_program program_silu;
|
||||
cl_program program_sigmoid;
|
||||
cl_program program_softmax_f32;
|
||||
|
|
@ -462,11 +461,8 @@ struct ggml_backend_opencl_context {
|
|||
cl_program program_softmax_4_f16;
|
||||
cl_program program_argsort_f32_i32;
|
||||
cl_program program_sum_rows_f32;
|
||||
cl_program program_repeat;
|
||||
cl_program program_pad;
|
||||
cl_program program_tanh;
|
||||
cl_program program_upscale;
|
||||
cl_program program_concat;
|
||||
cl_program program_conv_2d_f16;
|
||||
cl_program program_conv_2d_f32;
|
||||
cl_program program_conv_2d_f16_f32;
|
||||
|
|
@ -485,7 +481,7 @@ struct ggml_backend_opencl_context {
|
|||
cl_kernel kernel_div, kernel_div_row, kernel_div_f16, kernel_div_row_f16;
|
||||
cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
|
||||
cl_kernel kernel_add_id;
|
||||
cl_kernel kernel_scale;
|
||||
cl_kernel kernel_scale_f32, kernel_scale_f32_4;
|
||||
cl_kernel kernel_sqr_cont_f32, kernel_sqr_cont_f32_4, kernel_sqr_cont_f16, kernel_sqr_cont_f16_4;
|
||||
cl_kernel kernel_sqrt_cont_f32, kernel_sqrt_cont_f32_4, kernel_sqrt_cont_f16, kernel_sqrt_cont_f16_4;
|
||||
cl_kernel kernel_mean_f32;
|
||||
|
|
@ -544,18 +540,17 @@ struct ggml_backend_opencl_context {
|
|||
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
|
||||
cl_kernel kernel_argsort_f32_i32;
|
||||
cl_kernel kernel_sum_rows_f32;
|
||||
cl_kernel kernel_repeat;
|
||||
cl_kernel kernel_repeat_f32;
|
||||
cl_kernel kernel_pad;
|
||||
cl_kernel kernel_tanh_f32_nd;
|
||||
cl_kernel kernel_tanh_f16_nd;
|
||||
cl_kernel kernel_tanh_f32, kernel_tanh_f32_4, kernel_tanh_f32_nc;
|
||||
cl_kernel kernel_tanh_f16, kernel_tanh_f16_4, kernel_tanh_f16_nc;
|
||||
cl_kernel kernel_expm1_f32_nd;
|
||||
cl_kernel kernel_expm1_f16_nd;
|
||||
cl_kernel kernel_softplus_f32_nd;
|
||||
cl_kernel kernel_softplus_f16_nd;
|
||||
cl_kernel kernel_upscale;
|
||||
cl_kernel kernel_upscale_bilinear;
|
||||
cl_kernel kernel_concat_f32_contiguous;
|
||||
cl_kernel kernel_concat_f32_non_contiguous;
|
||||
cl_kernel kernel_concat_f32;
|
||||
cl_kernel kernel_conv_2d_f16;
|
||||
cl_kernel kernel_conv_2d_f32;
|
||||
cl_kernel kernel_conv_2d_f16_f32;
|
||||
|
|
@ -1483,10 +1478,12 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|||
#else
|
||||
const std::string kernel_src = read_file("scale.cl");
|
||||
#endif
|
||||
backend_ctx->program_scale =
|
||||
cl_program prog =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_scale_f32 = clCreateKernel(prog, "kernel_scale_f32", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_scale_f32_4 = clCreateKernel(prog, "kernel_scale_f32_4", &err), err));
|
||||
CL_CHECK(clReleaseProgram(prog));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
|
|
@ -1814,16 +1811,11 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|||
#else
|
||||
const std::string kernel_src = read_file("repeat.cl");
|
||||
#endif
|
||||
if (!kernel_src.empty()) {
|
||||
backend_ctx->program_repeat =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
} else {
|
||||
GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
|
||||
backend_ctx->program_repeat = nullptr;
|
||||
backend_ctx->kernel_repeat = nullptr;
|
||||
}
|
||||
cl_program prog =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
CL_CHECK((backend_ctx->kernel_repeat_f32 = clCreateKernel(prog, "kernel_repeat_f32", &err), err));
|
||||
CL_CHECK(clReleaseProgram(prog));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// pad
|
||||
|
|
@ -1856,18 +1848,16 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|||
#else
|
||||
const std::string kernel_src = read_file("tanh.cl");
|
||||
#endif
|
||||
if (!kernel_src.empty()) {
|
||||
backend_ctx->program_tanh =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
} else {
|
||||
GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n");
|
||||
backend_ctx->program_tanh = nullptr;
|
||||
backend_ctx->kernel_tanh_f32_nd = nullptr;
|
||||
backend_ctx->kernel_tanh_f16_nd = nullptr;
|
||||
}
|
||||
cl_program prog =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
CL_CHECK((backend_ctx->kernel_tanh_f32 = clCreateKernel(prog, "kernel_tanh_f32", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_tanh_f32_4 = clCreateKernel(prog, "kernel_tanh_f32_4", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_tanh_f32_nc = clCreateKernel(prog, "kernel_tanh_f32_nc", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_tanh_f16 = clCreateKernel(prog, "kernel_tanh_f16", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_tanh_f16_4 = clCreateKernel(prog, "kernel_tanh_f16_4", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_tanh_f16_nc = clCreateKernel(prog, "kernel_tanh_f16_nc", &err), err));
|
||||
CL_CHECK(clReleaseProgram(prog));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// expm1
|
||||
|
|
@ -1959,22 +1949,13 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|||
#include "concat.cl.h"
|
||||
};
|
||||
#else
|
||||
|
||||
const std::string kernel_src = read_file("concat.cl");
|
||||
#endif
|
||||
if (!kernel_src.empty()) {
|
||||
backend_ctx->program_concat =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
} else {
|
||||
GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n");
|
||||
backend_ctx->program_concat = nullptr;
|
||||
backend_ctx->kernel_concat_f32_contiguous = nullptr;
|
||||
backend_ctx->kernel_concat_f32_non_contiguous = nullptr;
|
||||
}
|
||||
cl_program prog =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
CL_CHECK((backend_ctx->kernel_concat_f32 = clCreateKernel(prog, "kernel_concat_f32", &err), err));
|
||||
CL_CHECK(clReleaseProgram(prog));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// timestep_embedding
|
||||
|
|
@ -3318,8 +3299,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
|||
case GGML_UNARY_OP_SIGMOID:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
case GGML_UNARY_OP_TANH:
|
||||
return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
|
||||
(op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
|
||||
return op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16;
|
||||
case GGML_UNARY_OP_EXPM1:
|
||||
return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
|
||||
(op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
|
||||
|
|
@ -3740,7 +3720,7 @@ static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buff
|
|||
// Reuse extra of the parent tensor. The offset of this view tensor
|
||||
// becomes `extra->offset + view_offs` and needs to be calculated when
|
||||
// it is used. This changes is needed because of the change to
|
||||
// ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
|
||||
// ggml_alloc.c in https://github.com/ggml-org/llama.cpp/pull/7640.
|
||||
// `buffer` passed in here will always be `tensor->buffer`. It is OK
|
||||
// to allocate extras from the same buffer context for ordinary
|
||||
// intermediate tensors. But for views into kv cache tensors, doing so
|
||||
|
|
@ -7029,79 +7009,87 @@ static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const
|
|||
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
|
||||
cl_ulong offset0_abs = extra0->offset + src0->view_offs;
|
||||
cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
|
||||
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
const int ne02 = src0->ne[2];
|
||||
const int ne03 = src0->ne[3];
|
||||
|
||||
const cl_ulong nb00 = src0->nb[0];
|
||||
const cl_ulong nb01 = src0->nb[1];
|
||||
const cl_ulong nb02 = src0->nb[2];
|
||||
const cl_ulong nb03 = src0->nb[3];
|
||||
|
||||
const cl_ulong nb0 = dst->nb[0];
|
||||
const cl_ulong nb1 = dst->nb[1];
|
||||
const cl_ulong nb2 = dst->nb[2];
|
||||
const cl_ulong nb3 = dst->nb[3];
|
||||
|
||||
cl_kernel kernel;
|
||||
if (dst->type == GGML_TYPE_F32) {
|
||||
kernel = backend_ctx->kernel_tanh_f32_nd;
|
||||
} else if (dst->type == GGML_TYPE_F16) {
|
||||
kernel = backend_ctx->kernel_tanh_f16_nd;
|
||||
} else {
|
||||
GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh");
|
||||
}
|
||||
GGML_ASSERT(kernel != nullptr);
|
||||
|
||||
const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3];
|
||||
const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3];
|
||||
|
||||
const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3];
|
||||
const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3];
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
|
||||
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
|
||||
|
||||
size_t global_work_size[3];
|
||||
if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
|
||||
return;
|
||||
}
|
||||
global_work_size[0] = (size_t)ne10;
|
||||
global_work_size[1] = (size_t)ne11;
|
||||
global_work_size[2] = (size_t)ne12;
|
||||
|
||||
size_t lws0 = 16, lws1 = 4, lws2 = 1;
|
||||
if (ne10 < 16) lws0 = ne10;
|
||||
if (ne11 < 4) lws1 = ne11;
|
||||
if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
|
||||
|
||||
while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
|
||||
while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
|
||||
while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
|
||||
|
||||
|
||||
size_t local_work_size[] = {lws0, lws1, lws2};
|
||||
|
||||
size_t* local_work_size_ptr = local_work_size;
|
||||
if (!backend_ctx->non_uniform_workgroups) {
|
||||
if (global_work_size[0] % local_work_size[0] != 0 ||
|
||||
global_work_size[1] % local_work_size[1] != 0 ||
|
||||
global_work_size[2] % local_work_size[2] != 0) {
|
||||
local_work_size_ptr = NULL;
|
||||
if (ggml_is_contiguous(src0)) {
|
||||
// Handle contiguous input
|
||||
int n = ggml_nelements(dst);
|
||||
if (n % 4 == 0) {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
kernel = backend_ctx->kernel_tanh_f32_4;
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_tanh_f16_4;
|
||||
}
|
||||
n /= 4;
|
||||
} else {
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
kernel = backend_ctx->kernel_tanh_f32;
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_tanh_f16;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
||||
|
||||
size_t global_work_size[] = {(size_t)n, 1, 1};
|
||||
size_t local_work_size[] = {64, 1, 1};
|
||||
|
||||
size_t * local_work_size_ptr = local_work_size;
|
||||
if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
|
||||
local_work_size_ptr = nullptr;
|
||||
}
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
|
||||
} else {
|
||||
// Handle non-contiguous input
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
kernel = backend_ctx->kernel_tanh_f32_nc;
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_tanh_f16_nc;
|
||||
}
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb03));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb3));
|
||||
|
||||
int nth = 64;
|
||||
|
||||
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
|
||||
size_t local_work_size[] = {(size_t)nth, 1, 1};
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cl_expm1(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
|
|
@ -7319,53 +7307,58 @@ static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, con
|
|||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
|
||||
if (backend_ctx->kernel_repeat == nullptr) {
|
||||
GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
|
||||
return;
|
||||
}
|
||||
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
|
||||
ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
|
||||
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||
|
||||
cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
|
||||
cl_ulong off_dst = extra_dst->offset + dst->view_offs;
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
const int ne02 = src0->ne[2];
|
||||
const int ne03 = src0->ne[3];
|
||||
|
||||
const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
|
||||
const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
|
||||
const cl_ulong nb00 = src0->nb[0];
|
||||
const cl_ulong nb01 = src0->nb[1];
|
||||
const cl_ulong nb02 = src0->nb[2];
|
||||
const cl_ulong nb03 = src0->nb[3];
|
||||
|
||||
const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
|
||||
const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
|
||||
const int ne0 = dst->ne[0];
|
||||
const int ne1 = dst->ne[1];
|
||||
const int ne2 = dst->ne[2];
|
||||
const int ne3 = dst->ne[3];
|
||||
|
||||
cl_kernel kernel = backend_ctx->kernel_repeat;
|
||||
const cl_ulong nb0 = dst->nb[0];
|
||||
const cl_ulong nb1 = dst->nb[1];
|
||||
const cl_ulong nb2 = dst->nb[2];
|
||||
const cl_ulong nb3 = dst->nb[3];
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
|
||||
cl_kernel kernel = backend_ctx->kernel_repeat_f32;
|
||||
|
||||
size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
|
||||
size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
|
||||
size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb3));
|
||||
|
||||
size_t global_work_size[] = { gws0, gws1, gws2 };
|
||||
int nth = 64;
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
|
||||
size_t global_work_size[] = {(size_t)ne1*nth, (size_t)ne2, (size_t)ne3};
|
||||
size_t local_work_size[] = {(size_t)nth, 1, 1};
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
||||
}
|
||||
|
||||
static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
|
|
@ -7589,121 +7582,76 @@ static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, con
|
|||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
cl_command_queue queue = backend_ctx->queue;
|
||||
|
||||
if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) {
|
||||
GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__);
|
||||
return;
|
||||
}
|
||||
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
|
||||
ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra;
|
||||
ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra;
|
||||
ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra;
|
||||
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||
cl_ulong offset1 = extra1->offset + src1->view_offs;
|
||||
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||
|
||||
cl_ulong off_src0 = extra0_cl->offset + src0->view_offs;
|
||||
cl_ulong off_src1 = extra1_cl->offset + src1->view_offs;
|
||||
cl_ulong off_dst = extrad_cl->offset + dst->view_offs;
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
const int ne02 = src0->ne[2];
|
||||
const int ne03 = src0->ne[3];
|
||||
|
||||
const int32_t dim = ((const int32_t *) dst->op_params)[0];
|
||||
const cl_ulong nb00 = src0->nb[0];
|
||||
const cl_ulong nb01 = src0->nb[1];
|
||||
const cl_ulong nb02 = src0->nb[2];
|
||||
const cl_ulong nb03 = src0->nb[3];
|
||||
|
||||
const cl_ulong nb10 = src1->nb[0];
|
||||
const cl_ulong nb11 = src1->nb[1];
|
||||
const cl_ulong nb12 = src1->nb[2];
|
||||
const cl_ulong nb13 = src1->nb[3];
|
||||
|
||||
const int ne0 = dst->ne[0];
|
||||
const int ne1 = dst->ne[1];
|
||||
const int ne2 = dst->ne[2];
|
||||
const int ne3 = dst->ne[3];
|
||||
|
||||
const cl_ulong nb0 = dst->nb[0];
|
||||
const cl_ulong nb1 = dst->nb[1];
|
||||
const cl_ulong nb2 = dst->nb[2];
|
||||
const cl_ulong nb3 = dst->nb[3];
|
||||
|
||||
const cl_int dim = ((const int32_t *) dst->op_params)[0];
|
||||
GGML_ASSERT(dim >= 0 && dim <= 3);
|
||||
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
|
||||
if (dim == 3) {
|
||||
int nth = MIN(64, ne0);
|
||||
|
||||
size_t nbytes_src0 = ggml_nbytes(src0);
|
||||
size_t nbytes_src1 = ggml_nbytes(src1);
|
||||
cl_kernel kernel = backend_ctx->kernel_concat_f32;
|
||||
|
||||
CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device,
|
||||
off_src0, off_dst, nbytes_src0, 0, NULL, NULL));
|
||||
CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device,
|
||||
off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL));
|
||||
} else {
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
|
||||
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
|
||||
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_int), &dim));
|
||||
|
||||
cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous;
|
||||
size_t global_work_size[3];
|
||||
size_t global_work_size[] = {(size_t)ne1*nth, (size_t)ne2, (size_t)ne3};
|
||||
size_t local_work_size[] = {(size_t)nth, 1, 1};
|
||||
|
||||
for (int i3 = 0; i3 < dst->ne[3]; ++i3) {
|
||||
cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]);
|
||||
cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]);
|
||||
cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]);
|
||||
|
||||
int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2];
|
||||
int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2];
|
||||
int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2];
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), ¤t_off_src0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), ¤t_off_src1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), ¤t_off_dst));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim));
|
||||
|
||||
global_work_size[0] = d_ne0;
|
||||
global_work_size[1] = d_ne1;
|
||||
global_work_size[2] = d_ne2;
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous;
|
||||
|
||||
cl_long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
|
||||
cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
|
||||
|
||||
cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
|
||||
|
||||
cl_long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3];
|
||||
cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3];
|
||||
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst));
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &ne03));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_long), &d_ne0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_long), &d_ne1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_long), &d_ne2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_long), &d_ne3));
|
||||
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3));
|
||||
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim));
|
||||
|
||||
size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1,
|
||||
d_ne2 > 0 ? (size_t)d_ne2 : 1,
|
||||
d_ne3 > 0 ? (size_t)d_ne3 : 1 };
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size_nc, NULL, dst);
|
||||
}
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
||||
}
|
||||
|
||||
static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
|
|
@ -8394,6 +8342,7 @@ static void ggml_cl_mul_mat_q8_0_f32_adreno(ggml_backend_t backend, const ggml_t
|
|||
CL_CHECK(clReleaseMemObject(D_sub_buffer));
|
||||
CL_CHECK(clReleaseMemObject(D_image1d));
|
||||
#else
|
||||
GGML_UNUSED(backend);
|
||||
GGML_UNUSED(src0);
|
||||
GGML_UNUSED(src1);
|
||||
GGML_UNUSED(dst);
|
||||
|
|
@ -9913,7 +9862,16 @@ static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, cons
|
|||
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||
|
||||
cl_kernel kernel = backend_ctx->kernel_scale;
|
||||
cl_kernel kernel;
|
||||
|
||||
int n = ggml_nelements(dst);
|
||||
|
||||
if (n % 4 == 0) {
|
||||
kernel = backend_ctx->kernel_scale_f32_4;
|
||||
n /= 4;
|
||||
} else {
|
||||
kernel = backend_ctx->kernel_scale_f32;
|
||||
}
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
|
|
@ -9922,8 +9880,6 @@ static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, cons
|
|||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias));
|
||||
|
||||
int n = ggml_nelements(dst)/4;
|
||||
|
||||
size_t global_work_size[] = {(size_t)n, 1, 1};
|
||||
size_t local_work_size[] = {64, 1, 1};
|
||||
|
||||
|
|
|
|||
|
|
@ -1,109 +1,51 @@
|
|||
kernel void kernel_concat_f32_contiguous(
|
||||
global const char * p_src0, ulong off_src0,
|
||||
global const char * p_src1, ulong off_src1,
|
||||
global char * p_dst, ulong off_dst,
|
||||
int d_ne00, int d_ne01, int d_ne02, // src0->ne[0..2] for the slice
|
||||
int d_ne10, int d_ne11, int d_ne12, // src1->ne[0..2] for the slice (d_ne1X must match d_ne0X on non-concat axes)
|
||||
int d_ne0, int d_ne1, int d_ne2, // dst->ne[0..2] for the slice
|
||||
int dim
|
||||
kernel void kernel_concat_f32(
|
||||
global const char * src0,
|
||||
ulong offset0,
|
||||
global const char * src1,
|
||||
ulong offset1,
|
||||
global char * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
ulong nb10,
|
||||
ulong nb11,
|
||||
ulong nb12,
|
||||
ulong nb13,
|
||||
int ne0,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3,
|
||||
int dim
|
||||
) {
|
||||
global const float * src0 = (global const float*)((global char*)p_src0 + off_src0);
|
||||
global const float * src1 = (global const float*)((global char*)p_src1 + off_src1);
|
||||
global float * dst = (global float*)((global char*)p_dst + off_dst);
|
||||
src0 = src0 + offset0;
|
||||
src1 = src1 + offset1;
|
||||
dst = dst + offsetd;
|
||||
|
||||
int i0 = get_global_id(0); // Index along dst's 0th dimension
|
||||
int i1 = get_global_id(1); // Index along dst's 1st dimension
|
||||
int i2 = get_global_id(2); // Index along dst's 2nd dimension
|
||||
const int i3 = get_group_id(2);
|
||||
const int i2 = get_group_id(1);
|
||||
const int i1 = get_group_id(0);
|
||||
|
||||
if (i0 >= d_ne0 || i1 >= d_ne1 || i2 >= d_ne2) {
|
||||
return;
|
||||
}
|
||||
int o[4] = {0, 0, 0, 0};
|
||||
o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
|
||||
|
||||
ulong dst_idx = (ulong)i2 * d_ne0 * d_ne1 + (ulong)i1 * d_ne0 + i0;
|
||||
ulong src_idx;
|
||||
global const float * x;
|
||||
|
||||
if (dim == 0) {
|
||||
if (i0 < d_ne00) { // Data from src0
|
||||
src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0;
|
||||
dst[dst_idx] = src0[src_idx];
|
||||
} else { // Data from src1
|
||||
src_idx = (ulong)i2 * d_ne10 * d_ne11 + (ulong)i1 * d_ne10 + (i0 - d_ne00);
|
||||
dst[dst_idx] = src1[src_idx];
|
||||
}
|
||||
} else if (dim == 1) {
|
||||
if (i1 < d_ne01) { // Data from src0
|
||||
src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0;
|
||||
dst[dst_idx] = src0[src_idx];
|
||||
} else { // Data from src1
|
||||
src_idx = (ulong)i2 * d_ne10 * d_ne11 + (ulong)(i1 - d_ne01) * d_ne10 + i0;
|
||||
dst[dst_idx] = src1[src_idx];
|
||||
}
|
||||
} else if (dim == 2) {
|
||||
if (i2 < d_ne02) { // Data from src0
|
||||
src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0;
|
||||
dst[dst_idx] = src0[src_idx];
|
||||
} else { // Data from src1
|
||||
|
||||
src_idx = (ulong)(i2 - d_ne02) * d_ne10 * d_ne11 + (ulong)i1 * d_ne10 + i0;
|
||||
dst[dst_idx] = src1[src_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_concat_f32_non_contiguous(
|
||||
global const char * p_src0, ulong off_src0,
|
||||
global const char * p_src1, ulong off_src1,
|
||||
global char * p_dst, ulong off_dst,
|
||||
|
||||
long ne00, long ne01, long ne02, long ne03,
|
||||
ulong nb00, ulong nb01, ulong nb02, ulong nb03,
|
||||
|
||||
ulong nb10, ulong nb11, ulong nb12, ulong nb13, // Strides for src1
|
||||
|
||||
long d_ne0, long d_ne1, long d_ne2, long d_ne3,
|
||||
ulong d_nb0, ulong d_nb1, ulong d_nb2, ulong d_nb3,
|
||||
int dim
|
||||
) {
|
||||
global const char * src0_base = p_src0 + off_src0;
|
||||
global const char * src1_base = p_src1 + off_src1;
|
||||
global char * dst_base = p_dst + off_dst;
|
||||
|
||||
long current_i1 = get_global_id(0); // Index for dst_dim_1
|
||||
long current_i2 = get_global_id(1); // Index for dst_dim_2
|
||||
long current_i3 = get_global_id(2); // Index for dst_dim_3
|
||||
|
||||
if (current_i1 >= d_ne1 || current_i2 >= d_ne2 || current_i3 >= d_ne3) {
|
||||
return;
|
||||
}
|
||||
|
||||
global const float * x_val_ptr;
|
||||
global float * y_val_ptr;
|
||||
|
||||
for (long current_i0 = 0; current_i0 < d_ne0; ++current_i0) {
|
||||
bool use_src0;
|
||||
long s_i0 = current_i0, s_i1 = current_i1, s_i2 = current_i2, s_i3 = current_i3;
|
||||
|
||||
if (dim == 0) {
|
||||
use_src0 = (current_i0 < ne00);
|
||||
if (!use_src0) { s_i0 = current_i0 - ne00; }
|
||||
} else if (dim == 1) {
|
||||
use_src0 = (current_i1 < ne01);
|
||||
if (!use_src0) { s_i1 = current_i1 - ne01; }
|
||||
} else if (dim == 2) {
|
||||
use_src0 = (current_i2 < ne02);
|
||||
if (!use_src0) { s_i2 = current_i2 - ne02; }
|
||||
} else { // dim == 3
|
||||
use_src0 = (current_i3 < ne03);
|
||||
if (!use_src0) { s_i3 = current_i3 - ne03; }
|
||||
}
|
||||
|
||||
if (use_src0) {
|
||||
x_val_ptr = (global const float *)(src0_base + (ulong)s_i3*nb03 + (ulong)s_i2*nb02 + (ulong)s_i1*nb01 + (ulong)s_i0*nb00);
|
||||
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
|
||||
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
||||
x = (global const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
|
||||
} else {
|
||||
x_val_ptr = (global const float *)(src1_base + (ulong)s_i3*nb13 + (ulong)s_i2*nb12 + (ulong)s_i1*nb11 + (ulong)s_i0*nb10);
|
||||
x = (global const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
|
||||
}
|
||||
|
||||
y_val_ptr = (global float *)(dst_base + (ulong)current_i3*d_nb3 + (ulong)current_i2*d_nb2 + (ulong)current_i1*d_nb1 + (ulong)current_i0*d_nb0);
|
||||
*y_val_ptr = *x_val_ptr;
|
||||
global float * y = (global float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
*y = *x;
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,39 +1,38 @@
|
|||
kernel void kernel_repeat(
|
||||
global const char * src0_data_in,
|
||||
global char * dst_data_in,
|
||||
ulong src0_offset,
|
||||
ulong dst_offset,
|
||||
int src0_ne0, int src0_ne1, int src0_ne2, int src0_ne3,
|
||||
ulong src0_nb0, ulong src0_nb1, ulong src0_nb2, ulong src0_nb3,
|
||||
int dst_ne0, int dst_ne1, int dst_ne2, int dst_ne3,
|
||||
ulong dst_nb0, ulong dst_nb1, ulong dst_nb2, ulong dst_nb3
|
||||
kernel void kernel_repeat_f32(
|
||||
global const char * src0,
|
||||
ulong offset0,
|
||||
global char * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne03,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
int ne0,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3
|
||||
) {
|
||||
global const char * src0_data = src0_data_in + src0_offset;
|
||||
global char * dst_data = dst_data_in + dst_offset;
|
||||
src0 = src0 + offset0;
|
||||
dst = dst + offsetd;
|
||||
|
||||
const int d3 = get_global_id(2);
|
||||
const int d2 = get_global_id(1);
|
||||
const int d1 = get_global_id(0);
|
||||
const int i3 = get_group_id(2);
|
||||
const int i2 = get_group_id(1);
|
||||
const int i1 = get_group_id(0);
|
||||
|
||||
if (d3 >= dst_ne3 || d2 >= dst_ne2 || d1 >= dst_ne1) {
|
||||
return;
|
||||
}
|
||||
const int i03 = i3%ne03;
|
||||
const int i02 = i2%ne02;
|
||||
const int i01 = i1%ne01;
|
||||
|
||||
const int s3 = d3 % src0_ne3;
|
||||
const int s2 = d2 % src0_ne2;
|
||||
const int s1 = d1 % src0_ne1;
|
||||
global const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
||||
global char * dst_ptr = dst + i3*nb3 + i2*nb2 + i1*nb1;
|
||||
|
||||
const global char * p_src0_slice = src0_data + (ulong)s3*src0_nb3 + (ulong)s2*src0_nb2 + (ulong)s1*src0_nb1;
|
||||
global char * p_dst_slice = dst_data + (ulong)d3*dst_nb3 + (ulong)d2*dst_nb2 + (ulong)d1*dst_nb1;
|
||||
|
||||
for (int d0 = 0; d0 < dst_ne0; ++d0) {
|
||||
// Determine source index for dimension 0 based on tiling/broadcasting.
|
||||
const int s0 = d0 % src0_ne0;
|
||||
|
||||
const global char * restrict current_src_el_ptr = p_src0_slice + (ulong)s0*src0_nb0;
|
||||
global char * restrict current_dst_el_ptr = p_dst_slice + (ulong)d0*dst_nb0;
|
||||
for (int k = 0; k < src0_nb0; ++k) {
|
||||
current_dst_el_ptr[k] = current_src_el_ptr[k];
|
||||
}
|
||||
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
|
||||
const int i00 = i0%ne00;
|
||||
*((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i00*nb00));
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,9 +1,19 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// scale
|
||||
//------------------------------------------------------------------------------
|
||||
kernel void kernel_scale(
|
||||
kernel void kernel_scale_f32(
|
||||
global float * src0,
|
||||
ulong offset0,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
float scale,
|
||||
float bias
|
||||
) {
|
||||
src0 = (global float*)((global char*)src0 + offset0);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
dst[get_global_id(0)] = src0[get_global_id(0)] * scale + bias;
|
||||
}
|
||||
|
||||
kernel void kernel_scale_f32_4(
|
||||
global float4 * src0,
|
||||
ulong offset0,
|
||||
global float4 * dst,
|
||||
|
|
|
|||
|
|
@ -1,63 +1,109 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
kernel void kernel_tanh_f32_nd(
|
||||
global void * p_src0_base, ulong off_src0_abs,
|
||||
global void * p_dst_base, ulong off_dst_abs,
|
||||
int ne00, int ne01, int ne02, int ne03,
|
||||
ulong nb00, ulong nb01, ulong nb02, ulong nb03,
|
||||
int ne10, int ne11, int ne12, int ne13,
|
||||
ulong nb10, ulong nb11, ulong nb12, ulong nb13
|
||||
kernel void kernel_tanh_f32(
|
||||
global const float * src0,
|
||||
ulong offset0,
|
||||
global float * dst,
|
||||
ulong offsetd
|
||||
) {
|
||||
int i0 = get_global_id(0);
|
||||
int i1 = get_global_id(1);
|
||||
int i2 = get_global_id(2);
|
||||
src0 = (global float*)((global char*)src0 + offset0);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
|
||||
for (int i3 = 0; i3 < ne13; ++i3) {
|
||||
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
|
||||
global const float *src_val_ptr = (global const float *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
|
||||
dst[get_global_id(0)] = tanh(src0[get_global_id(0)]);
|
||||
}
|
||||
|
||||
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
|
||||
global float *dst_val_ptr = (global float *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
|
||||
kernel void kernel_tanh_f32_4(
|
||||
global const float4 * src0,
|
||||
ulong offset0,
|
||||
global float4 * dst,
|
||||
ulong offsetd
|
||||
) {
|
||||
src0 = (global float4*)((global char*)src0 + offset0);
|
||||
dst = (global float4*)((global char*)dst + offsetd);
|
||||
|
||||
*dst_val_ptr = tanh(*src_val_ptr);
|
||||
}
|
||||
dst[get_global_id(0)] = tanh(src0[get_global_id(0)]);
|
||||
}
|
||||
|
||||
kernel void kernel_tanh_f16(
|
||||
global const half * src0,
|
||||
ulong offset0,
|
||||
global half * dst,
|
||||
ulong offsetd
|
||||
) {
|
||||
src0 = (global half*)((global char*)src0 + offset0);
|
||||
dst = (global half*)((global char*)dst + offsetd);
|
||||
|
||||
dst[get_global_id(0)] = tanh(src0[get_global_id(0)]);
|
||||
}
|
||||
|
||||
kernel void kernel_tanh_f16_4(
|
||||
global const half4 * src0,
|
||||
ulong offset0,
|
||||
global half4 * dst,
|
||||
ulong offsetd
|
||||
) {
|
||||
src0 = (global half4*)((global char*)src0 + offset0);
|
||||
dst = (global half4*)((global char*)dst + offsetd);
|
||||
|
||||
dst[get_global_id(0)] = tanh(src0[get_global_id(0)]);
|
||||
}
|
||||
|
||||
kernel void kernel_tanh_f32_nc(
|
||||
global const char * src0,
|
||||
ulong offset0,
|
||||
global char * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3
|
||||
) {
|
||||
src0 = src0 + offset0;
|
||||
dst = dst + offsetd;
|
||||
|
||||
const int i3 = get_group_id(2);
|
||||
const int i2 = get_group_id(1);
|
||||
const int i1 = get_group_id(0);
|
||||
|
||||
for (int i0 = get_local_id(0); i0 < ne00; i0 += get_local_size(0)) {
|
||||
global const float * x = (global const float *)(src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
global float * y = (global float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
*y = tanh(*x);
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_tanh_f16_nd(
|
||||
global void * p_src0_base, ulong off_src0_abs,
|
||||
global void * p_dst_base, ulong off_dst_abs,
|
||||
int ne00, int ne01, int ne02, int ne03,
|
||||
ulong nb00, ulong nb01, ulong nb02, ulong nb03,
|
||||
int ne10, int ne11, int ne12, int ne13,
|
||||
ulong nb10, ulong nb11, ulong nb12, ulong nb13
|
||||
kernel void kernel_tanh_f16_nc(
|
||||
global const char * src0,
|
||||
ulong offset0,
|
||||
global char * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
ulong nb00,
|
||||
ulong nb01,
|
||||
ulong nb02,
|
||||
ulong nb03,
|
||||
ulong nb0,
|
||||
ulong nb1,
|
||||
ulong nb2,
|
||||
ulong nb3
|
||||
) {
|
||||
int i0 = get_global_id(0);
|
||||
int i1 = get_global_id(1);
|
||||
int i2 = get_global_id(2);
|
||||
src0 = src0 + offset0;
|
||||
dst = dst + offsetd;
|
||||
|
||||
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
|
||||
for (int i3 = 0; i3 < ne13; ++i3) {
|
||||
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
|
||||
global const half *src_val_ptr = (global const half *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
|
||||
const int i3 = get_group_id(2);
|
||||
const int i2 = get_group_id(1);
|
||||
const int i1 = get_group_id(0);
|
||||
|
||||
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
|
||||
global half *dst_val_ptr = (global half *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
|
||||
for (int i0 = get_local_id(0); i0 < ne00; i0 += get_local_size(0)) {
|
||||
global const half * x = (global const half *)(src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
||||
global half * y = (global half *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||
|
||||
*dst_val_ptr = tanh(*src_val_ptr);
|
||||
}
|
||||
*y = tanh(*x);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
message(STATUS "GGML_SYCL_TARGET=${GGML_SYCL_TARGET}")
|
||||
|
||||
if (NOT GGML_SYCL_TARGET MATCHES "^(INTEL|NVIDIA|AMD)$")
|
||||
message(FATAL_ERROR "Invalid backend chosen, supported options are INTEL, NVIDIA, or AMD")
|
||||
if (NOT GGML_SYCL_TARGET MATCHES "^(INTEL)$")
|
||||
message(FATAL_ERROR "GGML_SYCL_TARGET: Invalid target, the supported options are [INTEL]")
|
||||
endif()
|
||||
|
||||
check_cxx_compiler_flag("-fsycl" SUPPORTS_SYCL)
|
||||
|
|
@ -125,25 +125,22 @@ endif()
|
|||
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_DNNL=${GGML_SYCL_DNNL})
|
||||
|
||||
if (GGML_SYCL_F16)
|
||||
if (GGML_SYCL_TARGET STREQUAL "AMD")
|
||||
message(WARNING "AMD target does not entirely support FP16 in the SYCL backend.")
|
||||
endif()
|
||||
add_compile_definitions(GGML_SYCL_F16)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
|
||||
target_link_options(ggml-sycl PRIVATE -Xs -ze-intel-greater-than-4GB-buffer-required)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
|
||||
# INFO: Allowed Sub_group_sizes are not consistent through all
|
||||
# hip targets. For example, 64 is used for certain models, but the backend
|
||||
# does not support it.
|
||||
# Target archs tested working: gfx1030, gfx1031, (Only tested sub_group_size = 32)
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
|
||||
|
||||
# Link against Intel oneMKL
|
||||
if (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
|
||||
set(SYCL_COMPILER ON)
|
||||
endif()
|
||||
find_package(MKL REQUIRED)
|
||||
target_link_libraries(ggml-sycl PRIVATE MKL::MKL_SYCL::BLAS)
|
||||
else()
|
||||
# default for other target
|
||||
message(FATAL_ERROR "GGML_SYCL_TARGET is not supported")
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
|
||||
endif()
|
||||
|
||||
|
|
@ -151,82 +148,6 @@ if (GGML_SYCL_GRAPH)
|
|||
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_GRAPH)
|
||||
endif()
|
||||
|
||||
# Link against Intel oneMKL or oneMath
|
||||
if (GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
# Intel devices use Intel oneMKL directly instead of oneMath to avoid the limitation of linking Intel oneMKL statically
|
||||
# See https://github.com/uxlfoundation/oneMath/issues/654
|
||||
if (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
|
||||
set(SYCL_COMPILER ON)
|
||||
endif()
|
||||
find_package(MKL REQUIRED)
|
||||
target_link_libraries(ggml-sycl PRIVATE MKL::MKL_SYCL::BLAS)
|
||||
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_USE_INTEL_ONEMKL)
|
||||
else()
|
||||
find_package(oneMath QUIET)
|
||||
if (NOT oneMath_FOUND)
|
||||
message(STATUS "oneMath not found: oneMath will be automatically downloaded")
|
||||
# Use FetchContent to automatically pull and build oneMath
|
||||
include(FetchContent)
|
||||
set(BUILD_FUNCTIONAL_TESTS False)
|
||||
set(BUILD_EXAMPLES False)
|
||||
set(TARGET_DOMAINS blas)
|
||||
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
set(ENABLE_MKLCPU_BACKEND False)
|
||||
set(ENABLE_MKLGPU_BACKEND False)
|
||||
set(ENABLE_CUBLAS_BACKEND True)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
|
||||
set(ENABLE_MKLCPU_BACKEND False)
|
||||
set(ENABLE_MKLGPU_BACKEND False)
|
||||
set(ENABLE_ROCBLAS_BACKEND True)
|
||||
# Ensure setting a string variable here is not overriden by oneMath CACHE variables
|
||||
cmake_policy(SET CMP0126 NEW)
|
||||
# Setting the device architecture is only needed and useful for AMD devices in oneMath
|
||||
set(HIP_TARGETS ${GGML_SYCL_DEVICE_ARCH} CACHE STRING "oneMath HIP target" FORCE)
|
||||
endif()
|
||||
FetchContent_Declare(
|
||||
ONEMATH
|
||||
GIT_REPOSITORY https://github.com/uxlfoundation/oneMath.git
|
||||
GIT_TAG 8efe85f5aaebb37f1d8c503b7af66315feabf142
|
||||
)
|
||||
FetchContent_MakeAvailable(ONEMATH)
|
||||
# Create alias to match with find_package targets name
|
||||
function(onemath_alias target)
|
||||
if (TARGET ${target}_obj)
|
||||
# Silence verbose warnings from external libraries
|
||||
target_compile_options(${target}_obj PRIVATE -w)
|
||||
endif()
|
||||
if (TARGET ${target})
|
||||
add_library(ONEMATH::${target} ALIAS ${target})
|
||||
endif()
|
||||
endfunction()
|
||||
onemath_alias(onemath)
|
||||
onemath_alias(onemath_blas_mklcpu)
|
||||
onemath_alias(onemath_blas_mklgpu)
|
||||
onemath_alias(onemath_blas_cublas)
|
||||
onemath_alias(onemath_blas_rocblas)
|
||||
endif()
|
||||
|
||||
# Below oneMath compile-time dispatching is used for better performance
|
||||
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath_blas_cublas)
|
||||
target_compile_options(ggml-sycl PRIVATE "-fsycl-targets=nvptx64-nvidia-cuda")
|
||||
target_link_options(ggml-sycl PRIVATE "-fsycl-targets=nvptx64-nvidia-cuda")
|
||||
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_NVIDIA)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
|
||||
if (NOT GGML_SYCL_DEVICE_ARCH)
|
||||
message(FATAL_ERROR "Can't enable SYCL hip backend, GGML_SYCL_DEVICE_ARCH has not been set.")
|
||||
endif()
|
||||
target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath_blas_rocblas)
|
||||
target_compile_options(ggml-sycl PRIVATE "-fsycl-targets=amdgcn-amd-amdhsa")
|
||||
target_link_options(ggml-sycl PRIVATE "-fsycl-targets=amdgcn-amd-amdhsa")
|
||||
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_AMD)
|
||||
else()
|
||||
# Fallback to oneMath runtime dispatcher
|
||||
target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath)
|
||||
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_GENERIC)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL_DEVICE_ARCH)
|
||||
target_compile_options(ggml-sycl PRIVATE -Xsycl-target-backend --offload-arch=${GGML_SYCL_DEVICE_ARCH})
|
||||
target_link_options(ggml-sycl PRIVATE -Xsycl-target-backend --offload-arch=${GGML_SYCL_DEVICE_ARCH})
|
||||
|
|
|
|||
|
|
@ -15,17 +15,9 @@
|
|||
|
||||
#include <sycl/sycl.hpp>
|
||||
#include <sycl/half_type.hpp>
|
||||
#include <map>
|
||||
|
||||
#ifdef GGML_SYCL_USE_INTEL_ONEMKL
|
||||
#include <oneapi/mkl.hpp>
|
||||
// Allow to use the same namespace for Intel oneMKL and oneMath
|
||||
namespace oneapi {
|
||||
namespace math = mkl;
|
||||
}
|
||||
#else
|
||||
#include <oneapi/math.hpp>
|
||||
#endif
|
||||
|
||||
#include <map>
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
|
|
@ -91,32 +83,13 @@ inline std::string get_device_backend_and_type(const sycl::device &device) {
|
|||
}
|
||||
|
||||
template <typename Ts> struct matrix_info_t {
|
||||
oneapi::math::transpose transpose_info[2];
|
||||
oneapi::mkl::transpose transpose_info[2];
|
||||
Ts value_info[2];
|
||||
std::int64_t size_info[3];
|
||||
std::int64_t ld_info[3];
|
||||
std::int64_t groupsize_info;
|
||||
};
|
||||
|
||||
inline auto get_onemath_backend(sycl::queue& queue)
|
||||
#if defined(GGML_SYCL_GENERIC) || defined(GGML_SYCL_USE_INTEL_ONEMKL)
|
||||
-> sycl::queue&
|
||||
#endif
|
||||
{
|
||||
// If the backend is known at compile-time, use oneMath backend_selector to use
|
||||
// compile-time dispatching and avoid the need to dlopen libraries. Otherwise
|
||||
// fallback to runtime dispatching.
|
||||
#if defined(GGML_SYCL_NVIDIA)
|
||||
return oneapi::math::backend_selector<oneapi::math::backend::cublas>{ queue };
|
||||
#elif defined(GGML_SYCL_AMD)
|
||||
return oneapi::math::backend_selector<oneapi::math::backend::rocblas>{ queue };
|
||||
#elif defined(GGML_SYCL_GENERIC) || defined(GGML_SYCL_USE_INTEL_ONEMKL)
|
||||
return queue;
|
||||
#else
|
||||
static_assert(false, "Unsupported backend");
|
||||
#endif
|
||||
}
|
||||
|
||||
namespace dpct
|
||||
{
|
||||
typedef sycl::queue *queue_ptr;
|
||||
|
|
@ -1734,7 +1707,7 @@ namespace dpct
|
|||
namespace detail
|
||||
{
|
||||
template <class Ta, class Tb, class Tc, class Ts>
|
||||
inline void gemm_impl(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m,
|
||||
inline void gemm_impl(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m,
|
||||
int n, int k, const void * alpha, const void * a, int lda, const void * b, int ldb,
|
||||
const void * beta, void * c, int ldc) {
|
||||
Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
|
||||
|
|
@ -1742,7 +1715,7 @@ namespace dpct
|
|||
auto data_a = get_memory<const Ta>(a);
|
||||
auto data_b = get_memory<const Tb>(b);
|
||||
auto data_c = get_memory<Tc>(c);
|
||||
oneapi::math::blas::column_major::gemm(get_onemath_backend(q), a_trans, b_trans, m, n, k, alpha_value, data_a,
|
||||
oneapi::mkl::blas::column_major::gemm(q, a_trans, b_trans, m, n, k, alpha_value, data_a,
|
||||
lda, data_b, ldb, beta_value, data_c, ldc);
|
||||
}
|
||||
|
||||
|
|
@ -1774,7 +1747,7 @@ namespace dpct
|
|||
};
|
||||
|
||||
template <class Ta, class Tb, class Tc, class Ts>
|
||||
inline void gemm_batch_impl(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans,
|
||||
inline void gemm_batch_impl(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans,
|
||||
int m, int n, int k, const void * alpha, const void ** a, int lda, const void ** b,
|
||||
int ldb, const void * beta, void ** c, int ldc, int batch_size,
|
||||
matrix_info_t<float> * matrix_info) {
|
||||
|
|
@ -1793,8 +1766,8 @@ namespace dpct
|
|||
matrix_info->ld_info[2] = ldc;
|
||||
matrix_info->groupsize_info = batch_size;
|
||||
|
||||
sycl::event e = oneapi::math::blas::column_major::gemm_batch(
|
||||
get_onemath_backend(q), matrix_info->transpose_info, matrix_info->transpose_info + 1,
|
||||
sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
|
||||
q, matrix_info->transpose_info, matrix_info->transpose_info + 1,
|
||||
matrix_info->size_info, matrix_info->size_info + 1, matrix_info->size_info + 2,
|
||||
reinterpret_cast<Ts *>(matrix_info->value_info), reinterpret_cast<const Ta **>(a), matrix_info->ld_info,
|
||||
reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1,
|
||||
|
|
@ -1803,7 +1776,7 @@ namespace dpct
|
|||
}
|
||||
|
||||
template <class Ta, class Tb, class Tc, class Ts>
|
||||
inline void gemm_batch_impl(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans,
|
||||
inline void gemm_batch_impl(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans,
|
||||
int m, int n, int k, const void * alpha, const void * a, int lda,
|
||||
long long int stride_a, const void * b, int ldb, long long int stride_b,
|
||||
const void * beta, void * c, int ldc, long long int stride_c, int batch_size) {
|
||||
|
|
@ -1812,7 +1785,7 @@ namespace dpct
|
|||
auto data_a = get_memory<const Ta>(a);
|
||||
auto data_b = get_memory<const Tb>(b);
|
||||
auto data_c = get_memory<Tc>(c);
|
||||
oneapi::math::blas::column_major::gemm_batch(get_onemath_backend(q), a_trans, b_trans, m, n, k, alpha_value,
|
||||
oneapi::mkl::blas::column_major::gemm_batch(q, a_trans, b_trans, m, n, k, alpha_value,
|
||||
data_a, lda, stride_a, data_b, ldb, stride_b, beta_value,
|
||||
data_c, ldc, stride_c, batch_size);
|
||||
}
|
||||
|
|
@ -2299,7 +2272,7 @@ namespace dpct
|
|||
sycl::range<3>(x, y, 1), direction);
|
||||
}
|
||||
|
||||
inline void gemm(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m, int n,
|
||||
inline void gemm(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n,
|
||||
int k, const void * alpha, const void * a, library_data_t a_type, int lda, const void * b,
|
||||
library_data_t b_type, int ldb, const void * beta, void * c, library_data_t c_type, int ldc,
|
||||
library_data_t scaling_type) {
|
||||
|
|
@ -2366,7 +2339,7 @@ namespace dpct
|
|||
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
||||
library_data_t::real_float, library_data_t::real_float):
|
||||
{
|
||||
detail::gemm_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, float, float>(
|
||||
detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
|
||||
break;
|
||||
}
|
||||
|
|
@ -2405,7 +2378,7 @@ namespace dpct
|
|||
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
||||
library_data_t::real_bfloat16, library_data_t::real_float):
|
||||
{
|
||||
detail::gemm_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, oneapi::math::bfloat16, float>(
|
||||
detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
|
||||
break;
|
||||
}
|
||||
|
|
@ -2447,7 +2420,7 @@ namespace dpct
|
|||
/// \param [in] ldc Leading dimension of C.
|
||||
/// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
|
||||
/// \param [in] scaling_type Data type of the scaling factors.
|
||||
inline void gemm_batch(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m,
|
||||
inline void gemm_batch(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m,
|
||||
int n, int k, const void * alpha, const void * a[], library_data_t a_type, int lda,
|
||||
const void * b[], library_data_t b_type, int ldb, const void * beta, void * c[],
|
||||
library_data_t c_type, int ldc, int batch_size, library_data_t scaling_type,
|
||||
|
|
@ -2485,7 +2458,7 @@ namespace dpct
|
|||
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
||||
library_data_t::real_bfloat16, library_data_t::real_float):
|
||||
{
|
||||
detail::gemm_batch_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, oneapi::math::bfloat16, float>(
|
||||
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
|
||||
break;
|
||||
}
|
||||
|
|
@ -2493,7 +2466,7 @@ namespace dpct
|
|||
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
||||
library_data_t::real_float, library_data_t::real_float):
|
||||
{
|
||||
detail::gemm_batch_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, float, float>(
|
||||
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
|
||||
break;
|
||||
}
|
||||
|
|
@ -2569,7 +2542,7 @@ namespace dpct
|
|||
/// \param [in] stride_c Stride between the different C matrices.
|
||||
/// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
|
||||
/// \param [in] scaling_type Data type of the scaling factors.
|
||||
inline void gemm_batch(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m,
|
||||
inline void gemm_batch(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m,
|
||||
int n, int k, const void * alpha, const void * a, library_data_t a_type, int lda,
|
||||
long long int stride_a, const void * b, library_data_t b_type, int ldb,
|
||||
long long int stride_b, const void * beta, void * c, library_data_t c_type, int ldc,
|
||||
|
|
@ -2642,7 +2615,7 @@ namespace dpct
|
|||
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
||||
library_data_t::real_bfloat16, library_data_t::real_float):
|
||||
{
|
||||
detail::gemm_batch_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, oneapi::math::bfloat16, float>(
|
||||
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c,
|
||||
batch_size);
|
||||
break;
|
||||
|
|
@ -2651,7 +2624,7 @@ namespace dpct
|
|||
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
|
||||
library_data_t::real_float, library_data_t::real_float):
|
||||
{
|
||||
detail::gemm_batch_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, float, float>(
|
||||
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(
|
||||
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c,
|
||||
batch_size);
|
||||
break;
|
||||
|
|
|
|||
|
|
@ -836,16 +836,9 @@ static inline void ggml_sycl_op_floor(ggml_backend_sycl_context & ctx, ggml_tens
|
|||
}
|
||||
|
||||
static inline void ggml_sycl_op_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
|
||||
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
|
||||
const int num_blocks = ceil_div(k_elements, 256);
|
||||
stream->parallel_for(
|
||||
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
|
||||
sycl::range<1>(256)),
|
||||
[=](sycl::nd_item<1> item_ct1) {
|
||||
unary_op_ceil_kernel(src, dst_ptr, k_elements, item_ct1);
|
||||
});
|
||||
});
|
||||
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
|
||||
return op_ceil(x);
|
||||
});
|
||||
}
|
||||
|
||||
static inline void ggml_sycl_op_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
|
|
|
|||
|
|
@ -1840,6 +1840,110 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
|
|||
}
|
||||
}
|
||||
|
||||
static void top_k_f32_sycl(
|
||||
const float * src,
|
||||
int32_t * dst_indices,
|
||||
const int64_t ncols,
|
||||
const int64_t nrows,
|
||||
const int k,
|
||||
dpct::queue_ptr main_stream
|
||||
) {
|
||||
const int block_size = 128;
|
||||
|
||||
const sycl::range<1> block_dims(block_size);
|
||||
const sycl::range<1> grid_dims(nrows);
|
||||
|
||||
main_stream->submit([&](sycl::handler &cgh) {
|
||||
sycl::local_accessor<float, 1> shared_vals(sycl::range<1>(block_size * k), cgh);
|
||||
sycl::local_accessor<int, 1> shared_idx(sycl::range<1>(block_size * k), cgh);
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<1>(grid_dims * block_dims, block_dims),
|
||||
[=](sycl::nd_item<1> item_ct1) {
|
||||
const int row = item_ct1.get_group(0);
|
||||
const int tid = item_ct1.get_local_id(0);
|
||||
|
||||
if (row >= nrows) return;
|
||||
|
||||
const float * src_row = src + row * ncols;
|
||||
int32_t * dst_idx_row = dst_indices + row * k;
|
||||
|
||||
float local_vals[32];
|
||||
int local_idx[32];
|
||||
|
||||
for (int i = 0; i < k; i++) {
|
||||
local_vals[i] = -FLT_MAX;
|
||||
local_idx[i] = -1;
|
||||
}
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
float val = src_row[col];
|
||||
|
||||
if (val > local_vals[k-1]) {
|
||||
int pos = k - 1;
|
||||
while (pos > 0 && val > local_vals[pos - 1]) {
|
||||
pos--;
|
||||
}
|
||||
|
||||
for (int i = k - 1; i > pos; i--) {
|
||||
local_vals[i] = local_vals[i - 1];
|
||||
local_idx[i] = local_idx[i - 1];
|
||||
}
|
||||
local_vals[pos] = val;
|
||||
local_idx[pos] = col;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < k; i++) {
|
||||
shared_vals[tid * k + i] = local_vals[i];
|
||||
shared_idx[tid * k + i] = local_idx[i];
|
||||
}
|
||||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||||
|
||||
if (tid == 0) {
|
||||
float final_vals[32];
|
||||
int final_idx[32];
|
||||
|
||||
for (int i = 0; i < k; i++) {
|
||||
final_vals[i] = -FLT_MAX;
|
||||
final_idx[i] = -1;
|
||||
}
|
||||
|
||||
for (int t = 0; t < block_size; t++) {
|
||||
for (int i = 0; i < k; i++) {
|
||||
float val = shared_vals[t * k + i];
|
||||
int idx = shared_idx[t * k + i];
|
||||
|
||||
if (val > final_vals[k-1]) {
|
||||
int pos = k - 1;
|
||||
while (pos > 0 && val > final_vals[pos - 1]) {
|
||||
pos--;
|
||||
}
|
||||
|
||||
for (int j = k - 1; j > pos; j--) {
|
||||
final_vals[j] = final_vals[j - 1];
|
||||
final_idx[j] = final_idx[j - 1];
|
||||
}
|
||||
final_vals[pos] = val;
|
||||
final_idx[pos] = idx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < k; i++) {
|
||||
dst_idx_row[i] = final_idx[i];
|
||||
}
|
||||
|
||||
if (k > 1) {
|
||||
int32_t temp = dst_idx_row[0];
|
||||
dst_idx_row[0] = dst_idx_row[1];
|
||||
dst_idx_row[1] = temp;
|
||||
}
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
static void argmax_f32_i32_sycl(const float *x, int *dst, const int ncols,
|
||||
const int nrows, queue_ptr stream) {
|
||||
const sycl::range<3> block_dims(1, 1, SYCL_ARGMAX_BLOCK_SIZE);
|
||||
|
|
@ -2063,8 +2167,8 @@ inline void ggml_sycl_op_mul_mat_sycl(
|
|||
const sycl::half alpha_f16 = 1.0f;
|
||||
const sycl::half beta_f16 = 0.0f;
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
|
||||
*stream, oneapi::math::transpose::trans,
|
||||
oneapi::math::transpose::nontrans, row_diff, src1_ncols, ne10,
|
||||
*stream, oneapi::mkl::transpose::trans,
|
||||
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
|
||||
&alpha_f16, src0_ptr, dpct::library_data_t::real_half, ne00,
|
||||
src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16,
|
||||
dst_f16.get(), dpct::library_data_t::real_half, ldc,
|
||||
|
|
@ -2107,8 +2211,8 @@ inline void ggml_sycl_op_mul_mat_sycl(
|
|||
{
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::math::blas::column_major::gemm(
|
||||
get_onemath_backend(*stream), oneapi::math::transpose::trans, oneapi::math::transpose::nontrans, row_diff,
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
|
||||
*stream, oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, row_diff,
|
||||
src1_ncols, ne10, dpct::get_value(&alpha, *stream), src0_ddf_i, ne00, src1_ddf1_i, ne10,
|
||||
dpct::get_value(&beta, *stream), dst_dd_i, ldc)));
|
||||
}
|
||||
|
|
@ -2231,6 +2335,30 @@ inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, ggml_tensor *
|
|||
main_stream, ctx.device);
|
||||
}
|
||||
|
||||
static void ggml_sycl_op_top_k(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src0);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
dpct::queue_ptr main_stream = ctx.stream();
|
||||
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
||||
|
||||
const float * src0_dd = static_cast<const float *>(src0->data);
|
||||
int32_t * dst_dd = static_cast<int32_t *>(dst->data);
|
||||
|
||||
const int k = dst->ne[0];
|
||||
const int64_t ncols = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
GGML_ASSERT(k > 0 && k <= 32);
|
||||
GGML_ASSERT(k <= ncols);
|
||||
|
||||
top_k_f32_sycl(src0_dd, dst_dd, ncols, nrows, k, main_stream);
|
||||
}
|
||||
|
||||
inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||||
|
|
@ -3037,8 +3165,8 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
|
|||
const int64_t smb = ne12 == 1 ? s13 : s12;
|
||||
|
||||
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(*queue, oneapi::math::transpose::trans,
|
||||
oneapi::math::transpose::nontrans, ne01, ne11, ne10, alpha,
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(*queue, oneapi::mkl::transpose::trans,
|
||||
oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
|
||||
src0_f16, dpct::library_data_t::real_half, nb01 / nb00, sma,
|
||||
src1_f16, dpct::library_data_t::real_half, s11, smb, beta, dst_ddf,
|
||||
mkl_data_type, ne0, ne1 * ne0, ne12 * ne13, mkl_compute_type)));
|
||||
|
|
@ -3062,7 +3190,7 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
|
|||
});
|
||||
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
|
||||
*queue, oneapi::math::transpose::trans, oneapi::math::transpose::nontrans, ne01, ne11, ne10, alpha,
|
||||
*queue, oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
|
||||
(const void **) (ptrs_src.get() + 0 * ne23), dpct::library_data_t::real_half, nb01 / nb00,
|
||||
(const void **) (ptrs_src.get() + 1 * ne23), dpct::library_data_t::real_half, s11, beta,
|
||||
(void **) (ptrs_dst.get() + 0 * ne23), mkl_data_type, ne0, ne23, mkl_compute_type, matrix_info.get())));
|
||||
|
|
@ -3390,18 +3518,17 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
|
|||
|
||||
|
||||
// mmvq and mmq need the __dp4a instruction which is available for gen12+
|
||||
// Workaround in https://github.com/ggerganov/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e
|
||||
// Workaround in https://github.com/ggml-org/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e
|
||||
use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS);
|
||||
#ifdef SYCL_USE_XMX
|
||||
use_mul_mat_q = use_mul_mat_q && (src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
|
||||
#endif // SYCL_USE_XMX
|
||||
|
||||
// mmvq path is faster in the CUDA backend.
|
||||
if (!g_ggml_sycl_prioritize_dmmv && (ctx.stream()->get_backend() == sycl::backend::ext_oneapi_cuda
|
||||
// Dispatch becomes obscure with the reorder, MMVQ when the reorder optimization
|
||||
// is enabled takes precedence over DMMV, the current if-else implementation
|
||||
// requires disabling DMMV if both conditions are met
|
||||
|| (should_reorder_tensor(ctx, dst) && ggml_sycl_supports_reorder_mmvq(src0->type)))) {
|
||||
// Dispatch becomes obscure with the reorder, MMVQ when the reorder optimization
|
||||
// is enabled takes precedence over DMMV, the current if-else implementation
|
||||
// requires disabling DMMV if both conditions are met
|
||||
if (!g_ggml_sycl_prioritize_dmmv && ((should_reorder_tensor(ctx, dst) &&
|
||||
ggml_sycl_supports_reorder_mmvq(src0->type)))) {
|
||||
use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
|
||||
}
|
||||
|
||||
|
|
@ -4007,6 +4134,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
|
|||
case GGML_OP_ARGSORT:
|
||||
ggml_sycl_argsort(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_TOP_K:
|
||||
ggml_sycl_op_top_k(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
ggml_sycl_op_timestep_embedding(ctx, dst);
|
||||
break;
|
||||
|
|
@ -4058,16 +4188,6 @@ void ggml_backend_sycl_get_device_memory(int device, size_t *free,
|
|||
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_memory\n");
|
||||
ggml_sycl_set_device(device);
|
||||
|
||||
/*
|
||||
DPCT1009:218: SYCL uses exceptions to report errors and does not use the
|
||||
error codes. The original code was commented out and a warning string was
|
||||
inserted. You need to rewrite this code.
|
||||
*/
|
||||
/*
|
||||
DPCT1106:217: 'cudaMemGetInfo' was migrated with the Intel extensions for
|
||||
device information which may not be supported by all compilers or runtimes.
|
||||
You may need to adjust the code.
|
||||
*/
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||||
dpct::dev_mgr::instance().get_device(device).get_memory_info(*free, *total)));
|
||||
}
|
||||
|
|
@ -4471,9 +4591,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
case GGML_UNARY_OP_EXP:
|
||||
case GGML_UNARY_OP_SOFTPLUS:
|
||||
case GGML_UNARY_OP_ELU:
|
||||
case GGML_UNARY_OP_CEIL:
|
||||
return true;
|
||||
case GGML_UNARY_OP_FLOOR:
|
||||
case GGML_UNARY_OP_CEIL:
|
||||
case GGML_UNARY_OP_ROUND:
|
||||
case GGML_UNARY_OP_TRUNC:
|
||||
#if defined (GGML_SYCL_F16)
|
||||
|
|
@ -4710,6 +4830,15 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
case GGML_OP_ARGSORT:
|
||||
return op->src[0]->ne[0] * sizeof(int) <=
|
||||
ggml_sycl_info().devices[device].smpbo;
|
||||
case GGML_OP_TOP_K: {
|
||||
const ggml_tensor * src0 = op->src[0];
|
||||
const int k = op->ne[0];
|
||||
return src0 &&
|
||||
op->type == GGML_TYPE_I32 &&
|
||||
src0->type == GGML_TYPE_F32 &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
k > 0 && k <= 32;
|
||||
}
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_ACC:
|
||||
return true;
|
||||
|
|
|
|||
|
|
@ -32,12 +32,12 @@ void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
|
|||
|
||||
// Handle transposition of src1
|
||||
const bool src1_T = ggml_is_transposed(src1);
|
||||
const oneapi::math::transpose src1_op = src1_T ? oneapi::math::transpose::nontrans : oneapi::math::transpose::trans;
|
||||
const oneapi::mkl::transpose src1_op = src1_T ? oneapi::mkl::transpose::nontrans : oneapi::mkl::transpose::trans;
|
||||
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
|
||||
|
||||
try {
|
||||
// Perform matrix multiplication using oneMath GEMM
|
||||
oneapi::math::blas::column_major::gemm(get_onemath_backend(*stream), oneapi::math::transpose::nontrans, src1_op,
|
||||
// Perform matrix multiplication using oneMKL GEMM
|
||||
oneapi::mkl::blas::column_major::gemm(*stream, oneapi::mkl::transpose::nontrans, src1_op,
|
||||
ne0, ne1, ne01, alpha, src0_d, ne00, src1_d, ldb, beta, dst_d, ne0);
|
||||
}
|
||||
catch (sycl::exception const& exc) {
|
||||
|
|
|
|||
|
|
@ -207,7 +207,6 @@ static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, cons
|
|||
const int p = sector;
|
||||
theta_base = pos[channel_x] * sycl::pow(theta_scale, (float) p);
|
||||
} else {
|
||||
// Simplified from CUDA backend code: if (sector >= sections.v[0] && sector < sec_w) which is just sector >= sections.v[0]
|
||||
const int p = sector - sections.v[0];
|
||||
theta_base = pos[channel_x + ne2] * sycl::pow(theta_scale, (float) p);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#include <sycl/sycl.hpp>
|
||||
#include "wkv.hpp"
|
||||
|
||||
constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE
|
||||
constexpr int WKV_BLOCK_SIZE = 64;
|
||||
|
||||
// Helper function for the main kernel
|
||||
template <int block_size>
|
||||
|
|
|
|||
|
|
@ -36,7 +36,7 @@ apir_rpc_tensor apir_serialize_tensor(const ggml_tensor * tensor) {
|
|||
result.data = reinterpret_cast<uint64_t>(tensor->data);
|
||||
if (tensor->data) {
|
||||
if (!tensor->buffer) {
|
||||
GGML_ABORT("tensor has data but not buffer");
|
||||
GGML_ABORT("%s: tensor has data but not buffer", __func__);
|
||||
}
|
||||
// tensor->data is serialized as an offset to the buffer base address
|
||||
result.data -= reinterpret_cast<uint64_t>(BUFFER_TO_GGML_CONTEXT(tensor->buffer)->base);
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@ uint32_t backend_backend_graph_compute(apir_encoder * enc, apir_decoder * dec, v
|
|||
|
||||
const void * shmem_data = ctx->iface->get_shmem_ptr(ctx->ctx_id, shmem_res_id);
|
||||
if (!shmem_data) {
|
||||
GGML_LOG_ERROR("Couldn't get the shmem addr from virgl\n");
|
||||
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Couldn't get the shmem addr from virgl\n", __func__);
|
||||
apir_decoder_set_fatal(dec);
|
||||
return 1;
|
||||
}
|
||||
|
|
@ -45,7 +45,7 @@ uint32_t backend_backend_graph_compute(apir_encoder * enc, apir_decoder * dec, v
|
|||
if (dev->iface.supports_op(dev, op)) {
|
||||
continue;
|
||||
}
|
||||
GGML_LOG_ERROR("Graph node %d (%s) not supported by the backend\n", idx, ggml_op_desc(op));
|
||||
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Graph node %d (%s) not supported by the backend\n", idx, ggml_op_desc(op));
|
||||
|
||||
status = GGML_STATUS_ABORTED;
|
||||
apir_encode_ggml_status(enc, &status);
|
||||
|
|
|
|||
|
|
@ -36,18 +36,22 @@ uint32_t backend_buffer_type_get_max_size(apir_encoder * enc, apir_decoder * dec
|
|||
ggml_backend_buffer_type_t buft;
|
||||
buft = apir_decode_ggml_buffer_type(dec);
|
||||
|
||||
size_t value = buft->iface.get_max_size(buft);
|
||||
size_t value = SIZE_MAX;
|
||||
if (buft->iface.get_max_size) {
|
||||
value = buft->iface.get_max_size(buft);
|
||||
}
|
||||
|
||||
apir_encode_size_t(enc, &value);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST is deprecated. Keeping the handler for backward compatibility. */
|
||||
uint32_t backend_buffer_type_is_host(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx) {
|
||||
GGML_UNUSED(ctx);
|
||||
ggml_backend_buffer_type_t buft;
|
||||
buft = apir_decode_ggml_buffer_type(dec);
|
||||
GGML_UNUSED(dec);
|
||||
const bool is_host = false;
|
||||
|
||||
bool is_host = buft->iface.is_host(buft);
|
||||
apir_encode_bool_t(enc, &is_host);
|
||||
|
||||
return 0;
|
||||
|
|
|
|||
|
|
@ -40,7 +40,7 @@ uint32_t backend_buffer_set_tensor(apir_encoder * enc, apir_decoder * dec, virgl
|
|||
void * shmem_data = ctx->iface->get_shmem_ptr(ctx->ctx_id, shmem_res_id);
|
||||
|
||||
if (!shmem_data) {
|
||||
GGML_LOG_ERROR("Couldn't get the shmem addr from virgl\n");
|
||||
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Couldn't get the shmem addr from virgl\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
|
@ -71,7 +71,7 @@ uint32_t backend_buffer_get_tensor(apir_encoder * enc, apir_decoder * dec, virgl
|
|||
|
||||
void * shmem_data = ctx->iface->get_shmem_ptr(ctx->ctx_id, shmem_res_id);
|
||||
if (!shmem_data) {
|
||||
GGML_LOG_ERROR("Couldn't get the shmem addr from virgl\n");
|
||||
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Couldn't get the shmem addr from virgl\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
|
@ -121,7 +121,7 @@ uint32_t backend_buffer_free_buffer(apir_encoder * enc, apir_decoder * dec, virg
|
|||
buffer = apir_decode_ggml_buffer(dec);
|
||||
|
||||
if (!apir_untrack_backend_buffer(buffer)) {
|
||||
GGML_LOG_WARN("%s: unknown buffer %p\n", __func__, (void *) buffer);
|
||||
GGML_LOG_WARN(GGML_VIRTGPU_BCK "%s: unknown buffer %p\n", __func__, (void *) buffer);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -124,7 +124,7 @@ uint32_t backend_device_buffer_from_ptr(apir_encoder * enc, apir_decoder * dec,
|
|||
|
||||
void * shmem_ptr = ctx->iface->get_shmem_ptr(ctx->ctx_id, shmem_res_id);
|
||||
if (!shmem_ptr) {
|
||||
GGML_LOG_ERROR("Couldn't get the shmem addr from virgl\n");
|
||||
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Couldn't get the shmem addr from virgl\n", __func__);
|
||||
apir_decoder_set_fatal(dec);
|
||||
return 1;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -17,26 +17,26 @@ uint64_t timer_count = 0;
|
|||
|
||||
uint32_t backend_dispatch_initialize(void * ggml_backend_reg_fct_p) {
|
||||
if (reg != NULL) {
|
||||
GGML_LOG_WARN("%s: already initialized\n", __func__);
|
||||
GGML_LOG_WARN(GGML_VIRTGPU_BCK "%s: already initialized\n", __func__);
|
||||
return APIR_BACKEND_INITIALIZE_ALREADY_INITED;
|
||||
}
|
||||
ggml_backend_reg_t (*ggml_backend_reg_fct)(void) = (ggml_backend_reg_t (*)()) ggml_backend_reg_fct_p;
|
||||
|
||||
reg = ggml_backend_reg_fct();
|
||||
if (reg == NULL) {
|
||||
GGML_LOG_ERROR("%s: backend registration failed\n", __func__);
|
||||
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: backend registration failed\n", __func__);
|
||||
return APIR_BACKEND_INITIALIZE_BACKEND_REG_FAILED;
|
||||
}
|
||||
|
||||
if (!reg->iface.get_device_count(reg)) {
|
||||
GGML_LOG_ERROR("%s: backend initialization failed: no device found\n", __func__);
|
||||
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: backend initialization failed: no device found\n", __func__);
|
||||
return APIR_BACKEND_INITIALIZE_NO_DEVICE;
|
||||
}
|
||||
|
||||
dev = reg->iface.get_device(reg, 0);
|
||||
|
||||
if (!dev) {
|
||||
GGML_LOG_ERROR("%s: backend initialization failed: no device received\n", __func__);
|
||||
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: backend initialization failed: no device received\n", __func__);
|
||||
return APIR_BACKEND_INITIALIZE_NO_DEVICE;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -16,6 +16,7 @@ uint32_t backend_device_buffer_from_ptr(apir_encoder * enc, apir_decoder * dec,
|
|||
uint32_t backend_buffer_type_get_name(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx);
|
||||
uint32_t backend_buffer_type_get_alignment(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx);
|
||||
uint32_t backend_buffer_type_get_max_size(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx);
|
||||
/* APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST is deprecated. Keeping the handler for backward compatibility. */
|
||||
uint32_t backend_buffer_type_is_host(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx);
|
||||
uint32_t backend_buffer_type_alloc_buffer(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx);
|
||||
uint32_t backend_buffer_type_get_alloc_size(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx);
|
||||
|
|
@ -62,7 +63,7 @@ static inline const char * backend_dispatch_command_name(ApirBackendCommandType
|
|||
case APIR_COMMAND_TYPE_BUFFER_TYPE_GET_MAX_SIZE:
|
||||
return "backend_buffer_type_get_max_size";
|
||||
case APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST:
|
||||
return "backend_buffer_type_is_host";
|
||||
return "backend_buffer_type_is_host (DEPRECATED)";
|
||||
case APIR_COMMAND_TYPE_BUFFER_TYPE_ALLOC_BUFFER:
|
||||
return "backend_buffer_type_alloc_buffer";
|
||||
case APIR_COMMAND_TYPE_BUFFER_TYPE_GET_ALLOC_SIZE:
|
||||
|
|
@ -110,7 +111,7 @@ static const backend_dispatch_t apir_backend_dispatch_table[APIR_BACKEND_DISPATC
|
|||
/* APIR_COMMAND_TYPE_BUFFER_TYPE_GET_NAME = */ backend_buffer_type_get_name,
|
||||
/* APIR_COMMAND_TYPE_BUFFER_TYPE_GET_ALIGNMENT = */ backend_buffer_type_get_alignment,
|
||||
/* APIR_COMMAND_TYPE_BUFFER_TYPE_GET_MAX_SIZE = */ backend_buffer_type_get_max_size,
|
||||
/* APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST = */ backend_buffer_type_is_host,
|
||||
/* APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST = */ backend_buffer_type_is_host /* DEPRECATED */,
|
||||
/* APIR_COMMAND_TYPE_BUFFER_TYPE_ALLOC_BUFFER = */ backend_buffer_type_alloc_buffer,
|
||||
/* APIR_COMMAND_TYPE_BUFFER_TYPE_GET_ALLOC_SIZE = */ backend_buffer_type_get_alloc_size,
|
||||
|
||||
|
|
|
|||
|
|
@ -11,6 +11,8 @@
|
|||
#include "shared/apir_cs.h"
|
||||
#include "shared/apir_cs_ggml.h"
|
||||
|
||||
#define GGML_VIRTGPU_BCK "ggml-virtgpu-backend: "
|
||||
|
||||
struct virgl_apir_context {
|
||||
uint32_t ctx_id;
|
||||
virgl_apir_callbacks * iface;
|
||||
|
|
|
|||
|
|
@ -35,14 +35,8 @@ void apir_backend_deinit(uint32_t virgl_ctx_id) {
|
|||
buffer->iface.free_buffer(buffer);
|
||||
}
|
||||
|
||||
if (dev) {
|
||||
size_t free, total;
|
||||
dev->iface.get_memory(dev, &free, &total);
|
||||
GGML_LOG_INFO("%s: free memory: %ld MB\n", __func__, (size_t) free / 1024 / 1024);
|
||||
}
|
||||
|
||||
if (backend_library_handle) {
|
||||
GGML_LOG_INFO("%s: The GGML backend library was loaded. Unloading it.\n", __func__);
|
||||
GGML_LOG_INFO(GGML_VIRTGPU_BCK "The GGML backend library was loaded. Unloading it.\n");
|
||||
dlclose(backend_library_handle);
|
||||
backend_library_handle = NULL;
|
||||
}
|
||||
|
|
@ -65,7 +59,7 @@ ApirLoadLibraryReturnCode apir_backend_initialize(uint32_t virgl_ctx_id, struct
|
|||
if (apir_logfile) {
|
||||
ggml_log_set(log_to_file_callback, apir_logfile);
|
||||
} else {
|
||||
GGML_LOG_INFO("Could not open the log file at '%s'\n", apir_log_to_file);
|
||||
GGML_LOG_INFO(GGML_VIRTGPU_BCK "Could not open the log file at '%s'\n", apir_log_to_file);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -74,7 +68,10 @@ ApirLoadLibraryReturnCode apir_backend_initialize(uint32_t virgl_ctx_id, struct
|
|||
const char * library_reg = virgl_library_reg ? virgl_library_reg : GGML_DEFAULT_BACKEND_REG;
|
||||
|
||||
if (!library_name) {
|
||||
GGML_LOG_ERROR("cannot open the GGML library: env var '%s' not defined\n", APIR_LLAMA_CPP_GGML_LIBRARY_PATH_ENV);
|
||||
GGML_LOG_ERROR(GGML_VIRTGPU_BCK
|
||||
"%s: cannot open the GGML library: env var '%s' not defined\n",
|
||||
__func__, APIR_LLAMA_CPP_GGML_LIBRARY_PATH_ENV);
|
||||
|
||||
|
||||
return APIR_LOAD_LIBRARY_ENV_VAR_MISSING;
|
||||
}
|
||||
|
|
@ -82,13 +79,16 @@ ApirLoadLibraryReturnCode apir_backend_initialize(uint32_t virgl_ctx_id, struct
|
|||
backend_library_handle = dlopen(library_name, RTLD_LAZY);
|
||||
|
||||
if (!backend_library_handle) {
|
||||
GGML_LOG_ERROR("cannot open the GGML library: %s\n", dlerror());
|
||||
GGML_LOG_ERROR(GGML_VIRTGPU_BCK
|
||||
"%s: cannot open the GGML library: %s\n", __func__, dlerror());
|
||||
|
||||
return APIR_LOAD_LIBRARY_CANNOT_OPEN;
|
||||
}
|
||||
|
||||
if (!library_reg) {
|
||||
GGML_LOG_ERROR("cannot register the GGML library: env var '%s' not defined\n", APIR_LLAMA_CPP_GGML_LIBRARY_REG_ENV);
|
||||
GGML_LOG_ERROR(GGML_VIRTGPU_BCK
|
||||
"%s: cannot register the GGML library: env var '%s' not defined\n",
|
||||
__func__, APIR_LLAMA_CPP_GGML_LIBRARY_REG_ENV);
|
||||
|
||||
return APIR_LOAD_LIBRARY_ENV_VAR_MISSING;
|
||||
}
|
||||
|
|
@ -96,8 +96,10 @@ ApirLoadLibraryReturnCode apir_backend_initialize(uint32_t virgl_ctx_id, struct
|
|||
void * ggml_backend_reg_fct = dlsym(backend_library_handle, library_reg);
|
||||
dlsym_error = dlerror();
|
||||
if (dlsym_error) {
|
||||
GGML_LOG_ERROR("cannot find the GGML backend registration symbol '%s' (from %s): %s\n", library_reg,
|
||||
APIR_LLAMA_CPP_GGML_LIBRARY_REG_ENV, dlsym_error);
|
||||
GGML_LOG_ERROR(GGML_VIRTGPU_BCK
|
||||
"%s: cannot find the GGML backend registration symbol '%s' (from %s): %s\n",
|
||||
__func__, library_reg, APIR_LLAMA_CPP_GGML_LIBRARY_REG_ENV, dlsym_error);
|
||||
|
||||
|
||||
return APIR_LOAD_LIBRARY_SYMBOL_MISSING;
|
||||
}
|
||||
|
|
@ -134,7 +136,9 @@ uint32_t apir_backend_dispatcher(uint32_t virgl_ctx_id,
|
|||
};
|
||||
|
||||
if (cmd_type >= APIR_BACKEND_DISPATCH_TABLE_COUNT) {
|
||||
GGML_LOG_ERROR("Received an invalid dispatch index (%d >= %d)\n", cmd_type, APIR_BACKEND_DISPATCH_TABLE_COUNT);
|
||||
GGML_LOG_ERROR(GGML_VIRTGPU_BCK
|
||||
"%s: Received an invalid dispatch index (%d >= %d)\n",
|
||||
__func__, cmd_type, APIR_BACKEND_DISPATCH_TABLE_COUNT);
|
||||
return APIR_BACKEND_FORWARD_INDEX_INVALID;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -86,7 +86,7 @@ static inline bool apir_decoder_peek_internal(apir_decoder * dec,
|
|||
assert(val_size <= size);
|
||||
|
||||
if (unlikely(size > (size_t) (dec->end - dec->cur))) {
|
||||
GGML_LOG_ERROR("reading too much from the decoder ...\n");
|
||||
GGML_LOG_ERROR("%s: reading too much from the decoder ...\n", __func__);
|
||||
apir_decoder_set_fatal(dec);
|
||||
memset(val, 0, val_size);
|
||||
return false;
|
||||
|
|
@ -103,7 +103,7 @@ static inline void apir_decoder_peek(apir_decoder * dec, size_t size, void * val
|
|||
|
||||
static inline const void * apir_decoder_use_inplace(apir_decoder * dec, size_t size) {
|
||||
if (unlikely(size > (size_t) (dec->end - dec->cur))) {
|
||||
GGML_LOG_ERROR("reading too much from the decoder ...\n");
|
||||
GGML_LOG_ERROR("%s: reading too much from the decoder ...\n", __func__);
|
||||
apir_decoder_set_fatal(dec);
|
||||
return NULL;
|
||||
}
|
||||
|
|
@ -221,7 +221,7 @@ static inline uint64_t apir_decode_array_size(apir_decoder * dec, uint64_t expec
|
|||
uint64_t size;
|
||||
apir_decode_uint64_t(dec, &size);
|
||||
if (size != expected_size) {
|
||||
GGML_LOG_ERROR("Couldn't decode array from the decoder\n");
|
||||
GGML_LOG_ERROR("%s: Couldn't decode array from the decoder\n", __func__);
|
||||
apir_decoder_set_fatal(dec);
|
||||
size = 0;
|
||||
}
|
||||
|
|
@ -322,7 +322,7 @@ static inline void apir_decode_char_array(apir_decoder * dec, char * val, size_t
|
|||
if (size) {
|
||||
val[size - 1] = '\0';
|
||||
} else {
|
||||
GGML_LOG_ERROR("Couldn't decode the blog array\n");
|
||||
GGML_LOG_ERROR("%s: Couldn't decode the blog array\n", __func__);
|
||||
apir_decoder_set_fatal(dec);
|
||||
}
|
||||
}
|
||||
|
|
@ -332,7 +332,8 @@ static inline void apir_decode_char_array(apir_decoder * dec, char * val, size_t
|
|||
static inline void * apir_decoder_alloc_array(size_t size, size_t count) {
|
||||
size_t alloc_size;
|
||||
if (unlikely(__builtin_mul_overflow(size, count, &alloc_size))) {
|
||||
GGML_LOG_ERROR("overflow in array allocation of %zu * %zu bytes\n", size, count);
|
||||
GGML_LOG_ERROR("%s: overflow in array allocation of %zu * %zu bytes\n",
|
||||
__func__, size, count);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue