diff --git a/.devops/nix/nixpkgs-instances.nix b/.devops/nix/nixpkgs-instances.nix index 90d683a713..40cf58f196 100644 --- a/.devops/nix/nixpkgs-instances.nix +++ b/.devops/nix/nixpkgs-instances.nix @@ -4,7 +4,7 @@ # the module `{ pkgs ... }: { /* config */ }` implicitly uses # `_module.args.pkgs` (defined in this case by flake-parts). perSystem = - { system, ... }: + { lib, system, ... }: { _module.args = { # Note: bringing up https://zimbatm.com/notes/1000-instances-of-nixpkgs @@ -33,7 +33,7 @@ "CUDA EULA" "cuDNN EULA" ] - ) (p.meta.licenses or [ p.meta.license ]); + ) (p.meta.licenses or (lib.toList p.meta.license)); }; # Ensure dependencies use ROCm consistently pkgsRocm = import inputs.nixpkgs { diff --git a/.devops/vulkan.Dockerfile b/.devops/vulkan.Dockerfile index 9797c5e0f3..5d6c87ed6b 100644 --- a/.devops/vulkan.Dockerfile +++ b/.devops/vulkan.Dockerfile @@ -54,6 +54,7 @@ RUN apt-get update \ build-essential \ git \ python3 \ + python3-dev \ python3-pip \ python3-wheel \ && pip install --break-system-packages --upgrade setuptools \ diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index f738edefc4..51a3dc76e9 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -293,6 +293,7 @@ jobs: cmake -B build \ -DLLAMA_FATAL_WARNINGS=ON \ -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \ + -DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \ -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} cmake --build build --config ${{ matrix.build_type }} -j $(nproc) @@ -303,6 +304,7 @@ jobs: cmake -B build \ -DLLAMA_FATAL_WARNINGS=ON \ -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \ + -DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \ -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \ -DGGML_OPENMP=OFF cmake --build build --config ${{ matrix.build_type }} -j $(nproc) @@ -466,7 +468,7 @@ jobs: export GGML_VK_VISIBLE_DEVICES=0 export GGML_VK_DISABLE_F16=1 # This is using llvmpipe and runs slower than other backends - ctest -L main --verbose --timeout 4200 + ctest -L main --verbose --timeout 4800 ubuntu-24-cmake-webgpu: runs-on: ubuntu-24.04 @@ -1532,7 +1534,7 @@ jobs: - name: Test id: ggml-ci run: | - LLAMA_ARG_THREADS=$(nproc) bash ./ci/run.sh ./tmp/results ./tmp/mnt + LLAMA_ARG_THREADS=$(nproc) GG_BUILD_HIGH_PERF=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt ggml-ci-arm64-cpu-high-perf: runs-on: ubuntu-22.04-arm @@ -1558,7 +1560,7 @@ jobs: - name: Test id: ggml-ci run: | - LLAMA_ARG_THREADS=$(nproc) GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt + LLAMA_ARG_THREADS=$(nproc) GG_BUILD_HIGH_PERF=1 GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt ggml-ci-arm64-cpu-high-perf-sve: runs-on: ubuntu-22.04-arm diff --git a/.github/workflows/server.yml b/.github/workflows/server.yml index 9f1ef48c82..3d342c35f7 100644 --- a/.github/workflows/server.yml +++ b/.github/workflows/server.yml @@ -36,7 +36,7 @@ jobs: strategy: matrix: - sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken + sanitizer: [ADDRESS, UNDEFINED] # THREAD is very slow build_type: [RelWithDebInfo] include: - build_type: Release @@ -45,7 +45,7 @@ jobs: - build_type: Release sanitizer: "" extra_args: "LLAMA_ARG_BACKEND_SAMPLING=1" - fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken + fail-fast: false steps: - name: Dependencies @@ -72,7 +72,15 @@ jobs: - name: Build id: cmake_build run: | - cmake -B build -DLLAMA_BUILD_BORINGSSL=ON -DGGML_SCHED_NO_REALLOC=ON + cmake -B build \ + -DLLAMA_BUILD_BORINGSSL=ON \ + -DGGML_SCHED_NO_REALLOC=ON \ + -DGGML_SANITIZE_ADDRESS=${{ matrix.sanitizer == 'ADDRESS' }} \ + -DGGML_SANITIZE_THREAD=${{ matrix.sanitizer == 'THREAD' }} \ + -DGGML_SANITIZE_UNDEFINED=${{ matrix.sanitizer == 'UNDEFINED' }} \ + -DLLAMA_SANITIZE_ADDRESS=${{ matrix.sanitizer == 'ADDRESS' }} \ + -DLLAMA_SANITIZE_THREAD=${{ matrix.sanitizer == 'THREAD' }} \ + -DLLAMA_SANITIZE_UNDEFINED=${{ matrix.sanitizer == 'UNDEFINED' }} cmake --build build --config ${{ matrix.build_type }} -j ${env:NUMBER_OF_PROCESSORS} --target llama-server - name: Python setup @@ -88,7 +96,7 @@ jobs: - name: Tests id: server_integration_tests - if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) && matrix.build_type == 'Release' }} + if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) }} run: | cd tools/server/tests export ${{ matrix.extra_args }} diff --git a/AUTHORS b/AUTHORS index 0af9f44ad4..c297f3c217 100644 --- a/AUTHORS +++ b/AUTHORS @@ -1,127 +1,228 @@ -# date: Sat Mar 8 18:23:52 EET 2025 +# date: Mon Feb 2 08:45:04 EET 2026 # this file is auto-generated by scripts/gen-authors.sh +Нияз Гарифзянов <112617865+garrnizon@users.noreply.github.com> +杨朱 · Kiki +エシュナヴァリシア <148695646+eternaphia@users.noreply.github.com> +吴小白 <296015668@qq.com> +源文雨 <41315874+fumiama@users.noreply.github.com> +蕭澧邦 <45505768+shou692199@users.noreply.github.com> +도로로도로또 <60079918+dororodoroddo@users.noreply.github.com> +손희준 +谢乃闻 0cc4m +0Marble <85058989+0Marble@users.noreply.github.com> 0xspringtime <110655352+0xspringtime@users.noreply.github.com> 20kdc +2114L3 <2114L3@users.noreply.github.com> 2f38b454 3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com> 44670 <44670@users.noreply.github.com> +4onen <11580688+4onen@users.noreply.github.com> 65a <10104049+65a@users.noreply.github.com> 708-145 <40387547+708-145@users.noreply.github.com> -AN Long -AT +a-n-n-a-l-e-e <150648636+a-n-n-a-l-e-e@users.noreply.github.com> +a3sh <38979186+A3shTnT@users.noreply.github.com> +aa956 +Aadeshveer Singh <24b0926@iitb.ac.in> +Aadeshveer Singh Aarni Koskela Aaron Miller Aaron Teo <57927438+taronaeo@users.noreply.github.com> +Aaron Teo Aaryaman Vasishta Abheek Gulati Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com> Abhishek Gopinath K <31348521+overtunned@users.noreply.github.com> +Acly +Adam +adel boussaken Adithya Balaji AdithyanI Adrian Adrian Hesketh Adrian Kretz +Adrian Lundberg <47256989+alundb@users.noreply.github.com> Adrien Gallouët Adrien Gallouët +afrideva <95653597+afrideva@users.noreply.github.com> +ag2s20150909 <19373730+ag2s20150909@users.noreply.github.com> +agray3 Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com> Ahmet Zeer +ai-fonsi +Aidan <99101158+gSUz92nc@users.noreply.github.com> AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com> AidanBeltonS Aisuko Akarshan Biswas Akarshan Biswas Akarshan Biswas +akawrykow <142945436+akawrykow@users.noreply.github.com> Al Mochkin <14274697+amochkin@users.noreply.github.com> +Alan Gray +Alawode Oluwandabira Albert Jin Alberto <57916483+albbus-stack@users.noreply.github.com> +Alberto Cabrera Pérez <1478977+Alcpz@users.noreply.github.com> Alberto Cabrera Pérez Alberto Cabrera Pérez +Alberto Cabrera Pérez +Aldehir Rojas +alek3y <44779186+alek3y@users.noreply.github.com> +Aleksander Grygier Aleksei Nikiforov <103434461+AlekseiNikiforovIBM@users.noreply.github.com> +Alessandro98-git <61804547+Alessandro98-git@users.noreply.github.com> Alex Alex Azarov Alex Azarov Alex Brooks +Alex Fanthome Alex Klinkhamer Alex Klinkhamer Alex Nguyen Alex O'Connell <35843486+acon96@users.noreply.github.com> Alex Petenchea Alex Renda +Alex Trotta <44127594+Ahajha@users.noreply.github.com> Alex Tuddenham <61622354+AlexsCode@users.noreply.github.com> Alex von Gluck IV +Alex Wu +alex-spacemit Alexey Parfenov +Alexis Williams +alexpinel <93524949+alexpinel@users.noreply.github.com> +Alfred Ali Chraghi <63465728+alichraghi@users.noreply.github.com> Ali Nehzat Ali Tariq +Ali Tariq Alon +alonfaraj AlpinDale <52078762+AlpinDale@users.noreply.github.com> +alwqx +Aman +Aman Gupta +amd-dwang +amd-lalithnc Amir +amirai21 <89905406+amirai21@users.noreply.github.com> AmirAli Mirian <37371367+amiralimi@users.noreply.github.com> +amritahs-ibm +AN Long Ananta Bastola Anas Ahouzi <112881240+aahouzi@users.noreply.github.com> +Anav Prasad +anavp-nvidia +Andika Wasisto András Salamon Andreas (Andi) Kunar Andreas Kieslinger <47689530+aendk@users.noreply.github.com> Andrei +Andrew Aladjev Andrew Canis Andrew Downing Andrew Duffy Andrew Godfrey +Andrew Marshall Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com> +andrijdavid Andy Salerno Andy Tai +Ankur Verma <31362771+ankurvdev@users.noreply.github.com> +anon998 <131767832+anon998@users.noreply.github.com> +Anri Lombard +Anthony Umfer Anthony Van de Gejuchte +antichristHater <142441588+antichristHater@users.noreply.github.com> Antoine Viallon +Anton Mitkov +Anton Mitkov Antonis Makropoulos +Anudit Nagar +anzz1 +apaz +apcameron <37645737+apcameron@users.noreply.github.com> +arch-btw <57669023+arch-btw@users.noreply.github.com> +arcrank +ardfork <134447697+ardfork@users.noreply.github.com> Arik Poznanski +arlo-phoenix <140345165+arlo-phoenix@users.noreply.github.com> Armen Kaleshian Artem Artem Zinnatullin Artyom Lebedev +aryantandon01 <80969509+aryantandon01@users.noreply.github.com> Asbjørn Olling Ásgeir Bjarni Ingvarsson Asghar Ghorbani Ashish <1856117+ashishdatta@users.noreply.github.com> Ashok Gelal <401055+ashokgelal@users.noreply.github.com> Ashraful Islam +AT +at8u <129688334+at8u@users.noreply.github.com> +Atharva Dubey Atsushi Tatsuma +aubreyli Austin <77757836+teleprint-me@users.noreply.github.com> AustinMroz -BADR -BB-fat <45072480+BB-fat@users.noreply.github.com> +automaticcat +awatuna <23447591+awatuna@users.noreply.github.com> +b4b4o Bach Le +BADR +bagheera <59658056+bghira@users.noreply.github.com> Bailey Chittle <39804642+bachittle@users.noreply.github.com> +bandoti <141645996+bandoti@users.noreply.github.com> BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com> +Bart Louwers +Bartowski <3266127+bartowski1182@users.noreply.github.com> Bartowski +Bas Nijholt +bashayer hijji +BB-fat <45072480+BB-fat@users.noreply.github.com> Behnam M <58621210+ibehnam@users.noreply.github.com> +beiller +Beinsezii <39478211+Beinsezii@users.noreply.github.com> Ben Ashbaugh +Ben Chen Ben Garney Ben Siraphob Ben Williams Benjamin Findley <39356821+Kartoffelsaft@users.noreply.github.com> Benjamin Lecaillon <84293038+blecaillon@users.noreply.github.com> +Benni <73313922+BenjaminBruenau@users.noreply.github.com> Benson Wong Bernat Vadell Bernhard M. Wiedemann Bert Wagner +bhubbb <79117352+bhubbb@users.noreply.github.com> Billel Mokeddem Bingan <70050083+binganao@users.noreply.github.com> +Bizhao Shi <37729561+shibizhao@users.noreply.github.com> Bjarke Viksøe <164612031+bviksoe@users.noreply.github.com> +Björn Ganster +bmwl +Bo Zheng <368586905@qq.com> +bobqianic <129547291+bobqianic@users.noreply.github.com> Bodhi <3882561+BodhiHu@users.noreply.github.com> Bodo Graumann +Boian Berberov <7432115+bberberov@users.noreply.github.com> Bono Lv Borislav Stanimirov Borislav Stanimirov +Bowen Han Branden Butler Brandon Squizzato <35474886+bsquizz@users.noreply.github.com> Brian Brian Cunnie Bruce MacDonald +brucepro Bryan Honof -CJ Pais -CRD716 +bryanSwk <93190252+bryanSwk@users.noreply.github.com> +bsilvereagle +bssrdf +byte-6174 <88070277+byte-6174@users.noreply.github.com> Calvin Laurenson Cameron Cameron Kaiser @@ -132,20 +233,33 @@ CarterLi999 <664681047@qq.com> Casey Primozic Casey Primozic CausalLM <148736309+CausalLM@users.noreply.github.com> +ccbinn +cduk <19917266+cduk@users.noreply.github.com> +cebtenzzre Cebtenzzre CentricStorm Chad Brewbaker +Chad Voegele +chaihahaha Changyeon Kim +chansikpark Chao Jiang +characharm <123120856+characharm@users.noreply.github.com> Charles Duffy Charles Xu <63788048+chaxu01@users.noreply.github.com> Charles Xu +chen fan <350211548@qq.com> Chen Xi Chen Xi Cheng Shao +Chenguang Li <757486878@qq.com> Chenguang Li <87689256+noemotiovon@users.noreply.github.com> +chiranko <96988916+chiranko@users.noreply.github.com> Chris Elrod Chris Kuehl +Chris Peterson +Chris Rohlf +Chris Thompson Christian Demsar Christian Demsar Christian Falch <875252+chrfalch@users.noreply.github.com> @@ -155,260 +269,466 @@ Christian Kögler Christian Köhnenkamp Christian Zhou-Zheng <59622928+christianazinn@users.noreply.github.com> Christopher Nielsen <62156882+mascguy@users.noreply.github.com> +City <125218114+city96@users.noreply.github.com> +CJ Pais Clark Saben <76020733+csaben@users.noreply.github.com> Clauszy +clibdev <52199778+clibdev@users.noreply.github.com> Clint Herron +clyang +cmdr2 +cmdr2 +cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com> +codezjx +coezbek +comex +compilade <113953597+compilade@users.noreply.github.com> +compilade +Congcong Cai Conrad Kramer +Copilot <198982749+Copilot@users.noreply.github.com> Corentin REGAL +cpumaxx <163466046+cpumaxx@users.noreply.github.com> +crasm +crasm +crat0z <11581854+crat0z@users.noreply.github.com> +CRD716 CrispStrobe <154636388+CrispStrobe@users.noreply.github.com> Csaba Kecskemeti Cuong Trinh Manh -DAN™ +daboe01 +daghanerdonmez <44506702+daghanerdonmez@users.noreply.github.com> Damian Stewart +daminho <37615795+daminho@users.noreply.github.com> +DAN™ Dan Johansson <164997844+eddnjjn@users.noreply.github.com> Dan Johansson Dane Madsen DaniAndTheWeb <57776841+DaniAndTheWeb@users.noreply.github.com> +Daniel Benjaminsson Daniel Bevenius Daniel Drake +Daniel Han Daniel Hiltgen Daniel Illescas Romero Daniel Kleine <53251018+d-kleine@users.noreply.github.com> +Daniel Tang Daniele <57776841+daniandtheweb@users.noreply.github.com> +Daniele +Daniele Pinna <72076821+pestopoppa@users.noreply.github.com> Danny Milosavljevic DannyDaemonic +Darius Lukas Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com> Dave Dave Airlie Dave Airlie Dave Della Costa +David Chiu David Friehs David Huang <1969802+hjc4869@users.noreply.github.com> David Kennedy +David Lima David Pflug +david raistrick David Renshaw +David Ribeiro Alves David Sommers <12738+databyte@users.noreply.github.com> David Yang +David Zhao <90013954+Your-Cheese@users.noreply.github.com> +davidef DavidKorczynski Dawid Potocki Dawid Wysocki <62249621+TortillaZHawaii@users.noreply.github.com> +ddh0 +ddh0 +ddpasa <112642920+ddpasa@users.noreply.github.com> +DDXDB <38449595+DDXDB@users.noreply.github.com> Dean +deepdiffuser <112834445+deepdiffuser@users.noreply.github.com> +deepsek <166548550+deepsek@users.noreply.github.com> Deins Denis Spasyuk <34203011+dspasyuk@users.noreply.github.com> Derrick T. Woolworth Deven Mistry <31466137+deven367@users.noreply.github.com> +devojony <61173062+devojony@users.noreply.github.com> +diannao <55k@outlook.com> Dibakar Gope Didzis Gosko Diego Devesa +Diner Burger +Đinh Trọng Huy <77562200+huydt84@users.noreply.github.com> Diogo Teles Sant'Anna +ditsuke +divinity76 Djip007 <3705339+Djip007@users.noreply.github.com> Djip007 +dm4 +dm4 +Dmytro Minochkin +Dobri Danchev <12420863+danchev@users.noreply.github.com> +DocShotgun <126566557+DocShotgun@users.noreply.github.com> +Doctor Shotgun <126566557+DocShotgun@users.noreply.github.com> Don Mahurin -DooWoong Lee (David) +Dong Won Kim <63934649+ddwkim@users.noreply.github.com> +Donghyeon Jeong <54725479+djeong20@users.noreply.github.com> +Dongliang Wei <121270393+wdl339@users.noreply.github.com> Doomsdayrs <38189170+Doomsdayrs@users.noreply.github.com> +DooWoong Lee (David) +Dorin-Andrei Geman +dotpy314 <33351922+dotpy314@users.noreply.github.com> Dou Xinpeng <15529241576@163.com> Dou Xinpeng <81913537+Dou-Git@users.noreply.github.com> Douglas Hanley +Dowon Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com> +drbh +ds5t5 <145942675+ds5t5@users.noreply.github.com> +duduta +dylan +eastriver Ebey Abraham +ebraminio +ebraminio Echo Nolan +Ed Addario <29247825+EAddario@users.noreply.github.com> Ed Lee Ed Lepedus Eddie-Wang Edward Taylor +eiery <19350831+eiery@users.noreply.github.com> Elaine Elbios <141279586+Elbios@users.noreply.github.com> Elton Kola +Emmanuel Ferdman Emreerdog <34742675+Emreerdog@users.noreply.github.com> Engininja2 <139037756+Engininja2@users.noreply.github.com> Equim Eric Curtin +Eric Curtin Eric Curtin Eric Sommerlade Eric Zhang <34133756+EZForever@users.noreply.github.com> +eric8607242 Erik Garrison Erik Scholz +Ervin Áron Tasnádi Esko Toivonen Ettore Di Giacinto +EugeoSynthesisThirtyTwo Evan Jones Evan Miller Eve <139727413+netrunnereve@users.noreply.github.com> Evgeny Kurnevsky +Ewan Crawford +Ewan Crawford Ewout ter Hoeven ExtReMLapin <3909752+ExtReMLapin@users.noreply.github.com> -FK Fabian Fabio R. Sluzala Faez Shakil +fairydreaming <166155368+fairydreaming@users.noreply.github.com> Faisal Zaghloul Faisal Zaghloul Fan Shupei FantasyGmm <16450052+FantasyGmm@users.noreply.github.com> +fanyang Farbod Bijary <110523279+farbodbj@users.noreply.github.com> Fattire <528174+fat-tire@users.noreply.github.com> Felix +fengerhu1 <2748250768@qq.com> +fidoriel <49869342+fidoriel@users.noreply.github.com> Finn Voorhees Firat FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com> +fj-y-saito <85871716+fj-y-saito@users.noreply.github.com> +FK Florent BENOIT +Florian Badie Folko-Ven <71110216+Folko-Ven@users.noreply.github.com> Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com> +Francisco Herrera Francisco Melo <43780565+francis2tm@users.noreply.github.com> Frank Mai FrankHB Frankie Robertson +fraxy-v <65565042+fraxy-v@users.noreply.github.com> Fred Douglas <43351173+fredlas@users.noreply.github.com> Frederik Vogel +Fredrik Hultin +frob +fxzjshm <11426482+fxzjshm@users.noreply.github.com> +g2mt <166577174+g2mt@users.noreply.github.com> Gabe Goodhart Gabe Goodhart +Gabriel Larson <55459720+gabriellarson@users.noreply.github.com> +Gadflyii <34758915+Gadflyii@users.noreply.github.com> Gaetan Bisson GainLee Galunid Gary Linscott Gary Mulder +gatbontonpc +Gaurav Garg <52341457+gaugarg-nv@users.noreply.github.com> +Gaurav Garg Gavin Zhao Genkagaku.GPT Georgi Gerganov Gian-Carlo Pascutto +GideonSerf Gilad S Gilad S. <7817232+giladgd@users.noreply.github.com> +github-actions[bot] +GittyBurstein Giuseppe Scrivano +Giuseppe Scrivano GiviMAD +gliptic +gn64 +goerch Govlzkoy +grahameth <96447521+grahameth@users.noreply.github.com> +Gregor Jasny +Grzegorz Grasza +gtygo Guillaume "Vermeille" Sanchez Guillaume Wenzek Guoliang Hua <32868157+nbcsm@users.noreply.github.com> Guoteng <32697156+SolenoidWGT@users.noreply.github.com> Guspan Tanadi <36249910+guspan-tanadi@users.noreply.github.com> Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com> +Guus Waals <_@guusw.nl> +Guy Goldenberg +gwjr <502526+gwjr@users.noreply.github.com> +h-h-h-h <13482553+h-h-h-h@users.noreply.github.com> Haggai Nuchi +Haiyue Wang Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com> Hale Chan Hamdoud Hakem <90524568+hamdoudhakem@users.noreply.github.com> +Han Qingzhe <95479277+hNSBQZ@users.noreply.github.com> Han Yin HanishKVC +hankcs Haohui Mai +haopeng <657407891@qq.com> +Haowei Wu Haoxiang Fei Harald Fernengel Hatsune Miku <129688334+at8u@users.noreply.github.com> HatsuneMikuUwU33 <173229399+HatsuneMikuUwU33@users.noreply.github.com> Haus1 +Héctor Estrada Moreno +HelloKS +Helton Reis <47722840+HRKings@users.noreply.github.com> +Hendrik Erz Henk Poley Henri Vasserman Henrik Forstén Henry Linjamäki +Henry Linjamäki +Henry147147 <44851451+Henry147147@users.noreply.github.com> +Herman Semenoff Herman Semenov Hesen Peng +HighDoping HimariO +hipudding +hksdpc255 <43977088+hksdpc255@users.noreply.github.com> Hoang Nguyen +hoangmit +HonestQiao Hong Bo PENG +hongbo.mo <352280764@qq.com> Hongyu Ouyang <96765450+casavaca@users.noreply.github.com> +hopkins385 <98618192+hopkins385@users.noreply.github.com> Howard Su +howlger +howlger Hua Jiang Huang Qi Huawei Lin Hugo Roussel Huifeng Ou <79071290+ho2103@users.noreply.github.com> +hutli <6594598+hutli@users.noreply.github.com> +hutli +hutli +hxer7963 +hydai +iacore <74560659+iacore@users.noreply.github.com> Ian Bull Ian Bull Ian Scrivener +ibrahim khadraoui <132432132+ibrahimkhadraoui@users.noreply.github.com> Icecream95 +Icenowy Zheng +icppWorld <124377669+icppWorld@users.noreply.github.com> Ido S +igardev <49397134+igardev@users.noreply.github.com> +igarnier IgnacioFDM Igor Okulist +Igor Smirnov +Ihar Hrachyshka Ihar Hrachyshka Ikko Eltociear Ashimine +Ilia Ilmer Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com> +Imad Saddik <79410781+ImadSaddik@users.noreply.github.com> +intelmatt <61025942+intelmatt@users.noreply.github.com> +iohub Ionoclast Laboratories +iron Isaac McFadyen IsaacDynamo <61521674+IsaacDynamo@users.noreply.github.com> +Ishaan Gandhi +iSma +issixx <46835150+issixx@users.noreply.github.com> Ivan Ivan Filipov <159561759+vanaka11@users.noreply.github.com> Ivan Komarov Ivan Stepanov -JC <43374599+MrSMlT@users.noreply.github.com> -JFLFY2255 -JH23X <165871467+JH23X@users.noreply.github.com> +Ivy233 <952254420@qq.com> +ixgbe <1113177880@qq.com> +j-k +jacekpoplawski <67507230+jacekpoplawski@users.noreply.github.com> Jack Mousseau Jack Mousseau JackJollimore <130917767+JackJollimore@users.noreply.github.com> +jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com> Jaeden Amero Jaemin Son Jafar Uruç Jag Chadha +jaime-m-p <167997752+jaime-m-p@users.noreply.github.com> +Jake Karnes +Jakkala Mahesh <155058658+MaheshJakkala@users.noreply.github.com> Jakub N James A Capozzoli <157492257+jac-jim@users.noreply.github.com> James Reynolds +jameswu2014 <545426914@qq.com> Jan Boon Jan Boon Jan Ploski Jannis Schönleber +Jared Tweed Jared Van Bortel Jared Van Bortel +Jaromír Hradílek Jason C.H Jason McCartney +Jason Ni Jason Stillerman +jason_w +Jay +Jay Zenith <162098309+JayZenith@users.noreply.github.com> +JC <43374599+MrSMlT@users.noreply.github.com> +jdomke <28772296+jdomke@users.noreply.github.com> Jean-Christophe Hoelt Jean-Michaël Celerier Jed Fox Jeff Bolz Jeffrey Morgan Jeffrey Quesnelle +Jeremy Demeule +Jeremy Rand <244188+JeremyRand@users.noreply.github.com> Jeroen Mostert +Jesse +Jesse Gross +Jesse Ikonen Jesse Jojo Johnson Jett Janiak Jeximo +JFLFY2255 +JH23X <165871467+JH23X@users.noreply.github.com> Jhen-Jie Hong +Jiacheng (Jason) Chen <76919340+jiachengjason@users.noreply.github.com> Jiahao Li +jiahao su Jian Liao JidongZhang-THU <1119708529@qq.com> +Jie Fu (傅杰) +Jie Fu (傅杰) +jiez <373447296@qq.com> Jinwoo Jeong <33892306+williamjeong2@users.noreply.github.com> Jinyang He Jiří Podivín <66251151+jpodivin@users.noreply.github.com> Jiří Sejkora +JJJYmmm <92386084+JJJYmmm@users.noreply.github.com> +jklincn <985765408@qq.com> +jklincn +jneem Joan Fontanals Joan Fontanals João Dinis Ferreira Joe Eli McIlvain Joe Todd +joecryptotoo <80373433+joecryptotoo@users.noreply.github.com> Johan Johannes Gäßler Johannes Rudolph John <78893154+cmp-nct@users.noreply.github.com> John Balis +John Bean <113509988+johnbean393@users.noreply.github.com> John Smith <67539080+kingsidelee@users.noreply.github.com> JohnnyB +johnson442 <56517414+johnson442@users.noreply.github.com> +jojorne +jon-chuang <9093549+jon-chuang@users.noreply.github.com> Jonas Wunderlich <32615971+jonas-w@users.noreply.github.com> +Jonathan Graehl <99024+graehl@users.noreply.github.com> Jorge A <161275481+jorgealias@users.noreply.github.com> Jose Maldonado <63384398+yukiteruamano@users.noreply.github.com> Joseph Stahl <1269177+josephst@users.noreply.github.com> Josh Ramer +Joshua Cogliati Joyce +jp-x-g Juan Calderon-Perez <835733+gaby@users.noreply.github.com> +Judd <4046440+foldl@users.noreply.github.com> Judd Juk Armstrong <69222624+jukofyork@users.noreply.github.com> +jukofyork <69222624+jukofyork@users.noreply.github.com> +Julien Denize <40604584+juliendenize@users.noreply.github.com> Julius Arkenberg +Julius Tischbein +Julius Tischbein Jun Hee Yoo Jun Jie <71215065+junnjiee16@users.noreply.github.com> +junchao-loongson <68935141+junchao-loongson@users.noreply.github.com> +junchao-zhao <68935141+junchao-loongson@users.noreply.github.com> Junil Kim +Junwon Hwang Junyang Lin Juraj Bednar Justin Parker +Justin Santa Barbara Justin Suess Justina Cho Justine Tunney Justine Tunney Juuso Alasuutari -KASR +Juyoung Suk +jwj7140 <32943891+jwj7140@users.noreply.github.com> +k.h.lai +Kai Pastor +kaizau +kallewoof +kallewoof +kalomaze <66376113+kalomaze@users.noreply.github.com> Kamil Tomšík +kang Kante Yin Karol Kontny <82021046+kkontny@users.noreply.github.com> Karsten Weiss Karthick Karthik Kumar Viswanathan <195178+guilt@users.noreply.github.com> Karthik Sethuraman +KASR Kasumi <90275229+kasumi-1@users.noreply.github.com> +katsu560 <118887472+katsu560@users.noreply.github.com> Kawrakow <48489457+ikawrakow@users.noreply.github.com> +kchro3 <62481661+kchro3@users.noreply.github.com> Keiichi Tabata Keke Han Kenvix ⭐ @@ -417,48 +737,109 @@ Kevin Gibbons Kevin Ji <1146876+kevinji@users.noreply.github.com> Kevin Kwok Kevin Lo +Kevin Pouget Kevin Wang +khimaros +kiltyj +Kim S. +kimminsu <80271594+kimminsu38oo@users.noreply.github.com> +kiwi <122582483+kiwi142857@users.noreply.github.com> +klosax <131523366+klosax@users.noreply.github.com> Kolen Cheung Konstantin Herud Konstantin Zhuravlyov +krystiancha +kunal-vaishnavi <115581922+kunal-vaishnavi@users.noreply.github.com> +kunnis Kunshang Ji +kuronekosaiko +kustaaya <58045274+kustaaya@users.noreply.github.com> +kuvaus <22169537+kuvaus@users.noreply.github.com> +kwin1412 <42286931+kwin1412@users.noreply.github.com> Kyle Bruene Kyle Liang Kyle Mistele Kylin <56434533+KyL0N@users.noreply.github.com> +l-austenfeld <53152202+l-austenfeld@users.noreply.github.com> +l3utterfly +LaffeyNyaa <112215776+LaffeyNyaa@users.noreply.github.com> +laik Lars Grammel +Lars Sonchocky-Helldorf Laura +Law Po Ying <30721578+yingying0906@users.noreply.github.com> +lcy +ldwang +le.chang Lee <44310445+lx200916@users.noreply.github.com> Lee Drake +leejet Leng Yue +Lennart Austenfeld <53152202+l-austenfeld@users.noreply.github.com> +leo-pony Leon Knauer -LeonEricsson <70749762+LeonEricsson@users.noreply.github.com> +Leonard Mosescu Leonardo Neumann +LeonEricsson <70749762+LeonEricsson@users.noreply.github.com> +levkropp +lexasub +lgai-exaone +lhez +lhez +Li Pengzhan <151381994+Lpzhan931@users.noreply.github.com> Li Tan +limitedAtonement Linwei Wang Liu Jia <109258120+Septa2112@users.noreply.github.com> Liu Jia +liuwei-git <14815172+liuwei-git@users.noreply.github.com> +lixing-star <104126818+lixing-star@users.noreply.github.com> +lksj92hs <134250687+lksj92hs@users.noreply.github.com> LoganDark Loïc Carrère +lon <114724657+longregen@users.noreply.github.com> +loonerin <132926317+loonerin@users.noreply.github.com> LostRuins <39025047+LostRuins@users.noreply.github.com> LostRuins Concedo <39025047+LostRuins@users.noreply.github.com> +lovedheart <6277001+lovedheart@users.noreply.github.com> +ltoniazzi <61414566+ltoniazzi@users.noreply.github.com> +Luca Stefani Lucas Moura Belo Luciano +Lukas Straub +Łukasz Ślusarczyk <112692748+lslusarczyk@users.noreply.github.com> Luo Tian +luoyu-intel +luyhcsu <110711054+luyhcsu@users.noreply.github.com> Lyle Dean M-A +M. Mediouni M. Yusuf Sarıgöz +m3ndax Ma Mingfei Maarten ter Huurne Mack Straight +maddes8cht <55592906+maddes8cht@users.noreply.github.com> Maël Kerbiriou MaggotHATE +magicse +Mahekk Shaikh <118063190+Mahekk357@users.noreply.github.com> Mahesh Madhav <67384846+heshpdx@users.noreply.github.com> +mahorozte <41834471+mahorozte@users.noreply.github.com> +makomk +manikbhandari Manuel <44313466+makuche@users.noreply.github.com> +maor-ps <154728172+maor-ps@users.noreply.github.com> Marc Köhlbrugge +Marcello Seri Marco Matthies <71844+marcom@users.noreply.github.com> +Marcos Del Sol Vives +marcoStocchi Marcus Dunn <51931484+MarcusDunn@users.noreply.github.com> +Marek Hradil jr. Marian Cepok +Marius Gerdes <141485318+mglambda@users.noreply.github.com> +Mariusz Woloszyn Mark Fairbairn Mark Zhuang Marko Tasic @@ -467,7 +848,11 @@ Martin Delille Martin Krasser Martin Schwaighofer Marvin Gießing +Masashi Yoshimura +Masato Nakasaka +Masato Nakasaka Masaya, Kato <62578291+msy-kato@users.noreply.github.com> +mashdragon <122402293+mashdragon@users.noreply.github.com> MasterYi1024 <39848311+MasterYi1024@users.noreply.github.com> Mateusz Charytoniuk Matheus C. França @@ -475,57 +860,89 @@ Matheus Gabriel Alves Silva Mathieu Baudier Mathieu Geli Mathieu Nayrolles -Mathijs Henquet Mathijs de Bruin +Mathijs Henquet +matiaslin <45382001+matiaslin@users.noreply.github.com> Matt Clayton <156335168+mattjcly@users.noreply.github.com> Matt Pulver Matt Stephenson +matt23654 <193348153+matt23654@users.noreply.github.com> +matt23654 +matteo +matteo Matteo Boschini <12133566+mbosc@users.noreply.github.com> Matteo Mortari Mattheus Chediak +Matthew Michel Matthew Tejo +Matthieu Coudron <886074+teto@users.noreply.github.com> +Mattt Matvey Soloviev Max Krasnyansky +Max Krasnyansky Max Krasnyansky Maxim Evtush <154841002+maximevtush@users.noreply.github.com> Maxime <672982+maximegmd@users.noreply.github.com> Maximilian Winter +mdrokz +MeeMin <74113151+Meet91721@users.noreply.github.com> Meng Zhang Meng, Hengyu Mengqing Cao Merrick Christensen +mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com> +Miaoqian Lin Michael Coppola +Michael de Gans +Michaël de Vries Michael Engel Michael Francis +Michael Giba Michael Hueschen Michael Kesper Michael Klimenko Michael Podvitskiy Michael Potter -Michael de Gans -Michaël de Vries +Michael Wand Michał Moskal Michał Tuszyński Michelle Tan <41475767+MichelleTanPY@users.noreply.github.com> +midnight Mihai Mike +Mike Abbott +Mike Abbott Mikko Juola +Min-Hua <136287195+Min-Hua@users.noreply.github.com> +minarchist Minsoo Cheong <54794500+mscheong01@users.noreply.github.com> Minsoo Cheong Mirko185 Mirror Azure <54669636+MirrorAzure@users.noreply.github.com> MistApproach <98988043+MistApproach@users.noreply.github.com> Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com> +mj-shifu <77107165+mj-shifu@users.noreply.github.com> +mmyjona +mnehete32 <33429707+mnehete32@users.noreply.github.com> Mohammadreza Hendiani Mohammadreza Hendiani Molly Sophia +momonga <115213907+mmnga@users.noreply.github.com> +momonga <146910567+mmngays@users.noreply.github.com> MoonRide303 <130458190+MoonRide303@users.noreply.github.com> MorganRO8 <47795945+MorganRO8@users.noreply.github.com> +moritzbrantner <31051084+moritzbrantner@users.noreply.github.com> +muggle-stack Murilo Santana Musab Gultekin +musoles <135031143+musoles@users.noreply.github.com> +mzcu +Naco Siren Nam D. Tran <42194884+namtranase@users.noreply.github.com> +nanahi <130121847+na-na-hi@users.noreply.github.com> Nathan Epstein Natsu +Nauful Shaikh NawafAlansari <72708095+NawafAlansari@users.noreply.github.com> Nebula Neo Zhang <14088817+arthw@users.noreply.github.com> @@ -533,73 +950,157 @@ Neo Zhang Neo Zhang Jianyu Neuman Vong NeverLucky <92274250+nvrxq@users.noreply.github.com> +Nexes the Elder <124105151+Nexesenex@users.noreply.github.com> Nexes the Old <124105151+Nexesenex@users.noreply.github.com> Nexesenex <124105151+Nexesenex@users.noreply.github.com> +ngc92 <7938269+ngc92@users.noreply.github.com> +nhamanasu <45545786+nhamanasu@users.noreply.github.com> Niall Coates <1349685+Niall-@users.noreply.github.com> +niansa/tuxifan +niansa/tuxifan Nicholai Tukanov +Nick <0x0b4ac@gmail.com> +nick huang +nickp27 Nico Bosshard Nicolai Weitkemper +Nicolas B. Pierron Nicolás Pérez Nicolò Scipione Nigel Bosch +Nikhil Jain Nikita Sarychev <42014488+sARY77@users.noreply.github.com> Niklas Korz NikolaiLyssogor <59844691+NikolaiLyssogor@users.noreply.github.com> Nikolaos Pothitos Nikolas <127742645+nneubacher@users.noreply.github.com> +Nikolay Popov <131475237+npopov-vst@users.noreply.github.com> Nindaleth +ningshanwutuobang +Noah <99681487+NoahOksuz@users.noreply.github.com> +nold +nopperl <54780682+nopperl@users.noreply.github.com> +nullname Nuno -OSecret <135510162+OLSecret@users.noreply.github.com> +nusu-github <29514220+nusu-github@users.noreply.github.com> +nwyin +o7si <32285332+o7si@users.noreply.github.com> Oleksandr Kuvshynov <661042+okuvshynov@users.noreply.github.com> Oleksandr Nikitin Oleksii Maryshchenko +Olexandr88 +olexiyb +Oliver Simons +Oliver Simons +Oliver Walsh Olivier Chafik +Olivier Chafik +omahs <73983677+omahs@users.noreply.github.com> Ondřej Čertík +oobabooga <112222186+oobabooga@users.noreply.github.com> +oobabooga +opparco +Oscar Barenys +OSecret <135510162+OLSecret@users.noreply.github.com> +ostix360 <55257054+ostix360@users.noreply.github.com> Ouadie EL FAROUKI PAB Pablo Duboue +Pádraic Slattery +Pascal Pascal Patry +pascal-lc <49066376+pascal-lc@users.noreply.github.com> Patrice Ferlet Patrick Peng +Patryk Kaminski Paul Tsochantaris Pavel Zloi +Pavels Zaicenkovs Pavol Rusnak Paweł Wodnicki <151604+32bitmicro@users.noreply.github.com> +pculliton Pedro Cuenca +peidaqi +Penglin Cai <1402538448@qq.com> +pengxin99 +Pepijn de Vos +Percy Piper +Perry Naseck <4472083+DaAwesomeP@users.noreply.github.com> +perserk Peter Peter Sugihara +Peter0x44 +petterreinholdtsen Phil H <5756783+phiharri@users.noreply.github.com> Philip Taron +philip-essential <169196560+philip-essential@users.noreply.github.com> Phillip Kravtsov +Phylliida Dev +piDack <104877312+piDack@users.noreply.github.com> Pierre Alexandre SCHEMBRI Pierrick Hymbert Pieter Ouwerkerk +Piotr +Piotr Jasiukajtis +Piotr Kubaj +Piotr Wilkin (ilintar) +pl752 Plamen Minev +pmysl +pockers21 <134406831+pockers21@users.noreply.github.com> +postmasters +Pouya +pqnet <119850+pqnet@users.noreply.github.com> +Prabod +Prajwal B Mehendarkar Prashant Vithule <119530321+Vithulep@users.noreply.github.com> Przemysław Pawełczyk +psocolovsky <50770545+psocolovsky@users.noreply.github.com> +pudepiedj PureJourney +QDelta <60222316+QDelta@users.noreply.github.com> +Qeeweew <68716978+Qeeweew@users.noreply.github.com> Qin Yue Chen <71813199+chenqiny@users.noreply.github.com> +qingfengfenga <41416092+qingfengfenga@users.noreply.github.com> +qingy1337 Qingyou Meng +qouoq Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com> +Quentin Bramas +qunash +R +R R0CKSTAR R0CKSTAR -RJ Adriaansen +rabidcopy +RachelMantel Radoslav Gerganov Radosław Gryta +Rafal Lewczuk +Rahul Sathe <150351592+rrsathe@users.noreply.github.com> Rahul Vivek Nair <68507071+RahulVivekNair@users.noreply.github.com> +rainred <107027757+gryffindor-rr@users.noreply.github.com> Raj Hammeer Singh Hada Ralph Soika Rand Xie Randall Fitzgerald Random Fly +rankaiyx +Raul Torres <138264735+rauletorresc@users.noreply.github.com> +redbeard +Reese Levine Reinforce-II Rémy O Rémy Oudompheng Ren Xuancheng +Renat Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com> Reza Kakhki Reza Rahemtola <49811529+RezaRahemtola@users.noreply.github.com> RhinoDevel +rhjdvsgsgks <26178113+rhjdvsgsgks@users.noreply.github.com> +rhuddleston +Rhys-T <108157737+Rhys-T@users.noreply.github.com> Riccardo Orlando Riceball LEE Rich Dougherty @@ -611,14 +1112,22 @@ Rickard Edén Rickard Hallerbäck Rickey Bowers Jr Riley Stewart +rimoliga <53384203+rimoliga@users.noreply.github.com> Rinne Rinne +RJ Adriaansen +rmatif <66360289+rmatif@users.noreply.github.com> +rmatif +rmatif Robert Brisita <986796+rbrisita@users.noreply.github.com> Robert Collins Robert Ormandi <52251610+ormandi@users.noreply.github.com> Robert Sung-wook Shin Robey Holderith +Robin Davidsson <40024429+R-Dson@users.noreply.github.com> Robyn +Rőczey Barnabás <31726601+An0nie@users.noreply.github.com> +RodriMora Roger Meier Rohanjames1997 Roland <14355895+rbur0425@users.noreply.github.com> @@ -629,68 +1138,133 @@ Roman Parykin Ron Evans Ron Jailall Roni +Ronny Brendel Ronny Brendel Ronsor +Rotem Dan Rowan Hart +rspOverflow <217881046+rspOverflow@users.noreply.github.com> +rtaluyev Ruan <47767371+ruanych@users.noreply.github.com> +Ruben Ortlam +Ruben Ortlam Ruchira Hasaranga Rudi Servo +Ruikai Peng Ruixin Huang <18860020911@163.com> Rune <43761327+Rune-AI@users.noreply.github.com> +runfuture RunningLeon RunningLeon +Russyyds <161207317+Russyyds@users.noreply.github.com> Ryan Landay +Ryan Mangeno <160974989+ryan-mangeno@users.noreply.github.com> Ryder Wishart Ryuei -Rőczey Barnabás <31726601+An0nie@users.noreply.github.com> -SAMI -SRHMorris <69468379+SRHMorris@users.noreply.github.com> -SXX +s-goto-11 <206795233+s-goto-11@users.noreply.github.com> +s8322 +Saba Fallah <10401143+sfallah@users.noreply.github.com> +Sachin Desai +safranowith SakuraUmi Salvador E. Tropea Salvatore Mesoraca +Sam +Sam Malayek <12037535+SamMalayek@users.noreply.github.com> Sam Spilsbury +Sam/Samuel <57896620+cern1710@users.noreply.github.com> +SAMI Sami Farin <3876865+Safari77@users.noreply.github.com> Samuel Maynard +Sandro Hanea <40202887+sandrohanea@users.noreply.github.com> +sandyiscool Sang-Kil Park +Sascha Rogmann <59577610+srogmann@users.noreply.github.com> +sasha0552 +SavicStefan <50296686+SavicStefan@users.noreply.github.com> +Scott Fudally Seb C <47074056+Sebby37@users.noreply.github.com> Sebastián A SebastianApel <13675545+SebastianApel@users.noreply.github.com> +semidark Senemu <10880819+Senemu@users.noreply.github.com> +senhtry +Sergei Vorobyov +Sergey Alirzaev Sergey Alirzaev +Sergey Fedorov Sergio López Sergio López +serhii-nakon <57632032+serhii-nakon@users.noreply.github.com> Sertaç Özercan <852750+sozercan@users.noreply.github.com> SeungWon Jeong <65549245+redlion0929@users.noreply.github.com> ShadovvBeast +Shagun Bera <141054835+notV3NOM@users.noreply.github.com> Shakhar Dasgupta +Shakil Ahmed <44522075+ahmedshakill@users.noreply.github.com> +shalinib-ibm Shane A Shangning Xu <32517059+xushangning@users.noreply.github.com> +shani-f Shankar Shanshan Shen <467638484@qq.com> +shaofeiqi <109865877+shaofeiqi@users.noreply.github.com> +shaofeiqi +sharpHL <132747147+sharpHL@users.noreply.github.com> +Shawn Gu +Shawn yang <137684499+Yangxiaoz@users.noreply.github.com> Shelby Jenkins <47464908+ShelbyJenkins@users.noreply.github.com> Sheldon Robinson +shibe2 Shijie <821898965@qq.com> +Shin-myoung-serp Shintarou Okada +Shouyu <65317431+joeldushouyu@users.noreply.github.com> Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com> Shouzheng Liu +SHUAI YANG Shuichi Tsutsumi +shun095 <8069181+shun095@users.noreply.github.com> +Shunta Saito Shupei Fan +Si1w <139008732+Si1w@users.noreply.github.com> Sigbjørn Skjæret +simevo +Simon Redman Simon Willison +simon886212 <37953122+simon886212@users.noreply.github.com> +Simranjeet Singh <105192966+simrnsingh@users.noreply.github.com> +singularity <12184989+singularity-s0@users.noreply.github.com> +sirus20x6 Siwen Yu +sjinzh +sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com> +Sky Sky Yan +slaren <2141330+slaren@users.noreply.github.com> Slaren <2141330+slaren@users.noreply.github.com> +slaren Slava Primenko +Slobodan Josic <127323561+slojosic-amd@users.noreply.github.com> Small Grass Forest +SmartestWashingMachine +SnA1lGo <44647694+skrandy@users.noreply.github.com> +snadampal <87143774+snadampal@users.noreply.github.com> SoftwareRenderer <138734813+SoftwareRenderer@users.noreply.github.com> Someone Someone Serge +someone13574 <81528246+someone13574@users.noreply.github.com> Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com> Spencer Sutton +SRHMorris <69468379+SRHMorris@users.noreply.github.com> Srihari-mcw <96763064+Srihari-mcw@users.noreply.github.com> Srinivas Billa +ssweens <1149151+ssweens@users.noreply.github.com> +standby24x7 +staviq +stduhpf Stefan Sydow +Ștefan-Gabriel Muscalu Steffen Röcker Stephan Walter Stephen Nichols @@ -698,46 +1272,100 @@ Steve Bonds Steve Grubb Steven Prichard Steven Roussey +stevenkuang Steward Garcia <57494570+FSSRepo@users.noreply.github.com> StrangeBytesDev <141275258+StrangeBytesDev@users.noreply.github.com> +strawberrymelonpanda <152940198+strawberrymelonpanda@users.noreply.github.com> Suaj Carrot <72162667+SuajCarrot@users.noreply.github.com> +sudhiarm Sukriti Sharma SuperUserNameMan Sutou Kouhei +Svetlozar Georgiev <55534064+sgeor255@users.noreply.github.com> +swittk +SXX Tai Duc Nguyen Taikono-Himazin +Taimur Ahmad +Tak-RS +takasurazeem +takov751 <40316768+takov751@users.noreply.github.com> +takuya kodama +takuya kodama +tamarPal Tameem <113388789+AhmadTameem@users.noreply.github.com> Tamotsu Takahashi +tarcey +Tarek Dakhran +Tarek Dakhran +tastelikefeet <58414341+tastelikefeet@users.noreply.github.com> +Tatsuya Tanaka +Taylor +tc-mb <157115220+tc-mb@users.noreply.github.com> +TecJesh Tei Home +tempstudio <49735574+tempstudio@users.noreply.github.com> +teo +texmex76 <40733439+texmex76@users.noreply.github.com> Thái Hoàng Tâm <75922889+RoyalHeart@users.noreply.github.com> +Thammachart Chinvarapon <1731496+Thammachart@users.noreply.github.com> Thatcher Chamberlin Theia Vogel +thement <40525767+thement@users.noreply.github.com> +theo77186 +theraininsky <76763719+theraininsky@users.noreply.github.com> Thérence <13496987+Royalphax@users.noreply.github.com> +thewh1teagle <61390950+thewh1teagle@users.noreply.github.com> Thibault Terrasson +thom-dev-fr <161708450+thom-dev-fr@users.noreply.github.com> +Thomas Germer <99991@users.noreply.github.com> +Thomas Jarosch Thomas Klausner +Thore Koritzius Thorsten Sommer +TianHao324 <854531745@qq.com> +TianHao324 +Tianyue-Zhao Tim Miller +Tim Neumann Tim Wang Timmy Knight Timothy Cronin <40186632+4imothy@users.noreply.github.com> Ting Lou Ting Lou Ting Sun +tjohnman Tobias Lütke +Todor Boinovski Tom C Tom Jobbins <784313+TheBloke@users.noreply.github.com> Tomas Tomáš Pazdiora Tony Wasserka <4840017+neobrain@users.noreply.github.com> +toyer <2042519524@qq.com> +TrevorS +triplenom <79777178+triplenom@users.noreply.github.com> Tristan Druyen Tristan Ross Trivikram Kamat <16024985+trivikr@users.noreply.github.com> +tslmy +tt <291400568@qq.com> Tungsten842 <886724vf@anonaddy.me> Tungsten842 Tushar +tv1wnd <55383215+tv1wnd@users.noreply.github.com> +ubergarm +ubik2 UEXTM.com <84163508+uextm@users.noreply.github.com> +Uilian Ries +uint256_t +uint256_t Ujjawal Panchal <31011628+Ujjawal-K-Panchal@users.noreply.github.com> Ulrich Drepper +unbounded +uvos +uvos +uvos Uzo Nweke Vaibhav Srivastav Val Kharitonov @@ -745,10 +1373,22 @@ Valentin Konovalov Valentin Mamedov <45292985+Inf1delis@users.noreply.github.com> Valentyn Bezshapkin <61702053+valentynbez@users.noreply.github.com> Vali Malinoiu <0x4139@gmail.com> +valiray <133289098+valiray@users.noreply.github.com> +vb +Vedran Miletić +Victor <194116445+dodekapod@users.noreply.github.com> Victor Nogueira Victor Z. Peng Viet-Anh NGUYEN (Andrew) +vik +Ville Vesilehto +Vineel Abhinav <131174187+vineelabhinav@users.noreply.github.com> Vinesh Janarthanan <36610342+VJHack@users.noreply.github.com> +Vinkal +virajwad <84867530+virajwad@users.noreply.github.com> +viric +Vishal Agarwal +Vishal Singh Vitali Lovich Vivian Vlad @@ -756,351 +1396,124 @@ Vladimir Vladimir Malyutin Vladimir Vuksanovic <109677816+vvuksanovic@users.noreply.github.com> Vladimir Zorin +Vladislav Sayapin <70110788+v-sayapin@users.noreply.github.com> +vmobilis <75476228+vmobilis@users.noreply.github.com> +vodkaslime <646329483@qq.com> VoidIsVoid <343750470@qq.com> Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com> +vvhg1 <94630311+vvhg1@users.noreply.github.com> +vxiiduu <73044267+vxiiduu@users.noreply.github.com> Wagner Bruna Wang Qin <37098874+wangqin0@users.noreply.github.com> Wang Ran (汪然) +Wang Weixuan WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com> +wangshuai09 <391746016@qq.com> +wbpxre150 <100937007+wbpxre150@users.noreply.github.com> +wbtek <171302111+wbtek@users.noreply.github.com> Weird Constructor Weizhao Ouyang +Weizhao Ouyang Welby Seely +welix Wentai Zhang +whoreson <139810751+whoreson@users.noreply.github.com> Wilken Gottwalt <12194808+wgottwalt@users.noreply.github.com> WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com> +william pan <61359596+wp4032@users.noreply.github.com> William Tambellini William Tambellini Willy Tarreau -Woof Dog <197125663+woof-dog@users.noreply.github.com> -Wouter <9594229+DifferentialityDevelopment@users.noreply.github.com> -Wu Jian Ping -Wu Jian Ping -Xiake Sun -Xiang (Kevin) Li -Xiao-Yong Jin -XiaotaoChen -Xiaoyi Chen -Xie Yanbo -Xingchen Song(宋星辰) -Xinpeng Dou <81913537+Dou-Git@users.noreply.github.com> -Xuan Son Nguyen -Xuan-Son Nguyen -Yaiko -Yann Follet <131855179+YannFollet@users.noreply.github.com> -Yaroslav -Yazan Agha-Schrader -Yiming Cui -Yishuo Wang -Yoshi Suhara -Yoshi Suhara -Younes Belkada <49240599+younesbelkada@users.noreply.github.com> -Yueh-Po Peng <94939112+y10ab1@users.noreply.github.com> -Yüg -Yui -Yun Dou -Yuri Khrustalev -Yusuf Kağan Hanoğlu -Yuval Peled <31162840+Yuval-Peled@users.noreply.github.com> -ZHAOKAI WANG -Zane Shannon -Zay <95888118+isaiahbjork@users.noreply.github.com> -Zenix -Zhang Peiyuan -Zheng.Deng <32841220+dengzheng-cloud@users.noreply.github.com> -Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com> -Zhiyuan Li -Zhiyuan Li -ZhouYuChen -Ziad Ben Hadj-Alouane -Ziang Wu <97337387+ZiangWu-77@users.noreply.github.com> -Zsapi -a-n-n-a-l-e-e <150648636+a-n-n-a-l-e-e@users.noreply.github.com> -a3sh <38979186+A3shTnT@users.noreply.github.com> -adel boussaken -afrideva <95653597+afrideva@users.noreply.github.com> -ag2s20150909 <19373730+ag2s20150909@users.noreply.github.com> -agray3 -akawrykow <142945436+akawrykow@users.noreply.github.com> -alek3y <44779186+alek3y@users.noreply.github.com> -alexpinel <93524949+alexpinel@users.noreply.github.com> -alonfaraj -alwqx -amd-dwang -amd-lalithnc -amritahs-ibm -andrijdavid -anon998 <131767832+anon998@users.noreply.github.com> -anzz1 -apaz -apcameron <37645737+apcameron@users.noreply.github.com> -arch-btw <57669023+arch-btw@users.noreply.github.com> -arcrank -ardfork <134447697+ardfork@users.noreply.github.com> -arlo-phoenix <140345165+arlo-phoenix@users.noreply.github.com> -aryantandon01 <80969509+aryantandon01@users.noreply.github.com> -at8u <129688334+at8u@users.noreply.github.com> -automaticcat -awatuna <23447591+awatuna@users.noreply.github.com> -b4b4o -bandoti <141645996+bandoti@users.noreply.github.com> -beiller -bhubbb <79117352+bhubbb@users.noreply.github.com> -bmwl -bobqianic <129547291+bobqianic@users.noreply.github.com> -brucepro -bryanSwk <93190252+bryanSwk@users.noreply.github.com> -bsilvereagle -bssrdf -byte-6174 <88070277+byte-6174@users.noreply.github.com> -cduk <19917266+cduk@users.noreply.github.com> -cebtenzzre -chaihahaha -chiranko <96988916+chiranko@users.noreply.github.com> -clibdev <52199778+clibdev@users.noreply.github.com> -clyang -cmdr2 -cmdr2 -cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com> -codezjx -coezbek -comex -compilade <113953597+compilade@users.noreply.github.com> -compilade -cpumaxx <163466046+cpumaxx@users.noreply.github.com> -crasm -crasm -daboe01 -daghanerdonmez <44506702+daghanerdonmez@users.noreply.github.com> -daminho <37615795+daminho@users.noreply.github.com> -david raistrick -ddh0 -ddpasa <112642920+ddpasa@users.noreply.github.com> -deepdiffuser <112834445+deepdiffuser@users.noreply.github.com> -devojony <61173062+devojony@users.noreply.github.com> -ditsuke -divinity76 -dm4 -dm4 -dotpy314 <33351922+dotpy314@users.noreply.github.com> -drbh -ds5t5 <145942675+ds5t5@users.noreply.github.com> -dylan -eastriver -ebraminio -ebraminio -eiery <19350831+eiery@users.noreply.github.com> -eric8607242 -fairydreaming <166155368+fairydreaming@users.noreply.github.com> -fengerhu1 <2748250768@qq.com> -fj-y-saito <85871716+fj-y-saito@users.noreply.github.com> -fraxy-v <65565042+fraxy-v@users.noreply.github.com> -fxzjshm <11426482+fxzjshm@users.noreply.github.com> -github-actions[bot] -gliptic -gn64 -goerch -grahameth <96447521+grahameth@users.noreply.github.com> -gtygo -gwjr <502526+gwjr@users.noreply.github.com> -h-h-h-h <13482553+h-h-h-h@users.noreply.github.com> -hankcs -haopeng <657407891@qq.com> -hipudding -hoangmit -hongbo.mo <352280764@qq.com> -hopkins385 <98618192+hopkins385@users.noreply.github.com> -howlger -howlger -hutli <6594598+hutli@users.noreply.github.com> -hutli -hutli -hxer7963 -hydai -iSma -iacore <74560659+iacore@users.noreply.github.com> -icppWorld <124377669+icppWorld@users.noreply.github.com> -igardev <49397134+igardev@users.noreply.github.com> -igarnier -intelmatt <61025942+intelmatt@users.noreply.github.com> -iohub -issixx <46835150+issixx@users.noreply.github.com> -jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com> -jaime-m-p <167997752+jaime-m-p@users.noreply.github.com> -jameswu2014 <545426914@qq.com> -jason_w -jdomke <28772296+jdomke@users.noreply.github.com> -jiahao su -jiez <373447296@qq.com> -jneem -joecryptotoo <80373433+joecryptotoo@users.noreply.github.com> -johnson442 <56517414+johnson442@users.noreply.github.com> -jojorne -jon-chuang <9093549+jon-chuang@users.noreply.github.com> -jp-x-g -jukofyork <69222624+jukofyork@users.noreply.github.com> -junchao-loongson <68935141+junchao-loongson@users.noreply.github.com> -junchao-zhao <68935141+junchao-loongson@users.noreply.github.com> -jwj7140 <32943891+jwj7140@users.noreply.github.com> -k.h.lai -kaizau -kallewoof -kalomaze <66376113+kalomaze@users.noreply.github.com> -kang -katsu560 <118887472+katsu560@users.noreply.github.com> -kchro3 <62481661+kchro3@users.noreply.github.com> -khimaros -kiltyj -klosax <131523366+klosax@users.noreply.github.com> -krystiancha -kunal-vaishnavi <115581922+kunal-vaishnavi@users.noreply.github.com> -kunnis -kuronekosaiko -kustaaya <58045274+kustaaya@users.noreply.github.com> -kuvaus <22169537+kuvaus@users.noreply.github.com> -kwin1412 <42286931+kwin1412@users.noreply.github.com> -l3utterfly -laik -ldwang -le.chang -leejet -leo-pony -lexasub -lhez -limitedAtonement -liuwei-git <14815172+liuwei-git@users.noreply.github.com> -lon <114724657+longregen@users.noreply.github.com> -loonerin <132926317+loonerin@users.noreply.github.com> -ltoniazzi <61414566+ltoniazzi@users.noreply.github.com> -luoyu-intel -m3ndax -maddes8cht <55592906+maddes8cht@users.noreply.github.com> -magicse -mahorozte <41834471+mahorozte@users.noreply.github.com> -makomk -manikbhandari -maor-ps <154728172+maor-ps@users.noreply.github.com> -mashdragon <122402293+mashdragon@users.noreply.github.com> -matiaslin <45382001+matiaslin@users.noreply.github.com> -matt23654 -matteo -mdrokz -mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com> -midnight -minarchist -mj-shifu <77107165+mj-shifu@users.noreply.github.com> -mmyjona -momonga <115213907+mmnga@users.noreply.github.com> -momonga <146910567+mmngays@users.noreply.github.com> -moritzbrantner <31051084+moritzbrantner@users.noreply.github.com> -musoles <135031143+musoles@users.noreply.github.com> -mzcu -nanahi <130121847+na-na-hi@users.noreply.github.com> -ngc92 <7938269+ngc92@users.noreply.github.com> -nhamanasu <45545786+nhamanasu@users.noreply.github.com> -niansa/tuxifan -niansa/tuxifan -nickp27 -ningshanwutuobang -nold -nopperl <54780682+nopperl@users.noreply.github.com> -nusu-github <29514220+nusu-github@users.noreply.github.com> -olexiyb -omahs <73983677+omahs@users.noreply.github.com> -oobabooga <112222186+oobabooga@users.noreply.github.com> -opparco -ostix360 <55257054+ostix360@users.noreply.github.com> -pascal-lc <49066376+pascal-lc@users.noreply.github.com> -pculliton -peidaqi -pengxin99 -perserk -petterreinholdtsen -piDack <104877312+piDack@users.noreply.github.com> -pmysl -postmasters -pudepiedj -qingfengfenga <41416092+qingfengfenga@users.noreply.github.com> -qingy1337 -qouoq -qunash -rabidcopy -rankaiyx -redbeard -rhjdvsgsgks <26178113+rhjdvsgsgks@users.noreply.github.com> -rhuddleston -rimoliga <53384203+rimoliga@users.noreply.github.com> -runfuture -sandyiscool -sasha0552 -semidark -serhii-nakon <57632032+serhii-nakon@users.noreply.github.com> -sharpHL <132747147+sharpHL@users.noreply.github.com> -shibe2 -simon886212 <37953122+simon886212@users.noreply.github.com> -singularity <12184989+singularity-s0@users.noreply.github.com> -sjinzh -sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com> -slaren <2141330+slaren@users.noreply.github.com> -slaren -snadampal <87143774+snadampal@users.noreply.github.com> -someone13574 <81528246+someone13574@users.noreply.github.com> -standby24x7 -staviq -stduhpf -strawberrymelonpanda <152940198+strawberrymelonpanda@users.noreply.github.com> -swittk -takov751 <40316768+takov751@users.noreply.github.com> -tarcey -tc-mb <157115220+tc-mb@users.noreply.github.com> -texmex76 <40733439+texmex76@users.noreply.github.com> -thement <40525767+thement@users.noreply.github.com> -theraininsky <76763719+theraininsky@users.noreply.github.com> -thewh1teagle <61390950+thewh1teagle@users.noreply.github.com> -tjohnman -toyer <2042519524@qq.com> -tslmy -tv1wnd <55383215+tv1wnd@users.noreply.github.com> -ubik2 -uint256_t -uint256_t -unbounded -uvos -uvos -valiray <133289098+valiray@users.noreply.github.com> -vb -vik -viric -vmobilis <75476228+vmobilis@users.noreply.github.com> -vodkaslime <646329483@qq.com> -vvhg1 <94630311+vvhg1@users.noreply.github.com> -vxiiduu <73044267+vxiiduu@users.noreply.github.com> -wangshuai09 <391746016@qq.com> -wbpxre150 <100937007+wbpxre150@users.noreply.github.com> -whoreson <139810751+whoreson@users.noreply.github.com> woachk <24752637+woachk@users.noreply.github.com> wonjun Jang woodx <124784234+woodx9@users.noreply.github.com> +Woof Dog <197125663+woof-dog@users.noreply.github.com> +wooksong +Wouter <9594229+DifferentialityDevelopment@users.noreply.github.com> +Wroclaw +wsbagnsv1 +Wu Jian Ping +Wu Jian Ping wwoodsTM <104587230+wwoodsTM@users.noreply.github.com> wzy <32936898+Freed-Wu@users.noreply.github.com> xaedes xaedes xctan +xctan +Xiake Sun +Xiang (Kevin) Li +Xiangyan Sun +Xiao-Yong Jin xiaobing318 <71554036+xiaobing318@users.noreply.github.com> xiaofei +XiaotaoChen +Xiaoyi Chen +Xie Yanbo +Xingchen Song(宋星辰) +Xinpeng Dou <15529241576@163.com> +Xinpeng Dou <81913537+Dou-Git@users.noreply.github.com> xloem <0xloem@gmail.com> +Xuan Son Nguyen +Xuan-Son Nguyen +Xuan-Son Nguyen +yael-works <106673277+yael-works@users.noreply.github.com> +YaelGitAccount <38328157276@mby.co.il> +YaelLogic +Yaiko +YangLe yangli2 +Yann Follet <131855179+YannFollet@users.noreply.github.com> +Yaroslav +Yavor Ivanov +Yazan Agha-Schrader +Ycros <18012+ycros@users.noreply.github.com> +YehuditE +Yibo Cai +Yibo Cai +yifant-code +Yiming Cui +Yishuo Wang ymcki <84055651+ymcki@users.noreply.github.com> +Yoshi Suhara +Yoshi Suhara +Yoshi_likes_e4 <104140648+pt13762104@users.noreply.github.com> +Younes Belkada <49240599+younesbelkada@users.noreply.github.com> +Yuanhao Ji +Yuannan +Yueh-Po Peng <94939112+y10ab1@users.noreply.github.com> +Yüg +Yui +Yuichiro Utsumi <81412151+utsumi-fj@users.noreply.github.com> yuiseki +yulo <77381088+zhang-hui-yulo@users.noreply.github.com> +yumeyao +yummy <57988893+jk3456a@users.noreply.github.com> +Yun Dou +Yuri Khrustalev yuri@FreeBSD +Yusuf Kağan Hanoğlu +Yuval Peled <31162840+Yuval-Peled@users.noreply.github.com> +Yuxuan Zhang <2448370773@qq.com> +Z +Zagaj zakkor +Zane Shannon +Zay <95888118+isaiahbjork@users.noreply.github.com> +Zenix +Zhang Peiyuan zhangkaihuo +ZHAOKAI WANG +Zheng.Deng <32841220+dengzheng-cloud@users.noreply.github.com> zhentaoyu +Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com> +Zheyuan Chen +Zhiyong Wang <85110830+ravenouse@users.noreply.github.com> +Zhiyuan Li +Zhiyuan Li zhouwg <6889919+zhouwg@users.noreply.github.com> zhouwg +ZhouYuChen +Ziad Ben Hadj-Alouane +Ziang Wu <97337387+ZiangWu-77@users.noreply.github.com> zrm -Ștefan-Gabriel Muscalu -杨朱 · Kiki -源文雨 <41315874+fumiama@users.noreply.github.com> -蕭澧邦 <45505768+shou692199@users.noreply.github.com> -谢乃闻 -Нияз Гарифзянов <112617865+garrnizon@users.noreply.github.com> +Zsapi diff --git a/CMakeLists.txt b/CMakeLists.txt index d24fa080ae..6d4ed67020 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -164,29 +164,6 @@ llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL) llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16) llama_option_depr(WARNING LLAMA_CANN GGML_CANN) -if (NOT MSVC) - if (LLAMA_SANITIZE_THREAD) - message(STATUS "Using -fsanitize=thread") - - add_compile_options(-fsanitize=thread) - link_libraries (-fsanitize=thread) - endif() - - if (LLAMA_SANITIZE_ADDRESS) - message(STATUS "Using -fsanitize=address") - - add_compile_options(-fsanitize=address -fno-omit-frame-pointer) - link_libraries (-fsanitize=address) - endif() - - if (LLAMA_SANITIZE_UNDEFINED) - message(STATUS "Using -fsanitize=undefined") - - add_compile_options(-fsanitize=undefined) - link_libraries (-fsanitize=undefined) - endif() -endif() - include("cmake/license.cmake") license_add_file("llama.cpp" "LICENSE") diff --git a/CODEOWNERS b/CODEOWNERS index e573a3d2e6..9d252c9b8d 100644 --- a/CODEOWNERS +++ b/CODEOWNERS @@ -27,6 +27,7 @@ /examples/batched.swift/ @ggerganov /examples/batched/ @ggerganov /examples/convert-llama2c-to-ggml/ @ggerganov +/examples/debug/ @danbev @pwilkin /examples/deprecation-warning/ @ggerganov /examples/diffusion/ @am17an /examples/embedding/ @ggerganov diff --git a/LICENSE b/LICENSE index acb96ce78e..e7dca554bc 100644 --- a/LICENSE +++ b/LICENSE @@ -1,6 +1,6 @@ MIT License -Copyright (c) 2023-2024 The ggml authors +Copyright (c) 2023-2026 The ggml authors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal diff --git a/benches/dgx-spark/dgx-spark.md b/benches/dgx-spark/dgx-spark.md index ec6c20d8a0..fd5c4e2c78 100644 --- a/benches/dgx-spark/dgx-spark.md +++ b/benches/dgx-spark/dgx-spark.md @@ -8,7 +8,7 @@ g++ --version g++ (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 nvidia-smi -Sun Nov 2 10:43:25 2025 +Thu Feb 5 13:49:40 2026 +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 580.95.05 Driver Version: 580.95.05 CUDA Version: 13.0 | +-----------------------------------------+------------------------+----------------------+ @@ -17,7 +17,7 @@ Sun Nov 2 10:43:25 2025 | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GB10 On | 0000000F:01:00.0 Off | N/A | -| N/A 35C P8 4W / N/A | Not Supported | 0% Default | +| N/A 47C P0 13W / N/A | Not Supported | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ ``` @@ -29,46 +29,46 @@ Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF - `llama-batched-bench` -main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 | PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | |-------|--------|------|--------|----------|----------|----------|----------|----------|----------| -| 512 | 32 | 1 | 544 | 0.374 | 1369.01 | 0.383 | 83.64 | 0.757 | 719.01 | -| 512 | 32 | 2 | 1088 | 0.274 | 3741.35 | 0.659 | 97.14 | 0.933 | 1166.66 | -| 512 | 32 | 4 | 2176 | 0.526 | 3896.47 | 0.817 | 156.73 | 1.342 | 1621.08 | -| 512 | 32 | 8 | 4352 | 1.044 | 3925.10 | 0.987 | 259.44 | 2.030 | 2143.56 | -| 512 | 32 | 16 | 8704 | 2.076 | 3945.84 | 1.248 | 410.32 | 3.324 | 2618.60 | -| 512 | 32 | 32 | 17408 | 4.170 | 3929.28 | 1.630 | 628.40 | 5.799 | 3001.76 | -| 4096 | 32 | 1 | 4128 | 1.083 | 3782.66 | 0.394 | 81.21 | 1.477 | 2795.13 | -| 4096 | 32 | 2 | 8256 | 2.166 | 3782.72 | 0.725 | 88.28 | 2.891 | 2856.14 | -| 4096 | 32 | 4 | 16512 | 4.333 | 3780.88 | 0.896 | 142.82 | 5.230 | 3157.38 | -| 4096 | 32 | 8 | 33024 | 8.618 | 3802.14 | 1.155 | 221.69 | 9.773 | 3379.08 | -| 4096 | 32 | 16 | 66048 | 17.330 | 3781.73 | 1.598 | 320.34 | 18.928 | 3489.45 | -| 4096 | 32 | 32 | 132096 | 34.671 | 3780.48 | 2.336 | 438.35 | 37.007 | 3569.51 | -| 8192 | 32 | 1 | 8224 | 2.233 | 3668.56 | 0.438 | 72.98 | 2.671 | 3078.44 | -| 8192 | 32 | 2 | 16448 | 4.425 | 3702.95 | 0.756 | 84.66 | 5.181 | 3174.95 | -| 8192 | 32 | 4 | 32896 | 8.859 | 3698.64 | 0.967 | 132.38 | 9.826 | 3347.72 | -| 8192 | 32 | 8 | 65792 | 17.714 | 3699.57 | 1.277 | 200.52 | 18.991 | 3464.35 | -| 8192 | 32 | 16 | 131584 | 35.494 | 3692.84 | 1.841 | 278.12 | 37.335 | 3524.46 | -| 8192 | 32 | 32 | 263168 | 70.949 | 3694.82 | 2.798 | 365.99 | 73.747 | 3568.53 | +| 512 | 32 | 1 | 544 | 0.270 | 1895.57 | 0.399 | 80.13 | 0.669 | 812.60 | +| 512 | 32 | 2 | 1088 | 0.230 | 4451.23 | 0.583 | 109.71 | 0.813 | 1337.56 | +| 512 | 32 | 4 | 2176 | 0.437 | 4688.87 | 0.820 | 156.03 | 1.257 | 1730.91 | +| 512 | 32 | 8 | 4352 | 0.863 | 4744.23 | 0.942 | 271.79 | 1.805 | 2410.73 | +| 512 | 32 | 16 | 8704 | 1.725 | 4748.19 | 1.173 | 436.38 | 2.899 | 3002.85 | +| 512 | 32 | 32 | 17408 | 3.437 | 4767.38 | 1.503 | 681.49 | 4.939 | 3524.40 | +| 4096 | 32 | 1 | 4128 | 0.907 | 4513.91 | 0.407 | 78.54 | 1.315 | 3139.56 | +| 4096 | 32 | 2 | 8256 | 1.796 | 4560.42 | 0.625 | 102.37 | 2.422 | 3409.45 | +| 4096 | 32 | 4 | 16512 | 3.596 | 4555.66 | 0.888 | 144.11 | 4.485 | 3681.93 | +| 4096 | 32 | 8 | 33024 | 7.184 | 4561.44 | 1.098 | 233.11 | 8.282 | 3987.51 | +| 4096 | 32 | 16 | 66048 | 14.369 | 4560.82 | 1.503 | 340.74 | 15.872 | 4161.30 | +| 4096 | 32 | 32 | 132096 | 28.760 | 4557.52 | 2.162 | 473.59 | 30.922 | 4271.95 | +| 8192 | 32 | 1 | 8224 | 1.859 | 4405.59 | 0.430 | 74.36 | 2.290 | 3591.61 | +| 8192 | 32 | 2 | 16448 | 3.698 | 4430.02 | 0.656 | 97.59 | 4.354 | 3777.47 | +| 8192 | 32 | 4 | 32896 | 7.403 | 4426.10 | 0.957 | 133.82 | 8.360 | 3934.97 | +| 8192 | 32 | 8 | 65792 | 14.802 | 4427.63 | 1.222 | 209.44 | 16.024 | 4105.87 | +| 8192 | 32 | 16 | 131584 | 29.596 | 4428.67 | 1.741 | 294.13 | 31.337 | 4199.00 | +| 8192 | 32 | 32 | 263168 | 59.169 | 4430.42 | 2.619 | 390.92 | 61.789 | 4259.17 | - `llama-bench` -| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s | -| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 3714.25 ± 20.36 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 86.58 ± 0.43 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 3445.17 ± 17.85 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 81.72 ± 0.53 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 3218.78 ± 11.34 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.86 ± 0.64 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 2732.83 ± 7.17 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 71.57 ± 0.51 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 2119.75 ± 12.81 | -| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 62.33 ± 0.24 | +| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 4505.82 ± 12.90 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 83.43 ± 0.59 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 4158.34 ± 18.84 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 79.22 ± 0.60 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 3993.81 ± 17.55 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 75.22 ± 1.05 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 3449.98 ± 12.13 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 70.36 ± 0.37 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 2689.42 ± 18.89 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 61.65 ± 0.30 | -build: eeee367de (6989) +build: 11fb327bf (7941) ## ggml-org/gpt-oss-120b-GGUF @@ -77,46 +77,46 @@ Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF - `llama-batched-bench` -main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 | PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | |-------|--------|------|--------|----------|----------|----------|----------|----------|----------| -| 512 | 32 | 1 | 544 | 0.571 | 897.18 | 0.543 | 58.96 | 1.113 | 488.60 | -| 512 | 32 | 2 | 1088 | 0.593 | 1725.37 | 1.041 | 61.45 | 1.635 | 665.48 | -| 512 | 32 | 4 | 2176 | 1.043 | 1963.15 | 1.334 | 95.95 | 2.377 | 915.36 | -| 512 | 32 | 8 | 4352 | 2.099 | 1951.63 | 1.717 | 149.07 | 3.816 | 1140.45 | -| 512 | 32 | 16 | 8704 | 4.207 | 1947.12 | 2.311 | 221.56 | 6.518 | 1335.35 | -| 512 | 32 | 32 | 17408 | 8.422 | 1945.36 | 3.298 | 310.46 | 11.720 | 1485.27 | -| 4096 | 32 | 1 | 4128 | 2.138 | 1915.88 | 0.571 | 56.09 | 2.708 | 1524.12 | -| 4096 | 32 | 2 | 8256 | 4.266 | 1920.25 | 1.137 | 56.27 | 5.404 | 1527.90 | -| 4096 | 32 | 4 | 16512 | 8.564 | 1913.02 | 1.471 | 86.99 | 10.036 | 1645.29 | -| 4096 | 32 | 8 | 33024 | 17.092 | 1917.19 | 1.979 | 129.33 | 19.071 | 1731.63 | -| 4096 | 32 | 16 | 66048 | 34.211 | 1915.65 | 2.850 | 179.66 | 37.061 | 1782.15 | -| 4096 | 32 | 32 | 132096 | 68.394 | 1916.44 | 4.381 | 233.72 | 72.775 | 1815.13 | -| 8192 | 32 | 1 | 8224 | 4.349 | 1883.45 | 0.620 | 51.65 | 4.969 | 1655.04 | -| 8192 | 32 | 2 | 16448 | 8.674 | 1888.83 | 1.178 | 54.33 | 9.852 | 1669.48 | -| 8192 | 32 | 4 | 32896 | 17.351 | 1888.55 | 1.580 | 81.01 | 18.931 | 1737.68 | -| 8192 | 32 | 8 | 65792 | 34.743 | 1886.31 | 2.173 | 117.80 | 36.916 | 1782.20 | -| 8192 | 32 | 16 | 131584 | 69.413 | 1888.29 | 3.297 | 155.28 | 72.710 | 1809.70 | -| 8192 | 32 | 32 | 263168 | 138.903 | 1887.24 | 5.004 | 204.63 | 143.907 | 1828.73 | +| 512 | 32 | 1 | 544 | 0.445 | 1151.80 | 0.560 | 57.14 | 1.005 | 541.53 | +| 512 | 32 | 2 | 1088 | 0.472 | 2169.85 | 0.874 | 73.27 | 1.345 | 808.65 | +| 512 | 32 | 4 | 2176 | 0.826 | 2480.33 | 1.299 | 98.51 | 2.125 | 1023.94 | +| 512 | 32 | 8 | 4352 | 1.644 | 2491.67 | 1.608 | 159.18 | 3.252 | 1338.20 | +| 512 | 32 | 16 | 8704 | 3.292 | 2488.35 | 2.117 | 241.85 | 5.409 | 1609.13 | +| 512 | 32 | 32 | 17408 | 6.604 | 2481.07 | 2.898 | 353.31 | 9.502 | 1832.04 | +| 4096 | 32 | 1 | 4128 | 1.698 | 2412.65 | 0.580 | 55.21 | 2.277 | 1812.66 | +| 4096 | 32 | 2 | 8256 | 3.399 | 2409.88 | 0.934 | 68.53 | 4.333 | 1905.27 | +| 4096 | 32 | 4 | 16512 | 6.823 | 2401.21 | 1.411 | 90.72 | 8.234 | 2005.30 | +| 4096 | 32 | 8 | 33024 | 13.574 | 2413.97 | 1.841 | 139.07 | 15.415 | 2142.31 | +| 4096 | 32 | 16 | 66048 | 27.176 | 2411.52 | 2.609 | 196.26 | 29.785 | 2217.49 | +| 4096 | 32 | 32 | 132096 | 54.359 | 2411.23 | 3.905 | 262.20 | 58.264 | 2267.19 | +| 8192 | 32 | 1 | 8224 | 3.491 | 2346.81 | 0.613 | 52.23 | 4.103 | 2004.21 | +| 8192 | 32 | 2 | 16448 | 6.939 | 2361.03 | 0.981 | 65.21 | 7.921 | 2076.56 | +| 8192 | 32 | 4 | 32896 | 13.888 | 2359.40 | 1.511 | 84.71 | 15.399 | 2136.21 | +| 8192 | 32 | 8 | 65792 | 27.756 | 2361.18 | 2.034 | 125.86 | 29.790 | 2208.56 | +| 8192 | 32 | 16 | 131584 | 55.554 | 2359.34 | 3.021 | 169.49 | 58.575 | 2246.41 | +| 8192 | 32 | 32 | 263168 | 111.036 | 2360.89 | 4.537 | 225.72 | 115.573 | 2277.08 | - `llama-bench` -| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s | -| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 1919.36 ± 5.01 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 60.40 ± 0.30 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 1825.30 ± 6.37 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 56.94 ± 0.29 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1739.19 ± 6.00 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 52.51 ± 0.42 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1536.75 ± 4.27 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 49.33 ± 0.27 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1255.85 ± 3.26 | -| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 42.99 ± 0.18 | +| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2443.91 ± 7.47 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 58.72 ± 0.20 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2309.84 ± 3.63 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 55.67 ± 0.35 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2216.68 ± 10.16 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 52.87 ± 0.43 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1956.31 ± 6.39 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 49.45 ± 0.20 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1567.08 ± 11.79 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 42.76 ± 0.14 | -build: eeee367de (6989) +build: 11fb327bf (7941) ## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF @@ -125,46 +125,46 @@ Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF - `llama-batched-bench` -main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 | PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | |-------|--------|------|--------|----------|----------|----------|----------|----------|----------| -| 512 | 32 | 1 | 544 | 0.398 | 1285.90 | 0.530 | 60.41 | 0.928 | 586.27 | -| 512 | 32 | 2 | 1088 | 0.386 | 2651.65 | 0.948 | 67.50 | 1.334 | 815.38 | -| 512 | 32 | 4 | 2176 | 0.666 | 3076.37 | 1.209 | 105.87 | 1.875 | 1160.71 | -| 512 | 32 | 8 | 4352 | 1.325 | 3091.39 | 1.610 | 158.98 | 2.935 | 1482.65 | -| 512 | 32 | 16 | 8704 | 2.664 | 3075.58 | 2.150 | 238.19 | 4.813 | 1808.39 | -| 512 | 32 | 32 | 17408 | 5.336 | 3070.31 | 2.904 | 352.59 | 8.240 | 2112.50 | -| 4096 | 32 | 1 | 4128 | 1.444 | 2836.81 | 0.581 | 55.09 | 2.025 | 2038.81 | -| 4096 | 32 | 2 | 8256 | 2.872 | 2852.14 | 1.084 | 59.06 | 3.956 | 2086.99 | -| 4096 | 32 | 4 | 16512 | 5.744 | 2852.32 | 1.440 | 88.90 | 7.184 | 2298.47 | -| 4096 | 32 | 8 | 33024 | 11.463 | 2858.68 | 2.068 | 123.78 | 13.531 | 2440.65 | -| 4096 | 32 | 16 | 66048 | 22.915 | 2859.95 | 3.018 | 169.67 | 25.933 | 2546.90 | -| 4096 | 32 | 32 | 132096 | 45.956 | 2852.10 | 4.609 | 222.18 | 50.565 | 2612.39 | -| 8192 | 32 | 1 | 8224 | 3.063 | 2674.72 | 0.693 | 46.20 | 3.755 | 2189.92 | -| 8192 | 32 | 2 | 16448 | 6.109 | 2681.87 | 1.214 | 52.71 | 7.323 | 2245.98 | -| 8192 | 32 | 4 | 32896 | 12.197 | 2686.63 | 1.682 | 76.11 | 13.878 | 2370.30 | -| 8192 | 32 | 8 | 65792 | 24.409 | 2684.94 | 2.556 | 100.17 | 26.965 | 2439.95 | -| 8192 | 32 | 16 | 131584 | 48.753 | 2688.50 | 3.994 | 128.20 | 52.747 | 2494.64 | -| 8192 | 32 | 32 | 263168 | 97.508 | 2688.42 | 6.528 | 156.86 | 104.037 | 2529.57 | +| 512 | 32 | 1 | 544 | 0.393 | 1303.73 | 0.548 | 58.36 | 0.941 | 578.10 | +| 512 | 32 | 2 | 1088 | 0.387 | 2648.68 | 0.910 | 70.35 | 1.296 | 839.27 | +| 512 | 32 | 4 | 2176 | 0.659 | 3107.63 | 1.302 | 98.33 | 1.961 | 1109.77 | +| 512 | 32 | 8 | 4352 | 1.322 | 3099.35 | 1.669 | 153.42 | 2.990 | 1455.43 | +| 512 | 32 | 16 | 8704 | 2.639 | 3104.63 | 2.212 | 231.44 | 4.851 | 1794.32 | +| 512 | 32 | 32 | 17408 | 5.284 | 3100.80 | 2.955 | 346.53 | 8.239 | 2112.93 | +| 4096 | 32 | 1 | 4128 | 1.417 | 2890.36 | 0.598 | 53.51 | 2.015 | 2048.45 | +| 4096 | 32 | 2 | 8256 | 2.829 | 2895.62 | 1.019 | 62.82 | 3.848 | 2145.60 | +| 4096 | 32 | 4 | 16512 | 5.656 | 2896.96 | 1.528 | 83.79 | 7.183 | 2298.71 | +| 4096 | 32 | 8 | 33024 | 11.338 | 2890.02 | 2.127 | 120.36 | 13.465 | 2452.53 | +| 4096 | 32 | 16 | 66048 | 22.709 | 2885.96 | 3.104 | 164.97 | 25.812 | 2558.79 | +| 4096 | 32 | 32 | 132096 | 45.301 | 2893.35 | 4.723 | 216.80 | 50.024 | 2640.63 | +| 8192 | 32 | 1 | 8224 | 3.022 | 2711.09 | 0.678 | 47.20 | 3.700 | 2222.89 | +| 8192 | 32 | 2 | 16448 | 6.039 | 2713.01 | 1.149 | 55.70 | 7.188 | 2288.21 | +| 8192 | 32 | 4 | 32896 | 12.050 | 2719.35 | 1.785 | 71.69 | 13.835 | 2377.67 | +| 8192 | 32 | 8 | 65792 | 24.113 | 2717.90 | 2.629 | 97.39 | 26.741 | 2460.31 | +| 8192 | 32 | 16 | 131584 | 48.178 | 2720.58 | 4.099 | 124.91 | 52.277 | 2517.06 | +| 8192 | 32 | 32 | 263168 | 96.401 | 2719.31 | 6.696 | 152.93 | 103.097 | 2552.63 | - `llama-bench` -| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s | -| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2925.55 ± 4.25 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 62.80 ± 0.27 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2531.01 ± 6.79 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 55.86 ± 0.33 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 2244.39 ± 5.33 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 45.95 ± 0.33 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1783.17 ± 3.68 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 39.07 ± 0.10 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1241.90 ± 3.13 | -| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 29.92 ± 0.06 | +| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2986.97 ± 18.87 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 61.06 ± 0.23 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2633.45 ± 6.26 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 54.77 ± 0.28 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2354.14 ± 3.84 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 48.02 ± 0.40 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1908.86 ± 4.25 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 40.23 ± 0.10 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1348.17 ± 2.00 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 30.21 ± 0.04 | -build: eeee367de (6989) +build: 11fb327bf (7941) ## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF @@ -173,46 +173,46 @@ Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF - `llama-batched-bench` -main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 | PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | |-------|--------|------|--------|----------|----------|----------|----------|----------|----------| -| 512 | 32 | 1 | 544 | 0.211 | 2421.57 | 1.055 | 30.33 | 1.266 | 429.57 | -| 512 | 32 | 2 | 1088 | 0.419 | 2441.34 | 1.130 | 56.65 | 1.549 | 702.32 | -| 512 | 32 | 4 | 2176 | 0.873 | 2345.54 | 1.174 | 108.99 | 2.048 | 1062.74 | -| 512 | 32 | 8 | 4352 | 1.727 | 2371.85 | 1.254 | 204.22 | 2.980 | 1460.19 | -| 512 | 32 | 16 | 8704 | 3.452 | 2373.22 | 1.492 | 343.16 | 4.944 | 1760.56 | -| 512 | 32 | 32 | 17408 | 6.916 | 2368.93 | 1.675 | 611.51 | 8.591 | 2026.36 | -| 4096 | 32 | 1 | 4128 | 1.799 | 2277.26 | 1.084 | 29.51 | 2.883 | 1431.91 | -| 4096 | 32 | 2 | 8256 | 3.577 | 2290.01 | 1.196 | 53.50 | 4.774 | 1729.51 | -| 4096 | 32 | 4 | 16512 | 7.172 | 2284.36 | 1.313 | 97.50 | 8.485 | 1946.00 | -| 4096 | 32 | 8 | 33024 | 14.341 | 2284.96 | 1.520 | 168.46 | 15.860 | 2082.18 | -| 4096 | 32 | 16 | 66048 | 28.675 | 2285.44 | 1.983 | 258.21 | 30.658 | 2154.33 | -| 4096 | 32 | 32 | 132096 | 57.354 | 2285.32 | 2.640 | 387.87 | 59.994 | 2201.82 | -| 8192 | 32 | 1 | 8224 | 3.701 | 2213.75 | 1.119 | 28.59 | 4.820 | 1706.34 | -| 8192 | 32 | 2 | 16448 | 7.410 | 2211.19 | 1.272 | 50.31 | 8.682 | 1894.56 | -| 8192 | 32 | 4 | 32896 | 14.802 | 2213.83 | 1.460 | 87.68 | 16.261 | 2022.96 | -| 8192 | 32 | 8 | 65792 | 29.609 | 2213.35 | 1.781 | 143.74 | 31.390 | 2095.93 | -| 8192 | 32 | 16 | 131584 | 59.229 | 2212.96 | 2.495 | 205.17 | 61.725 | 2131.79 | -| 8192 | 32 | 32 | 263168 | 118.449 | 2213.15 | 3.714 | 275.75 | 122.162 | 2154.25 | +| 512 | 32 | 1 | 544 | 0.212 | 2420.12 | 1.100 | 29.10 | 1.311 | 414.85 | +| 512 | 32 | 2 | 1088 | 0.428 | 2393.89 | 1.185 | 54.00 | 1.613 | 674.56 | +| 512 | 32 | 4 | 2176 | 0.894 | 2290.41 | 1.229 | 104.17 | 2.123 | 1025.02 | +| 512 | 32 | 8 | 4352 | 1.758 | 2330.36 | 1.319 | 194.15 | 3.076 | 1414.70 | +| 512 | 32 | 16 | 8704 | 3.508 | 2335.21 | 1.543 | 331.90 | 5.051 | 1723.33 | +| 512 | 32 | 32 | 17408 | 7.035 | 2328.93 | 1.738 | 589.21 | 8.773 | 1984.29 | +| 4096 | 32 | 1 | 4128 | 1.831 | 2237.25 | 1.125 | 28.44 | 2.956 | 1396.42 | +| 4096 | 32 | 2 | 8256 | 3.642 | 2249.48 | 1.253 | 51.07 | 4.895 | 1686.64 | +| 4096 | 32 | 4 | 16512 | 7.274 | 2252.26 | 1.380 | 92.72 | 8.655 | 1907.81 | +| 4096 | 32 | 8 | 33024 | 14.576 | 2248.09 | 1.617 | 158.29 | 16.193 | 2039.37 | +| 4096 | 32 | 16 | 66048 | 29.138 | 2249.17 | 2.081 | 246.01 | 31.219 | 2115.63 | +| 4096 | 32 | 32 | 132096 | 58.275 | 2249.19 | 2.814 | 363.87 | 61.089 | 2162.34 | +| 8192 | 32 | 1 | 8224 | 3.757 | 2180.26 | 1.184 | 27.03 | 4.941 | 1664.37 | +| 8192 | 32 | 2 | 16448 | 7.522 | 2178.05 | 1.341 | 47.73 | 8.863 | 1855.77 | +| 8192 | 32 | 4 | 32896 | 15.043 | 2178.25 | 1.548 | 82.69 | 16.591 | 1982.74 | +| 8192 | 32 | 8 | 65792 | 30.111 | 2176.49 | 1.937 | 132.13 | 32.048 | 2052.90 | +| 8192 | 32 | 16 | 131584 | 60.405 | 2169.90 | 2.706 | 189.21 | 63.111 | 2084.97 | +| 8192 | 32 | 32 | 263168 | 120.439 | 2176.58 | 3.993 | 256.46 | 124.432 | 2114.96 | - `llama-bench` -| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s | -| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2272.74 ± 4.68 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 30.66 ± 0.02 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2107.80 ± 9.55 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 29.71 ± 0.05 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1937.80 ± 6.75 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 28.86 ± 0.04 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1641.12 ± 1.78 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 27.24 ± 0.04 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1296.02 ± 2.67 | -| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 23.78 ± 0.03 | +| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2250.28 ± 6.41 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 29.43 ± 0.02 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2100.19 ± 8.96 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 28.61 ± 0.02 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2007.56 ± 4.16 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 27.38 ± 0.09 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1779.11 ± 6.42 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 25.72 ± 0.03 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1471.23 ± 1.71 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 22.51 ± 0.02 | -build: eeee367de (6989) +build: 11fb327bf (7941) ## ggml-org/gemma-3-4b-it-qat-GGUF @@ -221,44 +221,91 @@ Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF - `llama-batched-bench` -main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 | PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | |-------|--------|------|--------|----------|----------|----------|----------|----------|----------| -| 512 | 32 | 1 | 544 | 0.094 | 5434.73 | 0.394 | 81.21 | 0.488 | 1114.15 | -| 512 | 32 | 2 | 1088 | 0.168 | 6091.68 | 0.498 | 128.52 | 0.666 | 1633.41 | -| 512 | 32 | 4 | 2176 | 0.341 | 6010.68 | 0.542 | 236.37 | 0.882 | 2466.43 | -| 512 | 32 | 8 | 4352 | 0.665 | 6161.46 | 0.678 | 377.74 | 1.342 | 3241.72 | -| 512 | 32 | 16 | 8704 | 1.323 | 6193.19 | 0.902 | 567.41 | 2.225 | 3911.74 | -| 512 | 32 | 32 | 17408 | 2.642 | 6202.03 | 1.231 | 832.03 | 3.872 | 4495.36 | -| 4096 | 32 | 1 | 4128 | 0.701 | 5840.49 | 0.439 | 72.95 | 1.140 | 3621.23 | -| 4096 | 32 | 2 | 8256 | 1.387 | 5906.82 | 0.574 | 111.48 | 1.961 | 4210.12 | -| 4096 | 32 | 4 | 16512 | 2.758 | 5940.33 | 0.651 | 196.58 | 3.409 | 4843.33 | -| 4096 | 32 | 8 | 33024 | 5.491 | 5967.56 | 0.876 | 292.40 | 6.367 | 5187.12 | -| 4096 | 32 | 16 | 66048 | 10.978 | 5969.58 | 1.275 | 401.69 | 12.253 | 5390.38 | -| 4096 | 32 | 32 | 132096 | 21.944 | 5972.93 | 1.992 | 514.16 | 23.936 | 5518.73 | -| 8192 | 32 | 1 | 8224 | 1.402 | 5841.91 | 0.452 | 70.73 | 1.855 | 4434.12 | -| 8192 | 32 | 2 | 16448 | 2.793 | 5865.34 | 0.637 | 100.55 | 3.430 | 4795.51 | -| 8192 | 32 | 4 | 32896 | 5.564 | 5889.64 | 0.770 | 166.26 | 6.334 | 5193.95 | -| 8192 | 32 | 8 | 65792 | 11.114 | 5896.44 | 1.122 | 228.07 | 12.237 | 5376.51 | -| 8192 | 32 | 16 | 131584 | 22.210 | 5901.38 | 1.789 | 286.15 | 24.000 | 5482.74 | -| 8192 | 32 | 32 | 263168 | 44.382 | 5906.56 | 3.044 | 336.38 | 47.426 | 5549.02 | +| 512 | 32 | 1 | 544 | 0.092 | 5566.97 | 0.412 | 77.63 | 0.504 | 1078.95 | +| 512 | 32 | 2 | 1088 | 0.161 | 6345.67 | 0.522 | 122.70 | 0.683 | 1593.06 | +| 512 | 32 | 4 | 2176 | 0.325 | 6309.87 | 0.562 | 227.68 | 0.887 | 2453.87 | +| 512 | 32 | 8 | 4352 | 0.643 | 6374.42 | 0.685 | 373.67 | 1.328 | 3277.94 | +| 512 | 32 | 16 | 8704 | 1.277 | 6413.64 | 0.915 | 559.47 | 2.192 | 3970.01 | +| 512 | 32 | 32 | 17408 | 2.518 | 6506.57 | 1.249 | 819.61 | 3.767 | 4620.64 | +| 4096 | 32 | 1 | 4128 | 0.674 | 6079.68 | 0.453 | 70.60 | 1.127 | 3662.88 | +| 4096 | 32 | 2 | 8256 | 1.335 | 6137.82 | 0.627 | 102.03 | 1.962 | 4208.11 | +| 4096 | 32 | 4 | 16512 | 2.657 | 6167.35 | 0.749 | 170.92 | 3.405 | 4848.71 | +| 4096 | 32 | 8 | 33024 | 5.307 | 6173.91 | 0.974 | 262.89 | 6.281 | 5257.53 | +| 4096 | 32 | 16 | 66048 | 10.610 | 6176.96 | 1.379 | 371.42 | 11.988 | 5509.40 | +| 4096 | 32 | 32 | 132096 | 21.213 | 6178.89 | 2.122 | 482.50 | 23.335 | 5660.82 | +| 8192 | 32 | 1 | 8224 | 1.359 | 6027.34 | 0.467 | 68.52 | 1.826 | 4503.48 | +| 8192 | 32 | 2 | 16448 | 2.699 | 6069.68 | 0.653 | 98.03 | 3.352 | 4906.68 | +| 8192 | 32 | 4 | 32896 | 5.366 | 6106.74 | 0.818 | 156.55 | 6.184 | 5319.96 | +| 8192 | 32 | 8 | 65792 | 10.755 | 6093.50 | 1.174 | 218.04 | 11.929 | 5515.22 | +| 8192 | 32 | 16 | 131584 | 21.484 | 6100.82 | 1.829 | 279.90 | 23.314 | 5644.11 | +| 8192 | 32 | 32 | 263168 | 42.950 | 6103.40 | 3.058 | 334.91 | 46.008 | 5720.05 | - `llama-bench` -| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s | -| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 5810.04 ± 21.71 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 84.54 ± 0.18 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 5288.04 ± 3.54 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 78.82 ± 1.37 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 4960.43 ± 16.64 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.13 ± 0.30 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 4495.92 ± 31.11 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 72.37 ± 0.29 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 3746.90 ± 40.01 | -| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 63.02 ± 0.20 | +| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 5948.74 ± 10.61 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 81.05 ± 0.20 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 5652.69 ± 34.29 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 76.37 ± 0.58 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 5509.57 ± 40.69 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 71.61 ± 0.80 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 5340.86 ± 36.92 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 70.89 ± 0.34 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 5023.30 ± 13.52 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 62.28 ± 0.30 | -build: eeee367de (6989) +build: 11fb327bf (7941) +## ggml-org/GLM-4.7-Flash-GGUF + +Model: https://huggingface.co/ggml-org/GLM-4.7-Flash-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.433 | 1181.83 | 0.693 | 46.16 | 1.126 | 482.94 | +| 512 | 32 | 2 | 1088 | 0.439 | 2334.46 | 1.034 | 61.89 | 1.473 | 738.75 | +| 512 | 32 | 4 | 2176 | 0.772 | 2654.46 | 1.459 | 87.76 | 2.230 | 975.77 | +| 512 | 32 | 8 | 4352 | 1.541 | 2658.78 | 2.043 | 125.31 | 3.583 | 1214.47 | +| 512 | 32 | 16 | 8704 | 3.083 | 2656.91 | 2.675 | 191.42 | 5.758 | 1511.62 | +| 512 | 32 | 32 | 17408 | 6.159 | 2660.12 | 3.615 | 283.24 | 9.774 | 1780.98 | +| 4096 | 32 | 1 | 4128 | 1.915 | 2139.30 | 0.725 | 44.14 | 2.640 | 1563.83 | +| 4096 | 32 | 2 | 8256 | 3.834 | 2136.40 | 1.119 | 57.21 | 4.953 | 1666.81 | +| 4096 | 32 | 4 | 16512 | 7.636 | 2145.72 | 1.631 | 78.49 | 9.266 | 1781.93 | +| 4096 | 32 | 8 | 33024 | 15.295 | 2142.40 | 2.344 | 109.21 | 17.639 | 1872.20 | +| 4096 | 32 | 16 | 66048 | 30.573 | 2143.62 | 3.773 | 135.70 | 34.346 | 1923.04 | +| 4096 | 32 | 32 | 132096 | 61.282 | 2138.82 | 5.795 | 176.71 | 67.077 | 1969.31 | +| 8192 | 32 | 1 | 8224 | 4.510 | 1816.24 | 0.760 | 42.11 | 5.270 | 1560.44 | +| 8192 | 32 | 2 | 16448 | 9.036 | 1813.19 | 1.206 | 53.06 | 10.242 | 1605.91 | +| 8192 | 32 | 4 | 32896 | 18.070 | 1813.43 | 1.783 | 71.80 | 19.852 | 1657.03 | +| 8192 | 32 | 8 | 65792 | 36.125 | 1814.15 | 2.635 | 97.14 | 38.760 | 1697.41 | +| 8192 | 32 | 16 | 131584 | 72.367 | 1811.20 | 4.954 | 103.34 | 77.322 | 1701.77 | +| 8192 | 32 | 32 | 263168 | 144.501 | 1814.13 | 8.103 | 126.37 | 152.604 | 1724.51 | + + +- `llama-bench` + +| model | size | params | backend | ngl | n_ubatch | fa | dio | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | --: | --------------: | -------------------: | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 | 2364.18 ± 11.43 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 | 48.68 ± 0.12 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d4096 | 1684.13 ± 1.24 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d4096 | 44.62 ± 0.22 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d8192 | 1314.68 ± 1.41 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d8192 | 42.59 ± 0.11 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d16384 | 914.05 ± 3.32 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d16384 | 38.72 ± 0.13 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d32768 | 567.20 ± 0.90 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d32768 | 32.65 ± 0.09 | + +build: 11fb327bf (7941) diff --git a/benches/mac-m2-ultra/mac-m2-ultra.md b/benches/mac-m2-ultra/mac-m2-ultra.md new file mode 100644 index 0000000000..cf8a953388 --- /dev/null +++ b/benches/mac-m2-ultra/mac-m2-ultra.md @@ -0,0 +1,298 @@ +## System info + +```bash +uname -a +Darwin gg-studio 25.2.0 Darwin Kernel Version 25.2.0: Tue Nov 18 21:07:05 PST 2025; root:xnu-12377.61.12~1/RELEASE_ARM64_T6020 arm64 + +g++ --version +Apple clang version 17.0.0 (clang-1700.3.19.1) +Target: arm64-apple-darwin25.2.0 +``` + +## ggml-org/gpt-oss-20b-GGUF + +Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.215 | 2381.35 | 0.245 | 130.45 | 0.460 | 1181.81 | +| 512 | 32 | 2 | 1088 | 0.379 | 2701.43 | 0.382 | 167.56 | 0.761 | 1429.67 | +| 512 | 32 | 4 | 2176 | 0.721 | 2839.27 | 0.604 | 211.76 | 1.326 | 1641.32 | +| 512 | 32 | 8 | 4352 | 1.433 | 2858.30 | 1.033 | 247.75 | 2.466 | 1764.57 | +| 512 | 32 | 16 | 8704 | 2.853 | 2871.12 | 1.570 | 326.11 | 4.423 | 1967.77 | +| 512 | 32 | 32 | 17408 | 5.699 | 2874.95 | 1.910 | 536.15 | 7.609 | 2287.88 | +| 4096 | 32 | 1 | 4128 | 1.552 | 2638.56 | 0.334 | 95.72 | 1.887 | 2188.00 | +| 4096 | 32 | 2 | 8256 | 3.084 | 2655.88 | 0.404 | 158.54 | 3.488 | 2366.86 | +| 4096 | 32 | 4 | 16512 | 6.151 | 2663.78 | 0.652 | 196.39 | 6.802 | 2427.37 | +| 4096 | 32 | 8 | 33024 | 12.288 | 2666.77 | 1.135 | 225.47 | 13.423 | 2460.27 | +| 4096 | 32 | 16 | 66048 | 24.563 | 2668.12 | 1.762 | 290.55 | 26.325 | 2508.97 | +| 4096 | 32 | 32 | 132096 | 49.114 | 2668.73 | 2.398 | 426.94 | 51.512 | 2564.35 | +| 8192 | 32 | 1 | 8224 | 3.345 | 2448.78 | 0.275 | 116.46 | 3.620 | 2271.76 | +| 8192 | 32 | 2 | 16448 | 6.665 | 2458.11 | 0.425 | 150.71 | 7.090 | 2319.91 | +| 8192 | 32 | 4 | 32896 | 13.315 | 2460.92 | 0.691 | 185.21 | 14.006 | 2348.63 | +| 8192 | 32 | 8 | 65792 | 26.611 | 2462.73 | 1.212 | 211.16 | 27.823 | 2364.62 | +| 8192 | 32 | 16 | 131584 | 53.232 | 2462.27 | 1.919 | 266.83 | 55.151 | 2385.88 | +| 8192 | 32 | 32 | 263168 | 110.455 | 2373.30 | 2.752 | 372.03 | 113.208 | 2324.64 | + + +- `llama-bench` + +| model | size | params | backend | threads | n_ubatch | fa | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2713.40 ± 3.56 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 129.97 ± 3.90 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 2324.59 ± 3.01 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 123.38 ± 0.17 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1989.82 ± 30.11 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 117.39 ± 0.33 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 1556.54 ± 6.22 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 109.75 ± 0.42 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 1122.63 ± 1.45 | +| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 98.25 ± 0.08 | + +build: b828e18c7 (7948) + +## ggml-org/gpt-oss-120b-GGUF + +Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.426 | 1200.92 | 0.361 | 88.56 | 0.788 | 690.64 | +| 512 | 32 | 2 | 1088 | 0.683 | 1500.14 | 0.545 | 117.35 | 1.228 | 886.02 | +| 512 | 32 | 4 | 2176 | 1.204 | 1701.56 | 0.847 | 151.19 | 2.050 | 1061.34 | +| 512 | 32 | 8 | 4352 | 2.402 | 1705.20 | 1.455 | 176.00 | 3.857 | 1128.45 | +| 512 | 32 | 16 | 8704 | 4.802 | 1705.90 | 2.349 | 217.93 | 7.152 | 1217.08 | +| 512 | 32 | 32 | 17408 | 9.593 | 1707.85 | 3.665 | 279.42 | 13.258 | 1313.01 | +| 4096 | 32 | 1 | 4128 | 2.581 | 1587.08 | 0.390 | 82.12 | 2.970 | 1389.67 | +| 4096 | 32 | 2 | 8256 | 5.124 | 1598.79 | 0.589 | 108.62 | 5.713 | 1445.10 | +| 4096 | 32 | 4 | 16512 | 10.231 | 1601.47 | 0.928 | 137.98 | 11.158 | 1479.80 | +| 4096 | 32 | 8 | 33024 | 20.468 | 1600.94 | 1.606 | 159.38 | 22.074 | 1496.04 | +| 4096 | 32 | 16 | 66048 | 40.924 | 1601.42 | 2.639 | 193.99 | 43.563 | 1516.15 | +| 4096 | 32 | 32 | 132096 | 81.819 | 1601.98 | 4.466 | 229.29 | 86.284 | 1530.94 | +| 8192 | 32 | 1 | 8224 | 5.517 | 1484.74 | 0.409 | 78.16 | 5.927 | 1387.58 | +| 8192 | 32 | 2 | 16448 | 11.008 | 1488.43 | 0.622 | 102.92 | 11.629 | 1414.34 | +| 8192 | 32 | 4 | 32896 | 22.002 | 1489.29 | 0.987 | 129.66 | 22.990 | 1430.90 | +| 8192 | 32 | 8 | 65792 | 46.051 | 1423.11 | 1.858 | 137.79 | 47.909 | 1373.27 | +| 8192 | 32 | 16 | 131584 | 97.680 | 1341.85 | 2.872 | 178.28 | 100.552 | 1308.62 | +| 8192 | 32 | 32 | 263168 | 176.407 | 1486.02 | 5.048 | 202.85 | 181.455 | 1450.32 | + + +- `llama-bench` + +| model | size | params | backend | threads | n_ubatch | fa | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1648.69 ± 1.80 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 85.60 ± 0.52 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1429.86 ± 1.01 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 82.03 ± 0.12 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1257.90 ± 1.81 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 78.23 ± 0.33 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 1013.49 ± 0.70 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 73.20 ± 0.28 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 721.11 ± 0.58 | +| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 65.52 ± 0.10 | + +build: b828e18c7 (7948) + +## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF + +Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.243 | 2109.23 | 0.419 | 76.34 | 0.662 | 821.84 | +| 512 | 32 | 2 | 1088 | 0.406 | 2521.40 | 0.575 | 111.36 | 0.981 | 1109.27 | +| 512 | 32 | 4 | 2176 | 0.744 | 2751.65 | 0.841 | 152.22 | 1.585 | 1372.71 | +| 512 | 32 | 8 | 4352 | 1.479 | 2770.20 | 1.330 | 192.48 | 2.809 | 1549.53 | +| 512 | 32 | 16 | 8704 | 2.951 | 2776.20 | 2.572 | 199.05 | 5.523 | 1575.93 | +| 512 | 32 | 32 | 17408 | 5.899 | 2777.64 | 2.603 | 393.34 | 8.502 | 2047.54 | +| 4096 | 32 | 1 | 4128 | 1.901 | 2154.15 | 0.474 | 67.58 | 2.375 | 1738.14 | +| 4096 | 32 | 2 | 8256 | 3.788 | 2162.89 | 0.652 | 98.17 | 4.439 | 1859.69 | +| 4096 | 32 | 4 | 16512 | 7.564 | 2166.18 | 0.990 | 129.24 | 8.554 | 1930.34 | +| 4096 | 32 | 8 | 33024 | 15.121 | 2166.98 | 1.632 | 156.82 | 16.754 | 1971.12 | +| 4096 | 32 | 16 | 66048 | 30.241 | 2167.09 | 3.166 | 161.72 | 33.407 | 1977.04 | +| 4096 | 32 | 32 | 132096 | 60.474 | 2167.42 | 3.780 | 270.93 | 64.254 | 2055.86 | +| 8192 | 32 | 1 | 8224 | 4.733 | 1730.92 | 0.483 | 66.29 | 5.215 | 1576.85 | +| 8192 | 32 | 2 | 16448 | 9.459 | 1732.09 | 0.722 | 88.58 | 10.182 | 1615.46 | +| 8192 | 32 | 4 | 32896 | 18.912 | 1732.65 | 1.120 | 114.26 | 20.032 | 1642.14 | +| 8192 | 32 | 8 | 65792 | 37.797 | 1733.91 | 1.873 | 136.67 | 39.670 | 1658.49 | +| 8192 | 32 | 16 | 131584 | 84.133 | 1557.92 | 3.718 | 137.72 | 87.850 | 1497.82 | +| 8192 | 32 | 32 | 263168 | 157.550 | 1663.88 | 4.854 | 210.98 | 162.403 | 1620.46 | + + +- `llama-bench` + +| model | size | params | backend | threads | n_ubatch | fa | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2453.11 ± 1.70 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 78.97 ± 0.46 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1569.46 ± 1.97 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 71.18 ± 0.37 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1145.51 ± 1.16 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 65.11 ± 0.36 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 741.04 ± 0.74 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 56.87 ± 0.14 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 431.31 ± 0.31 | +| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 45.26 ± 0.11 | + +build: b828e18c7 (7948) + +## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF + +Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.339 | 1509.22 | 0.409 | 78.17 | 0.749 | 726.67 | +| 512 | 32 | 2 | 1088 | 0.646 | 1584.93 | 0.483 | 132.45 | 1.129 | 963.45 | +| 512 | 32 | 4 | 2176 | 1.258 | 1627.50 | 0.585 | 218.67 | 1.844 | 1180.21 | +| 512 | 32 | 8 | 4352 | 2.506 | 1634.41 | 1.005 | 254.83 | 3.511 | 1239.64 | +| 512 | 32 | 16 | 8704 | 5.007 | 1635.99 | 1.595 | 321.07 | 6.602 | 1318.38 | +| 512 | 32 | 32 | 17408 | 10.007 | 1637.19 | 1.676 | 611.12 | 11.683 | 1490.03 | +| 4096 | 32 | 1 | 4128 | 2.730 | 1500.46 | 0.431 | 74.31 | 3.160 | 1306.12 | +| 4096 | 32 | 2 | 8256 | 5.446 | 1504.33 | 0.524 | 122.04 | 5.970 | 1382.91 | +| 4096 | 32 | 4 | 16512 | 10.875 | 1506.59 | 0.662 | 193.45 | 11.537 | 1431.28 | +| 4096 | 32 | 8 | 33024 | 21.749 | 1506.61 | 1.158 | 221.11 | 22.907 | 1441.64 | +| 4096 | 32 | 16 | 66048 | 43.477 | 1507.36 | 1.901 | 269.32 | 45.378 | 1455.49 | +| 4096 | 32 | 32 | 132096 | 86.954 | 1507.37 | 2.325 | 440.42 | 89.279 | 1479.59 | +| 8192 | 32 | 1 | 8224 | 5.940 | 1379.21 | 0.449 | 71.20 | 6.389 | 1287.20 | +| 8192 | 32 | 2 | 16448 | 11.865 | 1380.84 | 0.559 | 114.59 | 12.424 | 1323.92 | +| 8192 | 32 | 4 | 32896 | 23.723 | 1381.25 | 0.728 | 175.80 | 24.452 | 1345.35 | +| 8192 | 32 | 8 | 65792 | 47.434 | 1381.63 | 1.279 | 200.09 | 48.713 | 1350.60 | +| 8192 | 32 | 16 | 131584 | 94.864 | 1381.69 | 2.198 | 232.97 | 97.061 | 1355.68 | +| 8192 | 32 | 32 | 263168 | 189.743 | 1381.57 | 3.052 | 335.50 | 192.795 | 1365.01 | + + +- `llama-bench` + +| model | size | params | backend | threads | n_ubatch | fa | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1565.91 ± 0.86 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 79.68 ± 0.39 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1317.41 ± 1.02 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 74.70 ± 0.04 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1134.65 ± 0.76 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 71.31 ± 0.12 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 886.46 ± 0.78 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 65.93 ± 0.06 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 612.21 ± 0.30 | +| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 56.83 ± 0.02 | + +build: b828e18c7 (7948) + +## ggml-org/gemma-3-4b-it-qat-GGUF + +Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.186 | 2748.06 | 0.235 | 136.28 | 0.421 | 1291.78 | +| 512 | 32 | 2 | 1088 | 0.342 | 2990.95 | 0.312 | 204.99 | 0.655 | 1662.15 | +| 512 | 32 | 4 | 2176 | 0.662 | 3092.69 | 0.404 | 316.97 | 1.066 | 2041.21 | +| 512 | 32 | 8 | 4352 | 1.317 | 3110.41 | 0.579 | 441.80 | 1.896 | 2294.97 | +| 512 | 32 | 16 | 8704 | 2.625 | 3120.23 | 1.207 | 424.08 | 3.833 | 2270.93 | +| 512 | 32 | 32 | 17408 | 5.242 | 3125.34 | 1.299 | 788.23 | 6.541 | 2661.19 | +| 4096 | 32 | 1 | 4128 | 1.408 | 2909.90 | 0.296 | 108.07 | 1.704 | 2422.95 | +| 4096 | 32 | 2 | 8256 | 2.793 | 2933.40 | 0.325 | 197.00 | 3.118 | 2648.25 | +| 4096 | 32 | 4 | 16512 | 5.567 | 2943.22 | 0.440 | 291.07 | 6.006 | 2749.05 | +| 4096 | 32 | 8 | 33024 | 11.114 | 2948.23 | 0.640 | 400.26 | 11.754 | 2809.59 | +| 4096 | 32 | 16 | 66048 | 22.217 | 2949.76 | 1.327 | 385.83 | 23.544 | 2805.26 | +| 4096 | 32 | 32 | 132096 | 44.420 | 2950.77 | 1.553 | 659.30 | 45.973 | 2873.36 | +| 8192 | 32 | 1 | 8224 | 2.860 | 2864.58 | 0.250 | 127.90 | 3.110 | 2644.42 | +| 8192 | 32 | 2 | 16448 | 5.702 | 2873.63 | 0.335 | 191.07 | 6.036 | 2724.77 | +| 8192 | 32 | 4 | 32896 | 11.383 | 2878.69 | 0.456 | 280.72 | 11.839 | 2778.63 | +| 8192 | 32 | 8 | 65792 | 22.750 | 2880.75 | 0.671 | 381.48 | 23.421 | 2809.14 | +| 8192 | 32 | 16 | 131584 | 45.484 | 2881.74 | 1.406 | 364.04 | 46.890 | 2806.22 | +| 8192 | 32 | 32 | 263168 | 90.956 | 2882.10 | 1.793 | 570.98 | 92.749 | 2837.41 | + + +- `llama-bench` + +| model | size | params | backend | threads | n_ubatch | fa | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2923.59 ± 3.10 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 134.28 ± 1.29 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 2748.21 ± 3.05 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 133.11 ± 0.08 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 2641.45 ± 2.31 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 125.85 ± 0.35 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 2446.20 ± 2.94 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 125.00 ± 0.12 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 2129.18 ± 7.43 | +| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 113.14 ± 0.10 | + +build: b828e18c7 (7948) + +## ggml-org/GLM-4.7-Flash-GGUF + +Model: https://huggingface.co/ggml-org/GLM-4.7-Flash-GGUF + +- `llama-batched-bench` + + +main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16 + +| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s | +|-------|--------|------|--------|----------|----------|----------|----------|----------|----------| +| 512 | 32 | 1 | 544 | 0.326 | 1568.69 | 0.522 | 61.28 | 0.849 | 641.09 | +| 512 | 32 | 2 | 1088 | 0.528 | 1939.42 | 0.744 | 86.07 | 1.272 | 855.63 | +| 512 | 32 | 4 | 2176 | 0.968 | 2114.85 | 1.105 | 115.85 | 2.073 | 1049.56 | +| 512 | 32 | 8 | 4352 | 1.928 | 2124.62 | 1.684 | 151.99 | 3.612 | 1204.82 | +| 512 | 32 | 16 | 8704 | 3.844 | 2131.34 | 3.141 | 162.99 | 6.985 | 1246.11 | +| 512 | 32 | 32 | 17408 | 7.683 | 2132.38 | 3.924 | 260.95 | 11.608 | 1499.71 | +| 4096 | 32 | 1 | 4128 | 3.280 | 1248.75 | 0.723 | 44.29 | 4.003 | 1031.33 | +| 4096 | 32 | 2 | 8256 | 6.545 | 1251.63 | 0.930 | 68.85 | 7.475 | 1104.53 | +| 4096 | 32 | 4 | 16512 | 13.080 | 1252.64 | 1.454 | 88.03 | 14.534 | 1136.12 | +| 4096 | 32 | 8 | 33024 | 26.154 | 1252.90 | 2.388 | 107.20 | 28.542 | 1157.04 | +| 4096 | 32 | 16 | 66048 | 52.297 | 1253.14 | 4.724 | 108.37 | 57.022 | 1158.30 | +| 4096 | 32 | 32 | 132096 | 104.578 | 1253.34 | 7.266 | 140.93 | 111.844 | 1181.08 | +| 8192 | 32 | 1 | 8224 | 9.623 | 851.31 | 0.767 | 41.72 | 10.390 | 791.54 | +| 8192 | 32 | 2 | 16448 | 20.916 | 783.32 | 1.148 | 55.74 | 22.064 | 745.45 | +| 8192 | 32 | 4 | 32896 | 43.509 | 753.14 | 1.833 | 69.82 | 45.342 | 725.51 | +| 8192 | 32 | 8 | 65792 | 79.621 | 823.10 | 3.180 | 80.50 | 82.801 | 794.58 | +| 8192 | 32 | 16 | 131584 | 153.770 | 852.39 | 6.502 | 78.74 | 160.272 | 821.00 | +| 8192 | 32 | 32 | 263168 | 307.539 | 852.39 | 10.839 | 94.48 | 318.378 | 826.59 | + + +- `llama-bench` + +| model | size | params | backend | threads | n_ubatch | fa | test | t/s | +| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1629.33 ± 0.27 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 59.58 ± 0.13 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 732.67 ± 0.42 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 47.44 ± 0.15 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 474.33 ± 0.33 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 40.20 ± 0.20 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 277.46 ± 0.09 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 31.50 ± 0.93 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 151.44 ± 0.05 | +| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 21.81 ± 0.01 | + +build: b828e18c7 (7948) diff --git a/ci/run.sh b/ci/run.sh index dfcf959661..96755ea13e 100755 --- a/ci/run.sh +++ b/ci/run.sh @@ -635,6 +635,29 @@ function gg_check_build_requirements { fi } +function gg_run_test_backend_ops_cpu { + cd ${SRC} + + cd build-ci-release + + set -e + + (time ./bin/test-backend-ops -b CPU ) 2>&1 | tee -a $OUT/${ci}-test-backend-ops-cpu.log + + set +e +} + +function gg_sum_test_backend_ops_cpu { + gg_printf '### %s\n\n' "${ci}" + + gg_printf 'Runs test-backend-ops for CPU backend\n' + gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)" + gg_printf '```\n' + gg_printf '%s\n' "$(cat $OUT/${ci}-test-backend-ops-cpu.log)" + gg_printf '```\n' + gg_printf '\n' +} + ## main export LLAMA_LOG_PREFIX=1 @@ -663,6 +686,10 @@ ret=0 test $ret -eq 0 && gg_run ctest_debug test $ret -eq 0 && gg_run ctest_release +if [ ! -z ${GG_BUILD_HIGH_PERF} ]; then + test $ret -eq 0 && gg_run test_backend_ops_cpu +fi + if [ -z ${GG_BUILD_LOW_PERF} ]; then test $ret -eq 0 && gg_run embd_bge_small test $ret -eq 0 && gg_run rerank_tiny diff --git a/cmake/common.cmake b/cmake/common.cmake index a5bb787f15..bcf403e0ee 100644 --- a/cmake/common.cmake +++ b/cmake/common.cmake @@ -32,4 +32,27 @@ function(llama_add_compile_flags) set(CXX_FLAGS "" PARENT_SCOPE) endif() endif() + + if (NOT MSVC) + if (LLAMA_SANITIZE_THREAD) + message(STATUS "Using -fsanitize=thread") + + add_compile_options(-fsanitize=thread) + link_libraries (-fsanitize=thread) + endif() + + if (LLAMA_SANITIZE_ADDRESS) + message(STATUS "Using -fsanitize=address") + + add_compile_options(-fsanitize=address -fno-omit-frame-pointer) + link_libraries (-fsanitize=address) + endif() + + if (LLAMA_SANITIZE_UNDEFINED) + message(STATUS "Using -fsanitize=undefined") + + add_compile_options(-fsanitize=undefined) + link_libraries (-fsanitize=undefined) + endif() + endif() endfunction() diff --git a/common/debug.cpp b/common/debug.cpp index fdaddb1443..0df409a79d 100644 --- a/common/debug.cpp +++ b/common/debug.cpp @@ -45,6 +45,8 @@ static float common_ggml_get_float_value(const uint8_t * data, return v; } +#define INDENT " " + template void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) { GGML_ASSERT(n > 0); @@ -60,41 +62,41 @@ void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * n } } for (int64_t i3 = 0; i3 < ne[3]; i3++) { - LOG_ERR(" [\n"); + LOG(INDENT "[\n"); for (int64_t i2 = 0; i2 < ne[2]; i2++) { if (i2 == n && ne[2] > 2 * n) { - LOG_ERR(" ..., \n"); + LOG(INDENT INDENT "..., \n"); i2 = ne[2] - n; } - LOG_ERR(" [\n"); + LOG(INDENT INDENT "[\n"); for (int64_t i1 = 0; i1 < ne[1]; i1++) { if (i1 == n && ne[1] > 2 * n) { - LOG_ERR(" ..., \n"); + LOG(INDENT INDENT INDENT "..., \n"); i1 = ne[1] - n; } - LOG_ERR(" ["); + LOG(INDENT INDENT INDENT "["); for (int64_t i0 = 0; i0 < ne[0]; i0++) { if (i0 == n && ne[0] > 2 * n) { - LOG_ERR("..., "); + LOG(" ..., "); i0 = ne[0] - n; } const float v = common_ggml_get_float_value(data, type, nb, i0, i1, i2, i3); - LOG_ERR("%12.4f", v); + LOG("%12.4f", v); if (i0 < ne[0] - 1) { - LOG_ERR(", "); + LOG(", "); } } - LOG_ERR("],\n"); + LOG(" ],\n"); } - LOG_ERR(" ],\n"); + LOG(INDENT INDENT "],\n"); } - LOG_ERR(" ]\n"); - LOG_ERR(" sum = %f\n", sum); + LOG(INDENT "]\n"); + LOG(INDENT "sum = %f\n", sum); } if constexpr (abort) { if (std::isnan(sum)) { - LOG_ERR("encountered NaN - aborting\n"); + LOG("encountered NaN - aborting\n"); exit(0); } } @@ -137,9 +139,9 @@ template bool common_debug_cb_eval(struct ggml_tensor * t, b } if (matches_filter) { - LOG_ERR("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type), - ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "", - common_ggml_ne_string(t).c_str()); + LOG("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type), + ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "", + common_ggml_ne_string(t).c_str()); } const bool is_host = ggml_backend_buffer_is_host(t->buffer); diff --git a/common/jinja/runtime.cpp b/common/jinja/runtime.cpp index f234d9284f..4453d86e6d 100644 --- a/common/jinja/runtime.cpp +++ b/common/jinja/runtime.cpp @@ -144,6 +144,13 @@ value binary_expression::execute_impl(context & ctx) { return false; }; + auto test_is_in = [&]() -> bool { + func_args args(ctx); + args.push_back(left_val); + args.push_back(right_val); + return global_builtins().at("test_is_in")(args)->as_bool(); + }; + // Handle undefined and null values if (is_val(left_val) || is_val(right_val)) { if (is_val(right_val) && (op.value == "in" || op.value == "not in")) { @@ -223,19 +230,11 @@ value binary_expression::execute_impl(context & ctx) { return result; } } else if (is_val(right_val)) { - auto & arr = right_val->as_array(); - bool member = false; - for (const auto & item : arr) { - if (*left_val == *item) { - member = true; - break; - } - } + // case: 1 in [0, 1, 2] + bool member = test_is_in(); if (op.value == "in") { - JJ_DEBUG("Checking membership: %s in Array is %d", left_val->type().c_str(), member); return mk_val(member); } else if (op.value == "not in") { - JJ_DEBUG("Checking non-membership: %s not in Array is %d", left_val->type().c_str(), !member); return mk_val(!member); } } @@ -252,22 +251,23 @@ value binary_expression::execute_impl(context & ctx) { // String membership if (is_val(left_val) && is_val(right_val)) { - auto left_str = left_val->as_string().str(); - auto right_str = right_val->as_string().str(); + // case: "a" in "abc" + bool member = test_is_in(); if (op.value == "in") { - return mk_val(right_str.find(left_str) != std::string::npos); + return mk_val(member); } else if (op.value == "not in") { - return mk_val(right_str.find(left_str) == std::string::npos); + return mk_val(!member); } } // Value key in object if (is_val(right_val)) { - bool has_key = right_val->has_key(left_val); + // case: key in {key: value} + bool member = test_is_in(); if (op.value == "in") { - return mk_val(has_key); + return mk_val(member); } else if (op.value == "not in") { - return mk_val(!has_key); + return mk_val(!member); } } diff --git a/common/jinja/value.cpp b/common/jinja/value.cpp index f254ae9251..2aa156b177 100644 --- a/common/jinja/value.cpp +++ b/common/jinja/value.cpp @@ -393,6 +393,33 @@ const func_builtins & global_builtins() { {"test_is_lt", test_compare_fn}, {"test_is_lessthan", test_compare_fn}, {"test_is_ne", test_compare_fn}, + {"test_is_in", [](const func_args & args) -> value { + args.ensure_count(2); + auto needle = args.get_pos(0); + auto haystack = args.get_pos(1); + if (is_val(haystack)) { + return mk_val(false); + } + if (is_val(haystack)) { + for (const auto & item : haystack->as_array()) { + if (*needle == *item) { + return mk_val(true); + } + } + return mk_val(false); + } + if (is_val(haystack)) { + if (!is_val(needle)) { + throw raised_exception("'in' test expects args[1] as string when args[0] is string, got args[1] as " + needle->type()); + } + return mk_val( + haystack->as_string().str().find(needle->as_string().str()) != std::string::npos); + } + if (is_val(haystack)) { + return mk_val(haystack->has_key(needle)); + } + throw raised_exception("'in' test expects iterable as first argument, got " + haystack->type()); + }}, {"test_is_test", [](const func_args & args) -> value { args.ensure_vals(); auto & builtins = global_builtins(); diff --git a/common/ngram-map.cpp b/common/ngram-map.cpp index 84fd761367..c5b8fc75ed 100644 --- a/common/ngram-map.cpp +++ b/common/ngram-map.cpp @@ -7,6 +7,18 @@ #include #include +// prime number used for LCG hash function (32 bit), it is near (sqrt(5) - 1)/2 * 2^32. +#define LCG_FACTOR 2654435761UL + +// Compute the LCG hash of a n-gram of size len at offset start. +static uint32_t common_ngram_map_hash(const llama_tokens & tokens, size_t start, size_t len) { + uint32_t hash = 0; + for (size_t i = 0; i < len; ++i) { + hash = hash * LCG_FACTOR + tokens[start + i]; + } + return hash; +} + // Print the values of a sublist of `llama_tokens & inp` to a string in the form [v0, v1, v2, ...]. static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length) { std::ostringstream oss; @@ -35,21 +47,15 @@ static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, * @return Vector of draft tokens, empty if no matching pattern is found */ llama_tokens common_ngram_simple_draft( - common_ngram_simple_state & state, + const common_ngram_simple_config & config, const llama_tokens & tokens, llama_token sampled) { // Simple implementation of self-speculative decoding without a draft model. // const size_t cur_len = tokens.size(); - // Only check every check_rate tokens to save compute - // i.e., perform check if (cur_len - idx_last_check) >= check_rate - if (state.idx_last_check + state.config.check_rate > cur_len) { - llama_tokens draft_tokens; - return draft_tokens; - } - size_t n_draft_min = state.config.size_ngram; // size of n-gram to lookup in token history - size_t n_draft_max = state.config.size_mgram; // the m-gram following the found n-gram is used for draft + const size_t n_draft_min = config.size_ngram; // size of n-gram to lookup in token history + const size_t n_draft_max = config.size_mgram; // the m-gram following the found n-gram is used for draft // vector for tokens we want to verify. // return empty vector if there is no match. @@ -68,9 +74,6 @@ llama_tokens common_ngram_simple_draft( } pattern.push_back(sampled); // add the last token to the pattern - // We do a search in the token history. - state.idx_last_check = cur_len; - size_t match_pos = 0; // we ignore position 0, position 0 == no match // search backwards, but skip the current match (we are currently there) for (size_t j = cur_len - n_draft_min - 1; j > 0; --j) { @@ -115,6 +118,100 @@ llama_tokens common_ngram_simple_draft( // maximum number of counted values of a ngram map value. #define COMMON_NGRAM_MAX_VALUE_COUNT 16380 +void common_ngram_map_begin( + common_ngram_map & map, const llama_tokens & tokens) { + size_t size_begin = tokens.size(); + + LOG_DBG("%s: begin, idx_last_draft=%zu, new begin=%zu, #keys=%zu\n", __func__, + map.idx_last_check, size_begin, map.keys.size()); + + size_t count_map_entries_upd = 0; + if (!map.key_map.empty() && size_begin < map.idx_last_check) { + if (map.show_key_map_stats) { + // Print statistics of hash map map_key. + size_t count_nonzero = 0; + uint32_t min_idx = UINT32_MAX; + uint32_t max_idx = 0; + for (size_t i = 0; i < map.key_map.size(); ++i) { + uint32_t key_idx = map.key_map[i]; + if (key_idx != 0) { + ++count_nonzero; + if (key_idx < min_idx) min_idx = key_idx; + if (key_idx > max_idx) max_idx = key_idx; + } + } + if (count_nonzero == 0) { + min_idx = 0; + } + LOG_INF("%s: key_map stats: entries=%zu, min_idx=%u, max_idx=%u, key_map_last_idx=%u\n", + __func__, count_nonzero, min_idx, max_idx, map.key_map_last_idx); + } + + // Update the map from hash to key index (clear outdated entries). + for (size_t i = 0; i < map.key_map.size(); ++i) { + uint32_t key_idx = map.key_map[i]; + if (key_idx >= map.size_last_begin) { + map.key_map[i] = 0; + count_map_entries_upd++; + } + } + map.key_map_last_idx = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0; + } + + if (size_begin < map.idx_last_check && !map.keys.empty()) { + // The next token generation will start at index size_begin. + // The tokens between map.size_last_begin and size_begin are no longer valid. + // + // Refresh map: Remove all entries with index >= map.size_last_begin. + size_t count_keys = map.keys.size(); + size_t count_keys_del = 0; + size_t count_values_del = 0; + for (int32_t i = map.keys.size() - 1; i >= 0; --i) { + common_ngram_map_key & key = map.keys[i]; + if (key.key_idx >= map.size_last_begin) { + // Delete the key. + LOG_DBG("%s: delete key %d at index %zu (>= size_last_begin=%zu)\n", __func__, i, key.key_idx, map.size_last_begin); + map.keys.erase(map.keys.begin() + i); + count_keys_del++; + continue; + } + if (map.key_only) { + continue; + } + + // Check the indices of the values. + for (int16_t j = COMMON_NGRAM_MAX_VALUES - 1; j >= 0; --j) { + common_ngram_map_value & value = key.values[j]; + if (value.value_idx >= map.size_last_begin) { + // Delete the value. + count_values_del++; + + // Move all values after this value to the left. + for (uint16_t k = j; k < COMMON_NGRAM_MAX_VALUES - 1; ++k) { + key.values[k] = key.values[k + 1]; + } + // Clear the last value. + key.values[COMMON_NGRAM_MAX_VALUES - 1].value_idx = 0; + key.values[COMMON_NGRAM_MAX_VALUES - 1].value_num = 0; + } + } + if (key.values[0].value_idx == 0) { + // No values left, delete the key. + LOG_DBG("%s: delete key %d at index %zu (no values left)\n", __func__, i, key.key_idx); + map.keys.erase(map.keys.begin() + i); + count_keys_del++; + } + } + + LOG_INF("%s: refresh map: idx_last_draft=%zu, new begin=%zu, #keys_checked=%zu, #keys_del=%zu, #values_del=%zu, #hashes_upd=%zu\n", __func__, + map.idx_last_check, size_begin, + count_keys, count_keys_del, count_values_del, count_map_entries_upd); + } + + map.idx_last_check = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0; + map.size_last_begin = size_begin; +} + void common_ngram_map_draft(common_ngram_map & map, const llama_tokens & inp, llama_token sampled, llama_tokens & draft) { @@ -129,6 +226,10 @@ void common_ngram_map_draft(common_ngram_map & map, if (cur_len < static_cast(2 * n + m)) { return; } + if (cur_len >= static_cast(UINT32_MAX)) { + // key_map uses uint32_t instead of size_t. + GGML_ABORT("%s: cur_len exceeds UINT32_MAX: %zu", __func__, cur_len); + } // Only check every check_rate tokens to save compute // i.e., perform check if (cur_len - idx_last_check) >= check_rate @@ -147,24 +248,92 @@ void common_ngram_map_draft(common_ngram_map & map, // search for the key in the map size_t match_pos = 0; - for (size_t j = cur_len - n - m - 1; j > 0; --j) { - bool match = true; - for (size_t k = 0; k < n; ++k) { - if (inp[j + k] != key_tokens[k]) { - match = false; - break; + if (map.size_last_begin > cur_len) { + GGML_ABORT("%s: map.size_last_begin > cur_len: %zu > %zu", __func__, map.size_last_begin, cur_len); + } + if (!map.key_map.empty()) { + // Search for the key in the map key_map from hash of ngrams to index of ngram. + uint32_t idx_hash = (common_ngram_map_hash(key_tokens, 0, n) % map.key_map.size()); + uint32_t idx_key = map.key_map[idx_hash]; + if (idx_key != 0 && idx_key < cur_len - n - m - 1) { + // Check if the key matches the key at idx_key (because of possible collisions). + bool match = true; + for (size_t k = 0; k < n; ++k) { + if (inp[idx_key + k] != key_tokens[k]) { + match = false; + break; + } + } + LOG_DBG("%s: key hash %x -> idx_key %d: match %d\n", __func__, idx_hash, idx_key, match ? 1 : 0); + if (match) { + match_pos = idx_key; } } - if (match) { - match_pos = j; - break; + } + if (match_pos == 0 && map.size_last_begin > (size_t) (n + m + 1)) { + // Search for the key in [1, map.size_last_begin - n - m -1], descending. + for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) { + // Check if the key matches the key. + bool match = true; + for (size_t k = 0; k < n; ++k) { + if (inp[j + k] != key_tokens[k]) { + match = false; + break; + } + } + if (match) { + match_pos = j; + break; + } + } + } + if (match_pos == 0) { + // In case of a reasoning chat, the part after size_last_begin may be deleted/reordered later. + // + // Search in [size_last_begin, cur_len - n - m - 1], descending. + for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) { + bool match = true; + for (size_t k = 0; k < n; ++k) { + if (inp[j + k] != key_tokens[k]) { + match = false; + break; + } + } + if (match) { + match_pos = j; + break; + } } } if (match_pos > 0) { - LOG_INF("%s: cur_len = %zu, n = %d, m = %d, sz_tkns = %zu, sampled = %d, match_pos = %zu\n", __func__, + LOG_DBG("%s: cur_len = %zu, n = %d, m = %d, sz_tkns = %zu, sampled = %d, match_pos = %zu\n", __func__, cur_len, n, m, key_tokens.size(), sampled, match_pos); } + if (!map.key_map.empty()) { + // Add hashes of new ngrams in key_map. + // + // Use the same order as above. + if (map.size_last_begin > (size_t) (n + m + 1)) { + for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) { + // compute hash and store index of ngram at idx j in the map. + uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size()); + if (map.key_map[idx_hash] == 0) { + map.key_map[idx_hash] = j; // collisions may occur + } + } + } + + for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) { + // compute hash and store index of ngram at idx j in the map. + uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size()); + if (map.key_map[idx_hash] == 0) { + map.key_map[idx_hash] = j; + } + } + map.key_map_last_idx = std::max(static_cast(cur_len - n - m - 1), map.key_map_last_idx); + } + if (match_pos == 0) { return; } @@ -215,8 +384,8 @@ void common_ngram_map_draft(common_ngram_map & map, draft.push_back(inp[match_pos + n + i]); } - LOG_INF("%s: key_offset = %zu, key_num = %d, draft.size = %zu\n", __func__, - key_offset, curr_key.key_num, draft.size()); + LOG_DBG("%s: key_idx = %zu, key_offset = %zu, key_num = %d, draft.size = %zu\n", __func__, + curr_key.key_idx, key_offset, curr_key.key_num, draft.size()); map.last_draft_created = false; map.last_draft_key_idx = key_offset; @@ -318,7 +487,7 @@ void common_ngram_map_draft(common_ngram_map & map, } } - if (sum_occur > 0 && max_occur < 3 * sum_occur) { + if (sum_occur > 0 && max_occur < 2 * sum_occur) { // The most frequent value is not much more frequent than the other values. // We do not use the draft. return; diff --git a/common/ngram-map.h b/common/ngram-map.h index b365034ac5..9668bd5a7c 100644 --- a/common/ngram-map.h +++ b/common/ngram-map.h @@ -9,6 +9,8 @@ // 2. ngram_map: lookup of n-grams followed by m-grams in token history using a map. // The map is a vector of key n-grams, and for each key n-gram there is a list of value m-grams. // +// ref: https://github.com/ggml-org/llama.cpp/pull/18471 +// #include "llama.h" #include "common.h" @@ -25,23 +27,9 @@ struct common_ngram_simple_config { uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token }; -// current state (and config) of n-gram simple. -struct common_ngram_simple_state { - common_ngram_simple_config config; - - size_t idx_last_check = 0; // index of last check in context history (mutable) - - common_ngram_simple_state(const common_ngram_simple_config & config) - : config(config) {} -}; - // Searches for a n-gram in the history and checks whether a draft sequence should be generated. -// state: the ngram simple state to search in. -// inp: the tokens generated so far. -// sampled: the token that was just sampled. -// draft: vector to store the draft tokens, initially empty. llama_tokens common_ngram_simple_draft( - common_ngram_simple_state & state, + const common_ngram_simple_config & config, const llama_tokens & tokens, llama_token sampled); @@ -51,10 +39,13 @@ llama_tokens common_ngram_simple_draft( // maximum number of m-gram values stored for each key n-gram. #define COMMON_NGRAM_MAX_VALUES 4 +// number of entries in the (optional, size 0 to disable) map from ngram-hash to ngram-index. +#define COMMON_NGRAM_HASH_MAP_SIZE 262144 + // statistics of a m-gram after a known n-gram struct common_ngram_map_value { - size_t value_idx = 0; // index of value m-gram in token-history (0 if unused) - uint16_t value_num = 0; // number of occurences of this value m-gram after the key n-gram (0 in an unused values-slot) + size_t value_idx = 0; // index of value m-gram in token-history (0 if unused) + uint16_t value_num = 0; // number of occurences of this value m-gram after the key n-gram (0 in an unused values-slot) int16_t n_accepted = -1; // number of accepted tokens at last draft (-1 if unused) }; @@ -74,23 +65,43 @@ struct common_ngram_map { bool key_only; // true if only key n-grams are used, no values. - // first draft: vector only, no map. std::vector keys; // key n-grams which occur several times in token-history uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token uint16_t min_hits; // minimum number of key hits to consider a draft + bool show_key_map_stats = false; // true, if statitics of the key_map should be printed. + common_ngram_map(uint16_t sz_key, uint16_t sz_value, bool only_keys, uint16_t check_rate, uint16_t min_hits) : size_key(sz_key), size_value(sz_value), key_only(only_keys), - check_rate(check_rate), min_hits(min_hits) {} + check_rate(check_rate), min_hits(min_hits) { + key_map.resize(COMMON_NGRAM_HASH_MAP_SIZE); // 2^18 hash entries, 0 entries if key_map shouldn't be used + } + + // In reasoning chats the previous reasoning block will be removed from context history. + // A rebuild of the ngram map is needed after that. + + size_t size_last_begin = 0; // number of tokens at previous start of generation bool last_draft_created = false; // true if a draft was created at last call. - size_t last_draft_key_idx = 0; // index of last key used for draft generation. + size_t last_draft_key_idx = 0; // index of last key used for draft generation (0 = no draft) uint16_t last_draft_value_idx = 0; // index of last value used for draft generation. size_t idx_last_check = 0; // index of last check in context history + + // optional map "hash to ngram-index" for faster lookup of n-grams. map is empty if unused. + // + // uint32_t instead of size_t (size of current histories is << UINT32_MAX) + std::vector key_map; // key_map[hash] = index of ngram in context window + uint32_t key_map_last_idx = 0; // index of the last ngram added to key_map }; +// Initialize the n-gram map with the given token history. +// map: the ngram map to initialize. +// tokens: the token history to base the map on. +void common_ngram_map_begin( + common_ngram_map & map, + const llama_tokens & tokens); // Searches for the n-gram in the history and checks whether a draft sequence should be generated. // map: the ngram map to search in. diff --git a/common/speculative.cpp b/common/speculative.cpp index a1a3b51c13..84d2556ceb 100644 --- a/common/speculative.cpp +++ b/common/speculative.cpp @@ -124,9 +124,9 @@ struct common_speculative_state { // TODO: track performance of most recent calls const bool gen_perf = true; // whether to generate performance stats. - // TODO: rename to t_draft_us - // TODO: add t_begin_us, t_accept_us - int64_t gen_duration_us = 0; // total time spent in this implementation in microseconds. + int64_t t_begin_us = 0; // total time spent in refresh of this implementation in microseconds. + int64_t t_draft_us = 0; // total time spent in generating drafts in this implementation in microseconds. + int64_t t_accept_us = 0; // total time spent in accumulation of this implementation in microseconds. common_speculative_state(enum common_speculative_type type) : type(type) {} @@ -463,12 +463,14 @@ struct common_speculative_state_eagle3 : public common_speculative_state { // state of self-speculation (simple implementation, not ngram-map) struct common_speculative_state_ngram_simple : public common_speculative_state { - common_ngram_simple_state state; + common_ngram_simple_config config; + + uint16_t check_id = 0; // used to control the frequency of generating drafts common_speculative_state_ngram_simple( enum common_speculative_type type, - common_ngram_simple_state state) - : common_speculative_state(type), state(state) {} + common_ngram_simple_config config) + : common_speculative_state(type), config(config) {} void begin(const llama_tokens & prompt) override { GGML_UNUSED(prompt); @@ -479,7 +481,13 @@ struct common_speculative_state_ngram_simple : public common_speculative_state { const llama_tokens & prompt_tgt, llama_token id_last, llama_tokens & result) override { - result = common_ngram_simple_draft(state, prompt_tgt, id_last); + ++check_id; + if (check_id < config.check_rate) { + return; + } + check_id = 0; + + result = common_ngram_simple_draft(config, prompt_tgt, id_last); GGML_UNUSED(params); } @@ -499,7 +507,7 @@ struct common_speculative_state_ngram_map_k : public common_speculative_state { : common_speculative_state(type), map(std::move(map)) {} void begin(const llama_tokens & prompt) override { - GGML_UNUSED(prompt); + common_ngram_map_begin(map, prompt); } void draft( @@ -797,6 +805,42 @@ enum common_speculative_type common_speculative_type_from_name(const std::string return it->second; } +bool common_speculative_is_compat(llama_context * ctx_tgt) { + auto * mem = llama_get_memory(ctx_tgt); + if (mem == nullptr) { + return false; + } + + bool res = true; + + llama_memory_clear(mem, true); + + // eval 2 tokens to check if the context is compatible + std::vector tmp; + tmp.push_back(0); + tmp.push_back(0); + + int ret = llama_decode(ctx_tgt, llama_batch_get_one(tmp.data(), tmp.size())); + if (ret != 0) { + LOG_ERR("%s: llama_decode() failed: %d\n", __func__, ret); + res = false; + goto done; + } + + // try to remove the last tokens + if (!llama_memory_seq_rm(mem, 0, 1, -1)) { + LOG_WRN("%s: the target context does not support partial sequence removal\n", __func__); + res = false; + goto done; + } + +done: + llama_memory_clear(mem, true); + llama_synchronize(ctx_tgt); + + return res; +} + // initialization of the speculative decoding system // common_speculative * common_speculative_init( @@ -889,14 +933,14 @@ common_speculative * common_speculative_init( uint16_t mgram_size_value = ngram_map.size_value; uint16_t check_rate = ngram_map.check_rate; - auto config_simple = common_ngram_simple_config{ + auto config_simple = common_ngram_simple_config { /* .size_ngram = */ ngram_size_key, /* .size_mgram = */ mgram_size_value, /* .check_rate = */ check_rate }; auto state = std::make_unique( /* .type = */ config.type, - /* .state = */ common_ngram_simple_state(config_simple) + /* .state = */ config_simple ); impls.push_back(std::move(state)); break; @@ -951,6 +995,7 @@ void common_speculative_begin(common_speculative * spec, const llama_tokens & pr } for (auto & impl : spec->impls) { + common_time_meas tm(impl->t_begin_us, !impl->gen_perf); impl->begin(prompt); } } @@ -966,14 +1011,9 @@ llama_tokens common_speculative_draft( for (auto & impl : spec->impls) { { - const int64_t t_start_us = impl->gen_perf ? ggml_time_us() : 0; - + common_time_meas tm(impl->t_draft_us, !impl->gen_perf); impl->draft(params, prompt_tgt, id_last, result); - - const int64_t t_now_us = impl->gen_perf ? ggml_time_us() : 0; - impl->drafts_call_count++; - impl->gen_duration_us += t_now_us - t_start_us; // accumulate duration for this implementation } if (!result.empty()) { @@ -1001,12 +1041,15 @@ void common_speculative_accept(common_speculative * spec, uint16_t n_accepted) { GGML_ASSERT(impl); - if (n_accepted > 0) { - impl->drafts_accepted_count++; - impl->drafts_accepted_tokens += n_accepted; - } + { + common_time_meas tm(impl->t_accept_us, !impl->gen_perf); + if (n_accepted > 0) { + impl->drafts_accepted_count++; + impl->drafts_accepted_tokens += n_accepted; + } - impl->accept(n_accepted); + impl->accept(n_accepted); + } } void common_speculative_print_stats(const common_speculative * spec) { @@ -1018,13 +1061,14 @@ void common_speculative_print_stats(const common_speculative * spec) { std::string str_perf; if (impl->gen_perf) { std::ostringstream oss; - oss << std::fixed << std::setprecision(3) << impl->gen_duration_us / 1000.0; - str_perf = ", dur = " + oss.str() + " ms"; + oss << std::fixed << std::setprecision(3) << impl->t_begin_us / 1000.0 << ", "; + oss << std::fixed << std::setprecision(3) << impl->t_draft_us / 1000.0 << ", "; + oss << std::fixed << std::setprecision(3) << impl->t_accept_us / 1000.0; + str_perf = ", dur(b,g,a) = " + oss.str() + " ms"; } else { str_perf = ""; } - // TODO: report time for begin() and accept() LOG_INF("statistics %s: #calls = %zu, #gen drafts = %zu, #acc drafts = %zu, #gen tokens = %zu, #acc tokens = %zu%s\n", common_speculative_type_to_str(impl->type).c_str(), impl->drafts_call_count, diff --git a/common/speculative.h b/common/speculative.h index 76fe6bb7bc..876cde3d18 100644 --- a/common/speculative.h +++ b/common/speculative.h @@ -14,6 +14,10 @@ enum common_speculative_type common_speculative_type_from_name(const std::string // convert type to string std::string common_speculative_type_to_str(enum common_speculative_type type); +// check if the llama_context is compatible for speculative decoding +// note: clears the memory of the context +bool common_speculative_is_compat(llama_context * ctx_tgt); + common_speculative * common_speculative_init( common_params_speculative & params, llama_context * ctx_tgt); diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 00cb23c971..826fb707ab 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -586,6 +586,10 @@ class ModelBase: gguf.MODEL_TENSOR.A_ENC_EMBD_POS, gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF, gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF, + # Kimi KDA conv weights should be F32 + gguf.MODEL_TENSOR.SSM_CONV1D_Q, + gguf.MODEL_TENSOR.SSM_CONV1D_K, + gguf.MODEL_TENSOR.SSM_CONV1D_V, ) ) or new_name[-7:] not in (".weight", ".lora_a", ".lora_b") @@ -903,10 +907,10 @@ class TextModel(ModelBase): if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None: self.gguf_writer.add_layer_norm_eps(f_norm_eps) logger.info(f"gguf: layer norm epsilon = {f_norm_eps}") - if (n_experts := self.hparams.get("num_local_experts")) is not None: + if (n_experts := self.find_hparam(["num_local_experts", "num_experts"], optional=True)) is not None: self.gguf_writer.add_expert_count(n_experts) logger.info(f"gguf: expert count = {n_experts}") - if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None: + if (n_experts_used := self.find_hparam(["num_experts_per_tok", "num_experts_per_token"], optional=True)) is not None: self.gguf_writer.add_expert_used_count(n_experts_used) logger.info(f"gguf: experts used count = {n_experts_used}") if (n_expert_groups := self.hparams.get("n_group")) is not None: @@ -916,7 +920,7 @@ class TextModel(ModelBase): self.gguf_writer.add_expert_group_used_count(n_group_used) logger.info(f"gguf: expert groups used count = {n_group_used}") - if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None: + if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func", "moe_router_activation", "moe_router_activation_func"], optional=True)) is not None: if score_func == "sigmoid": self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID) elif score_func == "softmax": @@ -5021,6 +5025,221 @@ class CodeShellModel(TextModel): self.gguf_writer.add_rope_scaling_factor(1.0) +@ModelBase.register("KimiLinearModel", "KimiLinearForCausalLM") +class KimiLinearModel(TextModel): + """Kimi-Linear model with hybrid MLA+KDA architecture""" + model_arch = gguf.MODEL_ARCH.KIMI_LINEAR + + _experts: list[dict[str, Tensor]] | None = None + + def set_vocab(self): + try: + self._set_vocab_gpt2() + return + except Exception: + pass + + from transformers import AutoTokenizer + tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True) + tokpre = self.get_vocab_base_pre(tokenizer) + + if tokpre == "kimi-k2": + # Build merges list using the approach similar to HunYuanMoE + merges = [] + vocab = {} + mergeable_ranks = tokenizer.model._mergeable_ranks + for token, rank in mergeable_ranks.items(): + vocab[QwenModel.token_bytes_to_string(token)] = rank + if len(token) == 1: + continue + merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank) + if len(merged) == 2: + merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged))) + # Build token list + vocab_size = self.hparams["vocab_size"] + special_tokens = tokenizer.special_tokens + reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()} + tokens: list[str] = [] + toktypes: list[int] = [] + + for i in range(vocab_size): + if i not in reverse_vocab: + tokens.append(f"[PAD{i}]") + toktypes.append(gguf.TokenType.UNUSED) + else: + token = reverse_vocab[i] + tokens.append(token) + if i in special_tokens.values(): + toktypes.append(gguf.TokenType.CONTROL) + else: + toktypes.append(gguf.TokenType.NORMAL) + + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + self.gguf_writer.add_token_merges(merges) + + special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False) + special_vocab.add_to_gguf(self.gguf_writer) + # override eos id in config.json with tiktoken eos id + self.gguf_writer.add_eos_token_id(tokenizer.eos_id) + else: + raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!") + + def set_gguf_parameters(self): + # note: To enable MLA KV cache, attention needs to be converted into MQA (ie: GQA with 1 group) + self.hparams["num_key_value_heads"] = 1 + + super().set_gguf_parameters() + self.gguf_writer.add_vocab_size(self.hparams["vocab_size"]) + + # KDA & MLA params + # Get ssm_d_conv from linear_attn_config.short_conv_kernel_size or ssm_d_conv + linear_attn_config = self.hparams["linear_attn_config"] + # n_head == 0 for KDA layers, n_head > 0 for MLA layers + # full_attention_layers list will be used to distingush layer type + _num_kv_heads = list() + _full_attn_layers = linear_attn_config["full_attn_layers"] + for il in range(self.hparams["num_hidden_layers"]): + if il + 1 in _full_attn_layers: + _num_kv_heads.append(self.hparams["num_key_value_heads"]) + else: + _num_kv_heads.append(0) + assert len(_num_kv_heads) == self.hparams["num_hidden_layers"] + self.gguf_writer.add_head_count_kv(_num_kv_heads) + + if (ssm_d_conv := linear_attn_config.get("short_conv_kernel_size")) is not None: + self.gguf_writer.add_ssm_conv_kernel(ssm_d_conv) + if (kda_head_dim := linear_attn_config.get("head_dim")) is not None: + self.gguf_writer.add_kda_head_dim(kda_head_dim) + + # MLA params - use add_* methods that handle arch substitution + # Support both HuggingFace naming (q_lora_rank, kv_lora_rank) and internal naming (n_lora_q, n_lora_kv) + if (q_lora_rank := self.find_hparam(["q_lora_rank", "n_lora_q"], optional=True)) is not None: + self.gguf_writer.add_q_lora_rank(q_lora_rank) + # To enable MLA KV cache, MLA needs to be converted into MQA with larger heads, then decompresses to MHA + kv_lora_rank = self.find_hparam(["kv_lora_rank", "n_lora_kv"], optional=False) + self.gguf_writer.add_kv_lora_rank(kv_lora_rank) + + # MLA head dimensions + # Support HuggingFace naming: qk_nope_head_dim, qk_rope_head_dim, v_head_dim + qk_nope_head_dim = self.hparams.get("qk_nope_head_dim") + # Rotation - use qk_rope_head_dim for Kimi + qk_rope_head_dim = self.find_hparam(["qk_rope_head_dim", "n_rot"], optional=False) + self.gguf_writer.add_rope_dimension_count(qk_rope_head_dim) + self.gguf_writer.add_key_length(kv_lora_rank + qk_rope_head_dim) + v_head_dim = self.hparams.get("v_head_dim") + + # Calculate n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim + if (n_embd_head_k_mla := self.find_hparam(["n_embd_head_k_mla"], optional=True)) is not None: + self.gguf_writer.add_key_length_mla(n_embd_head_k_mla) + elif qk_nope_head_dim is not None: + n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim + self.gguf_writer.add_key_length_mla(n_embd_head_k_mla) + + # n_embd_head_v_mla = v_head_dim + if (n_embd_head_v_mla := self.hparams.get("n_embd_head_v_mla")) is not None: + self.gguf_writer.add_value_length_mla(n_embd_head_v_mla) + elif v_head_dim is not None: + self.gguf_writer.add_value_length_mla(v_head_dim) + + # moe_intermediate_size (1024 for Kimi) + self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"]) + # num_shared_experts (1 for Kimi) + self.gguf_writer.add_expert_shared_count(self.hparams["num_shared_experts"]) + # first_k_dense_replace (1 for Kimi - first layer uses dense MLP) + self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"]) + # Routed scaling factor (expert_weights_scale = 2.446 for Kimi) + self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"]) + + def prepare_tensors(self): + super().prepare_tensors() + if self._experts is not None: + experts = [k for d in self._experts for k in d.keys()] + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts}") + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + logger.info(f"Processing {name}: shape before = {tuple(data_torch.shape)}") + + # Handle KDA conv1d weights + # HuggingFace/vLLM stores as [d_inner, d_conv] (2D), memory layout: conv_step changes fastest + # llama.cpp expects ggml ne = [d_conv, 1, d_inner, 1], memory layout: ne[0]=d_conv changes fastest + # GGUF reverses numpy shape when writing, so numpy (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1] + # Memory layouts match: both have conv_step (d_conv) changing fastest + if name.endswith((".q_conv1d.weight", ".k_conv1d.weight", ".v_conv1d.weight")): + # HF shape: [d_inner, d_conv] e.g. [4096, 4] + # Target numpy shape: (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1] + if data_torch.ndim == 2: + d_inner, d_conv = data_torch.shape + # Reshape to (1, d_inner, 1, d_conv) - memory layout preserved (d_conv fastest) + data_torch = data_torch.reshape(1, d_inner, 1, d_conv) + logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]") + elif data_torch.ndim == 3: + # Already 3D [d_inner, 1, d_conv] from unsqueeze + d_inner, _, d_conv = data_torch.shape + data_torch = data_torch.reshape(1, d_inner, 1, d_conv) + logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, 1, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]") + + # Kimi specific bias + if name.endswith("e_score_correction_bias"): + name = name.replace("e_score_correction_bias", "e_score_correction.bias") + + # Handle A_log: iHF stores as [1, 1, num_heads, 1] + # llama.cpp expects ggml ne = [1, num_heads, 1, 1] + # GGUF reverses numpy shape: numpy (1, 1, num_heads, 1) -> ggml ne = [1, num_heads, 1, 1] + if name.endswith(".A_log"): + data_torch = -torch.exp(data_torch) + if name.endswith(".dt_bias"): + name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias" + logger.info("Changed dt_bias to dt_proj.bias") + + # process the experts separately + if name.find("block_sparse_moe.experts") != -1: + n_experts = self.find_hparam(["num_local_experts", "num_experts"], optional=False) + assert bid is not None + + if self._experts is None: + self._experts = [{} for _ in range(self.block_count)] + + self._experts[bid][name] = data_torch + + if len(self._experts[bid]) >= n_experts * 3: + # merge the experts into a single 3d tensor + # w1: gate, w2: down, w3: up + for wid, tname in [("w1", gguf.MODEL_TENSOR.FFN_GATE_EXP), + ("w2", gguf.MODEL_TENSOR.FFN_DOWN_EXP), + ("w3", gguf.MODEL_TENSOR.FFN_UP_EXP)]: + datas: list[Tensor] = [] + for xid in range(n_experts): + ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight" + datas.append(self._experts[bid][ename]) + del self._experts[bid][ename] + data_torch = torch.stack(datas, dim=0) + new_name = self.format_tensor_name(tname, bid) + yield from super().modify_tensors(data_torch, new_name, bid) + return + + # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed + if name.endswith("kv_b_proj.weight"): + name_kb = name.replace("kv_b_proj", "k_b_proj") + name_vb = name.replace("kv_b_proj", "v_b_proj") + n_head_kv = self.hparams["num_key_value_heads"] + v_head_dim = self.find_hparam(["n_embd_head_v_mla", "v_head_dim"], optional=False) + qk_nope_head_dim = self.hparams["qk_nope_head_dim"] + logger.info("Split kv_b n_head_kv %d\n" % n_head_kv) + assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim) + kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1]) + k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1) + k_b = k_b.transpose(1, 2) + yield from super().modify_tensors(k_b, name_kb, bid) + yield from super().modify_tensors(v_b, name_vb, bid) + return + + yield from super().modify_tensors(data_torch, name, bid) + + @ModelBase.register("InternLM2ForCausalLM") class InternLM2Model(TextModel): model_arch = gguf.MODEL_ARCH.INTERNLM2 @@ -7702,6 +7921,135 @@ class MimoV2Model(TextModel): raise ValueError(f"Unprocessed experts: {experts}") +@ModelBase.register("Step3p5ForCausalLM") +class Step35Model(TextModel): + model_arch = gguf.MODEL_ARCH.STEP35 + + def set_gguf_parameters(self): + rope_theta = self.hparams.get("rope_theta") + if isinstance(rope_theta, list): + self.hparams["rope_theta"] = float(rope_theta[0]) + self.hparams["local_rope_theta"] = float(rope_theta[1]) + self.rope_parameters["rope_theta"] = self.hparams["rope_theta"] + self.rope_parameters["sliding_attention"] = {"rope_theta": self.hparams["local_rope_theta"]} + + super().set_gguf_parameters() + + layer_types = self.hparams.get("layer_types") or [] + partial_rotary_factors = self.hparams.get("partial_rotary_factors") or [] + attn_other = self.hparams.get("attention_other_setting") or {} + + n_head_base = self.hparams["num_attention_heads"] + n_kv_base = self.hparams["num_attention_groups"] + + n_head_swa = attn_other.get("num_attention_heads", n_head_base) + n_kv_swa = attn_other.get("num_attention_groups", n_kv_base) + + layer_types = layer_types[: self.block_count] + partial_rotary_factors = partial_rotary_factors[: self.block_count] + assert [1.0 if lt == "sliding_attention" else 0.5 for lt in layer_types] == partial_rotary_factors + head_arr = [n_head_swa if lt == "sliding_attention" else n_head_base for lt in layer_types] + kv_arr = [n_kv_swa if lt == "sliding_attention" else n_kv_base for lt in layer_types] + swa_pat = [lt == "sliding_attention" for lt in layer_types] + + self.gguf_writer.add_head_count(head_arr) + self.gguf_writer.add_head_count_kv(kv_arr) + + self.gguf_writer.add_sliding_window(self.hparams["sliding_window"]) + self.gguf_writer.add_sliding_window_pattern(swa_pat) + + self.gguf_writer.add_value_length(self.hparams["head_dim"]) + + # MoE params + self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"]) + self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"]) + self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"]) + self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["share_expert_dim"]) + + if (moe_router_scaling_factor := self.hparams.get("moe_router_scaling_factor")) is not None: + self.gguf_writer.add_expert_weights_scale(moe_router_scaling_factor) + if (norm_expert_weight := self.hparams.get("norm_expert_weight")) is not None: + self.gguf_writer.add_expert_weights_norm(norm_expert_weight) + + # leading dense blocks + leading_dense = 0 + moe_layers_enum = self.hparams.get("moe_layers_enum") + if isinstance(moe_layers_enum, str) and moe_layers_enum.strip(): + moe_layers = sorted(int(i) for i in moe_layers_enum.strip().split(",")) + if moe_layers: + leading_dense = max(0, moe_layers[0]) + self.gguf_writer.add_leading_dense_block_count(leading_dense) + self.gguf_writer.add_moe_every_n_layers(int(self.hparams.get("moe_every_n_layer", 1))) + + self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-5)) + + # Optional per-layer SwiGLU clamps. + if (limits := self.hparams.get("swiglu_limits")) is not None: + limits_f = [0.0 if v is None else float(v) for v in limits[: self.block_count]] + self.gguf_writer.add_swiglu_clamp_exp(limits_f) + if (limits_shared := self.hparams.get("swiglu_limits_shared")) is not None: + limits_shared_f = [0.0 if v is None else float(v) for v in limits_shared[: self.block_count]] + self.gguf_writer.add_swiglu_clamp_shexp(limits_shared_f) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None): + # remove mtp layers + if (m := re.match(r"model\.layers\.(\d+)\.", name)) is not None: + il = int(m.group(1)) + n_main = int(self.hparams.get("num_hidden_layers", self.block_count)) + if il >= n_main: + return + if name.endswith("norm.weight"): + data_torch += 1.0 + # Map router bias (expert selection bias) to a GGUF bias tensor + if name.endswith(".moe.router_bias"): + name += ".bias" + + if name.endswith((".self_attn.g_proj.weight", ".moe.gate.weight", ".moe.up_proj.weight", ".moe.gate_proj.weight", ".moe.down_proj.weight")): + data_torch = data_torch.squeeze().contiguous() + + yield from super().modify_tensors(data_torch, name, bid) + + def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: + # Step35 can optionally use Llama-3 style RoPE scaling (HF: rope_scaling.rope_type == "llama3"). + # llama.cpp represents this via a single extra tensor: "rope_freqs.weight" (aka MODEL_TENSOR.ROPE_FREQS). + rope_params = self.rope_parameters.get("full_attention", self.rope_parameters) + rope_type = rope_params.get("rope_type") or "" + if rope_type.lower() != "llama3": + return + + # Step35 configs can carry per-layer rope_theta as a list; for llama3 rope factors we use the base value. + rope_theta = self.hparams.get("rope_theta", 10000.0) + if isinstance(rope_theta, list): + rope_theta = rope_theta[0] + base = float(rope_theta) + if (dim := self.hparams.get("head_dim")) is None: + dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"] + dim = int(dim) + + freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) + + factor = float(rope_params.get("factor", 8.0)) + low_freq_factor = float(rope_params.get("low_freq_factor", 1.0)) + high_freq_factor = float(rope_params.get("high_freq_factor", 4.0)) + old_context_len = int(rope_params.get("original_max_position_embeddings", self.hparams.get("original_max_position_embeddings", 8192))) + + low_freq_wavelen = old_context_len / low_freq_factor + high_freq_wavelen = old_context_len / high_freq_factor + + rope_factors: list[float] = [] + for freq in freqs: + wavelen = 2 * math.pi / float(freq) + if wavelen < high_freq_wavelen: + rope_factors.append(1.0) + elif wavelen > low_freq_wavelen: + rope_factors.append(factor) + else: + smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor) + rope_factors.append(1.0 / ((1.0 - smooth) / factor + smooth)) + + yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32)) + + @ModelBase.register("PanguEmbeddedForCausalLM") class PanguEmbeddedModel(TextModel): model_arch = gguf.MODEL_ARCH.PANGU_EMBED diff --git a/docs/backend/SYCL.md b/docs/backend/SYCL.md index c0a422b3dc..b3cff96604 100644 --- a/docs/backend/SYCL.md +++ b/docs/backend/SYCL.md @@ -22,12 +22,11 @@ - **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers. - **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*. - **oneAPI LevelZero**: A high performance low level interface for fine-grained control over Intel iGPUs and dGPUs. -- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets. ### Llama.cpp + SYCL The llama.cpp SYCL backend is primarily designed for **Intel GPUs**. -SYCL cross-platform capabilities enable support for Nvidia GPUs as well, with limited support for AMD. +SYCL cross-platform capabilities enable support for other vendor GPUs as well. ## Recommended Release @@ -42,6 +41,9 @@ The following releases are verified and recommended: ## News +- 2026.02 + - Remove support for Nvidia & AMD GPU, because the oneAPI plugin for Nvidia & AMD GPU is unavailable: download/installation channels are out of work. User can't build up the software for Nvidia & AMD GPU. + - 2025.11 - Support malloc memory on device more than 4GB. @@ -111,15 +113,15 @@ On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the |-------------------------------|---------|---------------------------------------| | Intel Data Center Max Series | Support | Max 1550, 1100 | | Intel Data Center Flex Series | Support | Flex 170 | -| Intel Arc A-Series | Support | Arc A770, Arc A730M, Arc A750 | -| Intel Arc B-Series | Support | Arc B580 | +| Intel Arc A-Series | Support | Arc A770, Arc A730M, Arc A750 | +| Intel Arc B-Series | Support | Arc B580 | | Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake, Lunar Lake | | Intel iGPU | Support | iGPU in 13700k, 13400, i5-1250P, i7-1260P, i7-1165G7 | *Notes:* - **Memory** - - The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-cli`. + - The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-completion`. - Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU. - **Execution Unit (EU)** @@ -127,20 +129,7 @@ On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the ### Other Vendor GPU -**Verified devices** - -| Nvidia GPU | Status | Verified Model | -|--------------------------|-----------|----------------| -| Ampere Series | Supported | A100, A4000 | -| Ampere Series *(Mobile)* | Supported | RTX 40 Series | - -| AMD GPU | Status | Verified Model | -|--------------------------|--------------|----------------| -| Radeon Pro | Experimental | W6800 | -| Radeon RX | Experimental | 6700 XT | - -Note: AMD GPU support is highly experimental and is incompatible with F16. -Additionally, it only supports GPUs with a sub_group_size (warp size) of 32. +NA ## Docker @@ -149,11 +138,11 @@ The docker build option is currently limited to *Intel GPU* targets. ### Build image ```sh -# Using FP16 -docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile . - # Using FP32 docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=OFF" --target light -f .devops/intel.Dockerfile . + +# Using FP16 +docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile . ``` *Notes*: @@ -212,14 +201,6 @@ Platform #0: Intel(R) OpenCL HD Graphics `-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49] ``` -- **Nvidia GPU** - -In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed. - -- **AMD GPU** - -To target AMD GPUs with SYCL, the ROCm stack must be installed first. - 2. **Install Intel® oneAPI Base toolkit** SYCL backend depends on: @@ -248,23 +229,6 @@ Upon a successful installation, SYCL is enabled for the available intel devices, |2025.1| |2024.1| -- **Adding support to Nvidia GPUs** - -**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup. - -**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target: - -```sh -git clone https://github.com/oneapi-src/oneDNN.git -cd oneDNN -cmake -GNinja -Bbuild-nvidia -DDNNL_CPU_RUNTIME=DPCPP -DDNNL_GPU_RUNTIME=DPCPP -DDNNL_GPU_VENDOR=NVIDIA -DONEDNN_BUILD_GRAPH=OFF -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -cmake --build build-nvidia --config Release -``` - -- **Adding support to AMD GPUs** - -**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit. - 3. **Verify installation and environment** In order to check the available SYCL devices on the machine, please use the `sycl-ls` command. @@ -285,25 +249,6 @@ When targeting an intel GPU, the user should expect one or more devices among th [opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) UHD Graphics 730 OpenCL 3.0 NEO [24.39.31294] ``` -- **Nvidia GPU** - -Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`cuda:gpu`] as below: - -``` -[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix] -[opencl:cpu][opencl:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix] -[cuda:gpu][cuda:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.5] -``` - -- **AMD GPU** - -For AMD GPUs we should expect at least one SYCL-HIP device [`hip:gpu`]: - -``` -[opencl:cpu][opencl:0] Intel(R) OpenCL, 12th Gen Intel(R) Core(TM) i9-12900K OpenCL 3.0 (Build 0) [2024.18.6.0.02_160000] -[hip:gpu][hip:0] AMD HIP BACKEND, AMD Radeon PRO W6800 gfx1030 [HIP 60140.9] -``` - ### II. Build llama.cpp #### Intel GPU @@ -332,47 +277,6 @@ It is possible to come across some precision issues when running tests that stem instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS` as `-cl-fp32-correctly-rounded-divide-sqrt` -#### Nvidia GPU - -The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices. -By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`. - -```sh -# Build LLAMA with Nvidia BLAS acceleration through SYCL -# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance -GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture - -# Option 1: Use FP32 (recommended for better performance in most cases) -cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl - -# Option 2: Use FP16 -cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl - -# build all binary -cmake --build build --config Release -j -v -``` - -It is possible to come across some precision issues when running tests that stem from using faster -instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler. - -#### AMD GPU - -The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices. -By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`. - -```sh -# Build LLAMA with rocBLAS acceleration through SYCL - -## AMD -# Use FP32, FP16 is not supported -# Find your GGML_SYCL_DEVICE_ARCH with rocminfo, under the key 'Name:' -GGML_SYCL_DEVICE_ARCH=gfx90a # Example architecture -cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx - -# build all binary -cmake --build build --config Release -j -v -``` - ### III. Run the inference #### Retrieve and prepare model @@ -423,16 +327,12 @@ Choose one of following methods to run. - Use device 0: ```sh -./examples/sycl/run-llama2.sh 0 -# OR -./examples/sycl/run-llama3.sh 0 +./examples/sycl/test.sh -mg 0 ``` - Use multiple devices: ```sh -./examples/sycl/run-llama2.sh -# OR -./examples/sycl/run-llama3.sh +./examples/sycl/test.sh ``` 2. Command line @@ -455,13 +355,13 @@ Examples: - Use device 0: ```sh -ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm none -mg 0 +ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm none -mg 0 --mmap ``` - Use multiple devices: ```sh -ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm layer +ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm layer --mmap ``` *Notes:* @@ -577,13 +477,13 @@ Or, use CMake presets to build: ```sh cmake --preset x64-windows-sycl-release -cmake --build build-x64-windows-sycl-release -j --target llama-cli +cmake --build build-x64-windows-sycl-release -j --target llama-completion cmake -DGGML_SYCL_F16=ON --preset x64-windows-sycl-release -cmake --build build-x64-windows-sycl-release -j --target llama-cli +cmake --build build-x64-windows-sycl-release -j --target llama-completion cmake --preset x64-windows-sycl-debug -cmake --build build-x64-windows-sycl-debug -j --target llama-cli +cmake --build build-x64-windows-sycl-debug -j --target llama-completion ``` #### 3. Visual Studio @@ -608,7 +508,7 @@ You can use Visual Studio to open the `llama.cpp` folder directly as a CMake pro - For a minimal experimental setup, you can build only the inference executable using: ```Powershell - cmake --build build --config Release -j --target llama-cli + cmake --build build --config Release -j --target llama-completion ``` ##### - Generating a Visual Studio Solution @@ -714,13 +614,7 @@ Choose one of following methods to run. 1. Script ``` -examples\sycl\win-run-llama-2.bat -``` - -or - -``` -examples\sycl\win-run-llama-3.bat +examples\sycl\win-test.bat ``` 2. Command line @@ -744,13 +638,13 @@ Examples: - Use device 0: ``` -build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm none -mg 0 +build\bin\llama-completion.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm none -mg 0 --mmap ``` - Use multiple devices: ``` -build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm layer +build\bin\llama-completion.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm layer --mmap ``` @@ -776,15 +670,15 @@ use 1 SYCL GPUs: [0] with Max compute units:512 | Name | Value | Function | |--------------------|---------------------------------------|---------------------------------------------| | GGML_SYCL | ON (mandatory) | Enable build with SYCL code path. | -| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. | -| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. | +| GGML_SYCL_TARGET | INTEL *(default)* | Set the SYCL target device type. | +| GGML_SYCL_DEVICE_ARCH | Optional | Set the SYCL device architecture. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. | | GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. (1.) | -| GGML_SYCL_GRAPH | ON *(default)* \|OFF *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). | +| GGML_SYCL_GRAPH | OFF *(default)* \|ON *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). | | GGML_SYCL_DNN | ON *(default)* \|OFF *(Optional)* | Enable build with oneDNN. | | CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. | | CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. | -1. FP16 is recommended for better prompt processing performance on quantized models. Performance is equivalent in text generation but set `GGML_SYCL_F16=OFF` if you are experiencing issues with FP16 builds. +1. FP32 or FP16 have different performance impact to LLM. Recommended to test them for better prompt processing performance on your models. You need to rebuild the code after change `GGML_SYCL_F16=OFF/ON`. #### Runtime @@ -792,7 +686,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512 |-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------| | GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG | | GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features for Intel GPUs. (Recommended to 1 for intel devices older than Gen 10) | -| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. | +| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because SYCL Graph is still on development, no better performance. | | GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. | | ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.
Recommended to use when --split-mode = layer | | UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS | 0 (default) or 1 | Support malloc device memory more than 4GB.| diff --git a/docs/backend/snapdragon/CMakeUserPresets.json b/docs/backend/snapdragon/CMakeUserPresets.json index 4cf473d05f..1faae2f3db 100644 --- a/docs/backend/snapdragon/CMakeUserPresets.json +++ b/docs/backend/snapdragon/CMakeUserPresets.json @@ -1,10 +1,5 @@ { "version": 5, - "cmakeMinimumRequired": { - "major": 3, - "minor": 28, - "patch": 0 - }, "configurePresets": [ { "name": "arm64-android-snapdragon", diff --git a/docs/backend/snapdragon/windows.md b/docs/backend/snapdragon/windows.md index 710ad8fdf4..e9346ccadf 100644 --- a/docs/backend/snapdragon/windows.md +++ b/docs/backend/snapdragon/windows.md @@ -128,7 +128,7 @@ However, additional settings are required for generating and signing HTP Ops lib > $env:HEXAGON_HTP_CERT="c:\Users\MyUsers\Certs\ggml-htp-v1.pfx" > $env:WINDOWS_SDK_BIN="C:\Program Files (x86)\Windows Kits\10\bin\10.0.26100.0\arm64" -> cmake --preset arm64-windows-snapdragon -B build-wos +> cmake --preset arm64-windows-snapdragon-release -B build-wos ... > cmake --install build-wos --prefix pkg-snapdragon ``` diff --git a/docs/build.md b/docs/build.md index 3a43f2a45a..fd447424c7 100644 --- a/docs/build.md +++ b/docs/build.md @@ -252,9 +252,7 @@ CUDA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.ggu The environment variable [`CUDA_SCALE_LAUNCH_QUEUES`](https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/environment-variables.html#cuda-scale-launch-queues) controls the size of CUDA's command buffer, which determines how many GPU operations can be queued before the CPU must wait for the GPU to catch up. A larger buffer reduces CPU-side stalls and allows more work to be queued on a GPU. -**Default behavior:** llama.cpp automatically sets `CUDA_SCALE_LAUNCH_QUEUES=4x`, which increases the CUDA command buffer to 4 times its default size. This optimization is particularly beneficial for **Multi-GPU setups with pipeline parallelism**, where it significantly improves prompt processing throughput by allowing more operations to be enqueued across GPUs. - -See PR [#19042](https://github.com/ggml-org/llama.cpp/pull/19042) for performance benchmarks and technical details. +Consider setting `CUDA_SCALE_LAUNCH_QUEUES=4x`, which increases the CUDA command buffer to 4 times its default size. This optimization is particularly beneficial for **Multi-GPU setups with pipeline parallelism**, where it significantly improves prompt processing throughput by allowing more operations to be enqueued across GPUs. ### Unified Memory diff --git a/docs/multimodal/minicpmo2.6.md b/docs/multimodal/minicpmo2.6.md index 5e74058e5d..ce003b2ebc 100644 --- a/docs/multimodal/minicpmo2.6.md +++ b/docs/multimodal/minicpmo2.6.md @@ -9,7 +9,7 @@ Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch m ### Build llama.cpp Readme modification time: 20250206 -If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) +If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md) Clone llama.cpp: ```bash diff --git a/docs/multimodal/minicpmo4.0.md b/docs/multimodal/minicpmo4.0.md index 49125ea05e..a5281779c2 100644 --- a/docs/multimodal/minicpmo4.0.md +++ b/docs/multimodal/minicpmo4.0.md @@ -8,11 +8,11 @@ Download [MiniCPM-o-4](https://huggingface.co/openbmb/MiniCPM-o-4) PyTorch model ### Build llama.cpp Readme modification time: 20250206 -If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) +If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md) Clone llama.cpp: ```bash -git clone https://github.com/ggerganov/llama.cpp +git clone https://github.com/ggml-org/llama.cpp cd llama.cpp ``` diff --git a/docs/multimodal/minicpmv2.5.md b/docs/multimodal/minicpmv2.5.md index 5eb87bc969..096f070a1c 100644 --- a/docs/multimodal/minicpmv2.5.md +++ b/docs/multimodal/minicpmv2.5.md @@ -8,7 +8,7 @@ Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V- ### Build llama.cpp Readme modification time: 20250206 -If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) +If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md) Clone llama.cpp: ```bash diff --git a/docs/multimodal/minicpmv2.6.md b/docs/multimodal/minicpmv2.6.md index bc874bbd8c..a7db9c58db 100644 --- a/docs/multimodal/minicpmv2.6.md +++ b/docs/multimodal/minicpmv2.6.md @@ -8,7 +8,7 @@ Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch m ### Build llama.cpp Readme modification time: 20250206 -If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) +If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md) Clone llama.cpp: ```bash diff --git a/docs/multimodal/minicpmv4.0.md b/docs/multimodal/minicpmv4.0.md index d04cb338ce..1d21b8cfdf 100644 --- a/docs/multimodal/minicpmv4.0.md +++ b/docs/multimodal/minicpmv4.0.md @@ -8,11 +8,11 @@ Download [MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4) PyTorch model ### Build llama.cpp Readme modification time: 20250731 -If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) +If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md) Clone llama.cpp: ```bash -git clone https://github.com/ggerganov/llama.cpp +git clone https://github.com/ggml-org/llama.cpp cd llama.cpp ``` diff --git a/docs/multimodal/minicpmv4.5.md b/docs/multimodal/minicpmv4.5.md index 8fea5e611d..a102c0fa51 100644 --- a/docs/multimodal/minicpmv4.5.md +++ b/docs/multimodal/minicpmv4.5.md @@ -8,11 +8,11 @@ Download [MiniCPM-V-4_5](https://huggingface.co/openbmb/MiniCPM-V-4_5) PyTorch m ### Build llama.cpp Readme modification time: 20250826 -If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) +If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md) Clone llama.cpp: ```bash -git clone https://github.com/ggerganov/llama.cpp +git clone https://github.com/ggml-org/llama.cpp cd llama.cpp ``` diff --git a/docs/ops.md b/docs/ops.md index 2c7c60dcca..5754b0a96c 100644 --- a/docs/ops.md +++ b/docs/ops.md @@ -22,7 +22,7 @@ Legend: | ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | | ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ | -| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ | +| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ | | CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ | | CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ | | CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ | @@ -113,7 +113,7 @@ Legend: | SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ | | TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ | | TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | -| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ | +| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ | | TRI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | | TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ | | UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ | ❌ | diff --git a/docs/ops/SYCL.csv b/docs/ops/SYCL.csv index c1d22e65d4..c1622cc6f0 100644 --- a/docs/ops/SYCL.csv +++ b/docs/ops/SYCL.csv @@ -77,8 +77,8 @@ "SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL" "SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","FLOOR","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" -"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" -"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" +"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL" +"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL" "SYCL0","ROUND","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","ROUND","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" "SYCL0","TRUNC","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" @@ -161,8 +161,8 @@ "SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL" "SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","FLOOR","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" -"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" -"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" +"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL" +"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL" "SYCL0","ROUND","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" "SYCL0","ROUND","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL" "SYCL0","TRUNC","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL" @@ -9677,168 +9677,168 @@ "SYCL0","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","1","yes","SYCL" "SYCL0","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","1","yes","SYCL" "SYCL0","ARGSORT","type=f32,ne=[2,8,8192,1],order=1","support","1","yes","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[12,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[12,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=15,ties=0","support","1","yes","SYCL" "SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=100,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=15,ties=0","support","1","yes","SYCL" "SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=100,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=15,ties=0","support","1","yes","SYCL" "SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=500,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=500,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=15,ties=0","support","1","yes","SYCL" "SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=500,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=500,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=1023,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=1023,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=15,ties=0","support","1","yes","SYCL" "SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=500,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=500,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=1023,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=1023,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=15,ties=0","support","1","yes","SYCL" "SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=500,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=500,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=1023,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=1023,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=15,ties=0","support","1","yes","SYCL" "SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=500,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=500,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=1023,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=1023,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=15,ties=0","support","1","yes","SYCL" "SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=500,ties=0","support","0","no","SYCL" @@ -9847,16 +9847,16 @@ "SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=1023,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=9999,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=9999,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=15,ties=0","support","1","yes","SYCL" "SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=500,ties=0","support","0","no","SYCL" @@ -9865,16 +9865,16 @@ "SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=1023,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=9999,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=9999,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=15,ties=0","support","1","yes","SYCL" "SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=500,ties=0","support","0","no","SYCL" @@ -9883,16 +9883,16 @@ "SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=1023,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=9999,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=9999,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=15,ties=0","support","1","yes","SYCL" "SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=500,ties=0","support","0","no","SYCL" @@ -9901,16 +9901,16 @@ "SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=1023,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=9999,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=9999,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=15,ties=0","support","1","yes","SYCL" "SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=500,ties=0","support","0","no","SYCL" @@ -9919,16 +9919,16 @@ "SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=1023,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=9999,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=9999,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=15,ties=0","support","1","yes","SYCL" "SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=100,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=500,ties=0","support","0","no","SYCL" @@ -9937,51 +9937,51 @@ "SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=1023,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=9999,ties=0","support","0","no","SYCL" "SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=9999,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=1,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=2,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=3,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=7,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=15,ties=0","support","0","no","SYCL" -"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=15,ties=0","support","0","no","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=1,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=2,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=3,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=7,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=15,ties=0","support","1","yes","SYCL" +"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=15,ties=0","support","1","yes","SYCL" "SYCL0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=0","support","1","yes","SYCL" "SYCL0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=1","support","1","yes","SYCL" "SYCL0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest","support","1","yes","SYCL" diff --git a/docs/speculative.md b/docs/speculative.md index 8281eaa2d3..03afab5b41 100644 --- a/docs/speculative.md +++ b/docs/speculative.md @@ -6,7 +6,7 @@ llama.cpp supports speculative decoding, a technique that can significantly acce ## Implementations -The `llama-server` application supports several implementations of speculative decoding: +The `llama-server` application supports several implementations of speculative decoding. An implementation with draft model can be mixed with an implementation without draft model. ### Draft Model (`draft`) @@ -32,12 +32,21 @@ An example to use this approach can be the rewriting of source code by a LLM. This implementation looks for the last n-gram in history that matches the current n-gram and creates a draft using the m tokens following the matched n-gram. It is the simplest self-speculative approach with minimal overhead. +``` +llama-server [...] --spec-type ngram-simple --draft-max 64 +``` + #### n-gram Map Key (`ngram-map-k`) -This implementation looks for the current n-gram of size n (called the _key_) in the token history. If the key n-gram is followed by the same m tokens (called the _mgram_) multiple times, it creates a draft using these m tokens. This approach requires a minimum number of occurrences (argument `--spec-ngram-min-hits`) before generating drafts. +This implementation looks for the current n-gram of size n (called the _key_) in the token history. If the key n-gram is followed by the same m tokens (called the _mgram_) multiple times, it creates a draft using these m tokens. This approach requires a minimum number of occurrences (argument `--spec-ngram-min-hits`, default is 1) before generating drafts. The number of accepted tokens is stored for each used n-gram. +**Example:** +``` +llama-server [...] --spec-type ngram-map-k --draft-max 64 +``` + #### n-gram Map Key-4-Values (`ngram-map-k4v`) This experimental implementation looks for the current n-gram of size n (called the _key_) in the token history. For each key, up to four _values_ (n-grams of size m, called _mgrams_) are tracked. An internal statistic counts the occurrences of each mgram after the key n-gram. If one mgram is significantly more frequent than the others, it is used as the draft. @@ -45,17 +54,65 @@ This experimental implementation looks for the current n-gram of size n (called The number of accepted tokens is stored for each used n-gram. **Example:** Server options to be used if there are a lot of longer repetitions. -```bash -llama-server [...] --spec-type ngram-map-k4v --spec-ngram-size-n 8 --spec-ngram-size-m 8 --spec-ngram-min-hits 2 +``` +llama-server [...] --spec-type ngram-map-k4v --spec-ngram-size-n 8 --spec-ngram-size-m 8 --spec-ngram-min-hits 2 --draft-max 64 ``` +### n-gram Mod (`ngram-mod`) + +Add basic ngram hasher for speculative decoding: + +- For each ngram, compute a hash using LCG +- For each computed hash, store the next token +- During speculation, iteratively compute the rolling hash of the last n tokens and pick the next token from the storage + +Some characteristics: + +- Lightweight (~16 MB) +- Constant memory and complexity +- Can generate variable draft lengths (i.e. m is not fixed) + +Currently, a single hash pool is shared across all server slots, so different requests can benefit from each other. + +**Sample usage:** + +``` +# notes: +# - small `n` are not recommended +# - MoEs require long drafts +# - dense models: can reduce `--draft-min` and `--draft-max` + +llama-server ... --spec-type ngram-mod --spec-ngram-size-n 24 --draft-min 48 --draft-max 64 +``` + +Applications: + +- Iterating over a block of text/code (e.g. in llama.vim) +- Reasoning models (when they have to repeat their thinking in the final answer) +- Summarization + +Example Video: + +- See #19164 + +### Differences between ngram-simple, ngram-map and ngram-mod + +- ngram-simple looks for a previous matching n-gram and inserts the following m-gram. +- ngram-map-k looks for a previous matching n-gram and inserts the following m-gram but uses an internal hash-map of n-grams in the current context window. +- ngram-mod uses a hash pool which is shared across all server slots. The hash pool is a map from n-gram hash to the next token (not the next m-gram as in ngram-map). ## Command-Line Options If a draft model is combined with a draftless decoding the draftless decoding has higher precedence. ``` ---spec-type [none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v] +--draft, --draft-n, --draft-max N number of tokens to draft for speculative decoding (default: 16) + (env: LLAMA_ARG_DRAFT_MAX) +--draft-min, --draft-n-min N minimum number of draft tokens to use for speculative decoding + (default: 0) + (env: LLAMA_ARG_DRAFT_MIN) +[...] +--spec-type [none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v|ngram-mod] type of speculative decoding to use when no draft model is provided (default: none) --spec-ngram-size-n N ngram size N for ngram-simple/ngram-map speculative decoding, length @@ -78,6 +135,7 @@ Specifies a type of speculative decoding without draft model. | `ngram-simple` | Use simple n-gram pattern matching | | `ngram-map-k` | Use n-gram pattern matching with n-gram-keys | | `ngram-map-k4v` | Use n-gram pattern matching with n-gram-keys and up to four m-gram values (experimental) | +| `ngram-mod` | Use basic ngram hasher for speculative decoding with shared pool | **Example:** Server-instance used to refactor source code. ```bash @@ -112,9 +170,15 @@ statistics ngram_simple: #calls = 15, #gen drafts = 5, #acc drafts = 5, #gen tok statistics draft: #calls = 10, #gen drafts = 10, #acc drafts = 10, #gen tokens = 110, #acc tokens = 98 ``` +``` +draft acceptance rate = 0.70312 ( 90 accepted / 128 generated) +statistics ngram_mod: #calls = 810, #gen drafts = 15, #acc drafts = 15, #gen tokens = 960, #acc tokens = 730, dur(b,g,a) = 0.149, 0.347, 0.005 ms +``` + - `#calls`: number of calls of this implementations - `#gen drafts`: number of drafts generated by this implementation - `#acc drafts`: number of drafts accepted (partially) by the main model - `#gen tokens`: number of tokens generated by this implementation (including rejected tokens) - `#acc tokens`: number of tokens accepted by the main model +- `dur(b,g,a): durations of begin (new prompt), generation and accumulation (process acceptance). diff --git a/examples/deprecation-warning/README.md b/examples/deprecation-warning/README.md index 59918ec2bb..9a1b263e8e 100644 --- a/examples/deprecation-warning/README.md +++ b/examples/deprecation-warning/README.md @@ -1,7 +1,7 @@ # Migration notice for binary filenames > [!IMPORTANT] -[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809) +[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggml-org/llama.cpp/pull/7809) This migration was important, but it is a breaking change that may not always be immediately obvious to users. diff --git a/examples/deprecation-warning/deprecation-warning.cpp b/examples/deprecation-warning/deprecation-warning.cpp index c2958ea12d..11f5147328 100644 --- a/examples/deprecation-warning/deprecation-warning.cpp +++ b/examples/deprecation-warning/deprecation-warning.cpp @@ -28,7 +28,7 @@ int main(int argc, char** argv) { fprintf(stdout, "\n"); fprintf(stdout, "WARNING: The binary '%s' is deprecated.\n", filename.c_str()); fprintf(stdout, " Please use '%s' instead.\n", replacement_filename.c_str()); - fprintf(stdout, " See https://github.com/ggerganov/llama.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n"); + fprintf(stdout, " See https://github.com/ggml-org/llama.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n"); fprintf(stdout, "\n"); return EXIT_FAILURE; diff --git a/examples/json_schema_to_grammar.py b/examples/json_schema_to_grammar.py index 886dd3d81e..9fc90a3c98 100755 --- a/examples/json_schema_to_grammar.py +++ b/examples/json_schema_to_grammar.py @@ -402,7 +402,7 @@ class SchemaConverter: Transforms a regular expression pattern into a GBNF rule. Input: https://json-schema.org/understanding-json-schema/reference/regular_expressions - Output: https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md + Output: https://github.com/ggml-org/llama.cpp/blob/master/grammars/README.md Unsupported features: negative/positive lookaheads, greedy/non-greedy modifiers. diff --git a/examples/model-conversion/Makefile b/examples/model-conversion/Makefile index 3b0505911d..342de63bd0 100644 --- a/examples/model-conversion/Makefile +++ b/examples/model-conversion/Makefile @@ -33,11 +33,14 @@ DEVICE ?= auto causal-convert-model-bf16: OUTTYPE=bf16 causal-convert-model-bf16: causal-convert-model +causal-convert-model-debug: DEBUG=--debug +causal-convert-model-debug: causal-convert-model + causal-convert-model: $(call validate_model_path,causal-convert-model) @MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \ METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \ - ./scripts/causal/convert-model.sh + ./scripts/causal/convert-model.sh $(DEBUG) causal-convert-mm-model-bf16: OUTTYPE=bf16 causal-convert-mm-model-bf16: MM_OUTTYPE=f16 diff --git a/examples/model-conversion/scripts/causal/convert-model.sh b/examples/model-conversion/scripts/causal/convert-model.sh index 32ffe132e7..a5865f6acd 100755 --- a/examples/model-conversion/scripts/causal/convert-model.sh +++ b/examples/model-conversion/scripts/causal/convert-model.sh @@ -4,12 +4,17 @@ set -e # Parse command line arguments MMPROJ="" +DEBUG="" while [[ $# -gt 0 ]]; do case $1 in --mmproj) MMPROJ="--mmproj" shift ;; + --debug) + DEBUG="1" + shift + ;; *) shift ;; @@ -28,7 +33,12 @@ echo "Data type: ${TYPE}" echo "Converted model path:: ${CONVERTED_MODEL}" echo "Metadata override: ${METADATA_OVERRIDE}" -CMD_ARGS=("python" "../../convert_hf_to_gguf.py" "--verbose") +if [[ -n "$DEBUG" ]]; then + CMD_ARGS=("python" "-m" "pdb") +else + CMD_ARGS=("python") +fi +CMD_ARGS+=("../../convert_hf_to_gguf.py" "--verbose") CMD_ARGS+=("${MODEL_PATH}") CMD_ARGS+=("--outfile" "${CONVERTED_MODEL}") CMD_ARGS+=("--outtype" "${TYPE}") diff --git a/examples/model-conversion/scripts/utils/tensor-info.py b/examples/model-conversion/scripts/utils/tensor-info.py new file mode 100755 index 0000000000..12a3430b49 --- /dev/null +++ b/examples/model-conversion/scripts/utils/tensor-info.py @@ -0,0 +1,159 @@ +#!/usr/bin/env python3 + +import argparse +import json +import os +import re +import sys +from pathlib import Path +from typing import Optional +from safetensors import safe_open + + +MODEL_SAFETENSORS_FILE = "model.safetensors" +MODEL_SAFETENSORS_INDEX = "model.safetensors.index.json" + + +def get_weight_map(model_path: Path) -> Optional[dict[str, str]]: + index_file = model_path / MODEL_SAFETENSORS_INDEX + + if index_file.exists(): + with open(index_file, 'r') as f: + index = json.load(f) + return index.get("weight_map", {}) + + return None + + +def get_all_tensor_names(model_path: Path) -> list[str]: + weight_map = get_weight_map(model_path) + + if weight_map is not None: + return list(weight_map.keys()) + + single_file = model_path / MODEL_SAFETENSORS_FILE + if single_file.exists(): + try: + with safe_open(single_file, framework="pt", device="cpu") as f: + return list(f.keys()) + except Exception as e: + print(f"Error reading {single_file}: {e}") + sys.exit(1) + + print(f"Error: No safetensors files found in {model_path}") + sys.exit(1) + + +def find_tensor_file(model_path: Path, tensor_name: str) -> Optional[str]: + weight_map = get_weight_map(model_path) + + if weight_map is not None: + return weight_map.get(tensor_name) + + single_file = model_path / MODEL_SAFETENSORS_FILE + if single_file.exists(): + return single_file.name + + return None + + +def normalize_tensor_name(tensor_name: str) -> str: + normalized = re.sub(r'\.\d+\.', '.#.', tensor_name) + normalized = re.sub(r'\.\d+$', '.#', normalized) + return normalized + + +def list_all_tensors(model_path: Path, unique: bool = False): + tensor_names = get_all_tensor_names(model_path) + + if unique: + seen = set() + for tensor_name in sorted(tensor_names): + normalized = normalize_tensor_name(tensor_name) + if normalized not in seen: + seen.add(normalized) + print(normalized) + else: + for tensor_name in sorted(tensor_names): + print(tensor_name) + + +def print_tensor_info(model_path: Path, tensor_name: str): + tensor_file = find_tensor_file(model_path, tensor_name) + + if tensor_file is None: + print(f"Error: Could not find tensor '{tensor_name}' in model index") + print(f"Model path: {model_path}") + sys.exit(1) + + file_path = model_path / tensor_file + + try: + with safe_open(file_path, framework="pt", device="cpu") as f: + if tensor_name in f.keys(): + tensor_slice = f.get_slice(tensor_name) + shape = tensor_slice.get_shape() + print(f"Tensor: {tensor_name}") + print(f"File: {tensor_file}") + print(f"Shape: {shape}") + else: + print(f"Error: Tensor '{tensor_name}' not found in {tensor_file}") + sys.exit(1) + + except FileNotFoundError: + print(f"Error: The file '{file_path}' was not found.") + sys.exit(1) + except Exception as e: + print(f"An error occurred: {e}") + sys.exit(1) + + +def main(): + parser = argparse.ArgumentParser( + description="Print tensor information from a safetensors model" + ) + parser.add_argument( + "tensor_name", + nargs="?", # optional (if --list is used for example) + help="Name of the tensor to inspect" + ) + parser.add_argument( + "-m", "--model-path", + type=Path, + help="Path to the model directory (default: MODEL_PATH environment variable)" + ) + parser.add_argument( + "-l", "--list", + action="store_true", + help="List unique tensor patterns in the model (layer numbers replaced with #)" + ) + + args = parser.parse_args() + + model_path = args.model_path + if model_path is None: + model_path_str = os.environ.get("MODEL_PATH") + if model_path_str is None: + print("Error: --model-path not provided and MODEL_PATH environment variable not set") + sys.exit(1) + model_path = Path(model_path_str) + + if not model_path.exists(): + print(f"Error: Model path does not exist: {model_path}") + sys.exit(1) + + if not model_path.is_dir(): + print(f"Error: Model path is not a directory: {model_path}") + sys.exit(1) + + if args.list: + list_all_tensors(model_path, unique=True) + else: + if args.tensor_name is None: + print("Error: tensor_name is required when not using --list") + sys.exit(1) + print_tensor_info(model_path, args.tensor_name) + + +if __name__ == "__main__": + main() diff --git a/examples/sycl/run-llama2.sh b/examples/sycl/run-llama2.sh index cf23619ee0..d33f82f339 100755 --- a/examples/sycl/run-llama2.sh +++ b/examples/sycl/run-llama2.sh @@ -18,13 +18,14 @@ CONTEXT=4096 #support malloc device memory more than 4GB. export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1 +LOAD_MODE='--mmap' if [ $# -gt 0 ]; then GGML_SYCL_DEVICE=$1 echo "use $GGML_SYCL_DEVICE as main GPU" #use signle GPU only - ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none + ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none ${LOAD_MODE} else #use multiple GPUs with same max compute units - ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} + ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} ${LOAD_MODE} fi diff --git a/examples/sycl/run-llama3.sh b/examples/sycl/run-llama3.sh deleted file mode 100755 index feee5165e9..0000000000 --- a/examples/sycl/run-llama3.sh +++ /dev/null @@ -1,31 +0,0 @@ -#!/usr/bin/env bash - -# MIT license -# Copyright (C) 2025 Intel Corporation -# SPDX-License-Identifier: MIT - -# If you want more control, DPC++ Allows selecting a specific device through the -# following environment variable -export ONEAPI_DEVICE_SELECTOR="level_zero:0" -source /opt/intel/oneapi/setvars.sh - -#export GGML_SYCL_DEBUG=1 - -#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer. - -INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:" -MODEL_FILE=models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -NGL=99 # Layers offloaded to the GPU. If the device runs out of memory, reduce this value according to the model you are using. -CONTEXT=4096 - -#support malloc device memory more than 4GB. -export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1 - -if [ $# -gt 0 ]; then - GGML_SYCL_DEVICE=$1 - echo "Using $GGML_SYCL_DEVICE as the main GPU" - ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none -else - #use multiple GPUs with same max compute units - ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -fi diff --git a/examples/sycl/test.sh b/examples/sycl/test.sh new file mode 100755 index 0000000000..140c191466 --- /dev/null +++ b/examples/sycl/test.sh @@ -0,0 +1,130 @@ +#!/bin/bash + +# MIT license +# Copyright (C) 2024 Intel Corporation +# SPDX-License-Identifier: MIT + +Help() { + cat << EOF +Usage: $(basename "$0") [OPTIONS] + +This script processes files with specified options. + +Options: + -h, --help Display this help message and exit. + -c, --context Set context length. Bigger need more memory. + -p, --promote Prompt to start generation with. + -m, --model Full model file path. + -mg,--main-gpu Set main GPU ID (0 - n) for single GPU mode. + -sm,--split-mode How to split the model across multiple GPUs, one of: + - none: use one GPU only + - layer (default): split layers and KV across GPUs + - row: split rows across GPUs + -ngl,--n-gpu-layers Max. number of layers to store in VRAM (default: -1) + -lv,--log-verbosity Set the verbosity threshold. Messages with a higher verbosity will be + ignored. Values: + - 0: generic output + - 1: error + - 2: warning + - 3: info + - 4: debug + + +EOF +} + +BIN_FILE=./build/bin/llama-completion +SEED=0 +GPUS_SETTING="" + +INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:" +MODEL_FILE=models/llama-2-7b.Q4_0.gguf +NGL=99 +CONTEXT=4096 +GGML_SYCL_DEVICE=-1 +SPLIT_MODE=layer +LOG_VERBOSE=3 +while [[ $# -gt 0 ]]; do + case "$1" in + -c|--context) + CONTEXT=$2 + # Shift twice to consume both the option flag and its value + shift + shift + ;; + -p|--promote) + # Option that is a simple flag (boolean) + INPUT_PROMPT="$2" + # Shift once to consume the option flag + shift + shift + ;; + -m|--model) + MODEL_FILE="$2" + # Shift twice to consume both the option flag and its value + shift + shift + ;; + -mg|--main-gpu) + GGML_SYCL_DEVICE=$2 + SPLIT_MODE=none + # Shift twice to consume both the option flag and its value + shift + shift + ;; + -sm|--split-mode) + SPLIT_MODE=$2 + # Shift twice to consume both the option flag and its value + shift + shift + ;; + -ngl|--n-gpu-layers) + NGL=$2 + # Shift twice to consume both the option flag and its value + shift + shift + ;; + -lv|--log-verbosity) + LOG_VERBOSE=$2 + # Shift twice to consume both the option flag and its value + shift + shift + ;; + -h|--help) + Help + exit 0 + ;; + *) + # Handle unknown options or stop processing options + echo "Invalid option: $1" + # Optional: exit script or shift to treat remaining as positional args + exit 1 + ;; + esac +done + + + +source /opt/intel/oneapi/setvars.sh + +#export GGML_SYCL_DEBUG=1 + +#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer. + +#support malloc device memory more than 4GB. +export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1 +echo "UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=${UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS}" + +if [ $GGML_SYCL_DEVICE -ne -1 ]; then + echo "Use $GGML_SYCL_DEVICE as main GPU" + #use signle GPU only + GPUS_SETTING="-mg $GGML_SYCL_DEVICE -sm ${SPLIT_MODE}" + export ONEAPI_DEVICE_SELECTOR="level_zero:${$GGML_SYCL_DEVICE}" + echo "ONEAPI_DEVICE_SELECTOR=${ONEAPI_DEVICE_SELECTOR}" +else + echo "Use all Intel GPUs, including iGPU & dGPU" + fi + +echo "run cmd: ZES_ENABLE_SYSMAN=1 ${BIN_FILE} -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s ${SEED} -c ${CONTEXT} ${GPUS_SETTING} -lv ${LOG_VERBOSE} --mmap " +ZES_ENABLE_SYSMAN=1 ${BIN_FILE} -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s ${SEED} -c ${CONTEXT} ${GPUS_SETTING} -lv ${LOG_VERBOSE} --mmap + diff --git a/examples/sycl/win-run-llama2.bat b/examples/sycl/win-run-llama2.bat index 32ff673ae2..1f2dab8d0a 100644 --- a/examples/sycl/win-run-llama2.bat +++ b/examples/sycl/win-run-llama2.bat @@ -7,5 +7,5 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:" :: support malloc device memory more than 4GB. set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1 - -.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0 +set LOAD_MODE="--mmap" +.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0 %LOAD_MODE% diff --git a/examples/sycl/win-run-llama3.bat b/examples/sycl/win-test.bat similarity index 69% rename from examples/sycl/win-run-llama3.bat rename to examples/sycl/win-test.bat index ea4ae69d6c..1f2dab8d0a 100644 --- a/examples/sycl/win-run-llama3.bat +++ b/examples/sycl/win-test.bat @@ -7,5 +7,5 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:" :: support malloc device memory more than 4GB. set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1 - -.\build\bin\llama-completion.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -no-cnv -p %INPUT2% -n 400 -s 0 -e -ngl 99 +set LOAD_MODE="--mmap" +.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0 %LOAD_MODE% diff --git a/ggml/CMakeLists.txt b/ggml/CMakeLists.txt index b0b8e57898..71d1a7f0e3 100644 --- a/ggml/CMakeLists.txt +++ b/ggml/CMakeLists.txt @@ -1,4 +1,4 @@ -cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories. +cmake_minimum_required(VERSION 3.14...3.28) # for add_link_options and implicit target directories. project("ggml" C CXX ASM) ### GGML Version diff --git a/ggml/include/ggml-cann.h b/ggml/include/ggml-cann.h index b469e228d0..74af465337 100644 --- a/ggml/include/ggml-cann.h +++ b/ggml/include/ggml-cann.h @@ -1,5 +1,5 @@ /* - * Copyright (c) 2023-2024 The ggml authors + * Copyright (c) 2023-2026 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to diff --git a/ggml/include/ggml-cpu.h b/ggml/include/ggml-cpu.h index 4f3b99c8d0..e3e067c916 100644 --- a/ggml/include/ggml-cpu.h +++ b/ggml/include/ggml-cpu.h @@ -19,6 +19,9 @@ extern "C" { // abort ggml_graph_compute when true ggml_abort_callback abort_callback; void * abort_callback_data; + + // use only reference implementations + bool use_ref; }; // numa strategies @@ -132,6 +135,8 @@ extern "C" { GGML_BACKEND_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool); GGML_BACKEND_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data); + GGML_BACKEND_API void ggml_backend_cpu_set_use_ref(ggml_backend_t backend_cpu, bool use_ref); + GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void); GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t); diff --git a/ggml/include/ggml-virtgpu.h b/ggml/include/ggml-virtgpu.h index 1cb4bd7a03..faaba8f246 100644 --- a/ggml/include/ggml-virtgpu.h +++ b/ggml/include/ggml-virtgpu.h @@ -7,8 +7,6 @@ extern "C" { #endif -#define GGML_REMOTING_FRONTEND_NAME "RemotingFrontend" - GGML_BACKEND_API ggml_backend_reg_t ggml_backend_virtgpu_reg(); #ifdef __cplusplus diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 1988d16dc4..f759e2d588 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -6,7 +6,7 @@ // This documentation is still a work in progress. // If you wish some specific topics to be covered, feel free to drop a comment: // -// https://github.com/ggerganov/whisper.cpp/issues/40 +// https://github.com/ggml-org/whisper.cpp/issues/40 // // ## Overview // diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp index 354876574a..22c656996c 100644 --- a/ggml/src/ggml-backend.cpp +++ b/ggml/src/ggml-backend.cpp @@ -258,6 +258,7 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); if (backend->iface.set_tensor_async == NULL) { + ggml_backend_synchronize(backend); ggml_backend_tensor_set(tensor, data, offset, size); } else { backend->iface.set_tensor_async(backend, tensor, data, offset, size); @@ -271,6 +272,7 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); if (backend->iface.get_tensor_async == NULL) { + ggml_backend_synchronize(backend); ggml_backend_tensor_get(tensor, data, offset, size); } else { backend->iface.get_tensor_async(backend, tensor, data, offset, size); diff --git a/ggml/src/ggml-cann/acl_tensor.cpp b/ggml/src/ggml-cann/acl_tensor.cpp index 7b7042a1f5..e95d3c4d88 100644 --- a/ggml/src/ggml-cann/acl_tensor.cpp +++ b/ggml/src/ggml-cann/acl_tensor.cpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2023-2024 The ggml authors + * Copyright (c) 2023-2026 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to diff --git a/ggml/src/ggml-cann/acl_tensor.h b/ggml/src/ggml-cann/acl_tensor.h index 7deac38342..4737773a4d 100644 --- a/ggml/src/ggml-cann/acl_tensor.h +++ b/ggml/src/ggml-cann/acl_tensor.h @@ -1,5 +1,5 @@ /* - * Copyright (c) 2023-2024 The ggml authors + * Copyright (c) 2023-2026 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to diff --git a/ggml/src/ggml-cann/aclnn_ops.cpp b/ggml/src/ggml-cann/aclnn_ops.cpp index 02867e4fdb..87ac05748e 100644 --- a/ggml/src/ggml-cann/aclnn_ops.cpp +++ b/ggml/src/ggml-cann/aclnn_ops.cpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2023-2024 The ggml authors + * Copyright (c) 2023-2026 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to diff --git a/ggml/src/ggml-cann/aclnn_ops.h b/ggml/src/ggml-cann/aclnn_ops.h index b76e4707ac..3effa1c289 100644 --- a/ggml/src/ggml-cann/aclnn_ops.h +++ b/ggml/src/ggml-cann/aclnn_ops.h @@ -1,5 +1,5 @@ /** - * Copyright (c) 2023-2024 The ggml authors + * Copyright (c) 2023-2026 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to diff --git a/ggml/src/ggml-cann/common.h b/ggml/src/ggml-cann/common.h index fb3e7572e2..0120f0dfd1 100644 --- a/ggml/src/ggml-cann/common.h +++ b/ggml/src/ggml-cann/common.h @@ -1,5 +1,5 @@ /* - * Copyright (c) 2023-2024 The ggml authors + * Copyright (c) 2023-2026 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to diff --git a/ggml/src/ggml-cann/ggml-cann.cpp b/ggml/src/ggml-cann/ggml-cann.cpp index 42c6c67a40..6b2dbdd359 100644 --- a/ggml/src/ggml-cann/ggml-cann.cpp +++ b/ggml/src/ggml-cann/ggml-cann.cpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2023-2024 The ggml authors + * Copyright (c) 2023-2026 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to diff --git a/ggml/src/ggml-cpu/arch/x86/quants.c b/ggml/src/ggml-cpu/arch/x86/quants.c index cb49320a67..74d699f633 100644 --- a/ggml/src/ggml-cpu/arch/x86/quants.c +++ b/ggml/src/ggml-cpu/arch/x86/quants.c @@ -268,9 +268,9 @@ static inline __m256 quad_fp16_delta_float(const float x0, const float y0, const _mm_set1_ps(GGML_CPU_FP16_TO_FP32(x0) * GGML_CPU_FP16_TO_FP32(y0))); } -static inline __m256 quad_mx_delta_float(const int8_t x0, const float y0, const int8_t x1, const float y1) { - return _mm256_set_m128(_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x1) * GGML_CPU_FP16_TO_FP32(y1)), - _mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x0) * GGML_CPU_FP16_TO_FP32(y0))); +static inline __m256 quad_mx_delta_float(const uint8_t x0, const float y0, const uint8_t x1, const float y1) { + return _mm256_set_m128(_mm_set1_ps(GGML_CPU_E8M0_TO_FP32_HALF(x1) * GGML_CPU_FP16_TO_FP32(y1)), + _mm_set1_ps(GGML_CPU_E8M0_TO_FP32_HALF(x0) * GGML_CPU_FP16_TO_FP32(y0))); } #endif #elif defined(__SSSE3__) @@ -782,6 +782,7 @@ void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo __m256 accum1 = _mm256_setzero_ps(); __m256 accum2 = _mm256_setzero_ps(); + for (; ib + 1 < nb; ib += 2) { const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[ib + 0].qs); const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[ib + 1].qs); @@ -795,10 +796,10 @@ void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2); const __m256i p_1 = _mm256_madd_epi16(p16_1, mone); const __m256i p_2 = _mm256_madd_epi16(p16_2, mone); - accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 0].e)), - _mm256_cvtepi32_ps(p_1), accum1); - accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 1].e)), - _mm256_cvtepi32_ps(p_2), accum2); + const __m256 scale0 = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_CPU_E8M0_TO_FP32_HALF(x[ib + 0].e)); + const __m256 scale1 = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_CPU_E8M0_TO_FP32_HALF(x[ib + 1].e)); + accum1 = _mm256_fmadd_ps(scale0, _mm256_cvtepi32_ps(p_1), accum1); + accum2 = _mm256_fmadd_ps(scale1, _mm256_cvtepi32_ps(p_2), accum2); } sumf = hsum_float_8(_mm256_add_ps(accum1, accum2)); @@ -830,7 +831,7 @@ void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo #endif for (; ib < nb; ++ib) { - const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e); + const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_CPU_E8M0_TO_FP32_HALF(x[ib].e); int sumi1 = 0; int sumi2 = 0; for (int j = 0; j < QK_MXFP4/2; ++j) { @@ -3817,4 +3818,3 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc); #endif } - diff --git a/ggml/src/ggml-cpu/ggml-cpu-impl.h b/ggml/src/ggml-cpu/ggml-cpu-impl.h index 0e8dd0ae05..88a9c9ec05 100644 --- a/ggml/src/ggml-cpu/ggml-cpu-impl.h +++ b/ggml/src/ggml-cpu/ggml-cpu-impl.h @@ -24,6 +24,9 @@ struct ggml_compute_params { void * wdata; struct ggml_threadpool * threadpool; + + // use reference implementation + bool use_ref; }; diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c index b1de2ae871..b003fe13fd 100644 --- a/ggml/src/ggml-cpu/ggml-cpu.c +++ b/ggml/src/ggml-cpu/ggml-cpu.c @@ -5,7 +5,6 @@ #include "ggml-backend.h" #include "traits.h" #include "ggml-cpu-impl.h" -#include "ggml-cpu.h" #include "ggml-impl.h" #include "quants.h" #include "ggml-threading.h" @@ -76,6 +75,9 @@ // precomputed f32 table for f16 (256 KB) (simd-mappings.h) float ggml_table_f32_f16[1 << 16]; +// precomputed f32 table for e8m0 half (1 KB) (simd-mappings.h) +float ggml_table_f32_e8m0_half[1 << 8]; + #if defined(__ARM_ARCH) struct ggml_arm_arch_features_type { int sve_cnt; @@ -2867,12 +2869,20 @@ struct ggml_cplan ggml_graph_plan( } break; case GGML_OP_FLASH_ATTN_EXT: { + const int64_t neq2 = node->src[0]->ne[2]; // number of query heads const int64_t DK = node->src[1]->ne[0]; const int64_t DV = node->src[2]->ne[0]; // Tiled flash attention scratch (tile sizes defined in common.h) // Per-thread: Q_q + KQ + mask + VKQ32 + V32 + padding - cur = sizeof(float)*(GGML_FA_TILE_Q*DK + 2*GGML_FA_TILE_Q*GGML_FA_TILE_KV + GGML_FA_TILE_Q*DV + GGML_FA_TILE_KV*DV)*n_tasks; + size_t prefill = sizeof(float)*(GGML_FA_TILE_Q*DK + 2*GGML_FA_TILE_Q*GGML_FA_TILE_KV + GGML_FA_TILE_Q*DV + GGML_FA_TILE_KV*DV)*n_tasks; + + // Decode path: n_kv_chunks = n_tasks (one chunk per thread) + // Per-thread: VKQ accmulator (DV), partial M, partial S + intra-thread scratch for V, Q and VKQ + size_t n_chunks = n_tasks; + size_t decode = sizeof(float)*(neq2*n_chunks*(2+DV) + n_tasks*(DK + 2*DV)); + + cur += MAX(prefill, decode); } break; case GGML_OP_FLASH_ATTN_BACK: { @@ -2929,11 +2939,12 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { set_numa_thread_affinity(state->ith); struct ggml_compute_params params = { - /*.ith =*/ state->ith, - /*.nth =*/ atomic_load_explicit(&tp->n_graph, memory_order_relaxed) & GGML_THREADPOOL_N_THREADS_MASK, - /*.wsize =*/ cplan->work_size, - /*.wdata =*/ cplan->work_data, - /*.threadpool=*/ tp, + /*.ith =*/ state->ith, + /*.nth =*/ atomic_load_explicit(&tp->n_graph, memory_order_relaxed) & GGML_THREADPOOL_N_THREADS_MASK, + /*.wsize =*/ cplan->work_size, + /*.wdata =*/ cplan->work_data, + /*.threadpool =*/ tp, + /*.use_ref =*/ cplan->use_ref, }; GGML_PRINT_DEBUG("thread #%d compute-start cplan %p last-graph %d \n", state->ith, cplan, state->last_graph); @@ -3673,6 +3684,11 @@ void ggml_cpu_init(void) { ggml_table_gelu_quick_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_quick_f32(f)); } + // initialize E8M0 half table (256 entries) + for (int i = 0; i < (1 << 8); ++i) { + ggml_table_f32_e8m0_half[i] = GGML_E8M0_TO_FP32_HALF(i); + } + const uint64_t t_end = ggml_time_us(); UNUSED(t_end); GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0); diff --git a/ggml/src/ggml-cpu/ggml-cpu.cpp b/ggml/src/ggml-cpu/ggml-cpu.cpp index f4713a4218..ddf1737a31 100644 --- a/ggml/src/ggml-cpu/ggml-cpu.cpp +++ b/ggml/src/ggml-cpu/ggml-cpu.cpp @@ -105,6 +105,8 @@ struct ggml_backend_cpu_context { ggml_abort_callback abort_callback; void * abort_callback_data; + + bool use_ref; // use reference implementation }; static const char * ggml_backend_cpu_get_name(ggml_backend_t backend) { @@ -143,6 +145,7 @@ static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback; cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data; + cpu_plan->cplan.use_ref = cpu_ctx->use_ref; return cpu_plan; } @@ -182,6 +185,7 @@ static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, s cplan.abort_callback = cpu_ctx->abort_callback; cplan.abort_callback_data = cpu_ctx->abort_callback_data; + cplan.use_ref = cpu_ctx->use_ref; return ggml_graph_compute(cgraph, &cplan); } @@ -223,6 +227,7 @@ ggml_backend_t ggml_backend_cpu_init(void) { ctx->work_size = 0; ctx->abort_callback = NULL; ctx->abort_callback_data = NULL; + ctx->use_ref = false; ggml_backend_t cpu_backend = new ggml_backend { /* .guid = */ ggml_backend_cpu_guid(), @@ -270,6 +275,13 @@ void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_ ctx->abort_callback_data = abort_callback_data; } +void ggml_backend_cpu_set_use_ref(ggml_backend_t backend_cpu, bool use_ref) { + GGML_ASSERT(ggml_backend_is_cpu(backend_cpu)); + + struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; + ctx->use_ref = use_ref; +} + // CPU backend - device struct ggml_backend_cpu_device_context { @@ -646,6 +658,9 @@ static void * ggml_backend_cpu_get_proc_address(ggml_backend_reg_t reg, const ch if (strcmp(name, "ggml_backend_cpu_is_numa") == 0) { return (void *)ggml_is_numa; } + if (strcmp(name, "ggml_backend_cpu_set_use_ref") == 0) { + return (void *)ggml_backend_cpu_set_use_ref; + } // threadpool - TODO: move to ggml-base if (strcmp(name, "ggml_threadpool_new") == 0) { diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp index 48c8964361..ce15b18ce0 100644 --- a/ggml/src/ggml-cpu/ops.cpp +++ b/ggml/src/ggml-cpu/ops.cpp @@ -8042,12 +8042,14 @@ void ggml_compute_forward_top_k( } } -// ggml_compute_forward_flash_attn_ext - static void ggml_compute_forward_flash_attn_ext_f16_one_chunk( const ggml_compute_params * params, ggml_tensor * dst, - int ir0, int ir1) { + int ir0, int ir1, + int64_t ic_start, int64_t ic_end, + float * partials, int64_t partial_stride) { + + const bool write_partials = (partials != nullptr); const ggml_tensor * q = dst->src[0]; const ggml_tensor * k = dst->src[1]; const ggml_tensor * v = dst->src[2]; @@ -8124,7 +8126,6 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk( int ith = params->ith; - // loop over n_batch and n_head for (int ir = ir0; ir < ir1; ++ir) { // q indices const int iq3 = ir/(neq2*neq1); @@ -8165,7 +8166,7 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk( // loop over n_kv and n_head_kv // ref: https://arxiv.org/pdf/2112.05682.pdf - for (int64_t ic = 0; ic < nek1; ++ic) { + for (int64_t ic = ic_start; ic < ic_end; ++ic) { const float mv = mp ? slope*GGML_CPU_FP16_TO_FP32(mp[ic]) : 0.0f; if (mv == -INFINITY) { continue; @@ -8238,8 +8239,8 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk( } } - // sinks - if (sinks) { + // sinks - apply only on the first kv-chunk + if (sinks && ic_start == 0) { const float s = ((float *)((char *) sinks->data))[h]; float ms = 1.0f; @@ -8247,6 +8248,7 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk( if (s > M) { ms = expf(M - s); + M = s; ggml_vec_scale_f32(DV, VKQ32, ms); } else { vs = expf(s - M); @@ -8255,20 +8257,26 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk( S = S*ms + vs; } - // V /= S - const float S_inv = S == 0.0f ? 0.0f : 1.0f/S; - ggml_vec_scale_f32(DV, VKQ32, S_inv); + if (write_partials) { + // Write M, S, VKQ to partials for later reduction + // partials layout: [M, S, VKQ[DV]] per query head + float * partial = partials + ir * partial_stride; + partial[0] = M; + partial[1] = S; + memcpy(partial + 2, VKQ32, DV * sizeof(float)); + } else { + // V /= S + const float S_inv = S == 0.0f ? 0.0f : 1.0f/S; + ggml_vec_scale_f32(DV, VKQ32, S_inv); - // dst indices - const int i1 = iq1; - const int i2 = iq2; - const int i3 = iq3; + // dst indices + const int i1 = iq1; + const int i2 = iq2; + const int i3 = iq3; - // original - //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float)); - - // permute(0, 2, 1, 3) - memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1); + // permute(0, 2, 1, 3) + memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1); + } } } @@ -8546,6 +8554,78 @@ static void ggml_compute_forward_flash_attn_ext_tiled( } } +// Reduction function: combines partial results across KV chunks +// Partials layout in wdata: [n_q_heads][n_chunks][2 + DV] +static void ggml_flash_attn_ext_reduce_partials( + const ggml_compute_params * params, + ggml_tensor * dst, + const int64_t n_chunks, + const int64_t chunk_size) { + + const ggml_tensor * q = dst->src[0]; + const ggml_tensor * k = dst->src[1]; + const ggml_tensor * v = dst->src[2]; + + const int64_t DK = k->ne[0]; + const int64_t DV = v->ne[0]; + const int64_t nek1 = k->ne[1]; + const int64_t n_q_heads = q->ne[2]; + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t wdata_per_thread = DK + 2*DV + CACHE_LINE_SIZE_F32; + float * thread_wdata = (float *) params->wdata + ith * wdata_per_thread; + + const int64_t partials_offset = nth * (DK + 2*DV + CACHE_LINE_SIZE_F32); + const int64_t partial_size = 2 + DV; + const float * partials_base = (const float *) params->wdata + partials_offset; + + // Output layout + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const size_t nb1 = dst->nb[1]; + + // Each thread reduces a subset of query heads + for (int64_t q_head = ith; q_head < n_q_heads; q_head += nth) { + float M_final = -INFINITY; + float S_final = 0.0f; + float * VKQ_final = thread_wdata; + memset(VKQ_final, 0, DV * sizeof(float)); + + // Combine partials from all chunks + for (int64_t chunk_idx = 0; chunk_idx < n_chunks; ++chunk_idx) { + const int64_t ic_start = chunk_idx * chunk_size; + if (ic_start >= nek1) continue; + + const float * partial = partials_base + (q_head * n_chunks + chunk_idx) * partial_size; + const float M_chunk = partial[0]; + const float S_chunk = partial[1]; + const float * VKQ_chunk = partial + 2; + + if (S_chunk == 0.0f) continue; + + const float M_new = fmaxf(M_final, M_chunk); + const float scale_old = expf(M_final - M_new); + const float scale_new = expf(M_chunk - M_new); + + for (int64_t d = 0; d < DV; ++d) { + VKQ_final[d] = VKQ_final[d] * scale_old + VKQ_chunk[d] * scale_new; + } + S_final = S_final * scale_old + S_chunk * scale_new; + M_final = M_new; + } + + // Normalize and write to output + if (S_final != 0.0f) { + const float S_inv = 1.0f / S_final; + ggml_vec_scale_f32(DV, VKQ_final, S_inv); + } + // iq1=0, iq3=0 for decode + memcpy((char *) dst->data + (0*ne2*ne1 + q_head + 0*ne1)*nb1, VKQ_final, nb1); + } +} + static void ggml_compute_forward_flash_attn_ext_f16( const ggml_compute_params * params, ggml_tensor * dst) { @@ -8567,6 +8647,7 @@ static void ggml_compute_forward_flash_attn_ext_f16( const int64_t DV = nev0; const int64_t N = neq1; + GGML_ASSERT(ne0 == DV); GGML_ASSERT(ne2 == N); @@ -8587,60 +8668,92 @@ static void ggml_compute_forward_flash_attn_ext_f16( GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); - // parallelize by q rows using ggml_vec_dot_f32 - - // total rows in q - const int64_t nr = neq1*neq2*neq3; - - // rows per thread const int ith = params->ith; const int nth = params->nth; - // disable for NUMA - const bool disable_chunking = ggml_is_numa(); + // When use_ref is set, force the vec-only reference implementation (no tiling, no KV-chunking) + const bool use_ref = params->use_ref; - // 4x chunks per thread - int nth_scaled = nth * 4; - int64_t chunk_size = (nr + nth_scaled - 1) / nth_scaled; - int64_t nchunk = (nr + chunk_size - 1) / chunk_size; - - if (nth == 1 || nchunk < nth || disable_chunking) { - nchunk = nth; - } - - if (ith == 0) { - // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start. - ggml_threadpool_chunk_set(params->threadpool, nth); - } - - ggml_barrier(params->threadpool); - - // The number of elements in each chunk - const int64_t dr = (nr + nchunk - 1) / nchunk; - - static constexpr int64_t KV_TILE_SZ = ggml_fa_tile_config::KV; - static constexpr int64_t Q_TILE_SZ = ggml_fa_tile_config::Q; const bool kv_is_f32_or_f16 = (k->type == GGML_TYPE_F32 || k->type == GGML_TYPE_F16); - const bool use_tiled = (q->type == GGML_TYPE_F32 && - kv_is_f32_or_f16 && - k->type == v->type && - nek1 % KV_TILE_SZ == 0 && - neq1 >= Q_TILE_SZ); // Only use tiled for batch >= tile size + const bool use_split_kv_path = !use_ref && (neq1 == 1 && neq3 == 1) && kv_is_f32_or_f16 && (k->type == v->type) && q->type == GGML_TYPE_F32 && nek1 >= 512; - // The first chunk comes from our thread_id, the rest will get auto-assigned. - int current_chunk = ith; + if (use_split_kv_path) { + const int64_t chunk_size = (nek1 + nth - 1) / nth; - while (current_chunk < nchunk) { - const int64_t ir0 = dr * current_chunk; - const int64_t ir1 = MIN(ir0 + dr, nr); + // Partials buffer layout: [q_head][kv_chunk][M, S, VKQ] + const int64_t partial_size = 2 + DV; + float * partials_base = (float *) params->wdata + nth * (DK + 2*DV + CACHE_LINE_SIZE_F32); - if (use_tiled) { - ggml_compute_forward_flash_attn_ext_tiled(params, dst, ir0, ir1); + const int64_t ic_start = ith * chunk_size; + const int64_t ic_end = std::min(ic_start + chunk_size, nek1); + + const int64_t partial_stride = nth * partial_size; + float * chunk_partials = partials_base + ith * partial_size; + + if (ic_start < nek1) { + for (int64_t q_head = 0; q_head < neq2; q_head++) { + ggml_compute_forward_flash_attn_ext_f16_one_chunk( + params, dst, q_head, q_head + 1, ic_start, ic_end, + chunk_partials, partial_stride); + } } else { - ggml_compute_forward_flash_attn_ext_f16_one_chunk(params, dst, ir0, ir1); + for (int64_t q_head = 0; q_head < neq2; q_head++) { + float * q_partials = chunk_partials + q_head * partial_stride; + q_partials[0] = -INFINITY; // M + q_partials[1] = 0.0f; // S + } } - current_chunk = ggml_threadpool_chunk_add(params->threadpool, 1); + ggml_barrier(params->threadpool); + ggml_flash_attn_ext_reduce_partials(params, dst, nth, chunk_size); + } else { + + // total rows in q + const int64_t nr = neq1*neq2*neq3; + + // disable for NUMA + const bool disable_chunking = ggml_is_numa(); + + // 4x chunks per thread + int nth_scaled = nth * 4; + int64_t chunk_size = (nr + nth_scaled - 1) / nth_scaled; + int64_t nchunk = (nr + chunk_size - 1) / chunk_size; + + if (nth == 1 || nchunk < nth || disable_chunking) { + nchunk = nth; + } + + if (ith == 0) { + ggml_threadpool_chunk_set(params->threadpool, nth); + } + + ggml_barrier(params->threadpool); + + const int64_t dr = (nr + nchunk - 1) / nchunk; + + static constexpr int64_t KV_TILE_SZ = ggml_fa_tile_config::KV; + static constexpr int64_t Q_TILE_SZ = ggml_fa_tile_config::Q; + const bool use_tiled = !use_ref && + (q->type == GGML_TYPE_F32 && + kv_is_f32_or_f16 && + k->type == v->type && + nek1 % KV_TILE_SZ == 0 && + neq1 >= Q_TILE_SZ); + + int current_chunk = ith; + + while (current_chunk < nchunk) { + const int64_t ir0 = dr * current_chunk; + const int64_t ir1 = MIN(ir0 + dr, nr); + + if (use_tiled) { + ggml_compute_forward_flash_attn_ext_tiled(params, dst, ir0, ir1); + } else { + ggml_compute_forward_flash_attn_ext_f16_one_chunk(params, dst, ir0, ir1, 0, nek1, nullptr, 0); + } + + current_chunk = ggml_threadpool_chunk_add(params->threadpool, 1); + } } } diff --git a/ggml/src/ggml-cpu/simd-mappings.h b/ggml/src/ggml-cpu/simd-mappings.h index e367f110b4..630e506542 100644 --- a/ggml/src/ggml-cpu/simd-mappings.h +++ b/ggml/src/ggml-cpu/simd-mappings.h @@ -116,6 +116,17 @@ extern "C" { // defined in ggml-cpu.c, initialized in ggml_cpu_init() extern float ggml_table_f32_f16[1 << 16]; +// precomputed f32 table for e8m0 half (1 KB) +// defined in ggml-cpu.c, initialized in ggml_cpu_init() +extern float ggml_table_f32_e8m0_half[1 << 8]; + +// Use lookup table for E8M0 on x86 (faster than bit manipulation) +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +#define GGML_CPU_E8M0_TO_FP32_HALF(x) ggml_table_f32_e8m0_half[(uint8_t)(x)] +#else +#define GGML_CPU_E8M0_TO_FP32_HALF(x) GGML_E8M0_TO_FP32_HALF(x) +#endif + // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32, // so we define GGML_CPU_FP16_TO_FP32 and GGML_CPU_FP32_TO_FP16 elsewhere for NEON. // This is also true for POWER9. diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index 08383edb40..9e77c231c8 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -2279,13 +2279,19 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc; if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { - if (ne2 == 1) { + static_assert(MMVQ_MAX_BATCH_SIZE == MMVF_MAX_BATCH_SIZE); + if (ne2 <= MMVQ_MAX_BATCH_SIZE) { if (ggml_is_quantized(src0->type)) { - ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst); + if (ne2 <= 4) { + ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst); + return; + } } else { - ggml_cuda_mul_mat_vec_f(ctx, src0, src1, ids, dst); + if (GGML_CUDA_CC_IS_AMD(cc)) { + ggml_cuda_mul_mat_vec_f(ctx, src0, src1, ids, dst); + return; + } } - return; } if (ggml_cuda_should_use_mmq(src0->type, cc, ne12, /*n_experts=*/ne02)) { @@ -2973,8 +2979,7 @@ static bool ggml_cuda_graph_node_properties_match(ggml_tensor * node, ggml_cuda_ } } - if ((node->op == GGML_OP_SCALE || node->op == GGML_OP_GLU) && - memcmp(props->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) { + if (memcmp(props->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) { return false; } @@ -5049,16 +5054,6 @@ ggml_backend_reg_t ggml_backend_cuda_reg() { static std::mutex mutex; std::lock_guard lock(mutex); if (!initialized) { - // Set CUDA_SCALE_LAUNCH_QUEUES before any CUDA API call to improve multi-GPU pipeline parallelism performance - // PR: https://github.com/ggml-org/llama.cpp/pull/19042 - if (getenv("CUDA_SCALE_LAUNCH_QUEUES") == nullptr) { -#ifdef _WIN32 - _putenv_s("CUDA_SCALE_LAUNCH_QUEUES", "4x"); -#else - setenv("CUDA_SCALE_LAUNCH_QUEUES", "4x", 0); // don't overwrite if already set -#endif // _WIN32 - } - ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context; const int min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32; diff --git a/ggml/src/ggml-cuda/mmq.cuh b/ggml/src/ggml-cuda/mmq.cuh index a382e6a697..f80f98cda2 100644 --- a/ggml/src/ggml-cuda/mmq.cuh +++ b/ggml/src/ggml-cuda/mmq.cuh @@ -3697,13 +3697,20 @@ static __global__ void mul_mat_q( tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop); } - template -static __global__ void mul_mat_q_stream_k_fixup( - const int32_t * ids_dst, const int32_t * expert_bounds, float * __restrict__ dst, const float * __restrict__ tmp_last_tile, - const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_col_dst, - const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst, - const int ncols_max) { +static __global__ void mul_mat_q_stream_k_fixup(const int32_t * ids_dst, + const int32_t * expert_bounds, + float * __restrict__ dst, + const float * __restrict__ tmp_last_tile, + const int ncols_x, + const int nrows_x, + const int ncols_dst, + const size_t stride_col_dst, + const int nchannels_y, + const size_t stride_channel_dst, + const int nsamples_y, + const size_t stride_sample_dst, + const int ncols_max) { constexpr int mmq_y = get_mmq_y_device(); constexpr int qk = ggml_cuda_type_traits::qk; constexpr int ITER_K = get_iter_k(type); diff --git a/ggml/src/ggml-cuda/mmvf.cu b/ggml/src/ggml-cuda/mmvf.cu index 32948e4d7a..d914720242 100644 --- a/ggml/src/ggml-cuda/mmvf.cu +++ b/ggml/src/ggml-cuda/mmvf.cu @@ -4,26 +4,48 @@ #include "mmvf.cuh" #include "convert.cuh" -template +template static __global__ void mul_mat_vec_f( const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst, - const int ncols2, const int nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst, + const int ncols2, const uint3 nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst, const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst, - const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) { + const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst, + const int ids_stride) { const int row = blockIdx.x; + // for MUL_MAT_ID - blockIdx.y = n_expert_used, blockIdx.z = ncols_dst (tokens) const int channel_dst = blockIdx.y; - const int channel_x = ids ? ids[channel_dst] : fastdiv((uint32_t) channel_dst, channel_ratio); - const int channel_y = ids ? channel_dst % nchannels_y : channel_dst; - const int sample_dst = blockIdx.z; + const int tid = threadIdx.x; + + int token_idx; + int channel_x; + int channel_y; + int sample_dst; + + if constexpr (is_multi_token_id) { + // Multi-token MUL_MAT_ID path, adding these in the normal path causes a perf regression for n_tokens=1 case + token_idx = blockIdx.z; + channel_x = ids[channel_dst + token_idx * ids_stride]; + channel_y = fastmodulo(channel_dst, nchannels_y); + sample_dst = 0; + } else { + token_idx = ids ? blockIdx.z : 0; + channel_x = ids ? ids[blockIdx.y + token_idx * ids_stride] : fastdiv((uint32_t) channel_dst, channel_ratio); + channel_y = ids ? fastmodulo(blockIdx.y, nchannels_y) : channel_dst; + sample_dst = ids ? 0 : blockIdx.z; + } + const int sample_x = fastdiv((uint32_t) sample_dst, sample_ratio); const int sample_y = sample_dst; - const int tid = threadIdx.x; constexpr int warp_size = ggml_cuda_get_physical_warp_size(); x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row*stride_row; y += int64_t(sample_y) *stride_sample_y + channel_y *stride_channel_y; dst += int64_t(sample_dst)*stride_sample_dst + channel_dst*stride_channel_dst; + if constexpr (is_multi_token_id) { + y += token_idx*stride_col_y2*2; + dst += token_idx*stride_col_dst; + } bool use_gate = false; bool use_bias = false; @@ -56,8 +78,10 @@ static __global__ void mul_mat_vec_f( if (use_gate) { gate_x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row*stride_row; } + + const int channel_bias = ids ? channel_x : channel_dst; + if constexpr (has_fusion) { - const int channel_bias = ids ? channel_x : channel_dst; if (use_bias) { x_bias += int64_t(sample_dst)*stride_sample_dst + channel_bias*stride_channel_dst; } @@ -349,36 +373,36 @@ static __global__ void mul_mat_vec_f( } } -template +template static void mul_mat_vec_f_switch_fusion( const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst, - const int64_t ncols, const int64_t nrows, + const int64_t ncols, const uint3 nchannels_y, const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst, const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst, const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst, - const dim3 & block_dims, const dim3 & block_nums, const int nbytes_shared, const cudaStream_t stream) { + const dim3 & block_dims, const dim3 & block_nums, const int nbytes_shared, const int ids_stride, const cudaStream_t stream) { const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr; if constexpr (ncols_dst == 1) { if (has_fusion) { - mul_mat_vec_f<<>> - (x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, + mul_mat_vec_f<<>> + (x, y, ids, fusion, dst, ncols, nchannels_y, stride_row, stride_col_y, stride_col_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); + sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride); return; } } GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1"); - mul_mat_vec_f<<>> - (x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, + mul_mat_vec_f<<>> + (x, y, ids, fusion, dst, ncols, nchannels_y, stride_row, stride_col_y, stride_col_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); + sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride); } -template +template void launch_mul_mat_vec_f_cuda( const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst, const int64_t ncols, const int64_t nrows, @@ -386,12 +410,13 @@ void launch_mul_mat_vec_f_cuda( const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x, const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst, - cudaStream_t stream) { + const int64_t nsamples_or_ntokens, const int64_t ids_stride, cudaStream_t stream) { GGML_ASSERT(ncols % 2 == 0); GGML_ASSERT(stride_row % 2 == 0); GGML_ASSERT(stride_col_y % 2 == 0); GGML_ASSERT(ids || nchannels_dst % nchannels_x == 0); GGML_ASSERT( nsamples_dst % nsamples_x == 0); + const uint3 nchannels_y_fd = ids ? init_fastdiv_values(nchannels_y) : make_uint3(0, 0, 0); const uint3 channel_ratio_fd = ids ? make_uint3(0, 0, 0) : init_fastdiv_values(nchannels_dst / nchannels_x); const uint3 sample_ratio_fd = init_fastdiv_values(nsamples_dst / nsamples_x); @@ -415,56 +440,56 @@ void launch_mul_mat_vec_f_cuda( const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr; const int nbytes_shared = warp_size*sizeof(float) + (has_fusion ? warp_size*sizeof(float) : 0); - const dim3 block_nums(nrows, nchannels_dst, nsamples_dst); + const dim3 block_nums(nrows, nchannels_dst, nsamples_or_ntokens); const dim3 block_dims(block_size_best, 1, 1); switch (block_size_best) { case 32: { - mul_mat_vec_f_switch_fusion - (x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, + mul_mat_vec_f_switch_fusion + (x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream); + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream); } break; case 64: { - mul_mat_vec_f_switch_fusion - (x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, + mul_mat_vec_f_switch_fusion + (x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream); + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream); } break; case 96: { - mul_mat_vec_f_switch_fusion - (x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, + mul_mat_vec_f_switch_fusion + (x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream); + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream); } break; case 128: { - mul_mat_vec_f_switch_fusion - (x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, + mul_mat_vec_f_switch_fusion + (x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream); + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream); } break; case 160: { - mul_mat_vec_f_switch_fusion - (x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, + mul_mat_vec_f_switch_fusion + (x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream); + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream); } break; case 192: { - mul_mat_vec_f_switch_fusion - (x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, + mul_mat_vec_f_switch_fusion + (x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream); + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream); } break; case 224: { - mul_mat_vec_f_switch_fusion - (x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, + mul_mat_vec_f_switch_fusion + (x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream); + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream); } break; case 256: { - mul_mat_vec_f_switch_fusion - (x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst, + mul_mat_vec_f_switch_fusion + (x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream); + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream); } break; default: { GGML_ABORT("fatal error"); @@ -480,55 +505,88 @@ static void mul_mat_vec_f_cuda_switch_ncols_dst( const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x, const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst, - cudaStream_t stream) { + const int64_t ids_stride, cudaStream_t stream) { + + const bool has_ids = ids != nullptr; + + if (has_ids && ncols_dst > 1) { + // Multi-token MUL_MAT_ID path only - single-token goes through regular path below + constexpr int c_ncols_dst = 1; + launch_mul_mat_vec_f_cuda + (x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, + nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, + stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, + ncols_dst, ids_stride, stream); + return; + } + + if (has_ids) { + // Single-token MUL_MAT_ID path + constexpr int c_ncols_dst = 1; + launch_mul_mat_vec_f_cuda + (x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, + nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, + stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, + ncols_dst, ids_stride, stream); + return; + } + switch (ncols_dst) { case 1: launch_mul_mat_vec_f_cuda (x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, - stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, + nsamples_dst, ids_stride, stream); break; case 2: launch_mul_mat_vec_f_cuda (x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, - stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, + nsamples_dst, ids_stride, stream); break; case 3: launch_mul_mat_vec_f_cuda (x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, - stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, + nsamples_dst, ids_stride, stream); break; case 4: launch_mul_mat_vec_f_cuda (x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, - stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, + nsamples_dst, ids_stride, stream); break; case 5: launch_mul_mat_vec_f_cuda (x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, - stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, + nsamples_dst, ids_stride, stream); break; case 6: launch_mul_mat_vec_f_cuda (x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, - stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, + nsamples_dst, ids_stride, stream); break; case 7: launch_mul_mat_vec_f_cuda (x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, - stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, + nsamples_dst, ids_stride, stream); break; case 8: launch_mul_mat_vec_f_cuda (x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, - stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, + nsamples_dst, ids_stride, stream); break; default: GGML_ABORT("fatal error"); @@ -544,21 +602,21 @@ static void mul_mat_vec_f_cuda( const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x, const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst, - enum ggml_prec prec, cudaStream_t stream) { + const int64_t ids_stride, enum ggml_prec prec, cudaStream_t stream) { if constexpr(std::is_same_v) { if (prec == GGML_PREC_DEFAULT) { mul_mat_vec_f_cuda_switch_ncols_dst (x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, - stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); return; } } mul_mat_vec_f_cuda_switch_ncols_dst (x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, - stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); } void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, @@ -573,7 +631,7 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor const size_t ts_src1 = ggml_type_size(src1->type); const size_t ts_dst = ggml_type_size(dst->type); - GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for batch size 1. + GGML_ASSERT(!ids || ne12 <= MMVF_MAX_BATCH_SIZE); GGML_ASSERT(ne13 == ne3); GGML_ASSERT( nb00 == ts_src0); @@ -626,29 +684,31 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor const int64_t ncols_dst = ids ? ne2 : ne1; const int64_t nchannels_y = ids ? ne11 : ne12; const int64_t nchannels_dst = ids ? ne1 : ne2; + const int64_t stride_col_dst = ids ? s2 : s1; + const int64_t stride_col_y = ids ? s12 : s11; const int64_t stride_channel_dst = ids ? s1 : s2; const int64_t stride_channel_y = ids ? s11 : s12; - GGML_ASSERT(!ids || ncols_dst == 1); + const int64_t ids_stride = ids ? ids->nb[1] / ggml_type_size(ids->type) : 0; switch (src0->type) { case GGML_TYPE_F32: { const float * src0_d = (const float *) src0->data; - mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1, + mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, stride_col_y, stride_col_dst, ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst, - ne03, ne3, s03, s13, s3, prec, ctx.stream()); + ne03, ne3, s03, s13, s3, ids_stride, prec, ctx.stream()); } break; case GGML_TYPE_F16: { const half * src0_d = (const half *) src0->data; - mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1, + mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, stride_col_y, stride_col_dst, ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst, - ne03, ne3, s03, s13, s3, prec, ctx.stream()); + ne03, ne3, s03, s13, s3, ids_stride, prec, ctx.stream()); } break; case GGML_TYPE_BF16: { const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0->data; - mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1, + mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, stride_col_y, stride_col_dst, ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst, - ne03, ne3, s03, s13, s3, prec, ctx.stream()); + ne03, ne3, s03, s13, s3, ids_stride, prec, ctx.stream()); } break; default: GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type)); @@ -695,19 +755,19 @@ void ggml_cuda_op_mul_mat_vec_f( const float * src0_d = (const float *) src0_dd_i; mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, 0, prec, stream); } break; case GGML_TYPE_F16: { const half * src0_d = (const half *) src0_dd_i; mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, 0, prec, stream); } break; case GGML_TYPE_BF16: { const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0_dd_i; mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, 0, prec, stream); } break; default: GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type)); diff --git a/ggml/src/ggml-cuda/mmvf.cuh b/ggml/src/ggml-cuda/mmvf.cuh index a09fbdc720..a50f7c0218 100644 --- a/ggml/src/ggml-cuda/mmvf.cuh +++ b/ggml/src/ggml-cuda/mmvf.cuh @@ -1,5 +1,7 @@ #include "common.cuh" +#define MMVF_MAX_BATCH_SIZE 8 // Max. batch size for which to use MMVF kernels. + void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, const ggml_cuda_mm_fusion_args_host * fusion = nullptr); diff --git a/ggml/src/ggml-cuda/mmvq.cu b/ggml/src/ggml-cuda/mmvq.cu index d671551c17..ce25ccf427 100644 --- a/ggml/src/ggml-cuda/mmvq.cu +++ b/ggml/src/ggml-cuda/mmvq.cu @@ -137,15 +137,15 @@ static constexpr __host__ __device__ int calc_rows_per_block(int ncols_dst, int return 1; } -// tell the compiler to use as many registers as it wants, see nwarps definition below -template +template __launch_bounds__(calc_nwarps(ncols_dst, get_device_table_id())*ggml_cuda_get_physical_warp_size(), 1) static __global__ void mul_mat_vec_q( const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst, const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y, const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x, const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio, - const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst) { + const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst, + const uint32_t ids_stride) { constexpr int qk = ggml_cuda_type_traits::qk; constexpr int qi = ggml_cuda_type_traits::qi; @@ -162,11 +162,25 @@ static __global__ void mul_mat_vec_q( const int blocks_per_row_x = ncols_x / qk; constexpr int blocks_per_iter = vdr * nwarps*warp_size / qi; - // The MUL_MAT_ID code path with ids != nullptr is only implemented for ncols_dst == 1. const uint32_t channel_dst = blockIdx.y; - const uint32_t channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : fastdiv(channel_dst, channel_ratio); - const uint32_t channel_y = ncols_dst == 1 && ids ? fastmodulo(channel_dst, nchannels_y) : channel_dst; - const uint32_t sample_dst = blockIdx.z; + + uint32_t token_idx = 0; + uint32_t channel_x; + uint32_t channel_y; + uint32_t sample_dst; + + if constexpr (is_multi_token_id) { + // Multi-token MUL_MAT_ID path, adding these in the normal path causes a perf regression for n_tokens=1 case + token_idx = blockIdx.z; + channel_x = ids[channel_dst + token_idx * ids_stride]; + channel_y = fastmodulo(channel_dst, nchannels_y); + sample_dst = 0; + } else { + channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : fastdiv(channel_dst, channel_ratio); + channel_y = ncols_dst == 1 && ids ? fastmodulo(channel_dst, nchannels_y) : channel_dst; + sample_dst = blockIdx.z; + } + const uint32_t sample_x = fastdiv(sample_dst, sample_ratio); const uint32_t sample_y = sample_dst; @@ -188,11 +202,11 @@ static __global__ void mul_mat_vec_q( active_glu = fusion.glu_op; } - const uint32_t channel_bias = ids ? channel_x : channel_dst; float x_biases[ncols_dst] = { 0.0f }; float gate_biases[ncols_dst] = { 0.0f }; if constexpr (has_fusion) { + const uint32_t channel_bias = ids ? channel_x : channel_dst; if (use_bias) { x_bias = x_bias + sample_dst*stride_sample_dst + channel_bias*stride_channel_dst + row0; // 1. Hide latency by prefetching bias and gate here @@ -222,6 +236,9 @@ static __global__ void mul_mat_vec_q( float tmp_gate[ncols_dst][rows_per_cuda_block] = {{0.0f}}; const block_q8_1 * y = ((const block_q8_1 *) vy) + sample_y*stride_sample_y + channel_y*stride_channel_y; + if constexpr (is_multi_token_id) { + y += token_idx*stride_col_y; + } const int kbx_offset = sample_x*stride_sample_x + channel_x*stride_channel_x + row0*stride_row_x; for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) { @@ -275,6 +292,10 @@ static __global__ void mul_mat_vec_q( dst += sample_dst*stride_sample_dst + channel_dst*stride_channel_dst + row0; + if constexpr (is_multi_token_id) { + dst += token_idx*stride_col_dst; + } + // sum up partial sums and write back result #pragma unroll for (int j = 0; j < ncols_dst; ++j) { @@ -335,40 +356,41 @@ static __global__ void mul_mat_vec_q( } static std::pair calc_launch_params( - const int ncols_dst, const int nrows_x, const int nchannels_y, const int nsamples_y, + const int ncols_dst, const int nrows_x, const int nchannels_dst, const int nsamples_or_ntokens, const int warp_size, const mmvq_parameter_table_id table_id) { const int64_t nblocks = (nrows_x + calc_rows_per_block(ncols_dst, table_id) - 1) / calc_rows_per_block(ncols_dst, table_id); - const dim3 block_nums(nblocks, nchannels_y, nsamples_y); + const dim3 block_nums(nblocks, nchannels_dst, nsamples_or_ntokens); const dim3 block_dims(warp_size, calc_nwarps(ncols_dst, table_id), 1); return {block_nums, block_dims}; } -template +template static void mul_mat_vec_q_switch_fusion( const void * vx, const void * vy, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst, const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y, const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x, const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio, const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst, - const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared, cudaStream_t stream) { + const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared, + const uint32_t ids_stride, cudaStream_t stream) { const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr; if constexpr (c_ncols_dst == 1) { if (has_fusion) { - mul_mat_vec_q<<>> + mul_mat_vec_q<<>> (vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); + sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride); return; } } GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1"); - mul_mat_vec_q<<>> + mul_mat_vec_q<<>> (vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst, - sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst); + sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride); } template @@ -379,7 +401,7 @@ static void mul_mat_vec_q_switch_ncols_dst( const int nchannels_x, const int nchannels_y, const int nchannels_dst, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst, const int nsamples_x, const int nsamples_dst, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst, - cudaStream_t stream) { + const int ids_stride, cudaStream_t stream) { GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0); GGML_ASSERT(ncols_dst <= MMVQ_MAX_BATCH_SIZE); @@ -393,8 +415,19 @@ static void mul_mat_vec_q_switch_ncols_dst( const mmvq_parameter_table_id table_id = get_device_table_id(ggml_cuda_info().devices[device].cc); const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr; + const bool has_ids = ids != nullptr; + + if (has_ids && ncols_dst > 1) { + // Multi-token MUL_MAT_ID path only - single-token goes through regular path below + constexpr int c_ncols_dst = 1; + std::pair dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, ncols_dst, warp_size, table_id); + mul_mat_vec_q_switch_fusion(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, + channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, + sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, + dims.first, dims.second, 0, ids_stride, stream); + return; + } - GGML_ASSERT(!ids || ncols_dst == 1); switch (ncols_dst) { case 1: { constexpr int c_ncols_dst = 1; @@ -402,7 +435,7 @@ static void mul_mat_vec_q_switch_ncols_dst( mul_mat_vec_q_switch_fusion(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, - dims.first, dims.second, 0, stream); + dims.first, dims.second, 0, ids_stride, stream); } break; case 2: { constexpr int c_ncols_dst = 2; @@ -410,7 +443,7 @@ static void mul_mat_vec_q_switch_ncols_dst( mul_mat_vec_q_switch_fusion(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, - dims.first, dims.second, 0, stream); + dims.first, dims.second, 0, ids_stride, stream); } break; case 3: { constexpr int c_ncols_dst = 3; @@ -418,7 +451,7 @@ static void mul_mat_vec_q_switch_ncols_dst( mul_mat_vec_q_switch_fusion(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, - dims.first, dims.second, 0, stream); + dims.first, dims.second, 0, ids_stride, stream); } break; case 4: { constexpr int c_ncols_dst = 4; @@ -426,7 +459,7 @@ static void mul_mat_vec_q_switch_ncols_dst( mul_mat_vec_q_switch_fusion(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, - dims.first, dims.second, 0, stream); + dims.first, dims.second, 0, ids_stride, stream); } break; case 5: { constexpr int c_ncols_dst = 5; @@ -434,7 +467,7 @@ static void mul_mat_vec_q_switch_ncols_dst( mul_mat_vec_q_switch_fusion(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, - dims.first, dims.second, 0, stream); + dims.first, dims.second, 0, ids_stride, stream); } break; case 6: { constexpr int c_ncols_dst = 6; @@ -442,7 +475,7 @@ static void mul_mat_vec_q_switch_ncols_dst( mul_mat_vec_q_switch_fusion(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, - dims.first, dims.second, 0, stream); + dims.first, dims.second, 0, ids_stride, stream); } break; case 7: { constexpr int c_ncols_dst = 7; @@ -450,7 +483,7 @@ static void mul_mat_vec_q_switch_ncols_dst( mul_mat_vec_q_switch_fusion(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, - dims.first, dims.second, 0, stream); + dims.first, dims.second, 0, ids_stride, stream); } break; case 8: { constexpr int c_ncols_dst = 8; @@ -458,7 +491,7 @@ static void mul_mat_vec_q_switch_ncols_dst( mul_mat_vec_q_switch_fusion(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst, channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst, sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, - dims.first, dims.second, 0, stream); + dims.first, dims.second, 0, ids_stride, stream); } break; default: GGML_ABORT("fatal error"); @@ -474,127 +507,127 @@ static void mul_mat_vec_q_switch_type( const int nchannels_x, const int nchannels_y, const int nchannels_dst, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst, const int nsamples_x, const int nsamples_dst, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst, - cudaStream_t stream) { + const int ids_stride, cudaStream_t stream) { switch (type_x) { case GGML_TYPE_Q4_0: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_Q4_1: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_Q5_0: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_Q5_1: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_Q8_0: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_MXFP4: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_Q2_K: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_Q3_K: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_Q4_K: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_Q5_K: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_Q6_K: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_IQ2_XXS: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_IQ2_XS: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_IQ2_S: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_IQ3_XXS: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_IQ1_S: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_IQ1_M: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_IQ4_NL: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_IQ4_XS: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; case GGML_TYPE_IQ3_S: mul_mat_vec_q_switch_ncols_dst (vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst, - nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream); + nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream); break; default: GGML_ABORT("fatal error"); @@ -622,7 +655,7 @@ void ggml_cuda_mul_mat_vec_q( GGML_ASSERT( nb0 == ts_dst); GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type)); - GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for batch size 1. + GGML_ASSERT(!ids || ne12 <= MMVQ_MAX_BATCH_SIZE); const float * src1_d = (const float *) src1->data; const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr; @@ -693,11 +726,13 @@ void ggml_cuda_mul_mat_vec_q( const int64_t stride_channel_dst = ids ? s1 : s2; const int64_t stride_channel_y = ids ? s11 : s12; + const int64_t ids_stride = ids ? ids->nb[1] / ggml_type_size(ids->type) : 0; + mul_mat_vec_q_switch_type( src0->data, src0->type, src1_q8_1.get(), ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, stride_col_y, stride_col_dst, ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst, - ne03, ne3, s03, s13, s3, stream); + ne03, ne3, s03, s13, s3, ids_stride, stream); } void ggml_cuda_op_mul_mat_vec_q( @@ -726,7 +761,7 @@ void ggml_cuda_op_mul_mat_vec_q( ggml_cuda_mm_fusion_args_device fusion_local{}; mul_mat_vec_q_switch_type( src0_dd_i, src0->type, src1_ddq_i, nullptr, fusion_local, dst_dd_i, ne00, row_diff, src1_ncols, stride_row_x, stride_col_y, nrows_dst, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, stream); + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, stream); GGML_UNUSED_VARS(src1, dst, src1_ddf_i, src1_ncols, src1_padded_row_size); } diff --git a/ggml/src/ggml-metal/CMakeLists.txt b/ggml/src/ggml-metal/CMakeLists.txt index 9c0b3db859..42054d841a 100644 --- a/ggml/src/ggml-metal/CMakeLists.txt +++ b/ggml/src/ggml-metal/CMakeLists.txt @@ -71,7 +71,7 @@ else() # disabling fast math is needed in order to pass tests/test-backend-ops # note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1 # note: unfortunately, we have to call it default.metallib instead of ggml.metallib - # ref: https://github.com/ggerganov/whisper.cpp/issues/1720 + # ref: https://github.com/ggml-org/whisper.cpp/issues/1720 # note: adding -g causes segmentation fault during compile #set(XC_FLAGS -fno-fast-math -fno-inline -g) set(XC_FLAGS -fno-fast-math -fno-inline) diff --git a/ggml/src/ggml-metal/ggml-metal-context.h b/ggml/src/ggml-metal/ggml-metal-context.h index ec2b686b73..abf4b06ed2 100644 --- a/ggml/src/ggml-metal/ggml-metal-context.h +++ b/ggml/src/ggml-metal/ggml-metal-context.h @@ -15,14 +15,22 @@ typedef struct ggml_metal * ggml_metal_t; ggml_metal_t ggml_metal_init(ggml_metal_device_t dev); void ggml_metal_free(ggml_metal_t ctx); +const char * ggml_metal_get_name(ggml_metal_t ctx); + void ggml_metal_synchronize(ggml_metal_t ctx); void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); +bool ggml_metal_cpy_tensor_async(ggml_metal_t ctx_src, ggml_metal_t ctx_dst, const struct ggml_tensor * src, struct ggml_tensor * dst); enum ggml_status ggml_metal_graph_compute (ggml_metal_t ctx, struct ggml_cgraph * gf); void ggml_metal_graph_optimize(ggml_metal_t ctx, struct ggml_cgraph * gf); +void ggml_metal_event_record(ggml_metal_t ctx, ggml_metal_event_t ev); +void ggml_metal_event_wait (ggml_metal_t ctx, ggml_metal_event_t ev); + +ggml_metal_event_t ggml_metal_get_ev_cpy(ggml_metal_t ctx); + void ggml_metal_set_n_cb (ggml_metal_t ctx, int n_cb); void ggml_metal_set_abort_callback (ggml_metal_t ctx, ggml_abort_callback abort_callback, void * user_data); bool ggml_metal_supports_family (ggml_metal_t ctx, int family); diff --git a/ggml/src/ggml-metal/ggml-metal-context.m b/ggml/src/ggml-metal/ggml-metal-context.m index 42a35736ee..c7e8ebd3f3 100644 --- a/ggml/src/ggml-metal/ggml-metal-context.m +++ b/ggml/src/ggml-metal/ggml-metal-context.m @@ -24,9 +24,13 @@ struct ggml_metal_command_buffer { }; struct ggml_metal { + char name[128]; + ggml_metal_device_t dev; ggml_metal_library_t lib; + ggml_metal_event_t ev_cpy; // for async copies + dispatch_queue_t d_queue; // additional, inference-time compiled pipelines @@ -117,7 +121,11 @@ ggml_metal_t ggml_metal_init(ggml_metal_device_t dev) { } } - //const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev); + res->ev_cpy = ggml_metal_device_event_init(dev); + + const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev); + + snprintf(res->name, sizeof(res->name), "%s", props_dev->name); res->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT); @@ -206,9 +214,15 @@ void ggml_metal_free(ggml_metal_t ctx) { dispatch_release(ctx->d_queue); + ggml_metal_device_event_free(ctx->dev, ctx->ev_cpy); + free(ctx); } +const char * ggml_metal_get_name(ggml_metal_t ctx) { + return ctx->name; +} + void ggml_metal_synchronize(ggml_metal_t ctx) { // wait for any backend operations to finish if (ctx->cmd_buf_last) { @@ -273,8 +287,8 @@ void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor, // wrap the source data into a Metal buffer id device = ggml_metal_device_get_obj(ctx->dev); id buf_src = [device newBufferWithBytes:data - length:size - options:MTLResourceStorageModeShared]; + length:size + options:MTLResourceStorageModeShared]; GGML_ASSERT(buf_src); @@ -316,9 +330,9 @@ void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * te @autoreleasepool { id device = ggml_metal_device_get_obj(ctx->dev); id buf_dst = [device newBufferWithBytesNoCopy:data - length:size - options:MTLResourceStorageModeShared - deallocator:nil]; + length:size + options:MTLResourceStorageModeShared + deallocator:nil]; GGML_ASSERT(buf_dst); @@ -356,9 +370,52 @@ void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * te } } +bool ggml_metal_cpy_tensor_async(ggml_metal_t ctx_src, ggml_metal_t ctx_dst, const struct ggml_tensor * src, struct ggml_tensor * dst) { + @autoreleasepool { + struct ggml_metal_buffer_id bid_src = ggml_metal_get_buffer_id(src); + struct ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(dst); + + if (bid_src.metal == nil || bid_dst.metal == nil) { + return false; + } + + // queue the copy operation into the Metal context + // this will be queued at the end, after any currently ongoing GPU operations + id queue = ggml_metal_device_get_queue(ctx_src->dev); + id cmd_buf = [queue commandBuffer]; + id encoder = [cmd_buf blitCommandEncoder]; + + [encoder copyFromBuffer:bid_src.metal + sourceOffset:bid_src.offs + toBuffer:bid_dst.metal + destinationOffset:bid_dst.offs + size:ggml_nbytes(src)]; + + [encoder endEncoding]; + + ggml_metal_event_t ev_cpy = ggml_metal_get_ev_cpy(ctx_src); + ggml_metal_event_record(ctx_src, ev_cpy); + + [cmd_buf commit]; + + // do not wait here for completion + //[cmd_buf waitUntilCompleted]; + + // instead, remember a reference to the command buffer and wait for it later if needed + [ctx_src->cmd_bufs_ext addObject:cmd_buf]; + ctx_src->cmd_buf_last = cmd_buf; + + [cmd_buf retain]; + + ggml_metal_event_wait(ctx_dst, ev_cpy); + + return true; + } +} + enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph * gf) { // number of nodes encoded by the main thread (empirically determined) - const int n_main = 64; + const int n_main = MAX(64, 0.1*gf->n_nodes); // number of threads in addition to the main thread const int n_cb = ctx->n_cb; @@ -530,6 +587,42 @@ void ggml_metal_graph_optimize(ggml_metal_t ctx, struct ggml_cgraph * gf) { //printf("%s: graph optimize took %.3f ms\n", __func__, (ggml_time_us() - t_start) / 1000.0); } +void ggml_metal_event_record(ggml_metal_t ctx, ggml_metal_event_t ev) { + @autoreleasepool { + id queue = ggml_metal_device_get_queue(ctx->dev); + id cmd_buf = [queue commandBuffer]; + + ggml_metal_event_encode_signal(ev, cmd_buf); + + [cmd_buf commit]; + + [ctx->cmd_bufs_ext addObject:cmd_buf]; + ctx->cmd_buf_last = cmd_buf; + + [cmd_buf retain]; + } +} + +void ggml_metal_event_wait(ggml_metal_t ctx, ggml_metal_event_t ev) { + @autoreleasepool { + id queue = ggml_metal_device_get_queue(ctx->dev); + id cmd_buf = [queue commandBuffer]; + + ggml_metal_event_encode_wait(ev, cmd_buf); + + [cmd_buf commit]; + + [ctx->cmd_bufs_ext addObject:cmd_buf]; + ctx->cmd_buf_last = cmd_buf; + + [cmd_buf retain]; + } +} + +ggml_metal_event_t ggml_metal_get_ev_cpy(ggml_metal_t ctx) { + return ctx->ev_cpy; +} + void ggml_metal_set_n_cb(ggml_metal_t ctx, int n_cb) { if (ctx->n_cb != n_cb) { ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_COMMAND_BUFFERS); diff --git a/ggml/src/ggml-metal/ggml-metal-device.cpp b/ggml/src/ggml-metal/ggml-metal-device.cpp index 04c6137c5a..6af0dd88d5 100644 --- a/ggml/src/ggml-metal/ggml-metal-device.cpp +++ b/ggml/src/ggml-metal/ggml-metal-device.cpp @@ -17,10 +17,12 @@ struct ggml_metal_device_deleter { typedef std::unique_ptr ggml_metal_device_ptr; -ggml_metal_device_t ggml_metal_device_get(void) { - static ggml_metal_device_ptr ctx { ggml_metal_device_init() }; +ggml_metal_device_t ggml_metal_device_get(int device) { + static std::vector devs; - return ctx.get(); + devs.emplace_back(ggml_metal_device_init(device)); + + return devs.back().get(); } struct ggml_metal_pipelines { @@ -174,6 +176,26 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_set_rows(ggml_me return res; } +ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_diag(ggml_metal_library_t lib, const ggml_tensor * op) { + char base[256]; + char name[256]; + + const int n = op->src[0]->ne[0]; + + snprintf(base, 256, "kernel_diag_%s", ggml_type_name(op->src[0]->type)); + snprintf(name, 256, "%s_n=%d", base, n); + + ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name); + if (!res.pipeline) { + res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr); + } + + res.nsg = 1; + res.smem = 0; + + return res; +} + ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_repeat(ggml_metal_library_t lib, ggml_type tsrc) { char base[256]; char name[256]; @@ -532,6 +554,36 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rwkv(ggml_metal_ return res; } +ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_solve_tri(ggml_metal_library_t lib, const ggml_tensor * op) { + char base[256]; + char name[256]; + + const int nsg = 8; + const int n = op->src[1]->ne[1]; + const int k = op->src[1]->ne[0]; + + snprintf(base, 256, "kernel_solve_tri_%s", ggml_type_name(op->src[0]->type)); + snprintf(name, 256, "%s_nsg=%d_n=%d_k=%d", base, nsg, n, k); + + ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name); + if (!res.pipeline) { + ggml_metal_cv_t cv = ggml_metal_cv_init(); + + ggml_metal_cv_set_int16(cv, nsg, FC_SOLVE_TRI + 0); + ggml_metal_cv_set_int16(cv, n, FC_SOLVE_TRI + 1); + ggml_metal_cv_set_int16(cv, k, FC_SOLVE_TRI + 2); + + res = ggml_metal_library_compile_pipeline(lib, base, name, cv); + + ggml_metal_cv_free(cv); + } + + res.nsg = nsg; + res.smem = GGML_PAD(GGML_PAD(n, 32)*nsg*sizeof(float), 16); + + return res; +} + ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv_ext(ggml_metal_library_t lib, ggml_type tsrc0, ggml_type tsrc1, int nsg, int nxpsg, int r1ptg) { char base[256]; char name[256]; diff --git a/ggml/src/ggml-metal/ggml-metal-device.h b/ggml/src/ggml-metal/ggml-metal-device.h index 3d01c56fb8..84dcec3083 100644 --- a/ggml/src/ggml-metal/ggml-metal-device.h +++ b/ggml/src/ggml-metal/ggml-metal-device.h @@ -108,6 +108,7 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pool_1d struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pool_2d (ggml_metal_library_t lib, const struct ggml_tensor * op, enum ggml_op_pool op_pool); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_get_rows (ggml_metal_library_t lib, enum ggml_type tsrc); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_set_rows (ggml_metal_library_t lib, enum ggml_type tidx, enum ggml_type tdst); +struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_diag (ggml_metal_library_t lib, const struct ggml_tensor * op); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_repeat (ggml_metal_library_t lib, enum ggml_type tsrc); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_unary (ggml_metal_library_t lib, const struct ggml_tensor * op); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_glu (ggml_metal_library_t lib, const struct ggml_tensor * op); @@ -121,6 +122,7 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_conv struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_conv_batched (ggml_metal_library_t lib, const struct ggml_tensor * op, int ssm_conv_bs); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_scan (ggml_metal_library_t lib, const struct ggml_tensor * op); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rwkv (ggml_metal_library_t lib, const struct ggml_tensor * op); +struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_solve_tri (ggml_metal_library_t lib, const struct ggml_tensor * op); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv_ext (ggml_metal_library_t lib, enum ggml_type tsrc0, enum ggml_type tsrc1, int nsg, int nxpsg, int r1ptg); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mm (ggml_metal_library_t lib, const struct ggml_tensor * op); struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv (ggml_metal_library_t lib, const struct ggml_tensor * op); @@ -205,7 +207,9 @@ void ggml_metal_rsets_free(ggml_metal_rsets_t rsets); // struct ggml_metal_device_props { + int device; char name[128]; + char desc[128]; size_t max_buffer_size; size_t max_working_set_size; @@ -224,11 +228,15 @@ struct ggml_metal_device_props { int op_offload_min_batch_size; }; -ggml_metal_device_t ggml_metal_device_init(void); +typedef struct ggml_metal_event * ggml_metal_event_t; + +void ggml_metal_event_encode_signal(ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf); +void ggml_metal_event_encode_wait (ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf); + +ggml_metal_device_t ggml_metal_device_init(int device); void ggml_metal_device_free(ggml_metal_device_t dev); -// return a singleton that is automatically destroyed when the program exits -ggml_metal_device_t ggml_metal_device_get(void); +ggml_metal_device_t ggml_metal_device_get(int device); void * ggml_metal_device_get_obj (ggml_metal_device_t dev); // id void * ggml_metal_device_get_queue(ggml_metal_device_t dev); // id @@ -240,6 +248,10 @@ void ggml_metal_device_rsets_rm (ggml_metal_device_t dev, ggml_metal_rset_t rset void ggml_metal_device_rsets_keep_alive(ggml_metal_device_t dev); +ggml_metal_event_t ggml_metal_device_event_init(ggml_metal_device_t dev); +void ggml_metal_device_event_free(ggml_metal_device_t dev, ggml_metal_event_t ev); +void ggml_metal_device_event_synchronize(ggml_metal_device_t dev, ggml_metal_event_t ev); + void ggml_metal_device_get_memory(ggml_metal_device_t dev, size_t * free, size_t * total); bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_tensor * op); diff --git a/ggml/src/ggml-metal/ggml-metal-device.m b/ggml/src/ggml-metal/ggml-metal-device.m index 7f9c384c34..c8e737d418 100644 --- a/ggml/src/ggml-metal/ggml-metal-device.m +++ b/ggml/src/ggml-metal/ggml-metal-device.m @@ -24,9 +24,6 @@ static const NSInteger MTLGPUFamilyMetal3_GGML = 5001; static const NSInteger MTLGPUFamilyMetal4_GGML = 5002; -// virtual address for GPU memory allocations -static atomic_uintptr_t g_addr_device = 0x000000400ULL; - #if !GGML_METAL_EMBED_LIBRARY // Here to assist with NSBundle Path Hack @interface GGMLMetalClass : NSObject @@ -523,6 +520,9 @@ struct ggml_metal_device { ggml_metal_library_t library; struct ggml_metal_device_props props; + + // virtual address for GPU memory allocations + atomic_uintptr_t addr_virt; }; // @@ -618,7 +618,7 @@ void ggml_metal_rsets_free(ggml_metal_rsets_t rsets) { free(rsets); } -ggml_metal_device_t ggml_metal_device_init(void) { +ggml_metal_device_t ggml_metal_device_init(int device) { ggml_metal_device_t dev = calloc(1, sizeof(struct ggml_metal_device)); assert(dev != NULL); @@ -632,6 +632,9 @@ ggml_metal_device_t ggml_metal_device_init(void) { GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__); } + dev->addr_virt = 0x000000400ULL; + + dev->props.device = device; dev->props.has_simdgroup_reduction = [dev->mtl_device supportsFamily:MTLGPUFamilyApple7]; dev->props.has_simdgroup_reduction |= [dev->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML]; @@ -792,7 +795,8 @@ ggml_metal_device_t ggml_metal_device_init(void) { dev->props.max_working_set_size = dev->mtl_device.maxBufferLength; } - strncpy(dev->props.name, [[dev->mtl_device name] UTF8String], sizeof(dev->props.name) - 1); + snprintf(dev->props.name, sizeof(dev->props.name), "%s%d", "MTL", device); + snprintf(dev->props.desc, sizeof(dev->props.desc), "%s", [[dev->mtl_device name] UTF8String]); dev->library = ggml_metal_library_init(dev); if (!dev->library) { @@ -922,6 +926,59 @@ void ggml_metal_device_rsets_keep_alive(ggml_metal_device_t dev) { atomic_store_explicit(&dev->rsets->d_loop, 2*dev->rsets->keep_alive_s, memory_order_relaxed); } +struct ggml_metal_event { + void * obj; // id + + atomic_int value; +}; + +void ggml_metal_event_encode_signal(ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf_raw) { + id event = (id)ev->obj; + + id cmd_buf = (id) cmd_buf_raw; + + [cmd_buf encodeSignalEvent:event value:atomic_fetch_add_explicit(&ev->value, 1, memory_order_relaxed) + 1]; +} + +void ggml_metal_event_encode_wait(ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf_raw) { + id event = (id)ev->obj; + + id cmd_buf = (id) cmd_buf_raw; + + [cmd_buf encodeWaitForEvent:event value:atomic_load_explicit(&ev->value, memory_order_relaxed)]; +} + +ggml_metal_event_t ggml_metal_device_event_init(ggml_metal_device_t dev) { + id event = [dev->mtl_device newEvent]; + + ggml_metal_event_t ev = calloc(1, sizeof(struct ggml_metal_event)); + + ev->obj = (__bridge void *)event; + ev->value = 0; + + return ev; +} + +void ggml_metal_device_event_free(ggml_metal_device_t dev, ggml_metal_event_t ev) { + id event = ev->obj; + [event release]; + + free(ev); + + GGML_UNUSED(dev); +} + +void ggml_metal_device_event_synchronize(ggml_metal_device_t dev, ggml_metal_event_t ev) { + @autoreleasepool { + id event = ev->obj; + + id cmd_buf = [dev->mtl_queue commandBuffer]; + [cmd_buf encodeWaitForEvent:event value:atomic_load_explicit(&ev->value, memory_order_relaxed)]; + [cmd_buf commit]; + [cmd_buf waitUntilCompleted]; + } +} + void ggml_metal_device_get_memory(ggml_metal_device_t dev, size_t * free, size_t * total) { if (@available(macOS 10.12, iOS 16.0, *)) { *total = dev->mtl_device.recommendedMaxWorkingSetSize; @@ -1096,6 +1153,7 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te case GGML_OP_RWKV_WKV6: case GGML_OP_RWKV_WKV7: return true; + case GGML_OP_SOLVE_TRI: case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: return has_simdgroup_reduction; @@ -1177,6 +1235,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te return false; }; } + case GGML_OP_DIAG: + return true; case GGML_OP_OPT_STEP_ADAMW: case GGML_OP_OPT_STEP_SGD: return has_simdgroup_reduction; @@ -1344,8 +1404,8 @@ ggml_metal_buffer_t ggml_metal_buffer_init(ggml_metal_device_t dev, size_t size, res->all_data = ggml_metal_host_malloc(size_aligned); res->is_shared = true; } else { - // use virtual address from g_addr_device counter - res->all_data = (void *) atomic_fetch_add_explicit(&g_addr_device, size_aligned, memory_order_relaxed); + // use virtual address + res->all_data = (void *) atomic_fetch_add_explicit(&dev->addr_virt, size_aligned, memory_order_relaxed); res->is_shared = false; } res->all_size = size_aligned; diff --git a/ggml/src/ggml-metal/ggml-metal-impl.h b/ggml/src/ggml-metal/ggml-metal-impl.h index 59d88b01a5..7f73cb97bb 100644 --- a/ggml/src/ggml-metal/ggml-metal-impl.h +++ b/ggml/src/ggml-metal/ggml-metal-impl.h @@ -78,13 +78,14 @@ #define FC_MUL_MM 700 #define FC_ROPE 800 #define FC_SSM_CONV 900 -#define FC_COUNT_EQUAL 1000 +#define FC_SOLVE_TRI 1000 +#define FC_COUNT_EQUAL 1100 // op-specific constants -#define OP_FLASH_ATTN_EXT_NQPTG 8 +#define OP_FLASH_ATTN_EXT_NQPSG 8 #define OP_FLASH_ATTN_EXT_NCPSG 64 -#define OP_FLASH_ATTN_EXT_VEC_NQPTG 1 +#define OP_FLASH_ATTN_EXT_VEC_NQPSG 1 #define OP_FLASH_ATTN_EXT_VEC_NCPSG 32 // kernel argument structs @@ -733,6 +734,33 @@ typedef struct { uint64_t nb0; } ggml_metal_kargs_ssm_scan; +typedef struct { + int32_t ne00; + int32_t ne01; + int32_t ne02; + int32_t ne03; + uint64_t nb00; + uint64_t nb01; + uint64_t nb02; + uint64_t nb03; + int32_t ne10; + int32_t ne11; + int32_t ne12; + int32_t ne13; + uint64_t nb10; + uint64_t nb11; + uint64_t nb12; + uint64_t nb13; + int32_t ne0; + int32_t ne1; + int32_t ne2; + int32_t ne3; + uint64_t nb0; + uint64_t nb1; + uint64_t nb2; + uint64_t nb3; +} ggml_metal_kargs_solve_tri; + typedef struct { int32_t ne00t; int32_t ne00; @@ -764,6 +792,25 @@ typedef struct { uint64_t nb3; } ggml_metal_kargs_set_rows; +typedef struct { + int32_t ne00; + int32_t ne01; + int32_t ne02; + int32_t ne03; + uint64_t nb00; + uint64_t nb01; + uint64_t nb02; + uint64_t nb03; + int32_t ne0; + int32_t ne1; + int32_t ne2; + int32_t ne3; + uint64_t nb0; + uint64_t nb1; + uint64_t nb2; + uint64_t nb3; +} ggml_metal_kargs_diag; + typedef struct { int64_t ne00; int64_t ne01; diff --git a/ggml/src/ggml-metal/ggml-metal-ops.cpp b/ggml/src/ggml-metal/ggml-metal-ops.cpp index 7f4cfbba22..e0ed6c7805 100644 --- a/ggml/src/ggml-metal/ggml-metal-ops.cpp +++ b/ggml/src/ggml-metal/ggml-metal-ops.cpp @@ -341,6 +341,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) { { n_fuse = ggml_metal_op_rwkv(ctx, idx); } break; + case GGML_OP_SOLVE_TRI: + { + n_fuse = ggml_metal_op_solve_tri(ctx, idx); + } break; case GGML_OP_MUL_MAT: { n_fuse = ggml_metal_op_mul_mat(ctx, idx); @@ -357,6 +361,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) { { n_fuse = ggml_metal_op_set_rows(ctx, idx); } break; + case GGML_OP_DIAG: + { + n_fuse = ggml_metal_op_diag(ctx, idx); + } break; case GGML_OP_L2_NORM: { n_fuse = ggml_metal_op_l2_norm(ctx, idx); @@ -1255,6 +1263,48 @@ int ggml_metal_op_set_rows(ggml_metal_op_t ctx, int idx) { return 1; } +int ggml_metal_op_diag(ggml_metal_op_t ctx, int idx) { + ggml_tensor * op = ctx->node(idx); + + ggml_metal_library_t lib = ctx->lib; + ggml_metal_encoder_t enc = ctx->enc; + + GGML_TENSOR_LOCALS(int32_t, ne0, op->src[0], ne); + GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb); + GGML_TENSOR_LOCALS(int32_t, ne, op, ne); + GGML_TENSOR_LOCALS(uint64_t, nb, op, nb); + + ggml_metal_kargs_diag args = { + /*.ne00 =*/ne00, + /*.ne01 =*/ne01, + /*.ne02 =*/ne02, + /*.ne03 =*/ne03, + /*.nb00 =*/nb00, + /*.nb01 =*/nb01, + /*.nb02 =*/nb02, + /*.nb03 =*/nb03, + /*.ne0 =*/ne0, + /*.ne1 =*/ne1, + /*.ne2 =*/ne2, + /*.ne3 =*/ne3, + /*.nb0 =*/nb0, + /*.nb1 =*/nb1, + /*.nb2 =*/nb2, + /*.nb3 =*/nb3, + }; + + auto pipeline = ggml_metal_library_get_pipeline_diag(lib, op); + + ggml_metal_encoder_set_pipeline(enc, pipeline); + ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0); + ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 1); + ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op), 2); + + ggml_metal_encoder_dispatch_threadgroups(enc, ne1, ne2, ne3, 32, 1, 1); + + return 1; +} + int ggml_metal_op_soft_max(ggml_metal_op_t ctx, int idx) { ggml_tensor * op = ctx->node(idx); @@ -1557,6 +1607,63 @@ int ggml_metal_op_rwkv(ggml_metal_op_t ctx, int idx) { return 1; } +int ggml_metal_op_solve_tri(ggml_metal_op_t ctx, int idx) { + ggml_tensor * op = ctx->node(idx); + + ggml_metal_library_t lib = ctx->lib; + ggml_metal_encoder_t enc = ctx->enc; + + GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne); + GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb); + GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne); + GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb); + GGML_TENSOR_LOCALS( int32_t, ne, op, ne); + GGML_TENSOR_LOCALS(uint64_t, nb, op, nb); + + ggml_metal_kargs_solve_tri args = { + /*.ne00 =*/ ne00, + /*.ne01 =*/ ne01, + /*.ne02 =*/ ne02, + /*.ne03 =*/ ne03, + /*.nb00 =*/ nb00, + /*.nb01 =*/ nb01, + /*.nb02 =*/ nb02, + /*.nb03 =*/ nb03, + /*.ne10 =*/ ne10, + /*.ne11 =*/ ne11, + /*.ne12 =*/ ne12, + /*.ne13 =*/ ne13, + /*.nb10 =*/ nb10, + /*.nb11 =*/ nb11, + /*.nb12 =*/ nb12, + /*.nb13 =*/ nb13, + /*.ne0 =*/ ne0, + /*.ne1 =*/ ne1, + /*.ne2 =*/ ne2, + /*.ne3 =*/ ne3, + /*.nb0 =*/ nb0, + /*.nb1 =*/ nb1, + /*.nb2 =*/ nb2, + /*.nb3 =*/ nb3, + }; + + auto pipeline = ggml_metal_library_get_pipeline_solve_tri(lib, op); + + ggml_metal_encoder_set_pipeline(enc, pipeline); + ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0); + ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1); + ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2); + ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3); + + const int nsg = pipeline.nsg; + + ggml_metal_encoder_set_threadgroup_memory_size(enc, pipeline.smem, 0); + + ggml_metal_encoder_dispatch_threadgroups(enc, (ne10 + nsg - 1)/nsg, ne02, ne03, 32, nsg, 1); + + return 1; +} + int ggml_metal_op_cpy(ggml_metal_op_t ctx, int idx) { ggml_tensor * op = ctx->node(idx); @@ -2295,7 +2402,7 @@ size_t ggml_metal_op_flash_attn_ext_extra_blk(const ggml_tensor * op) { // return res; //} - const int nqptg = is_vec ? OP_FLASH_ATTN_EXT_VEC_NQPTG : OP_FLASH_ATTN_EXT_NQPTG; + const int nqptg = is_vec ? OP_FLASH_ATTN_EXT_VEC_NQPSG : OP_FLASH_ATTN_EXT_NQPSG; const int ncpsg = is_vec ? OP_FLASH_ATTN_EXT_VEC_NCPSG : OP_FLASH_ATTN_EXT_NCPSG; const int64_t ne1 = (ne01 + nqptg - 1)/nqptg; @@ -2411,7 +2518,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) { if (!ggml_metal_op_flash_attn_ext_use_vec(op)) { // half8x8 kernel - const int nqptg = OP_FLASH_ATTN_EXT_NQPTG; // queries per threadgroup + const int nqptg = OP_FLASH_ATTN_EXT_NQPSG; // queries per threadgroup const int ncpsg = OP_FLASH_ATTN_EXT_NCPSG; // cache values per simdgroup GGML_ASSERT(nqptg <= 32); @@ -2578,9 +2685,9 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) { #undef FATTN_SMEM } else { // half4x4 kernel - const int nqptg = OP_FLASH_ATTN_EXT_VEC_NQPTG; // queries per threadgroup + const int nqptg = OP_FLASH_ATTN_EXT_VEC_NQPSG; // queries per threadgroup const int ncpsg = OP_FLASH_ATTN_EXT_VEC_NCPSG; // cache values per simdgroup !! sync with kernel template arguments !! - const int nkpsg = 1*ncpsg; + const int nhptg = 1; // heads per threadgroup GGML_ASSERT(nqptg <= 32); GGML_ASSERT(nqptg % 1 == 0); @@ -2632,6 +2739,9 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) { ggml_metal_op_concurrency_reset(ctx); } + // note: for simplicity assume the K is larger or equal than V + GGML_ASSERT(ne10 >= ne20); + // ne00 + 2*ncpsg*(nsg) // for each query, we load it as f16 in shared memory (ne00) // and store the soft_max values and the mask @@ -2639,28 +2749,9 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) { // ne20*(nsg) // each simdgroup has a full f32 head vector in shared mem to accumulate results // -#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + 2*GGML_PAD(ne20, 128)*(nsg))*(sizeof(float)/2), 16)) - - int64_t nsgmax = 2; - while (true) { - const size_t smem = FATTN_SMEM(nsgmax); - // avoid using more than half of the threadgroup memory - can cause slow downs especially for large head sizes - if (smem > props_dev->max_theadgroup_memory_size/2) { - break; - } - nsgmax *= 2; - } - nsgmax /= 2; - - // simdgroups per threadgroup (a.k.a. warps) - //const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))); - const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) 1024/32))); +#define FATTN_SMEM(nsg) (GGML_PAD(((GGML_PAD(ne00, 128) + 4*ncpsg + 2*GGML_PAD(ne20, 128))*(nsg))*(sizeof(float)/2), 16)) int64_t nsg = 1; - while (nsg <= nsgt) { - nsg *= 2; - } - nsg /= 2; // workgroups // each workgroup handles nsg*nkpsg cache values @@ -2673,7 +2764,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) { } else { nwg = 32; nsg = 1; - while (2*nwg*nsg*nkpsg < ne11 && nsg < 4) { + while (2*nwg*nsg*ncpsg < ne11 && nsg < 4) { nsg *= 2; } } @@ -2739,7 +2830,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) { ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0); - ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg, 32, nsg, 1); + ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, (ne02 + nhptg - 1)/nhptg, ne03*nwg, 32, nsg, 1); } else { // sanity checks assert(ggml_metal_op_flash_attn_ext_extra_tmp(op) != 0); @@ -2752,7 +2843,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) { ggml_metal_encoder_set_buffer(enc, bid_tmp, 7); ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0); - ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg, 32, nsg, 1); + ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, (ne02 + nhptg - 1)/nhptg, ne03*nwg, 32, nsg, 1); // sync the 2 kernels ggml_metal_op_concurrency_reset(ctx); diff --git a/ggml/src/ggml-metal/ggml-metal-ops.h b/ggml/src/ggml-metal/ggml-metal-ops.h index 10686a334e..3c64e4f600 100644 --- a/ggml/src/ggml-metal/ggml-metal-ops.h +++ b/ggml/src/ggml-metal/ggml-metal-ops.h @@ -56,10 +56,12 @@ int ggml_metal_op_sum_rows (ggml_metal_op_t ctx, int idx); int ggml_metal_op_cumsum (ggml_metal_op_t ctx, int idx); int ggml_metal_op_get_rows (ggml_metal_op_t ctx, int idx); int ggml_metal_op_set_rows (ggml_metal_op_t ctx, int idx); +int ggml_metal_op_diag (ggml_metal_op_t ctx, int idx); int ggml_metal_op_soft_max (ggml_metal_op_t ctx, int idx); int ggml_metal_op_ssm_conv (ggml_metal_op_t ctx, int idx); int ggml_metal_op_ssm_scan (ggml_metal_op_t ctx, int idx); int ggml_metal_op_rwkv (ggml_metal_op_t ctx, int idx); +int ggml_metal_op_solve_tri (ggml_metal_op_t ctx, int idx); int ggml_metal_op_cpy (ggml_metal_op_t ctx, int idx); int ggml_metal_op_pool_1d (ggml_metal_op_t ctx, int idx); int ggml_metal_op_pool_2d (ggml_metal_op_t ctx, int idx); diff --git a/ggml/src/ggml-metal/ggml-metal.cpp b/ggml/src/ggml-metal/ggml-metal.cpp index 56b59f0afd..1c705362fb 100644 --- a/ggml/src/ggml-metal/ggml-metal.cpp +++ b/ggml/src/ggml-metal/ggml-metal.cpp @@ -7,11 +7,15 @@ #include "ggml-metal-context.h" #include "ggml-metal-ops.h" -// globals +#include +#include -// initialized in ggml_backend_metal_reg -static ggml_backend_reg g_ggml_metal_reg; -static ggml_backend_device g_ggml_metal_device; +#define GGML_METAL_NAME "MTL" +#define GGML_METAL_MAX_DEVICES 16 + +// number of Metal devices +// note: can be overriden with GGML_METAL_DEVICES env to simulate virtual devices +static int g_devices = 1; //////////////////////////////////////////////////////////////////////////////// // backend interface @@ -165,10 +169,28 @@ static ggml_backend_buffer_i ggml_backend_metal_buffer_private_i = { /* .reset = */ NULL, }; +static bool ggml_backend_buffer_is_metal(ggml_backend_buffer_t buffer) { + return buffer->iface.free_buffer == ggml_backend_metal_buffer_shared_free_buffer || + buffer->iface.free_buffer == ggml_backend_metal_buffer_private_free_buffer; +} + // // buffer types // +struct ggml_backend_metal_buffer_type { + int device; + std::string name; +}; + +struct ggml_backend_metal_buffer_type_deleter { + void operator()(ggml_backend_metal_buffer_type * ctx) const { + delete ctx; + } +}; + +typedef std::unique_ptr ggml_backend_metal_buffer_type_ptr; + // common method for allocating shread or private Metal buffers static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size, bool shared) { ggml_metal_device_t ctx_dev = (ggml_metal_device_t)buft->device->context; @@ -218,9 +240,9 @@ static size_t ggml_backend_metal_buffer_type_get_alloc_size(ggml_backend_buffer_ // default (shared) buffer type static const char * ggml_backend_metal_buffer_type_shared_get_name(ggml_backend_buffer_type_t buft) { - return "Metal"; + ggml_backend_metal_buffer_type * ctx = (ggml_backend_metal_buffer_type *)buft->context; - GGML_UNUSED(buft); + return ctx->name.c_str(); } static ggml_backend_buffer_t ggml_backend_metal_buffer_type_shared_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { @@ -249,29 +271,54 @@ static bool ggml_backend_metal_buffer_type_shared_is_host(ggml_backend_buffer_ty GGML_UNUSED(buft); } -static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_shared(void) { - static ggml_backend_buffer_type ggml_backend_buffer_type_metal = { - /* .iface = */ { - /* .get_name = */ ggml_backend_metal_buffer_type_shared_get_name, - /* .alloc_buffer = */ ggml_backend_metal_buffer_type_shared_alloc_buffer, - /* .get_alignment = */ ggml_backend_metal_buffer_type_shared_get_alignment, - /* .get_max_size = */ ggml_backend_metal_buffer_type_shared_get_max_size, - /* .get_alloc_size = */ ggml_backend_metal_buffer_type_shared_get_alloc_size, - /* .is_host = */ ggml_backend_metal_buffer_type_shared_is_host, - }, - /* .device = */ &g_ggml_metal_device, - /* .context = */ NULL, - }; +static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_shared(int device) { + static std::mutex mutex; + std::lock_guard lock(mutex); - return &ggml_backend_buffer_type_metal; + static std::vector bufts; + static std::vector ctxs; + + static bool initialized = false; + if (!initialized) { + bufts.reserve(g_devices); + ctxs.reserve(g_devices); + + for (int i = 0; i < g_devices; ++i) { + ggml_backend_metal_buffer_type * raw_ctx = + new ggml_backend_metal_buffer_type { + /* .device = */ i, + /* .name = */ GGML_METAL_NAME + std::to_string(i), + }; + ctxs.emplace_back(raw_ctx); + + ggml_backend_buffer_type buft = { + /* .iface = */ { + /* .get_name = */ ggml_backend_metal_buffer_type_shared_get_name, + /* .alloc_buffer = */ ggml_backend_metal_buffer_type_shared_alloc_buffer, + /* .get_alignment = */ ggml_backend_metal_buffer_type_shared_get_alignment, + /* .get_max_size = */ ggml_backend_metal_buffer_type_shared_get_max_size, + /* .get_alloc_size = */ ggml_backend_metal_buffer_type_shared_get_alloc_size, + /* .is_host = */ ggml_backend_metal_buffer_type_shared_is_host, + }, + /* .device = */ ggml_backend_reg_dev_get(ggml_backend_metal_reg(), i), + /* .context = */ raw_ctx, + }; + + bufts.emplace_back(buft); + } + + initialized = true; + } + + return &bufts[device]; } // default (private) buffer type static const char * ggml_backend_metal_buffer_type_private_get_name(ggml_backend_buffer_type_t buft) { - return "Metal_Private"; + ggml_backend_metal_buffer_type * ctx = (ggml_backend_metal_buffer_type *)buft->context; - GGML_UNUSED(buft); + return ctx->name.c_str(); } static ggml_backend_buffer_t ggml_backend_metal_buffer_type_private_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { @@ -300,29 +347,53 @@ static bool ggml_backend_metal_buffer_type_private_is_host(ggml_backend_buffer_t GGML_UNUSED(buft); } -static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_private(void) { - static ggml_backend_buffer_type ggml_backend_buffer_type_metal = { - /* .iface = */ { - /* .get_name = */ ggml_backend_metal_buffer_type_private_get_name, - /* .alloc_buffer = */ ggml_backend_metal_buffer_type_private_alloc_buffer, - /* .get_alignment = */ ggml_backend_metal_buffer_type_private_get_alignment, - /* .get_max_size = */ ggml_backend_metal_buffer_type_private_get_max_size, - /* .get_alloc_size = */ ggml_backend_metal_buffer_type_private_get_alloc_size, - /* .is_host = */ ggml_backend_metal_buffer_type_private_is_host, - }, - /* .device = */ &g_ggml_metal_device, - /* .context = */ NULL, - }; +static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_private(int device) { + static std::mutex mutex; + std::lock_guard lock(mutex); - return &ggml_backend_buffer_type_metal; + static std::vector bufts; + static std::vector ctxs; + + static bool initialized = false; + if (!initialized) { + bufts.reserve(g_devices); + ctxs.reserve(g_devices); + + for (int i = 0; i < g_devices; ++i) { + ggml_backend_metal_buffer_type * raw_ctx = new ggml_backend_metal_buffer_type{ + /* .device = */ i, + /* .name = */ GGML_METAL_NAME + std::to_string(i) + "_Private" + }; + ctxs.emplace_back(raw_ctx); + + ggml_backend_buffer_type buft = { + /* .iface = */ { + /* .get_name = */ ggml_backend_metal_buffer_type_private_get_name, + /* .alloc_buffer = */ ggml_backend_metal_buffer_type_private_alloc_buffer, + /* .get_alignment = */ ggml_backend_metal_buffer_type_private_get_alignment, + /* .get_max_size = */ ggml_backend_metal_buffer_type_private_get_max_size, + /* .get_alloc_size = */ ggml_backend_metal_buffer_type_private_get_alloc_size, + /* .is_host = */ ggml_backend_metal_buffer_type_private_is_host, + }, + /* .device = */ ggml_backend_reg_dev_get(ggml_backend_metal_reg(), i), + /* .context = */ raw_ctx, + }; + + bufts.emplace_back(buft); + } + + initialized = true; + } + + return &bufts[device]; } // mapped buffer type static const char * ggml_backend_metal_buffer_type_mapped_get_name(ggml_backend_buffer_type_t buft) { - return "Metal_Mapped"; + ggml_backend_metal_buffer_type * ctx = (ggml_backend_metal_buffer_type *)buft->context; - GGML_UNUSED(buft); + return ctx->name.c_str(); } static ggml_backend_buffer_t ggml_backend_metal_buffer_type_mapped_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { @@ -352,31 +423,55 @@ static bool ggml_backend_metal_buffer_type_mapped_is_host(ggml_backend_buffer_ty GGML_UNUSED(buft); } -static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_mapped(void) { - // note: not obvious, but this buffer type still needs to implement .alloc_buffer: - // https://github.com/ggml-org/llama.cpp/pull/15832#discussion_r2333177099 - static ggml_backend_buffer_type ggml_backend_buffer_type_mapped_metal = { - /* .iface = */ { - /* .get_name = */ ggml_backend_metal_buffer_type_mapped_get_name, - /* .alloc_buffer = */ ggml_backend_metal_buffer_type_mapped_alloc_buffer, - /* .get_alignment = */ ggml_backend_metal_buffer_type_mapped_get_alignment, - /* .get_max_size = */ ggml_backend_metal_buffer_type_mapped_get_max_size, - /* .get_alloc_size = */ ggml_backend_metal_buffer_type_mapped_get_alloc_size, - /* .is_host = */ ggml_backend_metal_buffer_type_mapped_is_host, - }, - /* .device = */ &g_ggml_metal_device, - /* .context = */ NULL, - }; +static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_mapped(int device) { + static std::mutex mutex; + std::lock_guard lock(mutex); - return &ggml_backend_buffer_type_mapped_metal; + static std::vector bufts; + static std::vector ctxs; + + static bool initialized = false; + if (!initialized) { + bufts.reserve(g_devices); + ctxs.reserve(g_devices); + + for (int i = 0; i < g_devices; ++i) { + ggml_backend_metal_buffer_type * raw_ctx = new ggml_backend_metal_buffer_type{ + /* .device = */ i, + /* .name = */ GGML_METAL_NAME + std::to_string(i) + "_Mapped" + }; + ctxs.emplace_back(raw_ctx); + + // note: not obvious, but this buffer type still needs to implement .alloc_buffer: + // https://github.com/ggml-org/llama.cpp/pull/15832#discussion_r2333177099 + ggml_backend_buffer_type buft = { + /* .iface = */ { + /* .get_name = */ ggml_backend_metal_buffer_type_mapped_get_name, + /* .alloc_buffer = */ ggml_backend_metal_buffer_type_mapped_alloc_buffer, + /* .get_alignment = */ ggml_backend_metal_buffer_type_mapped_get_alignment, + /* .get_max_size = */ ggml_backend_metal_buffer_type_mapped_get_max_size, + /* .get_alloc_size = */ ggml_backend_metal_buffer_type_mapped_get_alloc_size, + /* .is_host = */ ggml_backend_metal_buffer_type_mapped_is_host, + }, + /* .device = */ ggml_backend_reg_dev_get(ggml_backend_metal_reg(), i), + /* .context = */ raw_ctx, + }; + + bufts.emplace_back(buft); + } + + initialized = true; + } + + return &bufts[device]; } // backend static const char * ggml_backend_metal_name(ggml_backend_t backend) { - return "Metal"; + ggml_metal_t ctx = (ggml_metal_t)backend->context; - GGML_UNUSED(backend); + return ggml_metal_get_name(ctx); } static void ggml_backend_metal_free(ggml_backend_t backend) { @@ -409,12 +504,24 @@ static void ggml_backend_metal_get_tensor_async(ggml_backend_t backend, const gg } static bool ggml_backend_metal_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) { - return false; + if (!ggml_backend_is_metal(backend_src) || !ggml_backend_is_metal(backend_dst)) { + return false; + } - GGML_UNUSED(backend_src); - GGML_UNUSED(backend_dst); - GGML_UNUSED(src); - GGML_UNUSED(dst); + if (!ggml_backend_buffer_is_metal(src->buffer) || !ggml_backend_buffer_is_metal(dst->buffer)) { + return false; + } + + ggml_metal_t ctx_src = (ggml_metal_t)backend_src->context; + ggml_metal_t ctx_dst = (ggml_metal_t)backend_dst->context; + + //ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer; + //ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer; + + //ggml_metal_buffer_t buf_ctx_src = (ggml_metal_buffer_t)buf_src->context; + //ggml_metal_buffer_t buf_ctx_dst = (ggml_metal_buffer_t)buf_dst->context; + + return ggml_metal_cpy_tensor_async(ctx_src, ctx_dst, src, dst); } static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { @@ -423,6 +530,20 @@ static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, return ggml_metal_graph_compute(ctx, cgraph); } +static void ggml_backend_metal_event_record(ggml_backend_t backend, ggml_backend_event_t event) { + ggml_metal_t ctx = (ggml_metal_t)backend->context; + ggml_metal_event_t ev = (ggml_metal_event_t)event->context; + + ggml_metal_event_record(ctx, ev); +} + +static void ggml_backend_metal_event_wait(ggml_backend_t backend, ggml_backend_event_t event) { + ggml_metal_t ctx = (ggml_metal_t)backend->context; + ggml_metal_event_t ev = (ggml_metal_event_t)event->context; + + ggml_metal_event_wait(ctx, ev); +} + static void ggml_backend_metal_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) { ggml_metal_t ctx = (ggml_metal_t)backend->context; @@ -435,7 +556,6 @@ static void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) { ggml_metal_t ctx = (ggml_metal_t)backend->context; ggml_metal_set_n_cb(ctx, n_cb); - } static ggml_backend_i ggml_backend_metal_i = { @@ -450,12 +570,8 @@ static ggml_backend_i ggml_backend_metal_i = { /* .graph_plan_update = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_metal_graph_compute, - - // the events API is needed only for multi-GPU setups, so likely no need to implement it for Metal - // in any case, these docs seem relevant if we ever decide to implement it: - // https://developer.apple.com/documentation/metal/mtlcommandbuffer#Synchronizing-Passes-with-Events - /* .event_record = */ NULL, - /* .event_wait = */ NULL, + /* .event_record = */ ggml_backend_metal_event_record, + /* .event_wait = */ ggml_backend_metal_event_wait, /* .graph_optimize = */ ggml_backend_metal_graph_optimize, }; @@ -519,15 +635,17 @@ void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) { // backend device static const char * ggml_backend_metal_device_get_name(ggml_backend_dev_t dev) { - return "Metal"; + ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context; - GGML_UNUSED(dev); + const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx_dev); + + return props_dev->name; } static const char * ggml_backend_metal_device_get_description(ggml_backend_dev_t dev) { ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context; - return ggml_metal_device_get_props(ctx_dev)->name; + return ggml_metal_device_get_props(ctx_dev)->desc; } static void ggml_backend_metal_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { @@ -550,14 +668,14 @@ static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, ggml_bac ggml_backend_metal_device_get_memory(dev, &props->memory_free, &props->memory_total); props->caps = { - /* .async = */ true, - /* .host_buffer = */ false, - /* .buffer_from_host_ptr = */ true, - /* .events = */ false, + /* .async = */ true, + /* .host_buffer = */ false, + /* .buffer_from_host_ptr = */ true, + /* .events = */ true, }; } -static ggml_backend_t ggml_backend_metal_device_init(ggml_backend_dev_t dev, const char * params) { +static ggml_backend_t ggml_backend_metal_device_init_backend(ggml_backend_dev_t dev, const char * params) { ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context; ggml_metal_t ctx = ggml_metal_init(ctx_dev); @@ -587,7 +705,7 @@ static ggml_backend_buffer_type_t ggml_backend_metal_device_get_buffer_type(ggml const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx_dev); - return props_dev->use_shared_buffers ? ggml_backend_metal_buffer_type_shared() : ggml_backend_metal_buffer_type_private(); + return props_dev->use_shared_buffers ? ggml_backend_metal_buffer_type_shared(props_dev->device) : ggml_backend_metal_buffer_type_private(props_dev->device); } static ggml_backend_buffer_t ggml_backend_metal_device_buffer_mapped(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) { @@ -595,7 +713,9 @@ static ggml_backend_buffer_t ggml_backend_metal_device_buffer_mapped(ggml_backen ggml_metal_buffer_t res = ggml_metal_buffer_map(ctx_dev, ptr, size, max_tensor_size); - return ggml_backend_buffer_init(ggml_backend_metal_buffer_type_mapped(), ggml_backend_metal_buffer_shared_i, res, size); + const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx_dev); + + return ggml_backend_buffer_init(ggml_backend_metal_buffer_type_mapped(props_dev->device), ggml_backend_metal_buffer_shared_i, res, size); } static bool ggml_backend_metal_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) { @@ -606,9 +726,10 @@ static bool ggml_backend_metal_device_supports_op(ggml_backend_dev_t dev, const static bool ggml_backend_metal_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { return + buft->device == dev && ( buft->iface.get_name == ggml_backend_metal_buffer_type_shared_get_name || buft->iface.get_name == ggml_backend_metal_buffer_type_private_get_name || - buft->iface.get_name == ggml_backend_metal_buffer_type_mapped_get_name; + buft->iface.get_name == ggml_backend_metal_buffer_type_mapped_get_name); GGML_UNUSED(dev); } @@ -632,45 +753,97 @@ static bool ggml_backend_metal_device_offload_op(ggml_backend_dev_t dev, const g get_op_batch_size(op) >= ggml_metal_device_get_props(ctx_dev)->op_offload_min_batch_size; } +static ggml_backend_event_t ggml_backend_metal_device_event_new(ggml_backend_dev_t dev) { + ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context; + + ggml_metal_event_t event = ggml_metal_device_event_init(ctx_dev); + GGML_ASSERT(event); + + ggml_backend_event_t ev = new ggml_backend_event { + /* .device = */ dev, + /* .context = */ event, + }; + + return ev; +} + +static void ggml_backend_metal_device_event_free(ggml_backend_dev_t dev, ggml_backend_event_t event) { + ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context; + + ggml_metal_event_t ev = (ggml_metal_event_t)event->context; + + ggml_metal_device_event_free(ctx_dev, ev); + + delete event; +} + +static void ggml_backend_metal_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) { + ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context; + + ggml_metal_event_t evt = (ggml_metal_event_t)event->context; + + ggml_metal_device_event_synchronize(ctx_dev, evt); +} + static ggml_backend_device_i ggml_backend_metal_device_i = { /* .get_name = */ ggml_backend_metal_device_get_name, /* .get_description = */ ggml_backend_metal_device_get_description, /* .get_memory = */ ggml_backend_metal_device_get_memory, /* .get_type = */ ggml_backend_metal_device_get_type, /* .get_props = */ ggml_backend_metal_device_get_props, - /* .init_backend = */ ggml_backend_metal_device_init, + /* .init_backend = */ ggml_backend_metal_device_init_backend, /* .get_buffer_type = */ ggml_backend_metal_device_get_buffer_type, /* .get_host_buffer_type = */ NULL, /* .buffer_from_host_ptr = */ ggml_backend_metal_device_buffer_mapped, /* .supports_op = */ ggml_backend_metal_device_supports_op, /* .supports_buft = */ ggml_backend_metal_device_supports_buft, /* .offload_op = */ ggml_backend_metal_device_offload_op, - /* .event_new = */ NULL, - /* .event_free = */ NULL, - /* .event_synchronize = */ NULL, + /* .event_new = */ ggml_backend_metal_device_event_new, + /* .event_free = */ ggml_backend_metal_device_event_free, + /* .event_synchronize = */ ggml_backend_metal_device_event_synchronize, }; // backend registry +struct ggml_backend_metal_reg { + std::vector devices; +}; + +typedef struct ggml_backend_metal_reg * ggml_backend_metal_reg_t; + +static ggml_backend_metal_reg_t ggml_backend_metal_reg_init(void) { + ggml_backend_metal_reg_t ctx = new struct ggml_backend_metal_reg; + + return ctx; +} + +static void ggml_backend_metal_reg_free(ggml_backend_metal_reg_t ctx) { + delete ctx; +} + +struct ggml_backend_metal_reg_deleter { + void operator()(ggml_backend_metal_reg_t ctx) { + ggml_backend_metal_reg_free(ctx); + } +}; + +typedef std::unique_ptr ggml_backend_metal_reg_ptr; + static const char * ggml_backend_metal_reg_get_name(ggml_backend_reg_t reg) { - return "Metal"; + return GGML_METAL_NAME; GGML_UNUSED(reg); } static size_t ggml_backend_metal_reg_device_count(ggml_backend_reg_t reg) { - return 1; - - GGML_UNUSED(reg); + ggml_backend_metal_reg_t ctx = (ggml_backend_metal_reg_t)reg->context; + return ctx->devices.size(); } static ggml_backend_dev_t ggml_backend_metal_reg_device_get(ggml_backend_reg_t reg, size_t index) { - GGML_ASSERT(index == 0); - - return &g_ggml_metal_device; - - GGML_UNUSED(reg); - GGML_UNUSED(index); + ggml_backend_metal_reg_t ctx = (ggml_backend_metal_reg_t)reg->context; + GGML_ASSERT(index < ctx->devices.size()); + return ctx->devices[index]; } static ggml_backend_feature g_ggml_backend_metal_features[] = { @@ -698,27 +871,67 @@ static void * ggml_backend_metal_get_proc_address(ggml_backend_reg_t reg, const static ggml_backend_reg_i ggml_backend_metal_reg_i = { /* .get_name = */ ggml_backend_metal_reg_get_name, - /* .device_count = */ ggml_backend_metal_reg_device_count, - /* .device_get = */ ggml_backend_metal_reg_device_get, + /* .get_device_count = */ ggml_backend_metal_reg_device_count, + /* .get_device = */ ggml_backend_metal_reg_device_get, /* .get_proc_address = */ ggml_backend_metal_get_proc_address, }; -ggml_backend_reg_t ggml_backend_metal_reg(void) { - { - g_ggml_metal_reg = { - /* .api_version = */ GGML_BACKEND_API_VERSION, - /* .iface = */ ggml_backend_metal_reg_i, - /* .context = */ NULL, - }; +static ggml_backend_dev_t ggml_backend_metal_device_init(ggml_backend_reg_t reg, int device) { + return new ggml_backend_device { + /* .iface = */ ggml_backend_metal_device_i, + /* .reg = */ reg, + /* .context = */ ggml_metal_device_get(device), + }; +} - g_ggml_metal_device = { - /* .iface = */ ggml_backend_metal_device_i, - /* .reg = */ &g_ggml_metal_reg, - /* .context = */ ggml_metal_device_get(), - }; +static void ggml_backend_metal_device_free(ggml_backend_dev_t dev) { + delete dev; +} + +struct ggml_backend_device_deleter { + void operator()(ggml_backend_dev_t ctx) { + ggml_backend_metal_device_free(ctx); + } +}; + +typedef std::unique_ptr ggml_backend_device_ptr; + +ggml_backend_reg_t ggml_backend_metal_reg(void) { + static ggml_backend_reg reg; + static bool initialized = false; + + { + static std::mutex mutex; + std::lock_guard lock(mutex); + + const char * env = getenv("GGML_METAL_DEVICES"); + if (env) { + g_devices = atoi(env); + } + + static std::vector devs; + + if (!initialized) { + static ggml_backend_metal_reg_ptr reg_ctx(ggml_backend_metal_reg_init()); + + for (int i = 0; i < g_devices; ++i) { + auto * dev = ggml_backend_metal_device_init(®, i); + devs.emplace_back(dev); + + reg_ctx->devices.push_back(dev); + } + + reg = { + /* .api_version = */ GGML_BACKEND_API_VERSION, + /* .iface = */ ggml_backend_metal_reg_i, + /* .context = */ reg_ctx.get(), + }; + } + + initialized = true; } - return &g_ggml_metal_reg; + return ® } GGML_BACKEND_DL_IMPL(ggml_backend_metal_reg) diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal index 17e358d1a8..612a42a1ea 100644 --- a/ggml/src/ggml-metal/ggml-metal.metal +++ b/ggml/src/ggml-metal/ggml-metal.metal @@ -2737,6 +2737,83 @@ kernel void kernel_rwkv_wkv7_f32( } } +constant short FC_solve_tri_nsg [[function_constant(FC_SOLVE_TRI + 0)]]; +constant short FC_solve_tri_n [[function_constant(FC_SOLVE_TRI + 1)]]; +constant short FC_solve_tri_k [[function_constant(FC_SOLVE_TRI + 2)]]; + +kernel void kernel_solve_tri_f32( + constant ggml_metal_kargs_solve_tri & args, + device const char * src0, + device const char * src1, + device char * dst, + threadgroup char * shmem [[threadgroup(0)]], + ushort3 tgpig[[threadgroup_position_in_grid]], + ushort sgitg[[simdgroup_index_in_threadgroup]], + ushort tiisg[[thread_index_in_simdgroup]], + ushort3 ntg[[threads_per_threadgroup]]) { + constexpr short NW = N_SIMDWIDTH; + + const short NSG = FC_solve_tri_nsg; + const short N = FC_solve_tri_n; + const short K = FC_solve_tri_k; + const short NP = PAD2(N, NW); + + const int32_t ne02 = args.ne02; + const int32_t ne03 = args.ne03; + + const int32_t i03 = tgpig.z; + const int32_t i02 = tgpig.y; + const int32_t i01 = tgpig.x*NSG + sgitg; + + threadgroup float * sh0 = (threadgroup float *) shmem; + + device const float * src0_ptr = (device const float *)(src0 + i02 * args.nb02 + i03 * args.nb03) + sgitg*N; + device const float * src1_ptr = (device const float *)(src1 + i02 * args.nb12 + i03 * args.nb13) + i01; + device float * dst_ptr = (device float *)(dst + i02 * args.nb2 + i03 * args.nb3) + i01; + + for (short rr = 0; rr < N; rr += NSG) { + threadgroup_barrier(mem_flags::mem_threadgroup); + + { + threadgroup float * sh0_cur = sh0 + sgitg*NP; + + for (short t = 0; t*NW < N; ++t) { + const short idx = t*NW + tiisg; + sh0_cur[idx] = src0_ptr[idx]; + } + + src0_ptr += NSG*N; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (i01 >= args.ne10) { + continue; + } + + for (short ir = 0; ir < NSG && rr + ir < N; ++ir) { + const short r = rr + ir; + + threadgroup float * sh0_cur = sh0 + ir*NP; + + float sum = 0.0f; + + for (short t = 0; t*NW < r; ++t) { + const short idx = t*NW + tiisg; + sum += sh0_cur[idx] * dst_ptr[idx*K] * (idx < r); + } + + sum = simd_sum(sum); + + if (tiisg == 0) { + const float diag = sh0_cur[r]; + + dst_ptr[r*K] = (src1_ptr[r*K] - sum) / diag; + } + } + } +} + kernel void kernel_argmax_f32( constant ggml_metal_kargs_argmax & args, device const char * src0, @@ -5208,6 +5285,7 @@ constant int32_t FC_flash_attn_ext_blk_ncpsg [[function_constant(FC_FLASH_ATTN_E // scan the blocks of the mask that are not masked // 0 - masked (i.e. full of -INF, skip) // 1 - not masked (i.e. at least one element of the mask is not -INF) +// 2 - all zero kernel void kernel_flash_attn_ext_blk( constant ggml_metal_kargs_flash_attn_ext_blk & args, device const char * mask, @@ -5229,27 +5307,29 @@ kernel void kernel_flash_attn_ext_blk( device const half * mask_src = (device const half *) (mask + (i1*Q)*args.nb31 + i2*args.nb32 + i3*args.nb33) + i0*C + tiisg; - // fast route - if (res == 0) { - if (simd_max(*mask_src) > -MAXHALF/2) { - res = 1; - } - } - // detailed check of the elements of the block if ((C > NW || Q > 1) && res == 0) { - half m = -MAXHALF; + half mmin = MAXHALF; + half mmax = -MAXHALF; FOR_UNROLL (short j = 0; j < Q; ++j) { FOR_UNROLL (short ii = 0; ii < C/NW; ++ii) { - m = max(m, mask_src[ii*NW]); + mmin = min(mmin, mask_src[ii*NW]); + mmax = max(mmax, mask_src[ii*NW]); } mask_src += args.nb31/2; } - if (simd_max(m) > -MAXHALF/2) { - res = 1; + mmin = simd_min(mmin); + mmax = simd_max(mmax); + + if (mmax > -MAXHALF) { + if (mmin == 0.0 && mmax == 0.0) { + res = 2; + } else { + res = 1; + } } } @@ -5491,9 +5571,13 @@ void kernel_flash_attn_ext_impl( ic = 0; } + char blk_cur = 1; + // read the mask into shared mem if (FC_flash_attn_ext_has_mask) { - if (blk[ic0] == 0) { + blk_cur = blk[ic0]; + + if (blk_cur == 0) { FOR_UNROLL (short jj = 0; jj < NQ; ++jj) { pm2[jj] += NW; } @@ -5501,16 +5585,22 @@ void kernel_flash_attn_ext_impl( continue; } - FOR_UNROLL (short jj = 0; jj < NQ; ++jj) { - const short j = jj*NSG + sgitg; + if (blk_cur == 1) { + FOR_UNROLL (short jj = 0; jj < NQ; ++jj) { + const short j = jj*NSG + sgitg; - if (FC_flash_attn_ext_bc_mask) { - sm2[j*SH + tiisg] = (iq1 + j) < args.ne31 ? pm2[jj][tiisg] : half2(-MAXHALF, -MAXHALF); - } else { - sm2[j*SH + tiisg] = pm2[jj][tiisg]; + if (FC_flash_attn_ext_bc_mask) { + sm2[j*SH + tiisg] = (iq1 + j) < args.ne31 ? pm2[jj][tiisg] : half2(-MAXHALF, -MAXHALF); + } else { + sm2[j*SH + tiisg] = pm2[jj][tiisg]; + } + + pm2[jj] += NW; + } + } else if (blk_cur == 2) { + FOR_UNROLL (short jj = 0; jj < NQ; ++jj) { + pm2[jj] += NW; } - - pm2[jj] += NW; } #if 0 @@ -5675,10 +5765,12 @@ void kernel_flash_attn_ext_impl( } // mqk = mqk + slope*mask - if (FC_flash_attn_ext_has_bias) { - s2 += s2_t(sm2[j*SH + tiisg])*slope; - } else { - s2 += s2_t(sm2[j*SH + tiisg]); + if (blk_cur != 2) { + if (FC_flash_attn_ext_has_bias) { + s2 += s2_t(sm2[j*SH + tiisg])*slope; + } else { + s2 += s2_t(sm2[j*SH + tiisg]); + } } M[jj] = simd_max(max(M[jj], max(s2[0], s2[1]))); @@ -5931,7 +6023,7 @@ template< void (*deq_v)(device const vd4x4_t *, short, thread v4x4_t &), short DK, // K head size short DV, // V head size - short Q = OP_FLASH_ATTN_EXT_NQPTG, // queries per threadgroup + short Q = OP_FLASH_ATTN_EXT_NQPSG, // queries per threadgroup short C = OP_FLASH_ATTN_EXT_NCPSG> // cache items per threadgroup kernel void kernel_flash_attn_ext( constant ggml_metal_kargs_flash_attn_ext & args, @@ -6141,11 +6233,10 @@ template< void (*deq_v_t4)(device const vd4_t *, short, thread v4_t &), short DK, // K head size short DV, // V head size - short NE, // head elements per thread - short Q, // queries per threadgroup - short C, // cache items per threadgroup - short NSG> // number of simd groups -void kernel_flash_attn_ext_vec_impl( + short NE = 4, // head elements per thread + short Q = OP_FLASH_ATTN_EXT_VEC_NQPSG, // queries per threadgroup + short C = OP_FLASH_ATTN_EXT_VEC_NCPSG> // cache items per threadgroup +kernel void kernel_flash_attn_ext_vec( constant ggml_metal_kargs_flash_attn_ext_vec & args, device const char * q, device const char * k, @@ -6162,6 +6253,7 @@ void kernel_flash_attn_ext_vec_impl( static_assert(DV % 32 == 0, "DV must be divisible by 32"); #define NWG (FC_flash_attn_ext_vec_nwg) +#define NSG (FC_flash_attn_ext_vec_nsg) #define NS10 (FC_flash_attn_ext_vec_ns10) #define NS20 (FC_flash_attn_ext_vec_ns20) @@ -6190,12 +6282,12 @@ void kernel_flash_attn_ext_vec_impl( const short T = PK + NSG*SH; // shared memory size per query in (half) - //threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*PK); // holds the query data - threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*PK); // same as above but in q4_t - threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*PK); // scratch buffer for attention - threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*PK); // same as above but in s4_t - threadgroup half * sm = (threadgroup half *) (shmem_f16 + sgitg*SH + 2*C + Q*PK); // scratch buffer for mask - threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 2*sgitg*PV + Q*T); // scratch buffer for the results + //threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*PK); // holds the query data + threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*PK); // same as above but in q4_t + threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + NSG*PK); // scratch buffer for attention + threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + NSG*PK); // same as above but in s4_t + threadgroup half * sm = (threadgroup half *) (shmem_f16 + sgitg*SH + 2*C + NSG*PK); // scratch buffer for mask + threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 2*sgitg*PV + NSG*PK + NSG*SH); // scratch buffer for the results // store the result for all queries in shared memory (the O matrix from the paper) so4 += tiisg; @@ -6213,11 +6305,13 @@ void kernel_flash_attn_ext_vec_impl( // load heads from Q to shared memory device const float4 * q4 = (device const float4 *) ((device const char *) q); - for (short i = tiisg; i < PK4; i += NW) { - if (iq1 < args.ne01 && i < DK4) { - sq4[i] = (q4_t) q4[i]; - } else { - sq4[i] = (q4_t) 0.0f; + if (iq1 < args.ne01) { + for (short i = tiisg; i < PK4; i += NW) { + if (i < DK4) { + sq4[i] = (q4_t) q4[i]; + } else { + sq4[i] = (q4_t) 0.0f; + } } } @@ -6295,7 +6389,7 @@ void kernel_flash_attn_ext_vec_impl( } // skip -INF blocks - if (simd_max(sm[tiisg]) == -INFINITY) { + if (simd_max(sm[tiisg]) <= -MAXHALF) { continue; } @@ -6569,57 +6663,11 @@ void kernel_flash_attn_ext_vec_impl( } #undef NWG +#undef NSG #undef NS10 #undef NS20 } -template< - typename q4_t, // query types in shared memory - typename k4_t, // key types in shared memory - typename v4_t, // value types in shared memory - typename qk_t, // Q*K types - typename s_t, // soft-max types - typename s4_t, - typename o4_t, // attention accumulation types - typename kd4_t, // key type in device memory - short nl_k, - void (*deq_k_t4)(device const kd4_t *, short, thread k4_t &), - typename vd4_t, // value type in device memory - short nl_v, - void (*deq_v_t4)(device const vd4_t *, short, thread v4_t &), - short DK, // K head size - short DV, // V head size - short NE = 4, // head elements per thread - short Q = OP_FLASH_ATTN_EXT_VEC_NQPTG, // queries per threadgroup - short C = OP_FLASH_ATTN_EXT_VEC_NCPSG> // cache items per threadgroup -kernel void kernel_flash_attn_ext_vec( - constant ggml_metal_kargs_flash_attn_ext_vec & args, - device const char * q, - device const char * k, - device const char * v, - device const char * mask, - device const char * sinks, - device const char * pad, - device char * dst, - threadgroup half * shmem_f16 [[threadgroup(0)]], - uint3 tgpig[[threadgroup_position_in_grid]], - ushort tiisg[[thread_index_in_simdgroup]], - ushort sgitg[[simdgroup_index_in_threadgroup]]) { -#define FWD_TMPL q4_t, k4_t, v4_t, qk_t, s_t, s4_t, o4_t, kd4_t, nl_k, deq_k_t4, vd4_t, nl_v, deq_v_t4, DK, DV, NE, Q, C -#define FWD_ARGS args, q, k, v, mask, sinks, pad, dst, shmem_f16, tgpig, tiisg, sgitg - switch (FC_flash_attn_ext_vec_nsg) { - // note: disabled cases to reduce library load time - case 1: kernel_flash_attn_ext_vec_impl(FWD_ARGS); break; - case 2: kernel_flash_attn_ext_vec_impl(FWD_ARGS); break; - case 4: kernel_flash_attn_ext_vec_impl(FWD_ARGS); break; - //case 8: kernel_flash_attn_ext_vec_impl(FWD_ARGS); break; - //case 16: kernel_flash_attn_ext_vec_impl(FWD_ARGS); break; - //case 32: kernel_flash_attn_ext_vec_impl(FWD_ARGS); break; - } -#undef FWD_TMPL -#undef FWD_ARGS -} - // note: I think the s_t can be half instead of float, because the Q*K scaling is done before storing to shared mem // in the other (non-vec) kernel, we need s_t to also be float because we scale during the soft_max // @@ -8782,6 +8830,26 @@ kernel void kernel_set_rows_f( } } +kernel void kernel_diag_f32( + constant ggml_metal_kargs_diag & args, + device const char * src0, + device char * dst, + uint3 tgpig[[threadgroup_position_in_grid]], + ushort tiitg[[thread_index_in_threadgroup]]) { + constexpr short NW = N_SIMDWIDTH; + + const int32_t i3 = tgpig.z; + const int32_t i2 = tgpig.y; + const int32_t i1 = tgpig.x; + + device const float * src0_ptr = (device const float *)(src0 + i2*args.nb02 + i3*args.nb03); + device float * dst_ptr = (device float *)(dst + i1*args.nb01 + i2*args.nb2 + i3*args.nb3); + + for (int i0 = tiitg; i0 < args.ne0; i0 += NW) { + dst_ptr[i0] = i0 == i1 ? src0_ptr[i0] : 0.0f; + } +} + constant bool FC_mul_mm_bc_inp [[function_constant(FC_MUL_MM + 0)]]; constant bool FC_mul_mm_bc_out [[function_constant(FC_MUL_MM + 1)]]; diff --git a/ggml/src/ggml-opencl/ggml-opencl.cpp b/ggml/src/ggml-opencl/ggml-opencl.cpp index 4850c11d14..508b2b8f03 100644 --- a/ggml/src/ggml-opencl/ggml-opencl.cpp +++ b/ggml/src/ggml-opencl/ggml-opencl.cpp @@ -453,7 +453,6 @@ struct ggml_backend_opencl_context { cl_program program_rms_norm; cl_program program_group_norm; cl_program program_rope; - cl_program program_scale; cl_program program_silu; cl_program program_sigmoid; cl_program program_softmax_f32; @@ -462,11 +461,8 @@ struct ggml_backend_opencl_context { cl_program program_softmax_4_f16; cl_program program_argsort_f32_i32; cl_program program_sum_rows_f32; - cl_program program_repeat; cl_program program_pad; - cl_program program_tanh; cl_program program_upscale; - cl_program program_concat; cl_program program_conv_2d_f16; cl_program program_conv_2d_f32; cl_program program_conv_2d_f16_f32; @@ -485,7 +481,7 @@ struct ggml_backend_opencl_context { cl_kernel kernel_div, kernel_div_row, kernel_div_f16, kernel_div_row_f16; cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16; cl_kernel kernel_add_id; - cl_kernel kernel_scale; + cl_kernel kernel_scale_f32, kernel_scale_f32_4; cl_kernel kernel_sqr_cont_f32, kernel_sqr_cont_f32_4, kernel_sqr_cont_f16, kernel_sqr_cont_f16_4; cl_kernel kernel_sqrt_cont_f32, kernel_sqrt_cont_f32_4, kernel_sqrt_cont_f16, kernel_sqrt_cont_f16_4; cl_kernel kernel_mean_f32; @@ -544,18 +540,17 @@ struct ggml_backend_opencl_context { cl_kernel kernel_im2col_f32, kernel_im2col_f16; cl_kernel kernel_argsort_f32_i32; cl_kernel kernel_sum_rows_f32; - cl_kernel kernel_repeat; + cl_kernel kernel_repeat_f32; cl_kernel kernel_pad; - cl_kernel kernel_tanh_f32_nd; - cl_kernel kernel_tanh_f16_nd; + cl_kernel kernel_tanh_f32, kernel_tanh_f32_4, kernel_tanh_f32_nc; + cl_kernel kernel_tanh_f16, kernel_tanh_f16_4, kernel_tanh_f16_nc; cl_kernel kernel_expm1_f32_nd; cl_kernel kernel_expm1_f16_nd; cl_kernel kernel_softplus_f32_nd; cl_kernel kernel_softplus_f16_nd; cl_kernel kernel_upscale; cl_kernel kernel_upscale_bilinear; - cl_kernel kernel_concat_f32_contiguous; - cl_kernel kernel_concat_f32_non_contiguous; + cl_kernel kernel_concat_f32; cl_kernel kernel_conv_2d_f16; cl_kernel kernel_conv_2d_f32; cl_kernel kernel_conv_2d_f16_f32; @@ -1483,10 +1478,12 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve #else const std::string kernel_src = read_file("scale.cl"); #endif - backend_ctx->program_scale = + cl_program prog = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); - CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err)); + CL_CHECK((backend_ctx->kernel_scale_f32 = clCreateKernel(prog, "kernel_scale_f32", &err), err)); + CL_CHECK((backend_ctx->kernel_scale_f32_4 = clCreateKernel(prog, "kernel_scale_f32_4", &err), err)); + CL_CHECK(clReleaseProgram(prog)); GGML_LOG_CONT("."); } @@ -1814,16 +1811,11 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve #else const std::string kernel_src = read_file("repeat.cl"); #endif - if (!kernel_src.empty()) { - backend_ctx->program_repeat = - build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); - CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err)); - GGML_LOG_CONT("."); - } else { - GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n"); - backend_ctx->program_repeat = nullptr; - backend_ctx->kernel_repeat = nullptr; - } + cl_program prog = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + CL_CHECK((backend_ctx->kernel_repeat_f32 = clCreateKernel(prog, "kernel_repeat_f32", &err), err)); + CL_CHECK(clReleaseProgram(prog)); + GGML_LOG_CONT("."); } // pad @@ -1856,18 +1848,16 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve #else const std::string kernel_src = read_file("tanh.cl"); #endif - if (!kernel_src.empty()) { - backend_ctx->program_tanh = - build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); - CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err)); - CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err)); - GGML_LOG_CONT("."); - } else { - GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n"); - backend_ctx->program_tanh = nullptr; - backend_ctx->kernel_tanh_f32_nd = nullptr; - backend_ctx->kernel_tanh_f16_nd = nullptr; - } + cl_program prog = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + CL_CHECK((backend_ctx->kernel_tanh_f32 = clCreateKernel(prog, "kernel_tanh_f32", &err), err)); + CL_CHECK((backend_ctx->kernel_tanh_f32_4 = clCreateKernel(prog, "kernel_tanh_f32_4", &err), err)); + CL_CHECK((backend_ctx->kernel_tanh_f32_nc = clCreateKernel(prog, "kernel_tanh_f32_nc", &err), err)); + CL_CHECK((backend_ctx->kernel_tanh_f16 = clCreateKernel(prog, "kernel_tanh_f16", &err), err)); + CL_CHECK((backend_ctx->kernel_tanh_f16_4 = clCreateKernel(prog, "kernel_tanh_f16_4", &err), err)); + CL_CHECK((backend_ctx->kernel_tanh_f16_nc = clCreateKernel(prog, "kernel_tanh_f16_nc", &err), err)); + CL_CHECK(clReleaseProgram(prog)); + GGML_LOG_CONT("."); } // expm1 @@ -1959,22 +1949,13 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve #include "concat.cl.h" }; #else - const std::string kernel_src = read_file("concat.cl"); #endif - if (!kernel_src.empty()) { - backend_ctx->program_concat = - build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); - - CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err)); - CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err)); - GGML_LOG_CONT("."); - } else { - GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n"); - backend_ctx->program_concat = nullptr; - backend_ctx->kernel_concat_f32_contiguous = nullptr; - backend_ctx->kernel_concat_f32_non_contiguous = nullptr; - } + cl_program prog = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + CL_CHECK((backend_ctx->kernel_concat_f32 = clCreateKernel(prog, "kernel_concat_f32", &err), err)); + CL_CHECK(clReleaseProgram(prog)); + GGML_LOG_CONT("."); } // timestep_embedding @@ -3318,8 +3299,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te case GGML_UNARY_OP_SIGMOID: return ggml_is_contiguous(op->src[0]); case GGML_UNARY_OP_TANH: - return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) || - (op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16); + return op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16; case GGML_UNARY_OP_EXPM1: return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) || (op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16); @@ -3740,7 +3720,7 @@ static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buff // Reuse extra of the parent tensor. The offset of this view tensor // becomes `extra->offset + view_offs` and needs to be calculated when // it is used. This changes is needed because of the change to - // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640. + // ggml_alloc.c in https://github.com/ggml-org/llama.cpp/pull/7640. // `buffer` passed in here will always be `tensor->buffer`. It is OK // to allocate extras from the same buffer context for ordinary // intermediate tensors. But for views into kv cache tensors, doing so @@ -7029,79 +7009,87 @@ static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; - cl_ulong offset0_abs = extra0->offset + src0->view_offs; - cl_ulong offsetd_abs = extrad->offset + dst->view_offs; + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne03 = src0->ne[3]; + + const cl_ulong nb00 = src0->nb[0]; + const cl_ulong nb01 = src0->nb[1]; + const cl_ulong nb02 = src0->nb[2]; + const cl_ulong nb03 = src0->nb[3]; + + const cl_ulong nb0 = dst->nb[0]; + const cl_ulong nb1 = dst->nb[1]; + const cl_ulong nb2 = dst->nb[2]; + const cl_ulong nb3 = dst->nb[3]; cl_kernel kernel; - if (dst->type == GGML_TYPE_F32) { - kernel = backend_ctx->kernel_tanh_f32_nd; - } else if (dst->type == GGML_TYPE_F16) { - kernel = backend_ctx->kernel_tanh_f16_nd; - } else { - GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh"); - } - GGML_ASSERT(kernel != nullptr); - const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3]; - const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3]; - - const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3]; - const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3]; - - CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); - CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs)); - CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); - CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs)); - - CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00)); - CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01)); - CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02)); - CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03)); - CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00)); - CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01)); - CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02)); - CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03)); - - CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); - CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11)); - CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12)); - CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13)); - CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10)); - CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11)); - CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12)); - CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13)); - - size_t global_work_size[3]; - if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements - return; - } - global_work_size[0] = (size_t)ne10; - global_work_size[1] = (size_t)ne11; - global_work_size[2] = (size_t)ne12; - - size_t lws0 = 16, lws1 = 4, lws2 = 1; - if (ne10 < 16) lws0 = ne10; - if (ne11 < 4) lws1 = ne11; - if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1; - - while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2; - while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2; - while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2; - - - size_t local_work_size[] = {lws0, lws1, lws2}; - - size_t* local_work_size_ptr = local_work_size; - if (!backend_ctx->non_uniform_workgroups) { - if (global_work_size[0] % local_work_size[0] != 0 || - global_work_size[1] % local_work_size[1] != 0 || - global_work_size[2] % local_work_size[2] != 0) { - local_work_size_ptr = NULL; + if (ggml_is_contiguous(src0)) { + // Handle contiguous input + int n = ggml_nelements(dst); + if (n % 4 == 0) { + if (src0->type == GGML_TYPE_F32) { + kernel = backend_ctx->kernel_tanh_f32_4; + } else { + kernel = backend_ctx->kernel_tanh_f16_4; + } + n /= 4; + } else { + if (src0->type == GGML_TYPE_F32) { + kernel = backend_ctx->kernel_tanh_f32; + } else { + kernel = backend_ctx->kernel_tanh_f16; + } } - } - if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return; - backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst); + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + + size_t global_work_size[] = {(size_t)n, 1, 1}; + size_t local_work_size[] = {64, 1, 1}; + + size_t * local_work_size_ptr = local_work_size; + if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) { + local_work_size_ptr = nullptr; + } + + backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst); + } else { + // Handle non-contiguous input + if (src0->type == GGML_TYPE_F32) { + kernel = backend_ctx->kernel_tanh_f32_nc; + } else { + kernel = backend_ctx->kernel_tanh_f16_nc; + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb03)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb0)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb1)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb2)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb3)); + + int nth = 64; + + size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03}; + size_t local_work_size[] = {(size_t)nth, 1, 1}; + + backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst); + } } static void ggml_cl_expm1(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -7319,53 +7307,58 @@ static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, con ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; - if (backend_ctx->kernel_repeat == nullptr) { - GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__); - return; - } + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; - ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra; - ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra; + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; - cl_ulong off_src0 = extra_src0->offset + src0->view_offs; - cl_ulong off_dst = extra_dst->offset + dst->view_offs; + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne03 = src0->ne[3]; - const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3]; - const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3]; + const cl_ulong nb00 = src0->nb[0]; + const cl_ulong nb01 = src0->nb[1]; + const cl_ulong nb02 = src0->nb[2]; + const cl_ulong nb03 = src0->nb[3]; - const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3]; - const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3]; + const int ne0 = dst->ne[0]; + const int ne1 = dst->ne[1]; + const int ne2 = dst->ne[2]; + const int ne3 = dst->ne[3]; - cl_kernel kernel = backend_ctx->kernel_repeat; + const cl_ulong nb0 = dst->nb[0]; + const cl_ulong nb1 = dst->nb[1]; + const cl_ulong nb2 = dst->nb[2]; + const cl_ulong nb3 = dst->nb[3]; - CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device)); - CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device)); - CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0)); - CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst)); - CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0)); - CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1)); - CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2)); - CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3)); - CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0)); - CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1)); - CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2)); - CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3)); - CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0)); - CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1)); - CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2)); - CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3)); - CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0)); - CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1)); - CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2)); - CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3)); + cl_kernel kernel = backend_ctx->kernel_repeat_f32; - size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1; - size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1; - size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1; + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb0)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb1)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb2)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb3)); - size_t global_work_size[] = { gws0, gws1, gws2 }; + int nth = 64; - backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst); + size_t global_work_size[] = {(size_t)ne1*nth, (size_t)ne2, (size_t)ne3}; + size_t local_work_size[] = {(size_t)nth, 1, 1}; + + backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst); } static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) { @@ -7589,121 +7582,76 @@ static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, con GGML_ASSERT(dst->type == GGML_TYPE_F32); ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; - cl_command_queue queue = backend_ctx->queue; - if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) { - GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__); - return; - } + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; - ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra; - ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra; - ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra; + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offset1 = extra1->offset + src1->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; - cl_ulong off_src0 = extra0_cl->offset + src0->view_offs; - cl_ulong off_src1 = extra1_cl->offset + src1->view_offs; - cl_ulong off_dst = extrad_cl->offset + dst->view_offs; + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne03 = src0->ne[3]; - const int32_t dim = ((const int32_t *) dst->op_params)[0]; + const cl_ulong nb00 = src0->nb[0]; + const cl_ulong nb01 = src0->nb[1]; + const cl_ulong nb02 = src0->nb[2]; + const cl_ulong nb03 = src0->nb[3]; + + const cl_ulong nb10 = src1->nb[0]; + const cl_ulong nb11 = src1->nb[1]; + const cl_ulong nb12 = src1->nb[2]; + const cl_ulong nb13 = src1->nb[3]; + + const int ne0 = dst->ne[0]; + const int ne1 = dst->ne[1]; + const int ne2 = dst->ne[2]; + const int ne3 = dst->ne[3]; + + const cl_ulong nb0 = dst->nb[0]; + const cl_ulong nb1 = dst->nb[1]; + const cl_ulong nb2 = dst->nb[2]; + const cl_ulong nb3 = dst->nb[3]; + + const cl_int dim = ((const int32_t *) dst->op_params)[0]; GGML_ASSERT(dim >= 0 && dim <= 3); - if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) { - if (dim == 3) { + int nth = MIN(64, ne0); - size_t nbytes_src0 = ggml_nbytes(src0); - size_t nbytes_src1 = ggml_nbytes(src1); + cl_kernel kernel = backend_ctx->kernel_concat_f32; - CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device, - off_src0, off_dst, nbytes_src0, 0, NULL, NULL)); - CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device, - off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL)); - } else { + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13)); + CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0)); + CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1)); + CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2)); + CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3)); + CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_int), &dim)); - cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous; - size_t global_work_size[3]; + size_t global_work_size[] = {(size_t)ne1*nth, (size_t)ne2, (size_t)ne3}; + size_t local_work_size[] = {(size_t)nth, 1, 1}; - for (int i3 = 0; i3 < dst->ne[3]; ++i3) { - cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]); - cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]); - cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]); - - int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2]; - int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2]; - int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2]; - - CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device)); - CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), ¤t_off_src0)); - CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device)); - CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), ¤t_off_src1)); - CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device)); - CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), ¤t_off_dst)); - CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00)); - CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01)); - CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02)); - CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10)); - CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11)); - CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12)); - CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0)); - CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1)); - CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2)); - CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim)); - - global_work_size[0] = d_ne0; - global_work_size[1] = d_ne1; - global_work_size[2] = d_ne2; - - backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst); - } - } - } else { - cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous; - - cl_long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3]; - cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3]; - - cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3]; - - cl_long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3]; - cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3]; - - - CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device)); - CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0)); - CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device)); - CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1)); - CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device)); - CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst)); - - CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &ne00)); - CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &ne01)); - CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &ne02)); - CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &ne03)); - CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00)); - CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01)); - CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02)); - CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03)); - - CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10)); - CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11)); - CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12)); - CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13)); - - CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_long), &d_ne0)); - CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_long), &d_ne1)); - CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_long), &d_ne2)); - CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_long), &d_ne3)); - CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0)); - CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1)); - CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2)); - CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3)); - CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim)); - - size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1, - d_ne2 > 0 ? (size_t)d_ne2 : 1, - d_ne3 > 0 ? (size_t)d_ne3 : 1 }; - - backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size_nc, NULL, dst); - } + backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst); } static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) { @@ -8394,6 +8342,7 @@ static void ggml_cl_mul_mat_q8_0_f32_adreno(ggml_backend_t backend, const ggml_t CL_CHECK(clReleaseMemObject(D_sub_buffer)); CL_CHECK(clReleaseMemObject(D_image1d)); #else + GGML_UNUSED(backend); GGML_UNUSED(src0); GGML_UNUSED(src1); GGML_UNUSED(dst); @@ -9913,7 +9862,16 @@ static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, cons cl_ulong offset0 = extra0->offset + src0->view_offs; cl_ulong offsetd = extrad->offset + dst->view_offs; - cl_kernel kernel = backend_ctx->kernel_scale; + cl_kernel kernel; + + int n = ggml_nelements(dst); + + if (n % 4 == 0) { + kernel = backend_ctx->kernel_scale_f32_4; + n /= 4; + } else { + kernel = backend_ctx->kernel_scale_f32; + } CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); @@ -9922,8 +9880,6 @@ static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, cons CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale)); CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias)); - int n = ggml_nelements(dst)/4; - size_t global_work_size[] = {(size_t)n, 1, 1}; size_t local_work_size[] = {64, 1, 1}; diff --git a/ggml/src/ggml-opencl/kernels/concat.cl b/ggml/src/ggml-opencl/kernels/concat.cl index 132758469c..0c1b3d785c 100644 --- a/ggml/src/ggml-opencl/kernels/concat.cl +++ b/ggml/src/ggml-opencl/kernels/concat.cl @@ -1,109 +1,51 @@ -kernel void kernel_concat_f32_contiguous( - global const char * p_src0, ulong off_src0, - global const char * p_src1, ulong off_src1, - global char * p_dst, ulong off_dst, - int d_ne00, int d_ne01, int d_ne02, // src0->ne[0..2] for the slice - int d_ne10, int d_ne11, int d_ne12, // src1->ne[0..2] for the slice (d_ne1X must match d_ne0X on non-concat axes) - int d_ne0, int d_ne1, int d_ne2, // dst->ne[0..2] for the slice - int dim +kernel void kernel_concat_f32( + global const char * src0, + ulong offset0, + global const char * src1, + ulong offset1, + global char * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne03, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + ulong nb10, + ulong nb11, + ulong nb12, + ulong nb13, + int ne0, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3, + int dim ) { - global const float * src0 = (global const float*)((global char*)p_src0 + off_src0); - global const float * src1 = (global const float*)((global char*)p_src1 + off_src1); - global float * dst = (global float*)((global char*)p_dst + off_dst); + src0 = src0 + offset0; + src1 = src1 + offset1; + dst = dst + offsetd; - int i0 = get_global_id(0); // Index along dst's 0th dimension - int i1 = get_global_id(1); // Index along dst's 1st dimension - int i2 = get_global_id(2); // Index along dst's 2nd dimension + const int i3 = get_group_id(2); + const int i2 = get_group_id(1); + const int i1 = get_group_id(0); - if (i0 >= d_ne0 || i1 >= d_ne1 || i2 >= d_ne2) { - return; - } + int o[4] = {0, 0, 0, 0}; + o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03)); - ulong dst_idx = (ulong)i2 * d_ne0 * d_ne1 + (ulong)i1 * d_ne0 + i0; - ulong src_idx; + global const float * x; - if (dim == 0) { - if (i0 < d_ne00) { // Data from src0 - src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0; - dst[dst_idx] = src0[src_idx]; - } else { // Data from src1 - src_idx = (ulong)i2 * d_ne10 * d_ne11 + (ulong)i1 * d_ne10 + (i0 - d_ne00); - dst[dst_idx] = src1[src_idx]; - } - } else if (dim == 1) { - if (i1 < d_ne01) { // Data from src0 - src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0; - dst[dst_idx] = src0[src_idx]; - } else { // Data from src1 - src_idx = (ulong)i2 * d_ne10 * d_ne11 + (ulong)(i1 - d_ne01) * d_ne10 + i0; - dst[dst_idx] = src1[src_idx]; - } - } else if (dim == 2) { - if (i2 < d_ne02) { // Data from src0 - src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0; - dst[dst_idx] = src0[src_idx]; - } else { // Data from src1 - - src_idx = (ulong)(i2 - d_ne02) * d_ne10 * d_ne11 + (ulong)i1 * d_ne10 + i0; - dst[dst_idx] = src1[src_idx]; - } - } -} - -kernel void kernel_concat_f32_non_contiguous( - global const char * p_src0, ulong off_src0, - global const char * p_src1, ulong off_src1, - global char * p_dst, ulong off_dst, - - long ne00, long ne01, long ne02, long ne03, - ulong nb00, ulong nb01, ulong nb02, ulong nb03, - - ulong nb10, ulong nb11, ulong nb12, ulong nb13, // Strides for src1 - - long d_ne0, long d_ne1, long d_ne2, long d_ne3, - ulong d_nb0, ulong d_nb1, ulong d_nb2, ulong d_nb3, - int dim -) { - global const char * src0_base = p_src0 + off_src0; - global const char * src1_base = p_src1 + off_src1; - global char * dst_base = p_dst + off_dst; - - long current_i1 = get_global_id(0); // Index for dst_dim_1 - long current_i2 = get_global_id(1); // Index for dst_dim_2 - long current_i3 = get_global_id(2); // Index for dst_dim_3 - - if (current_i1 >= d_ne1 || current_i2 >= d_ne2 || current_i3 >= d_ne3) { - return; - } - - global const float * x_val_ptr; - global float * y_val_ptr; - - for (long current_i0 = 0; current_i0 < d_ne0; ++current_i0) { - bool use_src0; - long s_i0 = current_i0, s_i1 = current_i1, s_i2 = current_i2, s_i3 = current_i3; - - if (dim == 0) { - use_src0 = (current_i0 < ne00); - if (!use_src0) { s_i0 = current_i0 - ne00; } - } else if (dim == 1) { - use_src0 = (current_i1 < ne01); - if (!use_src0) { s_i1 = current_i1 - ne01; } - } else if (dim == 2) { - use_src0 = (current_i2 < ne02); - if (!use_src0) { s_i2 = current_i2 - ne02; } - } else { // dim == 3 - use_src0 = (current_i3 < ne03); - if (!use_src0) { s_i3 = current_i3 - ne03; } - } - - if (use_src0) { - x_val_ptr = (global const float *)(src0_base + (ulong)s_i3*nb03 + (ulong)s_i2*nb02 + (ulong)s_i1*nb01 + (ulong)s_i0*nb00); + for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) { + if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { + x = (global const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00); } else { - x_val_ptr = (global const float *)(src1_base + (ulong)s_i3*nb13 + (ulong)s_i2*nb12 + (ulong)s_i1*nb11 + (ulong)s_i0*nb10); + x = (global const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10); } - y_val_ptr = (global float *)(dst_base + (ulong)current_i3*d_nb3 + (ulong)current_i2*d_nb2 + (ulong)current_i1*d_nb1 + (ulong)current_i0*d_nb0); - *y_val_ptr = *x_val_ptr; + global float * y = (global float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + *y = *x; } } diff --git a/ggml/src/ggml-opencl/kernels/repeat.cl b/ggml/src/ggml-opencl/kernels/repeat.cl index 079498f5ab..53951a5543 100644 --- a/ggml/src/ggml-opencl/kernels/repeat.cl +++ b/ggml/src/ggml-opencl/kernels/repeat.cl @@ -1,39 +1,38 @@ -kernel void kernel_repeat( - global const char * src0_data_in, - global char * dst_data_in, - ulong src0_offset, - ulong dst_offset, - int src0_ne0, int src0_ne1, int src0_ne2, int src0_ne3, - ulong src0_nb0, ulong src0_nb1, ulong src0_nb2, ulong src0_nb3, - int dst_ne0, int dst_ne1, int dst_ne2, int dst_ne3, - ulong dst_nb0, ulong dst_nb1, ulong dst_nb2, ulong dst_nb3 +kernel void kernel_repeat_f32( + global const char * src0, + ulong offset0, + global char * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne03, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne0, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3 ) { - global const char * src0_data = src0_data_in + src0_offset; - global char * dst_data = dst_data_in + dst_offset; + src0 = src0 + offset0; + dst = dst + offsetd; - const int d3 = get_global_id(2); - const int d2 = get_global_id(1); - const int d1 = get_global_id(0); + const int i3 = get_group_id(2); + const int i2 = get_group_id(1); + const int i1 = get_group_id(0); - if (d3 >= dst_ne3 || d2 >= dst_ne2 || d1 >= dst_ne1) { - return; - } + const int i03 = i3%ne03; + const int i02 = i2%ne02; + const int i01 = i1%ne01; - const int s3 = d3 % src0_ne3; - const int s2 = d2 % src0_ne2; - const int s1 = d1 % src0_ne1; + global const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01; + global char * dst_ptr = dst + i3*nb3 + i2*nb2 + i1*nb1; - const global char * p_src0_slice = src0_data + (ulong)s3*src0_nb3 + (ulong)s2*src0_nb2 + (ulong)s1*src0_nb1; - global char * p_dst_slice = dst_data + (ulong)d3*dst_nb3 + (ulong)d2*dst_nb2 + (ulong)d1*dst_nb1; - - for (int d0 = 0; d0 < dst_ne0; ++d0) { - // Determine source index for dimension 0 based on tiling/broadcasting. - const int s0 = d0 % src0_ne0; - - const global char * restrict current_src_el_ptr = p_src0_slice + (ulong)s0*src0_nb0; - global char * restrict current_dst_el_ptr = p_dst_slice + (ulong)d0*dst_nb0; - for (int k = 0; k < src0_nb0; ++k) { - current_dst_el_ptr[k] = current_src_el_ptr[k]; - } + for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) { + const int i00 = i0%ne00; + *((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i00*nb00)); } } diff --git a/ggml/src/ggml-opencl/kernels/scale.cl b/ggml/src/ggml-opencl/kernels/scale.cl index aeca8a456e..17ed97f0d6 100644 --- a/ggml/src/ggml-opencl/kernels/scale.cl +++ b/ggml/src/ggml-opencl/kernels/scale.cl @@ -1,9 +1,19 @@ #pragma OPENCL EXTENSION cl_khr_fp16 : enable -//------------------------------------------------------------------------------ -// scale -//------------------------------------------------------------------------------ -kernel void kernel_scale( +kernel void kernel_scale_f32( + global float * src0, + ulong offset0, + global float * dst, + ulong offsetd, + float scale, + float bias +) { + src0 = (global float*)((global char*)src0 + offset0); + dst = (global float*)((global char*)dst + offsetd); + dst[get_global_id(0)] = src0[get_global_id(0)] * scale + bias; +} + +kernel void kernel_scale_f32_4( global float4 * src0, ulong offset0, global float4 * dst, diff --git a/ggml/src/ggml-opencl/kernels/tanh.cl b/ggml/src/ggml-opencl/kernels/tanh.cl index d9da86b148..2c4887ad3e 100644 --- a/ggml/src/ggml-opencl/kernels/tanh.cl +++ b/ggml/src/ggml-opencl/kernels/tanh.cl @@ -1,63 +1,109 @@ #pragma OPENCL EXTENSION cl_khr_fp16 : enable -#ifdef cl_intel_required_subgroup_size -#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable -#define INTEL_GPU 1 -#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16))) -#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32))) -#elif defined(cl_qcom_reqd_sub_group_size) -#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable -#define ADRENO_GPU 1 -#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half"))) -#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full"))) -#endif - -kernel void kernel_tanh_f32_nd( - global void * p_src0_base, ulong off_src0_abs, - global void * p_dst_base, ulong off_dst_abs, - int ne00, int ne01, int ne02, int ne03, - ulong nb00, ulong nb01, ulong nb02, ulong nb03, - int ne10, int ne11, int ne12, int ne13, - ulong nb10, ulong nb11, ulong nb12, ulong nb13 +kernel void kernel_tanh_f32( + global const float * src0, + ulong offset0, + global float * dst, + ulong offsetd ) { - int i0 = get_global_id(0); - int i1 = get_global_id(1); - int i2 = get_global_id(2); + src0 = (global float*)((global char*)src0 + offset0); + dst = (global float*)((global char*)dst + offsetd); - if (i0 < ne10 && i1 < ne11 && i2 < ne12) { - for (int i3 = 0; i3 < ne13; ++i3) { - ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03; - global const float *src_val_ptr = (global const float *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor); + dst[get_global_id(0)] = tanh(src0[get_global_id(0)]); +} - ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13; - global float *dst_val_ptr = (global float *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor); +kernel void kernel_tanh_f32_4( + global const float4 * src0, + ulong offset0, + global float4 * dst, + ulong offsetd +) { + src0 = (global float4*)((global char*)src0 + offset0); + dst = (global float4*)((global char*)dst + offsetd); - *dst_val_ptr = tanh(*src_val_ptr); - } + dst[get_global_id(0)] = tanh(src0[get_global_id(0)]); +} + +kernel void kernel_tanh_f16( + global const half * src0, + ulong offset0, + global half * dst, + ulong offsetd +) { + src0 = (global half*)((global char*)src0 + offset0); + dst = (global half*)((global char*)dst + offsetd); + + dst[get_global_id(0)] = tanh(src0[get_global_id(0)]); +} + +kernel void kernel_tanh_f16_4( + global const half4 * src0, + ulong offset0, + global half4 * dst, + ulong offsetd +) { + src0 = (global half4*)((global char*)src0 + offset0); + dst = (global half4*)((global char*)dst + offsetd); + + dst[get_global_id(0)] = tanh(src0[get_global_id(0)]); +} + +kernel void kernel_tanh_f32_nc( + global const char * src0, + ulong offset0, + global char * dst, + ulong offsetd, + int ne00, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3 +) { + src0 = src0 + offset0; + dst = dst + offsetd; + + const int i3 = get_group_id(2); + const int i2 = get_group_id(1); + const int i1 = get_group_id(0); + + for (int i0 = get_local_id(0); i0 < ne00; i0 += get_local_size(0)) { + global const float * x = (global const float *)(src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + global float * y = (global float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + *y = tanh(*x); } } -kernel void kernel_tanh_f16_nd( - global void * p_src0_base, ulong off_src0_abs, - global void * p_dst_base, ulong off_dst_abs, - int ne00, int ne01, int ne02, int ne03, - ulong nb00, ulong nb01, ulong nb02, ulong nb03, - int ne10, int ne11, int ne12, int ne13, - ulong nb10, ulong nb11, ulong nb12, ulong nb13 +kernel void kernel_tanh_f16_nc( + global const char * src0, + ulong offset0, + global char * dst, + ulong offsetd, + int ne00, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3 ) { - int i0 = get_global_id(0); - int i1 = get_global_id(1); - int i2 = get_global_id(2); + src0 = src0 + offset0; + dst = dst + offsetd; - if (i0 < ne10 && i1 < ne11 && i2 < ne12) { - for (int i3 = 0; i3 < ne13; ++i3) { - ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03; - global const half *src_val_ptr = (global const half *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor); + const int i3 = get_group_id(2); + const int i2 = get_group_id(1); + const int i1 = get_group_id(0); - ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13; - global half *dst_val_ptr = (global half *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor); + for (int i0 = get_local_id(0); i0 < ne00; i0 += get_local_size(0)) { + global const half * x = (global const half *)(src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + global half * y = (global half *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); - *dst_val_ptr = tanh(*src_val_ptr); - } + *y = tanh(*x); } } diff --git a/ggml/src/ggml-sycl/CMakeLists.txt b/ggml/src/ggml-sycl/CMakeLists.txt index 5a89d8dd68..eefdd9725c 100644 --- a/ggml/src/ggml-sycl/CMakeLists.txt +++ b/ggml/src/ggml-sycl/CMakeLists.txt @@ -1,7 +1,7 @@ message(STATUS "GGML_SYCL_TARGET=${GGML_SYCL_TARGET}") -if (NOT GGML_SYCL_TARGET MATCHES "^(INTEL|NVIDIA|AMD)$") - message(FATAL_ERROR "Invalid backend chosen, supported options are INTEL, NVIDIA, or AMD") +if (NOT GGML_SYCL_TARGET MATCHES "^(INTEL)$") + message(FATAL_ERROR "GGML_SYCL_TARGET: Invalid target, the supported options are [INTEL]") endif() check_cxx_compiler_flag("-fsycl" SUPPORTS_SYCL) @@ -125,25 +125,22 @@ endif() target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_DNNL=${GGML_SYCL_DNNL}) if (GGML_SYCL_F16) - if (GGML_SYCL_TARGET STREQUAL "AMD") - message(WARNING "AMD target does not entirely support FP16 in the SYCL backend.") - endif() add_compile_definitions(GGML_SYCL_F16) endif() if (GGML_SYCL_TARGET STREQUAL "INTEL") add_compile_definitions(GGML_SYCL_WARP_SIZE=16) target_link_options(ggml-sycl PRIVATE -Xs -ze-intel-greater-than-4GB-buffer-required) -elseif (GGML_SYCL_TARGET STREQUAL "NVIDIA") - add_compile_definitions(GGML_SYCL_WARP_SIZE=32) -elseif (GGML_SYCL_TARGET STREQUAL "AMD") - # INFO: Allowed Sub_group_sizes are not consistent through all - # hip targets. For example, 64 is used for certain models, but the backend - # does not support it. - # Target archs tested working: gfx1030, gfx1031, (Only tested sub_group_size = 32) - add_compile_definitions(GGML_SYCL_WARP_SIZE=32) + + # Link against Intel oneMKL + if (CMAKE_CXX_COMPILER_ID STREQUAL "Clang") + set(SYCL_COMPILER ON) + endif() + find_package(MKL REQUIRED) + target_link_libraries(ggml-sycl PRIVATE MKL::MKL_SYCL::BLAS) else() # default for other target + message(FATAL_ERROR "GGML_SYCL_TARGET is not supported") add_compile_definitions(GGML_SYCL_WARP_SIZE=32) endif() @@ -151,82 +148,6 @@ if (GGML_SYCL_GRAPH) target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_GRAPH) endif() -# Link against Intel oneMKL or oneMath -if (GGML_SYCL_TARGET STREQUAL "INTEL") - # Intel devices use Intel oneMKL directly instead of oneMath to avoid the limitation of linking Intel oneMKL statically - # See https://github.com/uxlfoundation/oneMath/issues/654 - if (CMAKE_CXX_COMPILER_ID STREQUAL "Clang") - set(SYCL_COMPILER ON) - endif() - find_package(MKL REQUIRED) - target_link_libraries(ggml-sycl PRIVATE MKL::MKL_SYCL::BLAS) - target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_USE_INTEL_ONEMKL) -else() - find_package(oneMath QUIET) - if (NOT oneMath_FOUND) - message(STATUS "oneMath not found: oneMath will be automatically downloaded") - # Use FetchContent to automatically pull and build oneMath - include(FetchContent) - set(BUILD_FUNCTIONAL_TESTS False) - set(BUILD_EXAMPLES False) - set(TARGET_DOMAINS blas) - if (GGML_SYCL_TARGET STREQUAL "NVIDIA") - set(ENABLE_MKLCPU_BACKEND False) - set(ENABLE_MKLGPU_BACKEND False) - set(ENABLE_CUBLAS_BACKEND True) - elseif (GGML_SYCL_TARGET STREQUAL "AMD") - set(ENABLE_MKLCPU_BACKEND False) - set(ENABLE_MKLGPU_BACKEND False) - set(ENABLE_ROCBLAS_BACKEND True) - # Ensure setting a string variable here is not overriden by oneMath CACHE variables - cmake_policy(SET CMP0126 NEW) - # Setting the device architecture is only needed and useful for AMD devices in oneMath - set(HIP_TARGETS ${GGML_SYCL_DEVICE_ARCH} CACHE STRING "oneMath HIP target" FORCE) - endif() - FetchContent_Declare( - ONEMATH - GIT_REPOSITORY https://github.com/uxlfoundation/oneMath.git - GIT_TAG 8efe85f5aaebb37f1d8c503b7af66315feabf142 - ) - FetchContent_MakeAvailable(ONEMATH) - # Create alias to match with find_package targets name - function(onemath_alias target) - if (TARGET ${target}_obj) - # Silence verbose warnings from external libraries - target_compile_options(${target}_obj PRIVATE -w) - endif() - if (TARGET ${target}) - add_library(ONEMATH::${target} ALIAS ${target}) - endif() - endfunction() - onemath_alias(onemath) - onemath_alias(onemath_blas_mklcpu) - onemath_alias(onemath_blas_mklgpu) - onemath_alias(onemath_blas_cublas) - onemath_alias(onemath_blas_rocblas) - endif() - - # Below oneMath compile-time dispatching is used for better performance - if (GGML_SYCL_TARGET STREQUAL "NVIDIA") - target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath_blas_cublas) - target_compile_options(ggml-sycl PRIVATE "-fsycl-targets=nvptx64-nvidia-cuda") - target_link_options(ggml-sycl PRIVATE "-fsycl-targets=nvptx64-nvidia-cuda") - target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_NVIDIA) - elseif (GGML_SYCL_TARGET STREQUAL "AMD") - if (NOT GGML_SYCL_DEVICE_ARCH) - message(FATAL_ERROR "Can't enable SYCL hip backend, GGML_SYCL_DEVICE_ARCH has not been set.") - endif() - target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath_blas_rocblas) - target_compile_options(ggml-sycl PRIVATE "-fsycl-targets=amdgcn-amd-amdhsa") - target_link_options(ggml-sycl PRIVATE "-fsycl-targets=amdgcn-amd-amdhsa") - target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_AMD) - else() - # Fallback to oneMath runtime dispatcher - target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath) - target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_GENERIC) - endif() -endif() - if (GGML_SYCL_DEVICE_ARCH) target_compile_options(ggml-sycl PRIVATE -Xsycl-target-backend --offload-arch=${GGML_SYCL_DEVICE_ARCH}) target_link_options(ggml-sycl PRIVATE -Xsycl-target-backend --offload-arch=${GGML_SYCL_DEVICE_ARCH}) diff --git a/ggml/src/ggml-sycl/dpct/helper.hpp b/ggml/src/ggml-sycl/dpct/helper.hpp index 8ae8098717..ece66a7ac1 100644 --- a/ggml/src/ggml-sycl/dpct/helper.hpp +++ b/ggml/src/ggml-sycl/dpct/helper.hpp @@ -15,17 +15,9 @@ #include #include -#include - -#ifdef GGML_SYCL_USE_INTEL_ONEMKL #include -// Allow to use the same namespace for Intel oneMKL and oneMath -namespace oneapi { - namespace math = mkl; -} -#else -#include -#endif + +#include #include "ggml.h" @@ -91,32 +83,13 @@ inline std::string get_device_backend_and_type(const sycl::device &device) { } template struct matrix_info_t { - oneapi::math::transpose transpose_info[2]; + oneapi::mkl::transpose transpose_info[2]; Ts value_info[2]; std::int64_t size_info[3]; std::int64_t ld_info[3]; std::int64_t groupsize_info; }; -inline auto get_onemath_backend(sycl::queue& queue) -#if defined(GGML_SYCL_GENERIC) || defined(GGML_SYCL_USE_INTEL_ONEMKL) - -> sycl::queue& -#endif -{ -// If the backend is known at compile-time, use oneMath backend_selector to use -// compile-time dispatching and avoid the need to dlopen libraries. Otherwise -// fallback to runtime dispatching. -#if defined(GGML_SYCL_NVIDIA) - return oneapi::math::backend_selector{ queue }; -#elif defined(GGML_SYCL_AMD) - return oneapi::math::backend_selector{ queue }; -#elif defined(GGML_SYCL_GENERIC) || defined(GGML_SYCL_USE_INTEL_ONEMKL) - return queue; -#else - static_assert(false, "Unsupported backend"); -#endif -} - namespace dpct { typedef sycl::queue *queue_ptr; @@ -1734,7 +1707,7 @@ namespace dpct namespace detail { template - inline void gemm_impl(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m, + inline void gemm_impl(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void * alpha, const void * a, int lda, const void * b, int ldb, const void * beta, void * c, int ldc) { Ts alpha_value = dpct::get_value(reinterpret_cast(alpha), q); @@ -1742,7 +1715,7 @@ namespace dpct auto data_a = get_memory(a); auto data_b = get_memory(b); auto data_c = get_memory(c); - oneapi::math::blas::column_major::gemm(get_onemath_backend(q), a_trans, b_trans, m, n, k, alpha_value, data_a, + oneapi::mkl::blas::column_major::gemm(q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, data_b, ldb, beta_value, data_c, ldc); } @@ -1774,7 +1747,7 @@ namespace dpct }; template - inline void gemm_batch_impl(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, + inline void gemm_batch_impl(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void * alpha, const void ** a, int lda, const void ** b, int ldb, const void * beta, void ** c, int ldc, int batch_size, matrix_info_t * matrix_info) { @@ -1793,8 +1766,8 @@ namespace dpct matrix_info->ld_info[2] = ldc; matrix_info->groupsize_info = batch_size; - sycl::event e = oneapi::math::blas::column_major::gemm_batch( - get_onemath_backend(q), matrix_info->transpose_info, matrix_info->transpose_info + 1, + sycl::event e = oneapi::mkl::blas::column_major::gemm_batch( + q, matrix_info->transpose_info, matrix_info->transpose_info + 1, matrix_info->size_info, matrix_info->size_info + 1, matrix_info->size_info + 2, reinterpret_cast(matrix_info->value_info), reinterpret_cast(a), matrix_info->ld_info, reinterpret_cast(b), matrix_info->ld_info + 1, @@ -1803,7 +1776,7 @@ namespace dpct } template - inline void gemm_batch_impl(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, + inline void gemm_batch_impl(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void * alpha, const void * a, int lda, long long int stride_a, const void * b, int ldb, long long int stride_b, const void * beta, void * c, int ldc, long long int stride_c, int batch_size) { @@ -1812,7 +1785,7 @@ namespace dpct auto data_a = get_memory(a); auto data_b = get_memory(b); auto data_c = get_memory(c); - oneapi::math::blas::column_major::gemm_batch(get_onemath_backend(q), a_trans, b_trans, m, n, k, alpha_value, + oneapi::mkl::blas::column_major::gemm_batch(q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda, stride_a, data_b, ldb, stride_b, beta_value, data_c, ldc, stride_c, batch_size); } @@ -2299,7 +2272,7 @@ namespace dpct sycl::range<3>(x, y, 1), direction); } - inline void gemm(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m, int n, + inline void gemm(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void * alpha, const void * a, library_data_t a_type, int lda, const void * b, library_data_t b_type, int ldb, const void * beta, void * c, library_data_t c_type, int ldc, library_data_t scaling_type) { @@ -2366,7 +2339,7 @@ namespace dpct library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { - detail::gemm_impl( + detail::gemm_impl( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } @@ -2405,7 +2378,7 @@ namespace dpct library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { - detail::gemm_impl( + detail::gemm_impl( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc); break; } @@ -2447,7 +2420,7 @@ namespace dpct /// \param [in] ldc Leading dimension of C. /// \param [in] batch_size Specifies the number of matrix multiply operations to perform. /// \param [in] scaling_type Data type of the scaling factors. - inline void gemm_batch(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m, + inline void gemm_batch(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void * alpha, const void * a[], library_data_t a_type, int lda, const void * b[], library_data_t b_type, int ldb, const void * beta, void * c[], library_data_t c_type, int ldc, int batch_size, library_data_t scaling_type, @@ -2485,7 +2458,7 @@ namespace dpct library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { - detail::gemm_batch_impl( + detail::gemm_batch_impl( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info); break; } @@ -2493,7 +2466,7 @@ namespace dpct library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { - detail::gemm_batch_impl( + detail::gemm_batch_impl( q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info); break; } @@ -2569,7 +2542,7 @@ namespace dpct /// \param [in] stride_c Stride between the different C matrices. /// \param [in] batch_size Specifies the number of matrix multiply operations to perform. /// \param [in] scaling_type Data type of the scaling factors. - inline void gemm_batch(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m, + inline void gemm_batch(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n, int k, const void * alpha, const void * a, library_data_t a_type, int lda, long long int stride_a, const void * b, library_data_t b_type, int ldb, long long int stride_b, const void * beta, void * c, library_data_t c_type, int ldc, @@ -2642,7 +2615,7 @@ namespace dpct library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float): { - detail::gemm_batch_impl( + detail::gemm_batch_impl( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; @@ -2651,7 +2624,7 @@ namespace dpct library_data_t::real_bfloat16, library_data_t::real_bfloat16, library_data_t::real_float, library_data_t::real_float): { - detail::gemm_batch_impl( + detail::gemm_batch_impl( q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c, batch_size); break; diff --git a/ggml/src/ggml-sycl/element_wise.cpp b/ggml/src/ggml-sycl/element_wise.cpp index 651b875b63..00d54b83f8 100644 --- a/ggml/src/ggml-sycl/element_wise.cpp +++ b/ggml/src/ggml-sycl/element_wise.cpp @@ -836,16 +836,9 @@ static inline void ggml_sycl_op_floor(ggml_backend_sycl_context & ctx, ggml_tens } static inline void ggml_sycl_op_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { - ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst, - [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) { - const int num_blocks = ceil_div(k_elements, 256); - stream->parallel_for( - sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256), - sycl::range<1>(256)), - [=](sycl::nd_item<1> item_ct1) { - unary_op_ceil_kernel(src, dst_ptr, k_elements, item_ct1); - }); - }); + ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) { + return op_ceil(x); + }); } static inline void ggml_sycl_op_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp index 74b4ed91cc..0614d7e8f3 100644 --- a/ggml/src/ggml-sycl/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl/ggml-sycl.cpp @@ -1840,6 +1840,110 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols, } } +static void top_k_f32_sycl( + const float * src, + int32_t * dst_indices, + const int64_t ncols, + const int64_t nrows, + const int k, + dpct::queue_ptr main_stream +) { + const int block_size = 128; + + const sycl::range<1> block_dims(block_size); + const sycl::range<1> grid_dims(nrows); + + main_stream->submit([&](sycl::handler &cgh) { + sycl::local_accessor shared_vals(sycl::range<1>(block_size * k), cgh); + sycl::local_accessor shared_idx(sycl::range<1>(block_size * k), cgh); + + cgh.parallel_for( + sycl::nd_range<1>(grid_dims * block_dims, block_dims), + [=](sycl::nd_item<1> item_ct1) { + const int row = item_ct1.get_group(0); + const int tid = item_ct1.get_local_id(0); + + if (row >= nrows) return; + + const float * src_row = src + row * ncols; + int32_t * dst_idx_row = dst_indices + row * k; + + float local_vals[32]; + int local_idx[32]; + + for (int i = 0; i < k; i++) { + local_vals[i] = -FLT_MAX; + local_idx[i] = -1; + } + + for (int col = tid; col < ncols; col += block_size) { + float val = src_row[col]; + + if (val > local_vals[k-1]) { + int pos = k - 1; + while (pos > 0 && val > local_vals[pos - 1]) { + pos--; + } + + for (int i = k - 1; i > pos; i--) { + local_vals[i] = local_vals[i - 1]; + local_idx[i] = local_idx[i - 1]; + } + local_vals[pos] = val; + local_idx[pos] = col; + } + } + + for (int i = 0; i < k; i++) { + shared_vals[tid * k + i] = local_vals[i]; + shared_idx[tid * k + i] = local_idx[i]; + } + item_ct1.barrier(sycl::access::fence_space::local_space); + + if (tid == 0) { + float final_vals[32]; + int final_idx[32]; + + for (int i = 0; i < k; i++) { + final_vals[i] = -FLT_MAX; + final_idx[i] = -1; + } + + for (int t = 0; t < block_size; t++) { + for (int i = 0; i < k; i++) { + float val = shared_vals[t * k + i]; + int idx = shared_idx[t * k + i]; + + if (val > final_vals[k-1]) { + int pos = k - 1; + while (pos > 0 && val > final_vals[pos - 1]) { + pos--; + } + + for (int j = k - 1; j > pos; j--) { + final_vals[j] = final_vals[j - 1]; + final_idx[j] = final_idx[j - 1]; + } + final_vals[pos] = val; + final_idx[pos] = idx; + } + } + } + + for (int i = 0; i < k; i++) { + dst_idx_row[i] = final_idx[i]; + } + + if (k > 1) { + int32_t temp = dst_idx_row[0]; + dst_idx_row[0] = dst_idx_row[1]; + dst_idx_row[1] = temp; + } + } + }); + }); +} + static void argmax_f32_i32_sycl(const float *x, int *dst, const int ncols, const int nrows, queue_ptr stream) { const sycl::range<3> block_dims(1, 1, SYCL_ARGMAX_BLOCK_SIZE); @@ -2063,8 +2167,8 @@ inline void ggml_sycl_op_mul_mat_sycl( const sycl::half alpha_f16 = 1.0f; const sycl::half beta_f16 = 0.0f; SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm( - *stream, oneapi::math::transpose::trans, - oneapi::math::transpose::nontrans, row_diff, src1_ncols, ne10, + *stream, oneapi::mkl::transpose::trans, + oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10, &alpha_f16, src0_ptr, dpct::library_data_t::real_half, ne00, src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16, dst_f16.get(), dpct::library_data_t::real_half, ldc, @@ -2107,8 +2211,8 @@ inline void ggml_sycl_op_mul_mat_sycl( { const float alpha = 1.0f; const float beta = 0.0f; - SYCL_CHECK(CHECK_TRY_ERROR(oneapi::math::blas::column_major::gemm( - get_onemath_backend(*stream), oneapi::math::transpose::trans, oneapi::math::transpose::nontrans, row_diff, + SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm( + *stream, oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10, dpct::get_value(&alpha, *stream), src0_ddf_i, ne00, src1_ddf1_i, ne10, dpct::get_value(&beta, *stream), dst_dd_i, ldc))); } @@ -2231,6 +2335,30 @@ inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, ggml_tensor * main_stream, ctx.device); } +static void ggml_sycl_op_top_k(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(src0); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_I32); + GGML_ASSERT(ggml_is_contiguous(src0)); + + dpct::queue_ptr main_stream = ctx.stream(); + SYCL_CHECK(ggml_sycl_set_device(ctx.device)); + + const float * src0_dd = static_cast(src0->data); + int32_t * dst_dd = static_cast(dst->data); + + const int k = dst->ne[0]; + const int64_t ncols = src0->ne[0]; + const int64_t nrows = ggml_nrows(src0); + + GGML_ASSERT(k > 0 && k <= 32); + GGML_ASSERT(k <= ncols); + + top_k_f32_sycl(src0_dd, dst_dd, ncols, nrows, k, main_stream); +} + inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_I32); @@ -3037,8 +3165,8 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons const int64_t smb = ne12 == 1 ? s13 : s12; // there is no broadcast and src0, src1 are contiguous across dims 2, 3 - SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(*queue, oneapi::math::transpose::trans, - oneapi::math::transpose::nontrans, ne01, ne11, ne10, alpha, + SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(*queue, oneapi::mkl::transpose::trans, + oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha, src0_f16, dpct::library_data_t::real_half, nb01 / nb00, sma, src1_f16, dpct::library_data_t::real_half, s11, smb, beta, dst_ddf, mkl_data_type, ne0, ne1 * ne0, ne12 * ne13, mkl_compute_type))); @@ -3062,7 +3190,7 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons }); SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch( - *queue, oneapi::math::transpose::trans, oneapi::math::transpose::nontrans, ne01, ne11, ne10, alpha, + *queue, oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha, (const void **) (ptrs_src.get() + 0 * ne23), dpct::library_data_t::real_half, nb01 / nb00, (const void **) (ptrs_src.get() + 1 * ne23), dpct::library_data_t::real_half, s11, beta, (void **) (ptrs_dst.get() + 0 * ne23), mkl_data_type, ne0, ne23, mkl_compute_type, matrix_info.get()))); @@ -3390,18 +3518,17 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor // mmvq and mmq need the __dp4a instruction which is available for gen12+ - // Workaround in https://github.com/ggerganov/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e + // Workaround in https://github.com/ggml-org/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS); #ifdef SYCL_USE_XMX use_mul_mat_q = use_mul_mat_q && (src1->ne[1] <= MMQ_MAX_BATCH_SIZE); #endif // SYCL_USE_XMX - // mmvq path is faster in the CUDA backend. - if (!g_ggml_sycl_prioritize_dmmv && (ctx.stream()->get_backend() == sycl::backend::ext_oneapi_cuda - // Dispatch becomes obscure with the reorder, MMVQ when the reorder optimization - // is enabled takes precedence over DMMV, the current if-else implementation - // requires disabling DMMV if both conditions are met - || (should_reorder_tensor(ctx, dst) && ggml_sycl_supports_reorder_mmvq(src0->type)))) { + // Dispatch becomes obscure with the reorder, MMVQ when the reorder optimization + // is enabled takes precedence over DMMV, the current if-else implementation + // requires disabling DMMV if both conditions are met + if (!g_ggml_sycl_prioritize_dmmv && ((should_reorder_tensor(ctx, dst) && + ggml_sycl_supports_reorder_mmvq(src0->type)))) { use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q; } @@ -4007,6 +4134,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg case GGML_OP_ARGSORT: ggml_sycl_argsort(ctx, dst); break; + case GGML_OP_TOP_K: + ggml_sycl_op_top_k(ctx, dst); + break; case GGML_OP_TIMESTEP_EMBEDDING: ggml_sycl_op_timestep_embedding(ctx, dst); break; @@ -4058,16 +4188,6 @@ void ggml_backend_sycl_get_device_memory(int device, size_t *free, GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_memory\n"); ggml_sycl_set_device(device); - /* - DPCT1009:218: SYCL uses exceptions to report errors and does not use the - error codes. The original code was commented out and a warning string was - inserted. You need to rewrite this code. - */ - /* - DPCT1106:217: 'cudaMemGetInfo' was migrated with the Intel extensions for - device information which may not be supported by all compilers or runtimes. - You may need to adjust the code. - */ SYCL_CHECK(CHECK_TRY_ERROR( dpct::dev_mgr::instance().get_device(device).get_memory_info(*free, *total))); } @@ -4471,9 +4591,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g case GGML_UNARY_OP_EXP: case GGML_UNARY_OP_SOFTPLUS: case GGML_UNARY_OP_ELU: + case GGML_UNARY_OP_CEIL: return true; case GGML_UNARY_OP_FLOOR: - case GGML_UNARY_OP_CEIL: case GGML_UNARY_OP_ROUND: case GGML_UNARY_OP_TRUNC: #if defined (GGML_SYCL_F16) @@ -4710,6 +4830,15 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g case GGML_OP_ARGSORT: return op->src[0]->ne[0] * sizeof(int) <= ggml_sycl_info().devices[device].smpbo; + case GGML_OP_TOP_K: { + const ggml_tensor * src0 = op->src[0]; + const int k = op->ne[0]; + return src0 && + op->type == GGML_TYPE_I32 && + src0->type == GGML_TYPE_F32 && + ggml_is_contiguous(src0) && + k > 0 && k <= 32; + } case GGML_OP_POOL_2D: case GGML_OP_ACC: return true; diff --git a/ggml/src/ggml-sycl/outprod.cpp b/ggml/src/ggml-sycl/outprod.cpp index 3a17f3a1b8..f52b11f0d6 100644 --- a/ggml/src/ggml-sycl/outprod.cpp +++ b/ggml/src/ggml-sycl/outprod.cpp @@ -32,12 +32,12 @@ void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { // Handle transposition of src1 const bool src1_T = ggml_is_transposed(src1); - const oneapi::math::transpose src1_op = src1_T ? oneapi::math::transpose::nontrans : oneapi::math::transpose::trans; + const oneapi::mkl::transpose src1_op = src1_T ? oneapi::mkl::transpose::nontrans : oneapi::mkl::transpose::trans; const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float); try { - // Perform matrix multiplication using oneMath GEMM - oneapi::math::blas::column_major::gemm(get_onemath_backend(*stream), oneapi::math::transpose::nontrans, src1_op, + // Perform matrix multiplication using oneMKL GEMM + oneapi::mkl::blas::column_major::gemm(*stream, oneapi::mkl::transpose::nontrans, src1_op, ne0, ne1, ne01, alpha, src0_d, ne00, src1_d, ldb, beta, dst_d, ne0); } catch (sycl::exception const& exc) { diff --git a/ggml/src/ggml-sycl/rope.cpp b/ggml/src/ggml-sycl/rope.cpp index 69140b19a4..aeaa58b95b 100644 --- a/ggml/src/ggml-sycl/rope.cpp +++ b/ggml/src/ggml-sycl/rope.cpp @@ -207,7 +207,6 @@ static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, cons const int p = sector; theta_base = pos[channel_x] * sycl::pow(theta_scale, (float) p); } else { - // Simplified from CUDA backend code: if (sector >= sections.v[0] && sector < sec_w) which is just sector >= sections.v[0] const int p = sector - sections.v[0]; theta_base = pos[channel_x + ne2] * sycl::pow(theta_scale, (float) p); } diff --git a/ggml/src/ggml-sycl/wkv.cpp b/ggml/src/ggml-sycl/wkv.cpp index c10e2f7645..b56e0c2400 100644 --- a/ggml/src/ggml-sycl/wkv.cpp +++ b/ggml/src/ggml-sycl/wkv.cpp @@ -1,7 +1,7 @@ #include #include "wkv.hpp" -constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE +constexpr int WKV_BLOCK_SIZE = 64; // Helper function for the main kernel template diff --git a/ggml/src/ggml-virtgpu/apir_cs_ggml-rpc-front.cpp b/ggml/src/ggml-virtgpu/apir_cs_ggml-rpc-front.cpp index f60ae3556c..d2e87330a6 100644 --- a/ggml/src/ggml-virtgpu/apir_cs_ggml-rpc-front.cpp +++ b/ggml/src/ggml-virtgpu/apir_cs_ggml-rpc-front.cpp @@ -36,7 +36,7 @@ apir_rpc_tensor apir_serialize_tensor(const ggml_tensor * tensor) { result.data = reinterpret_cast(tensor->data); if (tensor->data) { if (!tensor->buffer) { - GGML_ABORT("tensor has data but not buffer"); + GGML_ABORT("%s: tensor has data but not buffer", __func__); } // tensor->data is serialized as an offset to the buffer base address result.data -= reinterpret_cast(BUFFER_TO_GGML_CONTEXT(tensor->buffer)->base); diff --git a/ggml/src/ggml-virtgpu/backend/backend-dispatched-backend.cpp b/ggml/src/ggml-virtgpu/backend/backend-dispatched-backend.cpp index 77b4ee71e1..cc879e51d0 100644 --- a/ggml/src/ggml-virtgpu/backend/backend-dispatched-backend.cpp +++ b/ggml/src/ggml-virtgpu/backend/backend-dispatched-backend.cpp @@ -27,7 +27,7 @@ uint32_t backend_backend_graph_compute(apir_encoder * enc, apir_decoder * dec, v const void * shmem_data = ctx->iface->get_shmem_ptr(ctx->ctx_id, shmem_res_id); if (!shmem_data) { - GGML_LOG_ERROR("Couldn't get the shmem addr from virgl\n"); + GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Couldn't get the shmem addr from virgl\n", __func__); apir_decoder_set_fatal(dec); return 1; } @@ -45,7 +45,7 @@ uint32_t backend_backend_graph_compute(apir_encoder * enc, apir_decoder * dec, v if (dev->iface.supports_op(dev, op)) { continue; } - GGML_LOG_ERROR("Graph node %d (%s) not supported by the backend\n", idx, ggml_op_desc(op)); + GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Graph node %d (%s) not supported by the backend\n", idx, ggml_op_desc(op)); status = GGML_STATUS_ABORTED; apir_encode_ggml_status(enc, &status); diff --git a/ggml/src/ggml-virtgpu/backend/backend-dispatched-buffer-type.cpp b/ggml/src/ggml-virtgpu/backend/backend-dispatched-buffer-type.cpp index 8ea1bb4fb4..d55eec2761 100644 --- a/ggml/src/ggml-virtgpu/backend/backend-dispatched-buffer-type.cpp +++ b/ggml/src/ggml-virtgpu/backend/backend-dispatched-buffer-type.cpp @@ -36,18 +36,22 @@ uint32_t backend_buffer_type_get_max_size(apir_encoder * enc, apir_decoder * dec ggml_backend_buffer_type_t buft; buft = apir_decode_ggml_buffer_type(dec); - size_t value = buft->iface.get_max_size(buft); + size_t value = SIZE_MAX; + if (buft->iface.get_max_size) { + value = buft->iface.get_max_size(buft); + } + apir_encode_size_t(enc, &value); return 0; } +/* APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST is deprecated. Keeping the handler for backward compatibility. */ uint32_t backend_buffer_type_is_host(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx) { GGML_UNUSED(ctx); - ggml_backend_buffer_type_t buft; - buft = apir_decode_ggml_buffer_type(dec); + GGML_UNUSED(dec); + const bool is_host = false; - bool is_host = buft->iface.is_host(buft); apir_encode_bool_t(enc, &is_host); return 0; diff --git a/ggml/src/ggml-virtgpu/backend/backend-dispatched-buffer.cpp b/ggml/src/ggml-virtgpu/backend/backend-dispatched-buffer.cpp index cf81888e98..8cc063ff0a 100644 --- a/ggml/src/ggml-virtgpu/backend/backend-dispatched-buffer.cpp +++ b/ggml/src/ggml-virtgpu/backend/backend-dispatched-buffer.cpp @@ -40,7 +40,7 @@ uint32_t backend_buffer_set_tensor(apir_encoder * enc, apir_decoder * dec, virgl void * shmem_data = ctx->iface->get_shmem_ptr(ctx->ctx_id, shmem_res_id); if (!shmem_data) { - GGML_LOG_ERROR("Couldn't get the shmem addr from virgl\n"); + GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Couldn't get the shmem addr from virgl\n", __func__); return 1; } @@ -71,7 +71,7 @@ uint32_t backend_buffer_get_tensor(apir_encoder * enc, apir_decoder * dec, virgl void * shmem_data = ctx->iface->get_shmem_ptr(ctx->ctx_id, shmem_res_id); if (!shmem_data) { - GGML_LOG_ERROR("Couldn't get the shmem addr from virgl\n"); + GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Couldn't get the shmem addr from virgl\n", __func__); return 1; } @@ -121,7 +121,7 @@ uint32_t backend_buffer_free_buffer(apir_encoder * enc, apir_decoder * dec, virg buffer = apir_decode_ggml_buffer(dec); if (!apir_untrack_backend_buffer(buffer)) { - GGML_LOG_WARN("%s: unknown buffer %p\n", __func__, (void *) buffer); + GGML_LOG_WARN(GGML_VIRTGPU_BCK "%s: unknown buffer %p\n", __func__, (void *) buffer); return 1; } diff --git a/ggml/src/ggml-virtgpu/backend/backend-dispatched-device.cpp b/ggml/src/ggml-virtgpu/backend/backend-dispatched-device.cpp index 497f737a88..c7acb8b51c 100644 --- a/ggml/src/ggml-virtgpu/backend/backend-dispatched-device.cpp +++ b/ggml/src/ggml-virtgpu/backend/backend-dispatched-device.cpp @@ -124,7 +124,7 @@ uint32_t backend_device_buffer_from_ptr(apir_encoder * enc, apir_decoder * dec, void * shmem_ptr = ctx->iface->get_shmem_ptr(ctx->ctx_id, shmem_res_id); if (!shmem_ptr) { - GGML_LOG_ERROR("Couldn't get the shmem addr from virgl\n"); + GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Couldn't get the shmem addr from virgl\n", __func__); apir_decoder_set_fatal(dec); return 1; } diff --git a/ggml/src/ggml-virtgpu/backend/backend-dispatched.cpp b/ggml/src/ggml-virtgpu/backend/backend-dispatched.cpp index 51d445725f..64152eef0d 100644 --- a/ggml/src/ggml-virtgpu/backend/backend-dispatched.cpp +++ b/ggml/src/ggml-virtgpu/backend/backend-dispatched.cpp @@ -17,26 +17,26 @@ uint64_t timer_count = 0; uint32_t backend_dispatch_initialize(void * ggml_backend_reg_fct_p) { if (reg != NULL) { - GGML_LOG_WARN("%s: already initialized\n", __func__); + GGML_LOG_WARN(GGML_VIRTGPU_BCK "%s: already initialized\n", __func__); return APIR_BACKEND_INITIALIZE_ALREADY_INITED; } ggml_backend_reg_t (*ggml_backend_reg_fct)(void) = (ggml_backend_reg_t (*)()) ggml_backend_reg_fct_p; reg = ggml_backend_reg_fct(); if (reg == NULL) { - GGML_LOG_ERROR("%s: backend registration failed\n", __func__); + GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: backend registration failed\n", __func__); return APIR_BACKEND_INITIALIZE_BACKEND_REG_FAILED; } if (!reg->iface.get_device_count(reg)) { - GGML_LOG_ERROR("%s: backend initialization failed: no device found\n", __func__); + GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: backend initialization failed: no device found\n", __func__); return APIR_BACKEND_INITIALIZE_NO_DEVICE; } dev = reg->iface.get_device(reg, 0); if (!dev) { - GGML_LOG_ERROR("%s: backend initialization failed: no device received\n", __func__); + GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: backend initialization failed: no device received\n", __func__); return APIR_BACKEND_INITIALIZE_NO_DEVICE; } diff --git a/ggml/src/ggml-virtgpu/backend/backend-dispatched.gen.h b/ggml/src/ggml-virtgpu/backend/backend-dispatched.gen.h index b81fd5039b..481d7f3150 100644 --- a/ggml/src/ggml-virtgpu/backend/backend-dispatched.gen.h +++ b/ggml/src/ggml-virtgpu/backend/backend-dispatched.gen.h @@ -16,6 +16,7 @@ uint32_t backend_device_buffer_from_ptr(apir_encoder * enc, apir_decoder * dec, uint32_t backend_buffer_type_get_name(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx); uint32_t backend_buffer_type_get_alignment(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx); uint32_t backend_buffer_type_get_max_size(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx); +/* APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST is deprecated. Keeping the handler for backward compatibility. */ uint32_t backend_buffer_type_is_host(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx); uint32_t backend_buffer_type_alloc_buffer(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx); uint32_t backend_buffer_type_get_alloc_size(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx); @@ -62,7 +63,7 @@ static inline const char * backend_dispatch_command_name(ApirBackendCommandType case APIR_COMMAND_TYPE_BUFFER_TYPE_GET_MAX_SIZE: return "backend_buffer_type_get_max_size"; case APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST: - return "backend_buffer_type_is_host"; + return "backend_buffer_type_is_host (DEPRECATED)"; case APIR_COMMAND_TYPE_BUFFER_TYPE_ALLOC_BUFFER: return "backend_buffer_type_alloc_buffer"; case APIR_COMMAND_TYPE_BUFFER_TYPE_GET_ALLOC_SIZE: @@ -110,7 +111,7 @@ static const backend_dispatch_t apir_backend_dispatch_table[APIR_BACKEND_DISPATC /* APIR_COMMAND_TYPE_BUFFER_TYPE_GET_NAME = */ backend_buffer_type_get_name, /* APIR_COMMAND_TYPE_BUFFER_TYPE_GET_ALIGNMENT = */ backend_buffer_type_get_alignment, /* APIR_COMMAND_TYPE_BUFFER_TYPE_GET_MAX_SIZE = */ backend_buffer_type_get_max_size, - /* APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST = */ backend_buffer_type_is_host, + /* APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST = */ backend_buffer_type_is_host /* DEPRECATED */, /* APIR_COMMAND_TYPE_BUFFER_TYPE_ALLOC_BUFFER = */ backend_buffer_type_alloc_buffer, /* APIR_COMMAND_TYPE_BUFFER_TYPE_GET_ALLOC_SIZE = */ backend_buffer_type_get_alloc_size, diff --git a/ggml/src/ggml-virtgpu/backend/backend-dispatched.h b/ggml/src/ggml-virtgpu/backend/backend-dispatched.h index 6ccbecf078..10311631d4 100644 --- a/ggml/src/ggml-virtgpu/backend/backend-dispatched.h +++ b/ggml/src/ggml-virtgpu/backend/backend-dispatched.h @@ -11,6 +11,8 @@ #include "shared/apir_cs.h" #include "shared/apir_cs_ggml.h" +#define GGML_VIRTGPU_BCK "ggml-virtgpu-backend: " + struct virgl_apir_context { uint32_t ctx_id; virgl_apir_callbacks * iface; diff --git a/ggml/src/ggml-virtgpu/backend/backend.cpp b/ggml/src/ggml-virtgpu/backend/backend.cpp index 95d602ed60..d93414a078 100644 --- a/ggml/src/ggml-virtgpu/backend/backend.cpp +++ b/ggml/src/ggml-virtgpu/backend/backend.cpp @@ -35,14 +35,8 @@ void apir_backend_deinit(uint32_t virgl_ctx_id) { buffer->iface.free_buffer(buffer); } - if (dev) { - size_t free, total; - dev->iface.get_memory(dev, &free, &total); - GGML_LOG_INFO("%s: free memory: %ld MB\n", __func__, (size_t) free / 1024 / 1024); - } - if (backend_library_handle) { - GGML_LOG_INFO("%s: The GGML backend library was loaded. Unloading it.\n", __func__); + GGML_LOG_INFO(GGML_VIRTGPU_BCK "The GGML backend library was loaded. Unloading it.\n"); dlclose(backend_library_handle); backend_library_handle = NULL; } @@ -65,7 +59,7 @@ ApirLoadLibraryReturnCode apir_backend_initialize(uint32_t virgl_ctx_id, struct if (apir_logfile) { ggml_log_set(log_to_file_callback, apir_logfile); } else { - GGML_LOG_INFO("Could not open the log file at '%s'\n", apir_log_to_file); + GGML_LOG_INFO(GGML_VIRTGPU_BCK "Could not open the log file at '%s'\n", apir_log_to_file); } } @@ -74,7 +68,10 @@ ApirLoadLibraryReturnCode apir_backend_initialize(uint32_t virgl_ctx_id, struct const char * library_reg = virgl_library_reg ? virgl_library_reg : GGML_DEFAULT_BACKEND_REG; if (!library_name) { - GGML_LOG_ERROR("cannot open the GGML library: env var '%s' not defined\n", APIR_LLAMA_CPP_GGML_LIBRARY_PATH_ENV); + GGML_LOG_ERROR(GGML_VIRTGPU_BCK + "%s: cannot open the GGML library: env var '%s' not defined\n", + __func__, APIR_LLAMA_CPP_GGML_LIBRARY_PATH_ENV); + return APIR_LOAD_LIBRARY_ENV_VAR_MISSING; } @@ -82,13 +79,16 @@ ApirLoadLibraryReturnCode apir_backend_initialize(uint32_t virgl_ctx_id, struct backend_library_handle = dlopen(library_name, RTLD_LAZY); if (!backend_library_handle) { - GGML_LOG_ERROR("cannot open the GGML library: %s\n", dlerror()); + GGML_LOG_ERROR(GGML_VIRTGPU_BCK + "%s: cannot open the GGML library: %s\n", __func__, dlerror()); return APIR_LOAD_LIBRARY_CANNOT_OPEN; } if (!library_reg) { - GGML_LOG_ERROR("cannot register the GGML library: env var '%s' not defined\n", APIR_LLAMA_CPP_GGML_LIBRARY_REG_ENV); + GGML_LOG_ERROR(GGML_VIRTGPU_BCK + "%s: cannot register the GGML library: env var '%s' not defined\n", + __func__, APIR_LLAMA_CPP_GGML_LIBRARY_REG_ENV); return APIR_LOAD_LIBRARY_ENV_VAR_MISSING; } @@ -96,8 +96,10 @@ ApirLoadLibraryReturnCode apir_backend_initialize(uint32_t virgl_ctx_id, struct void * ggml_backend_reg_fct = dlsym(backend_library_handle, library_reg); dlsym_error = dlerror(); if (dlsym_error) { - GGML_LOG_ERROR("cannot find the GGML backend registration symbol '%s' (from %s): %s\n", library_reg, - APIR_LLAMA_CPP_GGML_LIBRARY_REG_ENV, dlsym_error); + GGML_LOG_ERROR(GGML_VIRTGPU_BCK + "%s: cannot find the GGML backend registration symbol '%s' (from %s): %s\n", + __func__, library_reg, APIR_LLAMA_CPP_GGML_LIBRARY_REG_ENV, dlsym_error); + return APIR_LOAD_LIBRARY_SYMBOL_MISSING; } @@ -134,7 +136,9 @@ uint32_t apir_backend_dispatcher(uint32_t virgl_ctx_id, }; if (cmd_type >= APIR_BACKEND_DISPATCH_TABLE_COUNT) { - GGML_LOG_ERROR("Received an invalid dispatch index (%d >= %d)\n", cmd_type, APIR_BACKEND_DISPATCH_TABLE_COUNT); + GGML_LOG_ERROR(GGML_VIRTGPU_BCK + "%s: Received an invalid dispatch index (%d >= %d)\n", + __func__, cmd_type, APIR_BACKEND_DISPATCH_TABLE_COUNT); return APIR_BACKEND_FORWARD_INDEX_INVALID; } diff --git a/ggml/src/ggml-virtgpu/backend/shared/apir_cs.h b/ggml/src/ggml-virtgpu/backend/shared/apir_cs.h index 27a61091ff..1bc3a5f685 100644 --- a/ggml/src/ggml-virtgpu/backend/shared/apir_cs.h +++ b/ggml/src/ggml-virtgpu/backend/shared/apir_cs.h @@ -86,7 +86,7 @@ static inline bool apir_decoder_peek_internal(apir_decoder * dec, assert(val_size <= size); if (unlikely(size > (size_t) (dec->end - dec->cur))) { - GGML_LOG_ERROR("reading too much from the decoder ...\n"); + GGML_LOG_ERROR("%s: reading too much from the decoder ...\n", __func__); apir_decoder_set_fatal(dec); memset(val, 0, val_size); return false; @@ -103,7 +103,7 @@ static inline void apir_decoder_peek(apir_decoder * dec, size_t size, void * val static inline const void * apir_decoder_use_inplace(apir_decoder * dec, size_t size) { if (unlikely(size > (size_t) (dec->end - dec->cur))) { - GGML_LOG_ERROR("reading too much from the decoder ...\n"); + GGML_LOG_ERROR("%s: reading too much from the decoder ...\n", __func__); apir_decoder_set_fatal(dec); return NULL; } @@ -221,7 +221,7 @@ static inline uint64_t apir_decode_array_size(apir_decoder * dec, uint64_t expec uint64_t size; apir_decode_uint64_t(dec, &size); if (size != expected_size) { - GGML_LOG_ERROR("Couldn't decode array from the decoder\n"); + GGML_LOG_ERROR("%s: Couldn't decode array from the decoder\n", __func__); apir_decoder_set_fatal(dec); size = 0; } @@ -322,7 +322,7 @@ static inline void apir_decode_char_array(apir_decoder * dec, char * val, size_t if (size) { val[size - 1] = '\0'; } else { - GGML_LOG_ERROR("Couldn't decode the blog array\n"); + GGML_LOG_ERROR("%s: Couldn't decode the blog array\n", __func__); apir_decoder_set_fatal(dec); } } @@ -332,7 +332,8 @@ static inline void apir_decode_char_array(apir_decoder * dec, char * val, size_t static inline void * apir_decoder_alloc_array(size_t size, size_t count) { size_t alloc_size; if (unlikely(__builtin_mul_overflow(size, count, &alloc_size))) { - GGML_LOG_ERROR("overflow in array allocation of %zu * %zu bytes\n", size, count); + GGML_LOG_ERROR("%s: overflow in array allocation of %zu * %zu bytes\n", + __func__, size, count); return NULL; } diff --git a/ggml/src/ggml-virtgpu/backend/shared/apir_cs_ggml.h b/ggml/src/ggml-virtgpu/backend/shared/apir_cs_ggml.h index 070c3b25fb..289f4b77d7 100644 --- a/ggml/src/ggml-virtgpu/backend/shared/apir_cs_ggml.h +++ b/ggml/src/ggml-virtgpu/backend/shared/apir_cs_ggml.h @@ -39,11 +39,17 @@ static inline void apir_encode_ggml_tensor(apir_encoder * enc, const ggml_tensor static inline const ggml_tensor * apir_decode_ggml_tensor(apir_decoder * dec) { const apir_rpc_tensor * apir_rpc_tensor = apir_decode_apir_rpc_tensor_inplace(dec); + + if (!apir_rpc_tensor) { + return NULL; + } + ggml_init_params params{ /*.mem_size =*/ ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; + ggml_context * ctx = ggml_init(params); const ggml_tensor * tensor = apir_deserialize_tensor(ctx, apir_rpc_tensor); @@ -71,6 +77,10 @@ static inline ggml_backend_buffer_type_t apir_decode_ggml_buffer_type(apir_decod return (ggml_backend_buffer_type_t) handle; } +static inline void apir_encode_apir_buffer_type_host_handle(apir_encoder * enc, apir_buffer_type_host_handle_t handle) { + apir_encoder_write(enc, sizeof(handle), &handle, sizeof(handle)); +} + static inline apir_buffer_type_host_handle_t apir_decode_apir_buffer_type_host_handle(apir_decoder * dec) { apir_buffer_type_host_handle_t handle; @@ -154,13 +164,13 @@ static inline void apir_encode_ggml_tensor_inline(apir_encoder * enc, const ggml size_t tensor_size = sizeof(*tensor); if (tensor->extra) { - GGML_ABORT("Cannot pass tensors with extra"); + GGML_ABORT("%s: Cannot pass tensors with extra", __func__); } if (tensor->src[0] && tensor->buffer) { static int first = 1; if (first) { - GGML_LOG_WARN("Cannot pass tensors with src and buffer\n"); + GGML_LOG_WARN("%s: Cannot pass tensors with src and buffer\n", __func__); first = 0; } } diff --git a/ggml/src/ggml-virtgpu/ggml-backend-buffer-type.cpp b/ggml/src/ggml-virtgpu/ggml-backend-buffer-type.cpp index 7f650659b8..c493a8e2ae 100644 --- a/ggml/src/ggml-virtgpu/ggml-backend-buffer-type.cpp +++ b/ggml/src/ggml-virtgpu/ggml-backend-buffer-type.cpp @@ -6,7 +6,7 @@ static ggml_backend_buffer_t ggml_backend_remoting_buffer_type_alloc_buffer(ggml ggml_backend_remoting_buffer_context * context = (ggml_backend_remoting_buffer_context *) malloc(sizeof(*context)); if (!context) { - GGML_ABORT("Couldn't allocate the buffer context ..."); + GGML_ABORT(GGML_VIRTGPU "%s: Couldn't allocate the buffer context ...", __func__); } context->gpu = gpu; @@ -20,7 +20,7 @@ static ggml_backend_buffer_t ggml_backend_remoting_buffer_type_alloc_buffer(ggml context->base = context->apir_context.shmem.mmap_ptr; context->is_from_ptr = true; } else { - context->apir_context = apir_buffer_type_alloc_buffer(gpu, buft, size); + context->apir_context = apir_buffer_type_alloc_buffer(gpu, gpu->cached_buffer_type.host_handle, size); context->is_from_ptr = false; context->base = NULL; } @@ -34,36 +34,19 @@ static ggml_backend_buffer_t ggml_backend_remoting_buffer_type_alloc_buffer(ggml static const char * ggml_backend_remoting_buffer_type_get_name(ggml_backend_buffer_type_t buft) { virtgpu * gpu = BUFT_TO_GPU(buft); - return apir_buffer_type_get_name(gpu, buft); + return gpu->cached_buffer_type.name; } static size_t ggml_backend_remoting_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { virtgpu * gpu = BUFT_TO_GPU(buft); - static size_t align = 0; - - if (align == 0) { - align = apir_buffer_type_get_alignment(gpu, buft); - } - - return align; + return gpu->cached_buffer_type.alignment; } static size_t ggml_backend_remoting_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { virtgpu * gpu = BUFT_TO_GPU(buft); - static size_t max_size = 0; - if (max_size == 0) { - max_size = apir_buffer_type_get_max_size(gpu, buft); - } - - return max_size; -} - -static bool ggml_backend_remoting_buffer_type_is_host(ggml_backend_buffer_type_t buft) { - virtgpu * gpu = BUFT_TO_GPU(buft); - - return apir_buffer_type_is_host(gpu, buft); + return gpu->cached_buffer_type.max_size; } static size_t ggml_backend_remoting_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, @@ -76,7 +59,7 @@ static size_t ggml_backend_remoting_buffer_type_get_alloc_size(ggml_backend_buff return ggml_nbytes(tensor); } - return apir_buffer_type_get_alloc_size(gpu, buft, tensor); + return apir_buffer_type_get_alloc_size(gpu, gpu->cached_buffer_type.host_handle, tensor); } const ggml_backend_buffer_type_i ggml_backend_remoting_buffer_type_interface = { diff --git a/ggml/src/ggml-virtgpu/ggml-backend-device.cpp b/ggml/src/ggml-virtgpu/ggml-backend-device.cpp index 579eb99078..c7d2881058 100644 --- a/ggml/src/ggml-virtgpu/ggml-backend-device.cpp +++ b/ggml/src/ggml-virtgpu/ggml-backend-device.cpp @@ -3,32 +3,27 @@ static const char * ggml_backend_remoting_device_get_name(ggml_backend_dev_t dev) { virtgpu * gpu = DEV_TO_GPU(dev); - return apir_device_get_name(gpu); + return gpu->cached_device_info.name; } static const char * ggml_backend_remoting_device_get_description(ggml_backend_dev_t dev) { virtgpu * gpu = DEV_TO_GPU(dev); - return apir_device_get_description(gpu); + // Return the pre-cached description from the virtgpu structure + return gpu->cached_device_info.description; } static enum ggml_backend_dev_type ggml_backend_remoting_device_get_type(ggml_backend_dev_t dev) { virtgpu * gpu = DEV_TO_GPU(dev); - static enum ggml_backend_dev_type type; - static bool has_type = false; - if (!has_type) { - has_type = true; - type = (enum ggml_backend_dev_type) apir_device_get_type(gpu); - } - - return type; + return (enum ggml_backend_dev_type) gpu->cached_device_info.type; } static void ggml_backend_remoting_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { virtgpu * gpu = DEV_TO_GPU(dev); - return apir_device_get_memory(gpu, free, total); + *free = gpu->cached_device_info.memory_free; + *total = gpu->cached_device_info.memory_total; } static bool ggml_backend_remoting_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) { @@ -77,13 +72,22 @@ static void ggml_backend_remoting_device_get_props(ggml_backend_dev_t dev, ggml_ ggml_backend_buffer_type_t ggml_backend_remoting_device_get_buffer_type(ggml_backend_dev_t dev) { virtgpu * gpu = DEV_TO_GPU(dev); - apir_buffer_type_host_handle_t ctx = apir_device_get_buffer_type(gpu); + static std::atomic initialized = false; + static ggml_backend_buffer_type buft; - static ggml_backend_buffer_type buft{ - /* .iface = */ ggml_backend_remoting_buffer_type_interface, - /* .device = */ dev, - /* .context = */ (void *) ctx, - }; + if (!initialized) { + static std::mutex mutex; + std::lock_guard lock(mutex); + + if (!initialized) { + buft = { + /* .iface = */ ggml_backend_remoting_buffer_type_interface, + /* .device = */ dev, + /* .context = */ (void *) gpu->cached_buffer_type.host_handle, + }; + initialized = true; + } + } return &buft; } @@ -91,13 +95,22 @@ ggml_backend_buffer_type_t ggml_backend_remoting_device_get_buffer_type(ggml_bac static ggml_backend_buffer_type_t ggml_backend_remoting_device_get_buffer_from_ptr_type(ggml_backend_dev_t dev) { virtgpu * gpu = DEV_TO_GPU(dev); - apir_buffer_type_host_handle_t ctx = apir_device_get_buffer_type(gpu); + static std::atomic initialized = false; + static ggml_backend_buffer_type buft; - static ggml_backend_buffer_type buft{ - /* .iface = */ ggml_backend_remoting_buffer_from_ptr_type_interface, - /* .device = */ dev, - /* .context = */ (void *) ctx, - }; + if (!initialized) { + static std::mutex mutex; + std::lock_guard lock(mutex); + + if (!initialized) { + buft = { + /* .iface = */ ggml_backend_remoting_buffer_from_ptr_type_interface, + /* .device = */ dev, + /* .context = */ (void *) gpu->cached_buffer_type.host_handle, + }; + initialized = true; + } + } return &buft; } @@ -110,7 +123,7 @@ static ggml_backend_buffer_t ggml_backend_remoting_device_buffer_from_ptr(ggml_b ggml_backend_remoting_buffer_context * context = (ggml_backend_remoting_buffer_context *) malloc(sizeof(*context)); if (!context) { - GGML_ABORT("Couldn't allocate the buffer context ..."); + GGML_ABORT(GGML_VIRTGPU "%s: Couldn't allocate the buffer context ...", __func__); } context->gpu = gpu; diff --git a/ggml/src/ggml-virtgpu/ggml-backend-reg.cpp b/ggml/src/ggml-virtgpu/ggml-backend-reg.cpp index c46cf51c02..2d02cfec1d 100644 --- a/ggml/src/ggml-virtgpu/ggml-backend-reg.cpp +++ b/ggml/src/ggml-virtgpu/ggml-backend-reg.cpp @@ -4,37 +4,70 @@ #include #include +void ggml_virtgpu_cleanup(virtgpu * gpu); + static virtgpu * apir_initialize() { - static virtgpu * apir_gpu_instance = NULL; - static bool apir_initialized = false; + static virtgpu * gpu = NULL; + static std::atomic initialized = false; + + if (initialized) { + // fast track + return gpu; + } { static std::mutex mutex; std::lock_guard lock(mutex); - if (apir_initialized) { - return apir_gpu_instance; + if (initialized) { + // thread safe + return gpu; } - apir_gpu_instance = create_virtgpu(); - if (!apir_gpu_instance) { - GGML_ABORT("failed to initialize the virtgpu"); + gpu = create_virtgpu(); + if (!gpu) { + initialized = true; + return NULL; } - apir_initialized = true; + // Pre-fetch and cache all device information, it will not change + gpu->cached_device_info.description = apir_device_get_description(gpu); + if (!gpu->cached_device_info.description) { + GGML_ABORT(GGML_VIRTGPU "%s: failed to initialize the virtgpu device description", __func__); + } + gpu->cached_device_info.name = apir_device_get_name(gpu); + if (!gpu->cached_device_info.name) { + GGML_ABORT(GGML_VIRTGPU "%s: failed to initialize the virtgpu device name", __func__); + } + gpu->cached_device_info.device_count = apir_device_get_count(gpu); + gpu->cached_device_info.type = apir_device_get_type(gpu); + + apir_device_get_memory(gpu, + &gpu->cached_device_info.memory_free, + &gpu->cached_device_info.memory_total); + + apir_buffer_type_host_handle_t buft_host_handle = apir_device_get_buffer_type(gpu); + gpu->cached_buffer_type.host_handle = buft_host_handle; + gpu->cached_buffer_type.name = apir_buffer_type_get_name(gpu, buft_host_handle); + if (!gpu->cached_buffer_type.name) { + GGML_ABORT(GGML_VIRTGPU "%s: failed to initialize the virtgpu buffer type name", __func__); + } + gpu->cached_buffer_type.alignment = apir_buffer_type_get_alignment(gpu, buft_host_handle); + gpu->cached_buffer_type.max_size = apir_buffer_type_get_max_size(gpu, buft_host_handle); + + initialized = true; } - return apir_gpu_instance; + return gpu; } static int ggml_backend_remoting_get_device_count() { virtgpu * gpu = apir_initialize(); if (!gpu) { - GGML_LOG_WARN("apir_initialize failed\n"); return 0; } - return apir_device_get_count(gpu); + return gpu->cached_device_info.device_count; } static size_t ggml_backend_remoting_reg_get_device_count(ggml_backend_reg_t reg) { @@ -52,17 +85,21 @@ ggml_backend_dev_t ggml_backend_remoting_get_device(size_t device) { static void ggml_backend_remoting_reg_init_devices(ggml_backend_reg_t reg) { if (devices.size() > 0) { - GGML_LOG_INFO("%s: already initialized\n", __func__); + GGML_LOG_INFO(GGML_VIRTGPU "%s: already initialized\n", __func__); return; } virtgpu * gpu = apir_initialize(); if (!gpu) { - GGML_LOG_ERROR("apir_initialize failed\n"); + GGML_LOG_ERROR(GGML_VIRTGPU "%s: apir_initialize failed\n", __func__); return; } - static bool initialized = false; + static std::atomic initialized = false; + + if (initialized) { + return; // fast track + } { static std::mutex mutex; @@ -70,10 +107,10 @@ static void ggml_backend_remoting_reg_init_devices(ggml_backend_reg_t reg) { if (!initialized) { for (int i = 0; i < ggml_backend_remoting_get_device_count(); i++) { ggml_backend_remoting_device_context * ctx = new ggml_backend_remoting_device_context; - char desc[256] = "API Remoting device"; + char desc[256] = "ggml-virtgpu API Remoting device"; ctx->device = i; - ctx->name = GGML_REMOTING_FRONTEND_NAME + std::to_string(i); + ctx->name = GGML_VIRTGPU_NAME + std::to_string(i); ctx->description = desc; ctx->gpu = gpu; @@ -98,7 +135,7 @@ static ggml_backend_dev_t ggml_backend_remoting_reg_get_device(ggml_backend_reg_ static const char * ggml_backend_remoting_reg_get_name(ggml_backend_reg_t reg) { UNUSED(reg); - return GGML_REMOTING_FRONTEND_NAME; + return GGML_VIRTGPU_NAME; } static const ggml_backend_reg_i ggml_backend_remoting_reg_i = { @@ -111,8 +148,7 @@ static const ggml_backend_reg_i ggml_backend_remoting_reg_i = { ggml_backend_reg_t ggml_backend_virtgpu_reg() { virtgpu * gpu = apir_initialize(); if (!gpu) { - GGML_LOG_ERROR("virtgpu_apir_initialize failed\n"); - return NULL; + GGML_LOG_ERROR(GGML_VIRTGPU "%s: virtgpu_apir_initialize failed\n", __func__); } static ggml_backend_reg reg = { @@ -129,9 +165,25 @@ ggml_backend_reg_t ggml_backend_virtgpu_reg() { ggml_backend_remoting_reg_init_devices(®); - GGML_LOG_INFO("%s: initialized\n", __func__); - return ® } +// public function, not exposed in the GGML interface at the moment +void ggml_virtgpu_cleanup(virtgpu * gpu) { + if (gpu->cached_device_info.name) { + free(gpu->cached_device_info.name); + gpu->cached_device_info.name = NULL; + } + if (gpu->cached_device_info.description) { + free(gpu->cached_device_info.description); + gpu->cached_device_info.description = NULL; + } + if (gpu->cached_buffer_type.name) { + free(gpu->cached_buffer_type.name); + gpu->cached_buffer_type.name = NULL; + } + + mtx_destroy(&gpu->data_shmem_mutex); +} + GGML_BACKEND_DL_IMPL(ggml_backend_virtgpu_reg) diff --git a/ggml/src/ggml-virtgpu/ggml-remoting.h b/ggml/src/ggml-virtgpu/ggml-remoting.h index 36fc6b2a7b..0876640867 100644 --- a/ggml/src/ggml-virtgpu/ggml-remoting.h +++ b/ggml/src/ggml-virtgpu/ggml-remoting.h @@ -8,6 +8,9 @@ #include #include +#define GGML_VIRTGPU_NAME "ggml-virtgpu" +#define GGML_VIRTGPU "ggml-virtgpu: " + // USE_ALWAYS_TRUE_SUPPORTS_OP: 1 is fast, 0 avoid micro-benchmark crashes #define USE_ALWAYS_TRUE_SUPPORTS_OP 1 @@ -62,7 +65,7 @@ static inline apir_buffer_type_host_handle_t ggml_buffer_type_to_apir_handle(ggm static inline apir_buffer_host_handle_t ggml_buffer_to_apir_handle(ggml_backend_buffer_t buffer) { if (!buffer->context) { - GGML_ABORT("%s: no context available :/", __func__); + GGML_ABORT(GGML_VIRTGPU "%s: no context available :/", __func__); } return BUFFER_TO_HOST_HANDLE(buffer); } diff --git a/ggml/src/ggml-virtgpu/ggmlremoting_functions.yaml b/ggml/src/ggml-virtgpu/ggmlremoting_functions.yaml index 0b7cccfe9c..14ef2433e4 100644 --- a/ggml/src/ggml-virtgpu/ggmlremoting_functions.yaml +++ b/ggml/src/ggml-virtgpu/ggmlremoting_functions.yaml @@ -24,10 +24,10 @@ functions: frontend_return: "int" get_name: - frontend_return: "const char *" + frontend_return: "char *" get_description: - frontend_return: "const char *" + frontend_return: "char *" get_type: frontend_return: "uint32_t" @@ -64,35 +64,33 @@ functions: group_description: "buffer-type" functions: get_name: - frontend_return: "const char *" + frontend_return: "char *" frontend_extra_params: - - "ggml_backend_buffer_type_t buft" + - "apir_buffer_type_host_handle_t host_handle" get_alignment: frontend_return: "size_t" frontend_extra_params: - - "ggml_backend_buffer_type_t buft" + - "apir_buffer_type_host_handle_t host_handle" get_max_size: frontend_return: "size_t" frontend_extra_params: - - "ggml_backend_buffer_type_t buft" + - "apir_buffer_type_host_handle_t host_handle" is_host: - frontend_return: "bool" - frontend_extra_params: - - "ggml_backend_buffer_type_t buft" + deprecated: true alloc_buffer: frontend_return: "apir_buffer_context_t" frontend_extra_params: - - "ggml_backend_buffer_type_t buffer_buft" + - "apir_buffer_type_host_handle_t host_handle" - "size_t size" get_alloc_size: frontend_return: "size_t" frontend_extra_params: - - "ggml_backend_buffer_type_t buft" + - "apir_buffer_type_host_handle_t host_handle" - "const ggml_tensor *op" buffer: diff --git a/ggml/src/ggml-virtgpu/regenerate_remoting.py b/ggml/src/ggml-virtgpu/regenerate_remoting.py index 4174a24327..aeb48a4087 100755 --- a/ggml/src/ggml-virtgpu/regenerate_remoting.py +++ b/ggml/src/ggml-virtgpu/regenerate_remoting.py @@ -116,7 +116,7 @@ class RemotingCodebaseGenerator: 'frontend_return': func_metadata.get('frontend_return', 'void'), 'frontend_extra_params': func_metadata.get('frontend_extra_params', []), 'group_description': group_description, - 'newly_added': func_metadata.get('newly_added', False) + 'deprecated': func_metadata.get('deprecated', False), }) enum_value += 1 @@ -165,6 +165,9 @@ class RemotingCodebaseGenerator: signature = "uint32_t" params = "apir_encoder *enc, apir_decoder *dec, virgl_apir_context *ctx" + if func['deprecated']: + decl_lines.append(f"/* {func['enum_name']} is deprecated. Keeping the handler for backward compatibility. */") + decl_lines.append(f"{signature} {func['backend_function']}({params});") # Switch cases @@ -176,7 +179,9 @@ class RemotingCodebaseGenerator: switch_lines.append(f" /* {func['group_description']} */") current_group = func['group_name'] - switch_lines.append(f" case {func['enum_name']}: return \"{func['backend_function']}\";") + deprecated = " (DEPRECATED)" if func['deprecated'] else "" + + switch_lines.append(f" case {func['enum_name']}: return \"{func['backend_function']}{deprecated}\";") # Dispatch table table_lines = [] @@ -188,7 +193,8 @@ class RemotingCodebaseGenerator: table_lines.append("") current_group = func['group_name'] - table_lines.append(f" /* {func['enum_name']} = */ {func['backend_function']},") + deprecated = " /* DEPRECATED */" if func['deprecated'] else "" + table_lines.append(f" /* {func['enum_name']} = */ {func['backend_function']}{deprecated},") header_content = f'''\ #pragma once @@ -225,6 +231,10 @@ static const backend_dispatch_t apir_backend_dispatch_table[APIR_BACKEND_DISPATC decl_lines.append(f"/* {func['group_description']} */") current_group = func['group_name'] + if func['deprecated']: + decl_lines.append(f"/* {func['frontend_function']} is deprecated. */") + continue + # Build parameter list params = [self.naming_patterns['frontend_base_param']] params.extend(func['frontend_extra_params']) @@ -287,7 +297,7 @@ static const backend_dispatch_t apir_backend_dispatch_table[APIR_BACKEND_DISPATC generated_files = [apir_backend_path, backend_dispatched_path, virtgpu_forward_path] if not self.clang_format_available: - logging.warning("\n⚠️clang-format not found in PATH. Generated files will not be formatted." + logging.warning("\n⚠️clang-format not found in PATH. Generated files will not be formatted.\n" " Install clang-format to enable automatic code formatting.") else: logging.info("\n🎨 Formatting files with clang-format...") diff --git a/ggml/src/ggml-virtgpu/virtgpu-forward-backend.cpp b/ggml/src/ggml-virtgpu/virtgpu-forward-backend.cpp index bf3c41011a..07d9a66849 100644 --- a/ggml/src/ggml-virtgpu/virtgpu-forward-backend.cpp +++ b/ggml/src/ggml-virtgpu/virtgpu-forward-backend.cpp @@ -18,12 +18,17 @@ ggml_status apir_backend_graph_compute(virtgpu * gpu, ggml_cgraph * cgraph) { virtgpu_shmem temp_shmem; // Local storage for large buffers virtgpu_shmem * shmem = &temp_shmem; + bool using_shared_shmem = false; if (cgraph_size <= gpu->data_shmem.mmap_size) { - // prefer the init-time allocated page, if large enough + // Lock mutex before using shared data_shmem buffer + if (mtx_lock(&gpu->data_shmem_mutex) != thrd_success) { + GGML_ABORT(GGML_VIRTGPU "%s: Failed to lock data_shmem mutex", __func__); + } + using_shared_shmem = true; shmem = &gpu->data_shmem; } else if (virtgpu_shmem_create(gpu, cgraph_size, shmem)) { - GGML_ABORT("Couldn't allocate the guest-host shared buffer"); + GGML_ABORT(GGML_VIRTGPU "%s: Couldn't allocate the guest-host shared buffer", __func__); } apir_encode_virtgpu_shmem_res_id(encoder, shmem->res_id); @@ -42,7 +47,10 @@ ggml_status apir_backend_graph_compute(virtgpu * gpu, ggml_cgraph * cgraph) { remote_call_finish(gpu, encoder, decoder); - if (shmem != &gpu->data_shmem) { + // Unlock mutex before cleanup + if (using_shared_shmem) { + mtx_unlock(&gpu->data_shmem_mutex); + } else { virtgpu_shmem_destroy(gpu, shmem); } diff --git a/ggml/src/ggml-virtgpu/virtgpu-forward-buffer-type.cpp b/ggml/src/ggml-virtgpu/virtgpu-forward-buffer-type.cpp index 03cb09e064..cab74fd170 100644 --- a/ggml/src/ggml-virtgpu/virtgpu-forward-buffer-type.cpp +++ b/ggml/src/ggml-virtgpu/virtgpu-forward-buffer-type.cpp @@ -1,20 +1,20 @@ #include "virtgpu-forward-impl.h" -const char * apir_buffer_type_get_name(virtgpu * gpu, ggml_backend_buffer_type_t buft) { +char * apir_buffer_type_get_name(virtgpu * gpu, apir_buffer_type_host_handle_t host_handle) { apir_encoder * encoder; apir_decoder * decoder; ApirForwardReturnCode ret; REMOTE_CALL_PREPARE(gpu, encoder, APIR_COMMAND_TYPE_BUFFER_TYPE_GET_NAME); - apir_encode_ggml_buffer_type(encoder, buft); + apir_encode_apir_buffer_type_host_handle(encoder, host_handle); REMOTE_CALL(gpu, encoder, decoder, ret); const size_t string_size = apir_decode_array_size_unchecked(decoder); char * string = (char *) apir_decoder_alloc_array(sizeof(char), string_size); if (!string) { - GGML_LOG_ERROR("%s: Could not allocate the device name buffer\n", __func__); + GGML_LOG_ERROR(GGML_VIRTGPU "%s: Could not allocate the device name buffer\n", __func__); apir_decoder_set_fatal(decoder); } apir_decode_char_array(decoder, string, string_size); @@ -24,14 +24,14 @@ const char * apir_buffer_type_get_name(virtgpu * gpu, ggml_backend_buffer_type_t return string; } -size_t apir_buffer_type_get_alignment(virtgpu * gpu, ggml_backend_buffer_type_t buft) { +size_t apir_buffer_type_get_alignment(virtgpu * gpu, apir_buffer_type_host_handle_t host_handle) { apir_encoder * encoder; apir_decoder * decoder; ApirForwardReturnCode ret; REMOTE_CALL_PREPARE(gpu, encoder, APIR_COMMAND_TYPE_BUFFER_TYPE_GET_ALIGNMENT); - apir_encode_ggml_buffer_type(encoder, buft); + apir_encode_apir_buffer_type_host_handle(encoder, host_handle); REMOTE_CALL(gpu, encoder, decoder, ret); @@ -43,14 +43,14 @@ size_t apir_buffer_type_get_alignment(virtgpu * gpu, ggml_backend_buffer_type_t return alignment; } -size_t apir_buffer_type_get_max_size(virtgpu * gpu, ggml_backend_buffer_type_t buft) { +size_t apir_buffer_type_get_max_size(virtgpu * gpu, apir_buffer_type_host_handle_t host_handle) { apir_encoder * encoder; apir_decoder * decoder; ApirForwardReturnCode ret; REMOTE_CALL_PREPARE(gpu, encoder, APIR_COMMAND_TYPE_BUFFER_TYPE_GET_MAX_SIZE); - apir_encode_ggml_buffer_type(encoder, buft); + apir_encode_apir_buffer_type_host_handle(encoder, host_handle); REMOTE_CALL(gpu, encoder, decoder, ret); @@ -62,26 +62,7 @@ size_t apir_buffer_type_get_max_size(virtgpu * gpu, ggml_backend_buffer_type_t b return max_size; } -bool apir_buffer_type_is_host(virtgpu * gpu, ggml_backend_buffer_type_t buft) { - apir_encoder * encoder; - apir_decoder * decoder; - ApirForwardReturnCode ret; - - REMOTE_CALL_PREPARE(gpu, encoder, APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST); - - apir_encode_ggml_buffer_type(encoder, buft); - - REMOTE_CALL(gpu, encoder, decoder, ret); - - bool is_host; - apir_decode_bool_t(decoder, &is_host); - - remote_call_finish(gpu, encoder, decoder); - - return is_host; -} - -apir_buffer_context_t apir_buffer_type_alloc_buffer(virtgpu * gpu, ggml_backend_buffer_type_t buft, size_t size) { +apir_buffer_context_t apir_buffer_type_alloc_buffer(virtgpu * gpu, apir_buffer_type_host_handle_t host_handle, size_t size) { apir_encoder * encoder; apir_decoder * decoder; ApirForwardReturnCode ret; @@ -90,7 +71,7 @@ apir_buffer_context_t apir_buffer_type_alloc_buffer(virtgpu * gpu, ggml_backend_ REMOTE_CALL_PREPARE(gpu, encoder, APIR_COMMAND_TYPE_BUFFER_TYPE_ALLOC_BUFFER); - apir_encode_ggml_buffer_type(encoder, buft); + apir_encode_apir_buffer_type_host_handle(encoder, host_handle); apir_encode_size_t(encoder, &size); @@ -103,14 +84,14 @@ apir_buffer_context_t apir_buffer_type_alloc_buffer(virtgpu * gpu, ggml_backend_ return buffer_context; } -size_t apir_buffer_type_get_alloc_size(virtgpu * gpu, ggml_backend_buffer_type_t buft, const ggml_tensor * op) { +size_t apir_buffer_type_get_alloc_size(virtgpu * gpu, apir_buffer_type_host_handle_t host_handle, const ggml_tensor * op) { apir_encoder * encoder; apir_decoder * decoder; ApirForwardReturnCode ret; REMOTE_CALL_PREPARE(gpu, encoder, APIR_COMMAND_TYPE_BUFFER_TYPE_GET_ALLOC_SIZE); - apir_encode_ggml_buffer_type(encoder, buft); + apir_encode_apir_buffer_type_host_handle(encoder, host_handle); apir_encode_ggml_tensor_inline(encoder, op); diff --git a/ggml/src/ggml-virtgpu/virtgpu-forward-buffer.cpp b/ggml/src/ggml-virtgpu/virtgpu-forward-buffer.cpp index 3181e39440..86eee358cf 100644 --- a/ggml/src/ggml-virtgpu/virtgpu-forward-buffer.cpp +++ b/ggml/src/ggml-virtgpu/virtgpu-forward-buffer.cpp @@ -36,13 +36,18 @@ void apir_buffer_set_tensor(virtgpu * gpu, virtgpu_shmem temp_shmem; // Local storage for large buffers virtgpu_shmem * shmem = &temp_shmem; + bool using_shared_shmem = false; if (size <= gpu->data_shmem.mmap_size) { - // prefer the init-time allocated page, if large enough + // Lock mutex before using shared data_shmem buffer + if (mtx_lock(&gpu->data_shmem_mutex) != thrd_success) { + GGML_ABORT(GGML_VIRTGPU "%s: Failed to lock data_shmem mutex", __func__); + } + using_shared_shmem = true; shmem = &gpu->data_shmem; } else if (virtgpu_shmem_create(gpu, size, shmem)) { - GGML_ABORT("Couldn't allocate the guest-host shared buffer"); + GGML_ABORT(GGML_VIRTGPU "%s: Couldn't allocate the guest-host shared buffer", __func__); } memcpy(shmem->mmap_ptr, data, size); @@ -55,7 +60,10 @@ void apir_buffer_set_tensor(virtgpu * gpu, remote_call_finish(gpu, encoder, decoder); - if (shmem != &gpu->data_shmem) { + // Unlock mutex before cleanup + if (using_shared_shmem) { + mtx_unlock(&gpu->data_shmem_mutex); + } else { virtgpu_shmem_destroy(gpu, shmem); } @@ -79,13 +87,18 @@ void apir_buffer_get_tensor(virtgpu * gpu, virtgpu_shmem temp_shmem; // Local storage for large buffers virtgpu_shmem * shmem = &temp_shmem; + bool using_shared_shmem = false; if (size <= gpu->data_shmem.mmap_size) { - // prefer the init-time allocated page, if large enough + // Lock mutex before using shared data_shmem buffer + if (mtx_lock(&gpu->data_shmem_mutex) != thrd_success) { + GGML_ABORT(GGML_VIRTGPU "%s: Failed to lock data_shmem mutex", __func__); + } + using_shared_shmem = true; shmem = &gpu->data_shmem; } else if (virtgpu_shmem_create(gpu, size, shmem)) { - GGML_ABORT("Couldn't allocate the guest-host shared buffer"); + GGML_ABORT(GGML_VIRTGPU "%s: Couldn't allocate the guest-host shared buffer", __func__); } apir_encode_virtgpu_shmem_res_id(encoder, shmem->res_id); @@ -98,7 +111,10 @@ void apir_buffer_get_tensor(virtgpu * gpu, remote_call_finish(gpu, encoder, decoder); - if (shmem != &gpu->data_shmem) { + // Unlock mutex before cleanup + if (using_shared_shmem) { + mtx_unlock(&gpu->data_shmem_mutex); + } else { virtgpu_shmem_destroy(gpu, shmem); } } diff --git a/ggml/src/ggml-virtgpu/virtgpu-forward-device.cpp b/ggml/src/ggml-virtgpu/virtgpu-forward-device.cpp index 3e45e55bdc..4b6b8f527b 100644 --- a/ggml/src/ggml-virtgpu/virtgpu-forward-device.cpp +++ b/ggml/src/ggml-virtgpu/virtgpu-forward-device.cpp @@ -2,11 +2,6 @@ #include "virtgpu-shm.h" int apir_device_get_count(virtgpu * gpu) { - static int32_t dev_count = -1; - if (dev_count != -1) { - return dev_count; - } - apir_encoder * encoder; apir_decoder * decoder; ApirForwardReturnCode ret; @@ -14,6 +9,7 @@ int apir_device_get_count(virtgpu * gpu) { REMOTE_CALL_PREPARE(gpu, encoder, APIR_COMMAND_TYPE_DEVICE_GET_COUNT); REMOTE_CALL(gpu, encoder, decoder, ret); + int32_t dev_count = -1; apir_decode_int32_t(decoder, &dev_count); remote_call_finish(gpu, encoder, decoder); @@ -21,11 +17,7 @@ int apir_device_get_count(virtgpu * gpu) { return dev_count; } -const char * apir_device_get_name(virtgpu * gpu) { - static char * string = nullptr; - if (string) { - return string; - } +char * apir_device_get_name(virtgpu * gpu) { apir_encoder * encoder; apir_decoder * decoder; ApirForwardReturnCode ret; @@ -34,9 +26,9 @@ const char * apir_device_get_name(virtgpu * gpu) { REMOTE_CALL(gpu, encoder, decoder, ret); const size_t string_size = apir_decode_array_size_unchecked(decoder); - string = (char *) apir_decoder_alloc_array(sizeof(char), string_size); + char * string = (char *) apir_decoder_alloc_array(sizeof(char), string_size); if (!string) { - GGML_LOG_ERROR("%s: Could not allocate the device name buffer\n", __func__); + GGML_LOG_ERROR(GGML_VIRTGPU "%s: Could not allocate the device name buffer\n", __func__); return NULL; } apir_decode_char_array(decoder, string, string_size); @@ -46,7 +38,7 @@ const char * apir_device_get_name(virtgpu * gpu) { return string; } -const char * apir_device_get_description(virtgpu * gpu) { +char * apir_device_get_description(virtgpu * gpu) { apir_encoder * encoder; apir_decoder * decoder; ApirForwardReturnCode ret; @@ -58,7 +50,7 @@ const char * apir_device_get_description(virtgpu * gpu) { const size_t string_size = apir_decode_array_size_unchecked(decoder); char * string = (char *) apir_decoder_alloc_array(sizeof(char), string_size); if (!string) { - GGML_LOG_ERROR("%s: Could not allocate the device description buffer\n", __func__); + GGML_LOG_ERROR(GGML_VIRTGPU "%s: Could not allocate the device description buffer\n", __func__); return NULL; } @@ -181,7 +173,7 @@ apir_buffer_context_t apir_device_buffer_from_ptr(virtgpu * gpu, size_t size, si REMOTE_CALL_PREPARE(gpu, encoder, APIR_COMMAND_TYPE_DEVICE_BUFFER_FROM_PTR); if (virtgpu_shmem_create(gpu, size, &buffer_context.shmem)) { - GGML_ABORT("Couldn't allocate the guest-host shared buffer"); + GGML_ABORT(GGML_VIRTGPU "Couldn't allocate the guest-host shared buffer"); } apir_encode_virtgpu_shmem_res_id(encoder, buffer_context.shmem.res_id); diff --git a/ggml/src/ggml-virtgpu/virtgpu-forward-impl.h b/ggml/src/ggml-virtgpu/virtgpu-forward-impl.h index eea3e7e5a9..f23c75bb96 100644 --- a/ggml/src/ggml-virtgpu/virtgpu-forward-impl.h +++ b/ggml/src/ggml-virtgpu/virtgpu-forward-impl.h @@ -11,7 +11,7 @@ int32_t forward_flag = (int32_t) apir_command_type__; \ encoder_name = remote_call_prepare(gpu_dev_name, APIR_COMMAND_TYPE_FORWARD, forward_flag); \ if (!encoder_name) { \ - GGML_ABORT("%s: failed to prepare the remote call encoder", __func__); \ + GGML_ABORT(GGML_VIRTGPU "%s: failed to prepare the remote call encoder", __func__); \ } \ } while (0) @@ -19,10 +19,10 @@ do { \ ret_name = (ApirForwardReturnCode) remote_call(gpu_dev_name, encoder_name, &decoder_name, 0, NULL); \ if (!decoder_name) { \ - GGML_ABORT("%s: failed to kick the remote call", __func__); \ + GGML_ABORT(GGML_VIRTGPU "%s: failed to kick the remote call", __func__); \ } \ if (ret_name < APIR_FORWARD_BASE_INDEX) { \ - GGML_ABORT("%s: failed to forward the API call: %s: code %d", __func__, \ + GGML_ABORT(GGML_VIRTGPU "%s: failed to forward the API call: %s: code %d", __func__, \ apir_forward_error(ret_name), ret_name); \ } \ ret_name = (ApirForwardReturnCode) (ret_name - APIR_FORWARD_BASE_INDEX); \ diff --git a/ggml/src/ggml-virtgpu/virtgpu-forward.gen.h b/ggml/src/ggml-virtgpu/virtgpu-forward.gen.h index c27c07f086..fe4cae2025 100644 --- a/ggml/src/ggml-virtgpu/virtgpu-forward.gen.h +++ b/ggml/src/ggml-virtgpu/virtgpu-forward.gen.h @@ -3,8 +3,8 @@ /* device */ void apir_device_get_device_count(struct virtgpu * gpu); int apir_device_get_count(struct virtgpu * gpu); -const char * apir_device_get_name(struct virtgpu * gpu); -const char * apir_device_get_description(struct virtgpu * gpu); +char * apir_device_get_name(struct virtgpu * gpu); +char * apir_device_get_description(struct virtgpu * gpu); uint32_t apir_device_get_type(struct virtgpu * gpu); void apir_device_get_memory(struct virtgpu * gpu, size_t * free, size_t * total); bool apir_device_supports_op(struct virtgpu * gpu, const ggml_tensor * op); @@ -17,14 +17,15 @@ void apir_device_get_props(struct virtgpu * gpu, apir_buffer_context_t apir_device_buffer_from_ptr(struct virtgpu * gpu, size_t size, size_t max_tensor_size); /* buffer-type */ -const char * apir_buffer_type_get_name(struct virtgpu * gpu, ggml_backend_buffer_type_t buft); -size_t apir_buffer_type_get_alignment(struct virtgpu * gpu, ggml_backend_buffer_type_t buft); -size_t apir_buffer_type_get_max_size(struct virtgpu * gpu, ggml_backend_buffer_type_t buft); -bool apir_buffer_type_is_host(struct virtgpu * gpu, ggml_backend_buffer_type_t buft); -apir_buffer_context_t apir_buffer_type_alloc_buffer(struct virtgpu * gpu, - ggml_backend_buffer_type_t buffer_buft, - size_t size); -size_t apir_buffer_type_get_alloc_size(struct virtgpu * gpu, ggml_backend_buffer_type_t buft, const ggml_tensor * op); +char * apir_buffer_type_get_name(struct virtgpu * gpu, apir_buffer_type_host_handle_t host_handle); +size_t apir_buffer_type_get_alignment(struct virtgpu * gpu, apir_buffer_type_host_handle_t host_handle); +size_t apir_buffer_type_get_max_size(struct virtgpu * gpu, apir_buffer_type_host_handle_t host_handle); +apir_buffer_context_t apir_buffer_type_alloc_buffer(struct virtgpu * gpu, + apir_buffer_type_host_handle_t host_handle, + size_t size); +size_t apir_buffer_type_get_alloc_size(struct virtgpu * gpu, + apir_buffer_type_host_handle_t host_handle, + const ggml_tensor * op); /* buffer */ void * apir_buffer_get_base(struct virtgpu * gpu, apir_buffer_context_t * buffer_context); diff --git a/ggml/src/ggml-virtgpu/virtgpu-shm.cpp b/ggml/src/ggml-virtgpu/virtgpu-shm.cpp index 4def405a62..ce6b3b3e60 100644 --- a/ggml/src/ggml-virtgpu/virtgpu-shm.cpp +++ b/ggml/src/ggml-virtgpu/virtgpu-shm.cpp @@ -85,8 +85,7 @@ int virtgpu_shmem_create(virtgpu * gpu, size_t size, virtgpu_shmem * shmem) { void * ptr = virtgpu_ioctl_map(gpu, gem_handle, size); if (!ptr) { virtgpu_ioctl_gem_close(gpu, gem_handle); - GGML_LOG_ERROR("virtgpu_ioctl_map FAILED\n"); - exit(1); + GGML_LOG_ERROR(GGML_VIRTGPU "%s: virtgpu_ioctl_map failed\n", __func__); return 1; } diff --git a/ggml/src/ggml-virtgpu/virtgpu.cpp b/ggml/src/ggml-virtgpu/virtgpu.cpp index 005c8e21db..1e650dc65b 100644 --- a/ggml/src/ggml-virtgpu/virtgpu.cpp +++ b/ggml/src/ggml-virtgpu/virtgpu.cpp @@ -33,7 +33,7 @@ static int virtgpu_handshake(virtgpu * gpu) { encoder = remote_call_prepare(gpu, APIR_COMMAND_TYPE_HANDSHAKE, 0); if (!encoder) { - GGML_ABORT("%s: failed to prepare the remote call encoder", __func__); + GGML_ABORT(GGML_VIRTGPU "%s: failed to prepare the remote call encoder", __func__); return 1; } @@ -52,7 +52,7 @@ static int virtgpu_handshake(virtgpu * gpu) { log_call_duration(call_duration_ns, "API Remoting handshake"); if (!decoder) { - GGML_ABORT( + GGML_ABORT(GGML_VIRTGPU "%s: failed to initiate the communication with the virglrenderer library. " "Most likely, the wrong virglrenderer library was loaded in the hypervisor.", __func__); @@ -65,7 +65,8 @@ static int virtgpu_handshake(virtgpu * gpu) { uint32_t host_minor; if (ret_magic != APIR_HANDSHAKE_MAGIC) { - GGML_ABORT("%s: handshake with the virglrenderer failed (code=%d | %s)", __func__, ret_magic, + GGML_ABORT(GGML_VIRTGPU + "%s: handshake with the virglrenderer failed (code=%d | %s)", __func__, ret_magic, apir_backend_initialize_error(ret_magic)); } else { apir_decode_uint32_t(decoder, &host_major); @@ -78,13 +79,13 @@ static int virtgpu_handshake(virtgpu * gpu) { return 1; } - GGML_LOG_INFO("%s: Guest is running with %u.%u\n", __func__, guest_major, guest_minor); - GGML_LOG_INFO("%s: Host is running with %u.%u\n", __func__, host_major, host_minor); + GGML_LOG_INFO(GGML_VIRTGPU "%s: Guest is running with %u.%u\n", __func__, guest_major, guest_minor); + GGML_LOG_INFO(GGML_VIRTGPU "%s: Host is running with %u.%u\n", __func__, host_major, host_minor); if (guest_major != host_major) { - GGML_LOG_ERROR("Host major (%d) and guest major (%d) version differ\n", host_major, guest_major); + GGML_LOG_ERROR(GGML_VIRTGPU "Host major (%d) and guest major (%d) version differ\n", host_major, guest_major); } else if (guest_minor != host_minor) { - GGML_LOG_WARN("Host minor (%d) and guest minor (%d) version differ\n", host_minor, guest_minor); + GGML_LOG_WARN(GGML_VIRTGPU "Host minor (%d) and guest minor (%d) version differ\n", host_minor, guest_minor); } return 0; @@ -97,7 +98,7 @@ static ApirLoadLibraryReturnCode virtgpu_load_library(virtgpu * gpu) { encoder = remote_call_prepare(gpu, APIR_COMMAND_TYPE_LOADLIBRARY, 0); if (!encoder) { - GGML_ABORT("%s: hypercall error: failed to prepare the remote call encoder", __func__); + GGML_ABORT(GGML_VIRTGPU "%s: hypercall error: failed to prepare the API Remoting command encoder", __func__); return APIR_LOAD_LIBRARY_HYPERCALL_INITIALIZATION_ERROR; } @@ -108,36 +109,67 @@ static ApirLoadLibraryReturnCode virtgpu_load_library(virtgpu * gpu) { log_call_duration(call_duration_ns, "API Remoting LoadLibrary"); if (!decoder) { - GGML_ABORT("%s: hypercall error: failed to kick the API remoting hypercall.\n", __func__); + GGML_ABORT(GGML_VIRTGPU "%s: hypercall error: failed to trigger the API Remoting hypercall.\n", __func__); return APIR_LOAD_LIBRARY_HYPERCALL_INITIALIZATION_ERROR; } remote_call_finish(gpu, encoder, decoder); if (ret == APIR_LOAD_LIBRARY_SUCCESS) { - GGML_LOG_INFO("%s: The API Remoting backend was successfully loaded and initialized\n", __func__); + GGML_LOG_INFO(GGML_VIRTGPU "The API Remoting backend was successfully loaded and initialized\n"); return ret; } // something wrong happened, find out what. - if (ret < APIR_LOAD_LIBRARY_INIT_BASE_INDEX) { - GGML_ABORT("%s: virglrenderer could not load the API Remoting backend library: %s (code %d)", __func__, - apir_load_library_error(ret), ret); + if (ret == APIR_LOAD_LIBRARY_ENV_VAR_MISSING) { + GGML_ABORT(GGML_VIRTGPU + "%s: virglrenderer could not open the API Remoting backend library, " + "some environment variables are missing. " + "Make sure virglrenderer is correctly configured by the hypervisor. (%s)", + __func__, apir_load_library_error(ret)); + } else if (ret == APIR_LOAD_LIBRARY_CANNOT_OPEN) { + GGML_ABORT(GGML_VIRTGPU + "%s: virglrenderer could not open the API Remoting backend library. " + "Make sure virglrenderer is correctly configured by the hypervisor. (%s)", + __func__, apir_load_library_error(ret)); + } else if (ret == APIR_LOAD_LIBRARY_ENV_VAR_MISSING) { + GGML_ABORT(GGML_VIRTGPU + "%s: could not load the backend library, some symbols are missing. " + "Make sure virglrenderer is correctly configured by the hypervisor. (%s) ", + __func__, apir_load_library_error(ret)); + } else { + GGML_ABORT(GGML_VIRTGPU + "%s: virglrenderer could not load the API Remoting backend library. (%s - code %d)", __func__, + apir_load_library_error(ret), ret); + } return ret; } - GGML_LOG_INFO("%s: virglrenderer successfully loaded the API Remoting backend library", __func__); + GGML_LOG_INFO(GGML_VIRTGPU + "%s: virglrenderer successfully loaded the API Remoting backend library.\n", __func__); ApirLoadLibraryReturnCode apir_ret = (ApirLoadLibraryReturnCode) (ret - APIR_LOAD_LIBRARY_INIT_BASE_INDEX); - if (apir_ret < APIR_LOAD_LIBRARY_INIT_BASE_INDEX) { - GGML_ABORT("%s: the API Remoting backend library couldn't load the backend library: apir code=%d | %s)", + if (apir_ret == APIR_LOAD_LIBRARY_CANNOT_OPEN) { + GGML_ABORT(GGML_VIRTGPU + "%s: the API Remoting backend library couldn't load the GGML backend library. " + "Make sure virglrenderer is correctly configured by the hypervisor. (%s)", + __func__, apir_load_library_error(apir_ret)); + } else if (apir_ret == APIR_LOAD_LIBRARY_SYMBOL_MISSING) { + GGML_ABORT(GGML_VIRTGPU + "%s: the API Remoting backend library couldn't load the GGML backend library, some symbols are missing. " + "Make sure virglrenderer is correctly configured by the hypervisor. (%s)", + __func__, apir_load_library_error(apir_ret)); + } else if (apir_ret < APIR_LOAD_LIBRARY_INIT_BASE_INDEX) { + GGML_ABORT(GGML_VIRTGPU + "%s: the API Remoting backend library couldn't load the GGML backend library: apir code=%d | %s)", __func__, apir_ret, apir_load_library_error(apir_ret)); } else { uint32_t lib_ret = apir_ret - APIR_LOAD_LIBRARY_INIT_BASE_INDEX; - GGML_ABORT("%s: the API Remoting backend library initialize its backend library: apir code=%d)", __func__, + GGML_ABORT(GGML_VIRTGPU + "%s: the API Remoting backend library initialize its backend library: apir code=%d)", __func__, lib_ret); } return ret; @@ -149,38 +181,58 @@ virtgpu * create_virtgpu() { gpu->use_apir_capset = getenv("GGML_REMOTING_USE_APIR_CAPSET") != nullptr; util_sparse_array_init(&gpu->shmem_array, sizeof(virtgpu_shmem), 1024); + // Initialize mutex to protect shared data_shmem buffer + if (mtx_init(&gpu->data_shmem_mutex, mtx_plain) != thrd_success) { + delete gpu; + GGML_ABORT(GGML_VIRTGPU + "%s: failed to initialize data_shmem mutex", __func__); + return NULL; + } + if (virtgpu_open(gpu) != APIR_SUCCESS) { - GGML_ABORT("%s: failed to open the virtgpu device", __func__); + GGML_LOG_ERROR(GGML_VIRTGPU + "%s: failed to open the virtgpu device\n", __func__); return NULL; } if (virtgpu_init_capset(gpu) != APIR_SUCCESS) { - GGML_ABORT("%s: failed to initialize the GPU capset", __func__); + if (gpu->use_apir_capset) { + GGML_ABORT(GGML_VIRTGPU + "%s: failed to initialize the virtgpu APIR capset. Make sure that the virglrenderer library supports it.", __func__); + } else { + GGML_ABORT(GGML_VIRTGPU + "%s: failed to initialize the virtgpu Venus capset", __func__); + } return NULL; } if (virtgpu_init_context(gpu) != APIR_SUCCESS) { - GGML_ABORT("%s: failed to initialize the GPU context", __func__); + GGML_ABORT(GGML_VIRTGPU + "%s: failed to initialize the GPU context", __func__); return NULL; } if (virtgpu_shmem_create(gpu, SHMEM_REPLY_SIZE, &gpu->reply_shmem)) { - GGML_ABORT("%s: failed to create the shared reply memory pages", __func__); + GGML_ABORT(GGML_VIRTGPU + "%s: failed to create the shared reply memory pages", __func__); return NULL; } if (virtgpu_shmem_create(gpu, SHMEM_DATA_SIZE, &gpu->data_shmem)) { - GGML_ABORT("%s: failed to create the shared data memory pages", __func__); + GGML_ABORT(GGML_VIRTGPU + "%s: failed to create the shared data memory pages", __func__); return NULL; } if (virtgpu_handshake(gpu)) { - GGML_ABORT("%s: failed to handshake with the virglrenderer library", __func__); + GGML_ABORT(GGML_VIRTGPU + "%s: failed to handshake with the virglrenderer library", __func__); return NULL; } if (virtgpu_load_library(gpu) != APIR_LOAD_LIBRARY_SUCCESS) { - GGML_ABORT("%s: failed to load the backend library", __func__); + GGML_ABORT(GGML_VIRTGPU + "%s: failed to load the backend library", __func__); return NULL; } @@ -191,7 +243,8 @@ static virt_gpu_result_t virtgpu_open(virtgpu * gpu) { drmDevicePtr devs[8]; int count = drmGetDevices2(0, devs, ARRAY_SIZE(devs)); if (count < 0) { - GGML_LOG_ERROR("%s: failed to enumerate DRM devices\n", __func__); + GGML_LOG_ERROR(GGML_VIRTGPU + "%s: failed to enumerate DRM devices\n", __func__); return APIR_ERROR_INITIALIZATION_FAILED; } @@ -213,16 +266,19 @@ static virt_gpu_result_t virtgpu_open_device(virtgpu * gpu, const drmDevicePtr d int fd = open(node_path, O_RDWR | O_CLOEXEC); if (fd < 0) { - GGML_ABORT("failed to open %s", node_path); + GGML_ABORT(GGML_VIRTGPU + "%s: failed to open %s", __func__, node_path); return APIR_ERROR_INITIALIZATION_FAILED; } drmVersionPtr version = drmGetVersion(fd); if (!version || strcmp(version->name, "virtio_gpu") || version->version_major != 0) { if (version) { - GGML_ABORT("unknown DRM driver %s version %d", version->name, version->version_major); + GGML_LOG_ERROR(GGML_VIRTGPU + "%s: unknown DRM driver %s version %d\n", __func__, version->name, version->version_major); } else { - GGML_ABORT("failed to get DRM driver version"); + GGML_LOG_ERROR(GGML_VIRTGPU + "%s: failed to get DRM driver version\n", __func__); } if (version) { @@ -236,7 +292,7 @@ static virt_gpu_result_t virtgpu_open_device(virtgpu * gpu, const drmDevicePtr d drmFreeVersion(version); - GGML_LOG_INFO("using DRM device %s\n", node_path); + GGML_LOG_INFO(GGML_VIRTGPU "using DRM device %s\n", node_path); return APIR_SUCCESS; } @@ -245,7 +301,7 @@ static virt_gpu_result_t virtgpu_init_context(virtgpu * gpu) { assert(!gpu->capset.version); const int ret = virtgpu_ioctl_context_init(gpu, gpu->capset.id); if (ret) { - GGML_LOG_INFO("failed to initialize context: %s\n", strerror(errno)); + GGML_LOG_ERROR(GGML_VIRTGPU "%s: failed to initialize context: %s\n", __func__, strerror(errno)); return APIR_ERROR_INITIALIZATION_FAILED; } @@ -254,10 +310,10 @@ static virt_gpu_result_t virtgpu_init_context(virtgpu * gpu) { static virt_gpu_result_t virtgpu_init_capset(virtgpu * gpu) { if (gpu->use_apir_capset) { - GGML_LOG_INFO("Using the APIR capset\n"); + GGML_LOG_INFO(GGML_VIRTGPU "Using the APIR capset\n"); gpu->capset.id = VIRTGPU_DRM_CAPSET_APIR; } else { - GGML_LOG_INFO("Using the Venus capset\n"); + GGML_LOG_INFO(GGML_VIRTGPU "Using the Venus capset\n"); gpu->capset.id = VIRTGPU_DRM_CAPSET_VENUS; } gpu->capset.version = 0; @@ -266,7 +322,9 @@ static virt_gpu_result_t virtgpu_init_capset(virtgpu * gpu) { virtgpu_ioctl_get_caps(gpu, gpu->capset.id, gpu->capset.version, &gpu->capset.data, sizeof(gpu->capset.data)); if (ret) { - GGML_LOG_INFO("failed to get APIR v%d capset: %s\n", gpu->capset.version, strerror(errno)); + GGML_LOG_ERROR(GGML_VIRTGPU + "%s: failed to get APIR v%d capset: %s\n", + __func__, gpu->capset.version, strerror(errno)); return APIR_ERROR_INITIALIZATION_FAILED; } @@ -333,9 +391,9 @@ apir_encoder * remote_call_prepare(virtgpu * gpu, ApirCommandType apir_cmd_type, * Prepare the command encoder and its buffer */ - static char encoder_buffer[4096]; + thread_local char encoder_buffer[4096]; - static apir_encoder enc; + thread_local apir_encoder enc; enc = { .cur = encoder_buffer, .start = encoder_buffer, @@ -369,19 +427,19 @@ void remote_call_finish(virtgpu * gpu, apir_encoder * enc, apir_decoder * dec) { UNUSED(gpu); if (!enc) { - GGML_LOG_ERROR("Invalid (null) encoder\n"); + GGML_ABORT(GGML_VIRTGPU "%s: Invalid (null) encoder", __func__); } if (!dec) { - GGML_LOG_ERROR("Invalid (null) decoder\n"); + GGML_ABORT(GGML_VIRTGPU "%s: Invalid (null) decoder", __func__); } if (apir_encoder_get_fatal(enc)) { - GGML_LOG_ERROR("Failed to encode the output parameters.\n"); + GGML_LOG_ERROR(GGML_VIRTGPU "%s: Failed to encode the output parameters.", __func__); } if (apir_decoder_get_fatal(dec)) { - GGML_LOG_ERROR("Failed to decode the input parameters.\n"); + GGML_LOG_ERROR(GGML_VIRTGPU "%s: Failed to decode the input parameters.", __func__); } } @@ -423,7 +481,7 @@ uint32_t remote_call(virtgpu * gpu, int ret = drmIoctl(gpu->fd, DRM_IOCTL_VIRTGPU_EXECBUFFER, &args); if (ret != 0) { - GGML_ABORT("%s: the virtgpu EXECBUFFER ioctl failed (%d)", __func__, ret); + GGML_ABORT(GGML_VIRTGPU "%s: the virtgpu EXECBUFFER ioctl failed (%d)", __func__, ret); } /* @@ -467,7 +525,7 @@ uint32_t remote_call(virtgpu * gpu, } if (max_wait_ms && timedout) { - GGML_LOG_ERROR("timed out waiting for the host answer...\n"); + GGML_LOG_ERROR(GGML_VIRTGPU "%s: timed out waiting for the host answer...\n", __func__); return APIR_FORWARD_TIMEOUT; } @@ -489,10 +547,13 @@ static void log_call_duration(long long call_duration_ns, const char * name) { double call_duration_s = (double) call_duration_ns / 1e9; // 1 second = 1e9 nanoseconds if (call_duration_s > 1) { - GGML_LOG_INFO("%s: waited %.2fs for the %s host reply...\n", __func__, call_duration_s, name); + GGML_LOG_INFO(GGML_VIRTGPU + "waited %.2fs for the %s host reply...\n", call_duration_s, name); } else if (call_duration_ms > 1) { - GGML_LOG_INFO("%s: waited %.2fms for the %s host reply...\n", __func__, call_duration_ms, name); + GGML_LOG_INFO(GGML_VIRTGPU + "waited %.2fms for the %s host reply...\n", call_duration_ms, name); } else { - GGML_LOG_INFO("%s: waited %lldns for the %s host reply...\n", __func__, call_duration_ns, name); + GGML_LOG_INFO(GGML_VIRTGPU + "waited %lldns for the %s host reply...\n", call_duration_ns, name); } } diff --git a/ggml/src/ggml-virtgpu/virtgpu.h b/ggml/src/ggml-virtgpu/virtgpu.h index d4bb42e20b..68e0f3a376 100644 --- a/ggml/src/ggml-virtgpu/virtgpu.h +++ b/ggml/src/ggml-virtgpu/virtgpu.h @@ -17,6 +17,8 @@ #include +#include "ggml-remoting.h" + #define VIRGL_RENDERER_UNSTABLE_APIS 1 #include "apir_hw.h" #include @@ -73,6 +75,27 @@ struct virtgpu { /* APIR communication pages */ virtgpu_shmem reply_shmem; virtgpu_shmem data_shmem; + + /* Mutex to protect shared data_shmem buffer from concurrent access */ + mtx_t data_shmem_mutex; + + /* Cached device information to prevent memory leaks and race conditions */ + struct { + char * description; + char * name; + int32_t device_count; + uint32_t type; + size_t memory_free; + size_t memory_total; + } cached_device_info; + + /* Cached buffer type information to prevent memory leaks and race conditions */ + struct { + apir_buffer_type_host_handle_t host_handle; + char * name; + size_t alignment; + size_t max_size; + } cached_buffer_type; }; static inline int virtgpu_ioctl(virtgpu * gpu, unsigned long request, void * args) { diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index a99375c088..72097ffd0f 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -254,6 +254,7 @@ enum vk_device_architecture { AMD_RDNA3, INTEL_XE2, NVIDIA_PRE_TURING, + NVIDIA_TURING, }; static vk_device_architecture get_device_architecture(const vk::PhysicalDevice& device) { @@ -336,18 +337,34 @@ static vk_device_architecture get_device_architecture(const vk::PhysicalDevice& const std::vector ext_props = device.enumerateDeviceExtensionProperties(); bool cooperative_matrix = false; + bool sm_builtins = false; // Detect "pre-turing" based on lack of coopmat support. for (const auto& properties : ext_props) { if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0) { cooperative_matrix = true; - break; + } else if (strcmp("VK_NV_shader_sm_builtins", properties.extensionName) == 0) { + sm_builtins = true; } } if (!cooperative_matrix) { return vk_device_architecture::NVIDIA_PRE_TURING; } + + if (sm_builtins) { + vk::PhysicalDeviceProperties2 props2; + vk::PhysicalDeviceShaderSMBuiltinsPropertiesNV sm_props; + + props2.pNext = &sm_props; + + device.getProperties2(&props2); + + // Turing has 32, following architectures have 48 + if (sm_props.shaderWarpsPerSM == 32) { + return vk_device_architecture::NVIDIA_TURING; + } + } } return vk_device_architecture::OTHER; } @@ -385,18 +402,19 @@ enum FaCodePath { }; struct vk_fa_pipeline_state { - vk_fa_pipeline_state(uint32_t HSK, uint32_t HSV, bool small_rows, bool small_cache, FaCodePath path, bool aligned, bool f32acc) - : HSK(HSK), HSV(HSV), small_rows(small_rows), small_cache(small_cache), path(path), aligned(aligned), f32acc(f32acc) {} + vk_fa_pipeline_state(uint32_t HSK, uint32_t HSV, bool small_rows, bool small_cache, FaCodePath path, bool aligned, bool f32acc, uint32_t flags) + : HSK(HSK), HSV(HSV), small_rows(small_rows), small_cache(small_cache), path(path), aligned(aligned), f32acc(f32acc), flags(flags) {} uint32_t HSK, HSV; bool small_rows, small_cache; FaCodePath path; bool aligned; bool f32acc; + uint32_t flags; bool operator<(const vk_fa_pipeline_state &b) const { - return std::tie(HSK, HSV, small_rows, small_cache, path, aligned, f32acc) < - std::tie(b.HSK, b.HSV, b.small_rows, b.small_cache, b.path, b.aligned, b.f32acc); + return std::tie(HSK, HSV, small_rows, small_cache, path, aligned, f32acc, flags) < + std::tie(b.HSK, b.HSV, b.small_rows, b.small_cache, b.path, b.aligned, b.f32acc, b.flags); } }; @@ -803,6 +821,8 @@ struct vk_device_struct { std::map pipeline_flash_attn_f32_f16[GGML_TYPE_COUNT]; + std::map, vk_pipeline> pipeline_fa_mask_opt; + vk_pipeline pipeline_flash_attn_split_k_reduce; vk_pipeline pipeline_count_experts; @@ -1246,25 +1266,30 @@ struct vk_op_diag_mask_push_constants { struct vk_op_rope_push_constants { uint32_t rope_mode; - uint32_t ncols; uint32_t nrows; uint32_t n_dims; float freq_scale; - uint32_t p_delta_rows; float freq_base; float ext_factor; float attn_factor; float corr_dims[2]; float theta_scale; uint32_t has_ff; - uint32_t ne02; - uint32_t s1; - uint32_t s2; int32_t sections[4]; uint32_t is_imrope; uint32_t is_back; uint32_t set_rows_stride; + uint32_t ne00; + uint32_t ne01; + uint32_t ne02; + uint32_t nb01; + uint32_t nb02; + uint32_t nb03; + uint32_t nb11; + uint32_t nb12; + uint32_t nb13; }; +static_assert(sizeof(vk_op_rope_push_constants) <= 128, "sizeof(vk_op_rope_push_constants) must be <= 128"); // For fused rms_norm+mul+rope(+view+set_rows) struct vk_op_rms_norm_mul_rope_push_constants { @@ -1527,6 +1552,18 @@ struct vk_op_flash_attn_split_k_reduce_push_constants { uint32_t sinks; }; +struct vk_op_flash_attn_mask_opt_push_constants { + uint32_t nem0; + uint32_t nem1; + uint32_t nem2; + uint32_t nbm1; + uint32_t nbm2; + uint32_t nbm3; + uint32_t nbd1; + uint32_t nbd2; + uint32_t nbd3; +}; + // Allow pre-recording command buffers struct vk_staging_memcpy { vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {} @@ -1735,6 +1772,7 @@ class vk_perf_logger { " k(" << k->ne[0] << "," << k->ne[1] << "," << k->ne[2] << "," << k->ne[3] << "), " << " v(" << v->ne[0] << "," << v->ne[1] << "," << v->ne[2] << "," << v->ne[3] << "), " << " m(" << (m?m->ne[0]:0) << "," << (m?m->ne[1]:0) << "," << (m?m->ne[2]:0) << "," << (m?m->ne[3]:0) << ")"; + *n_flops = 2ull * q->ne[1] * q->ne[2] * (k->ne[0] + v->ne[0]) * k->ne[1] * q->ne[3]; return name.str(); } if (node->op == GGML_OP_TOP_K) { @@ -3155,7 +3193,7 @@ static void ggml_vk_load_shaders(vk_device& device) { return {fa_rows_cols(path, hsk, hsv, clamp, type, small_rows, small_cache)[0], 1, 1}; }; - auto const &fa_spec_constants = [&](FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows, bool small_cache) -> std::vector { + auto const &fa_spec_constants = [&](FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows, bool small_cache, uint32_t flags) -> std::vector { // For large number of rows, 128 invocations seems to work best. // For small number of rows (e.g. N==1), 256 works better. But matrix granularity for 256 is 32, so we // can't use 256 for D==80. @@ -3182,11 +3220,12 @@ static void ggml_vk_load_shaders(vk_device& device) { const uint32_t D_lsb = D ^ (D & (D-1)); uint32_t D_split = std::min(std::min(device->subgroup_size, 8u), D_lsb / 4); - // Nvidia prefers shared memory use to load large tiles of K + // Nvidia prefers shared memory use to load large tiles of K. + // Switch to loading from global memory when it would use too much shared memory. // AMD prefers loading K directly from global memory - const uint32_t k_load_shmem = device->vendor_id == VK_VENDOR_ID_NVIDIA ? 1 : 0; + const uint32_t k_load_shmem = device->vendor_id == VK_VENDOR_ID_NVIDIA && hsk < 256 ? 1 : 0; - return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split, device->subgroup_size, k_load_shmem}; + return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split, device->subgroup_size, k_load_shmem, flags}; }; #define CREATE_FA(TYPE, NAMELC, FAPATH, SUFFIX) \ @@ -3198,18 +3237,19 @@ static void ggml_vk_load_shaders(vk_device& device) { FaCodePath path = fa.first.path; \ bool aligned = fa.first.aligned; \ bool f32acc = fa.first.f32acc; \ + uint32_t flags = fa.first.flags; \ if (path == FAPATH) { \ if (aligned) { \ if (f32acc) { \ - ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ + ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache,flags), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ } else { \ - ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ + ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache,flags), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ } \ } else { \ if (f32acc) { \ - ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ + ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache,flags), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ } else { \ - ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 6, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ + ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache,flags), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \ } \ } \ } \ @@ -4005,6 +4045,11 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_matmul_split_k_reduce, "split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256 * 4, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_flash_attn_split_k_reduce, "fa_split_k_reduce", fa_split_k_reduce_len, fa_split_k_reduce_data, "main", 3, sizeof(vk_op_flash_attn_split_k_reduce_push_constants), {1, device->subgroup_size, 1}, {device->subgroup_size}, 1, true); + for (auto &it : device->pipeline_fa_mask_opt) { + auto BrBc = it.first; + ggml_vk_create_pipeline(device, it.second, "fa_mask_opt", fa_mask_opt_len, fa_mask_opt_data, "main", 2, sizeof(vk_op_flash_attn_mask_opt_push_constants), {1, 1, 1}, {128, 128 / device->subgroup_size, BrBc.first, BrBc.second}, 1, true, true, device->subgroup_size); + } + if (device->subgroup_clustered && device->subgroup_require_full_support) { ggml_vk_create_pipeline(device, device->pipeline_quantize_q8_1_x4, "quantize_q8_1_x4", quantize_q8_1_x4_subgroup_len, quantize_q8_1_x4_subgroup_data, "main", 2, sizeof(vk_quantize_q8_1_push_constants), {32 * device->subgroup_size / 8, 1, 1}, { device->subgroup_size }, 1, true, true); } else { @@ -5538,9 +5583,9 @@ static void ggml_vk_instance_init() { // Check if there are two physical devices corresponding to the same GPU // This handles the case where the same GPU appears with different drivers (e.g., RADV + AMDVLK on Linux), // see https://github.com/ggml-org/llama.cpp/pull/7582 for original deduplication. - // However, for MoltenVK on macOS, multiple GPUs on the same card may report the same UUID, - // see https://github.com/KhronosGroup/MoltenVK/issues/2683. Until this is fixed, we'll only deduplicate - // when drivers differ (same driver + same UUID = likely different GPUs) + // MoltenVK on macOS may report the same UUID for distinct GPUs on multi-GPU cards, + // see https://github.com/KhronosGroup/MoltenVK/issues/2683. Skip when both old/new + // driver is MoltenVK auto old_device = std::find_if( vk_instance.device_indices.begin(), vk_instance.device_indices.end(), @@ -5557,11 +5602,9 @@ static void ggml_vk_instance_init() { old_id.deviceLUIDValid && new_id.deviceLUIDValid && std::equal(std::begin(old_id.deviceLUID), std::end(old_id.deviceLUID), std::begin(new_id.deviceLUID)) ); + bool both_molten_vk = (new_driver.driverID == vk::DriverId::eMoltenvk && old_driver.driverID == vk::DriverId::eMoltenvk); - // Only deduplicate if same UUID AND different drivers - // (same driver + same UUID on MoltenVK = likely different GPUs on multi-GPU card) - bool different_driver = (old_driver.driverID != new_driver.driverID); - return same_uuid && different_driver; + return same_uuid && !both_molten_vk; } ); if (old_device == vk_instance.device_indices.end()) { @@ -8379,8 +8422,6 @@ static bool ggml_vk_flash_attn_coopmat_shmem_support(const vk_device& device, co const uint32_t acctype = f32acc ? 4 : 2; const uint32_t f16vec4 = 8; - const uint32_t tmpsh = (Bc / MatBc) * sizeof(float); - const uint32_t qstride = hsk_pad / 4 + 2; const uint32_t Qf = Br * qstride * f16vec4; @@ -8390,14 +8431,14 @@ static bool ggml_vk_flash_attn_coopmat_shmem_support(const vk_device& device, co const uint32_t sfshstride = (hsk <= 128) ? (Br + 8) : Br; const uint32_t sfsh = Bc * sfshstride * acctype; - const bool k_load_shmem = device->vendor_id == VK_VENDOR_ID_NVIDIA; + const bool k_load_shmem = device->vendor_id == VK_VENDOR_ID_NVIDIA && hsk < 256; const uint32_t kshstride = (k_load_shmem ? hsk_pad : MatBr) / 4 + 2; const uint32_t vsh_stride = MatBc / 4 * row_split; const uint32_t ksh = ((kshstride >= vsh_stride) ? (Bc * kshstride) : (Bc * vsh_stride)) * f16vec4; const uint32_t slope = Br * acctype; - const uint32_t total_size = tmpsh + Qf + Psh + sfsh + ksh + slope; + const uint32_t total_size = Qf + Psh + sfsh + ksh + slope; const bool supported = total_size <= device->properties.limits.maxComputeSharedMemorySize; VK_LOG_DEBUG("ggml_vk_flash_attn_coopmat_shmem_support(HSK=" << hsk << ", HSV=" << hsv << ", f32acc=" << f32acc << ", kv_type=" << kv_type << ", total_size=" << total_size << ", supported=" << supported); @@ -8424,6 +8465,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) GGML_TENSOR_LOCALS(size_t, nb, dst, nb) + const uint32_t nem0 = mask ? mask->ne[0] : 0; const uint32_t nem1 = mask ? mask->ne[1] : 0; const uint32_t nem2 = mask ? mask->ne[2] : 0; const uint32_t nem3 = mask ? mask->ne[3] : 0; @@ -8460,6 +8502,11 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx FaCodePath path = ctx->device->coopmat2 ? FA_COOPMAT2 : ctx->device->coopmat1_fa_support ? FA_COOPMAT1 : FA_SCALAR; + if (path == FA_COOPMAT1 && ctx->device->architecture == vk_device_architecture::NVIDIA_TURING) { + // Nvidia compiler bug, see https://github.com/ggml-org/llama.cpp/pull/19075#issuecomment-3820716090 + path = FA_SCALAR; + } + if (path == FA_COOPMAT1) { const bool coopmat_shape_supported = (dst->op_params[3] == GGML_PREC_F32 && ctx->device->coopmat_support_16x16x16_f32acc) || (dst->op_params[3] != GGML_PREC_F32 && ctx->device->coopmat_support_16x16x16_f16acc); @@ -8548,7 +8595,26 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx bool f32acc = path == FA_SCALAR || dst->op_params[3] == GGML_PREC_F32; - vk_fa_pipeline_state fa_pipeline_state(HSK, HSV, small_rows, small_cache, path, aligned, f32acc); + float scale = 1.0f; + float max_bias = 0.0f; + float logit_softcap = 0.0f; + + memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float)); + memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float)); + memcpy(&logit_softcap, (const float *) dst->op_params + 2, sizeof(float)); + + if (logit_softcap != 0) { + scale /= logit_softcap; + } + + // Only use mask opt when the mask is fairly large. This hasn't been tuned extensively. + bool use_mask_opt = mask && nem1 >= 32 && nem0 * nem1 > 32768; + + uint32_t flags = (use_mask_opt ? 1 : 0) | + (mask != nullptr ? 2 : 0) | + (logit_softcap != 0 ? 4 : 0); + + vk_fa_pipeline_state fa_pipeline_state(HSK, HSV, small_rows, small_cache, path, aligned, f32acc, flags); vk_pipeline pipeline = nullptr; @@ -8599,23 +8665,33 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx ggml_vk_preallocate_buffers(ctx, subctx); } - { - // Request descriptor sets - if (split_k > 1) { - ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_flash_attn_split_k_reduce, 1); + auto rows_cols = fa_rows_cols(path, HSK, HSV, !aligned, k->type, small_rows, small_cache); + const uint32_t Br = rows_cols[0]; + const uint32_t Bc = rows_cols[1]; + + const uint32_t mask_opt_num_dwords = CEIL_DIV(nem0, 16 * Bc); + const uint64_t mask_opt_size = sizeof(uint32_t) * mask_opt_num_dwords * CEIL_DIV(nem1, Br) * nem2 * nem3; + + vk_pipeline pipeline_fa_mask_opt = nullptr; + if (use_mask_opt) { + std::lock_guard guard(ctx->device->mutex); + auto &pipelines = ctx->device->pipeline_fa_mask_opt; + auto it = pipelines.find({Br, Bc}); + if (it != pipelines.end()) { + pipeline_fa_mask_opt = it->second; + } else { + pipelines[{Br, Bc}] = pipeline_fa_mask_opt = std::make_shared(); } - } + assert(pipeline_fa_mask_opt); + ggml_pipeline_request_descriptor_sets(ctx, pipeline_fa_mask_opt, 1); - float scale = 1.0f; - float max_bias = 0.0f; - float logit_softcap = 0.0f; - - memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float)); - memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float)); - memcpy(&logit_softcap, (const float *) dst->op_params + 2, sizeof(float)); - - if (logit_softcap != 0) { - scale /= logit_softcap; + if (ctx->prealloc_size_y < mask_opt_size) { + ctx->prealloc_size_y = mask_opt_size; + ggml_vk_preallocate_buffers(ctx, subctx); + } + if (ctx->prealloc_y_need_sync) { + ggml_vk_sync_buffers(ctx, subctx); + } } const uint32_t n_head_kv = neq2; @@ -8629,8 +8705,29 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx vk_subbuffer dst_buf = ggml_vk_tensor_subbuffer(ctx, dst); vk_subbuffer mask_buf = mask ? ggml_vk_tensor_subbuffer(ctx, mask) : q_buf; vk_subbuffer sinks_buf = sinks ? ggml_vk_tensor_subbuffer(ctx, sinks) : q_buf; + vk_subbuffer mask_opt_buf = use_mask_opt ? ggml_vk_subbuffer(ctx, ctx->prealloc_y, 0) : q_buf; - uint32_t mask_n_head_log2 = ((sinks != nullptr) << 24) | ((mask != nullptr) << 16) | n_head_log2; + uint32_t mask_n_head_log2 = ((sinks != nullptr) << 24) | n_head_log2; + + if (use_mask_opt) + { + const vk_op_flash_attn_mask_opt_push_constants opt_pc = { + nem0, + nem1, + nem2, + (uint32_t)(mask->nb[1] / sizeof(ggml_fp16_t)), + (uint32_t)(mask->nb[2] / sizeof(ggml_fp16_t)), + (uint32_t)(mask->nb[3] / sizeof(ggml_fp16_t)), + mask_opt_num_dwords, + mask_opt_num_dwords * CEIL_DIV(nem1, Br), + mask_opt_num_dwords * CEIL_DIV(nem1, Br) * nem2, + }; + + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline_fa_mask_opt, + { mask_buf, mask_opt_buf }, opt_pc, + { mask_opt_num_dwords, CEIL_DIV(nem1, Br), nem2 * nem3 }); + ggml_vk_sync_buffers(ctx, subctx); + } const vk_flash_attn_push_constants pc = { N, KV, (uint32_t)ne1, (uint32_t)ne2, (uint32_t)ne3, @@ -8646,13 +8743,15 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx gqa_ratio, split_kv, split_k }; if (split_k > 1) { + ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_flash_attn_split_k_reduce, 1); + if (ctx->prealloc_split_k_need_sync) { ggml_vk_sync_buffers(ctx, subctx); } workgroups_x *= pipeline->wg_denoms[0]; vk_subbuffer split_k_buf = ggml_vk_subbuffer(ctx, ctx->prealloc_split_k, 0); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, - {q_buf, k_buf, v_buf, mask_buf, sinks_buf, split_k_buf}, + {q_buf, k_buf, v_buf, mask_buf, sinks_buf, split_k_buf, mask_opt_buf}, // We only use split_k when group query attention is enabled, which means // there's no more than one tile of rows (i.e. workgroups_x would have been // one). We reuse workgroups_x to mean the number of splits, so we need to @@ -8671,7 +8770,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx workgroups_x *= pipeline->wg_denoms[0]; } ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, - {q_buf, k_buf, v_buf, mask_buf, sinks_buf, dst_buf}, + {q_buf, k_buf, v_buf, mask_buf, sinks_buf, dst_buf, mask_opt_buf}, pc, { workgroups_x, workgroups_y, workgroups_z }); } } @@ -10383,12 +10482,22 @@ static vk_op_rope_push_constants ggml_vk_make_rope_constants(const ggml_tensor * uint32_t nb01 = src0->nb[1] / ggml_type_size(src0->type); uint32_t nb02 = src0->nb[2] / ggml_type_size(src0->type); + uint32_t nb03 = src0->nb[3] / ggml_type_size(src0->type); + + uint32_t nb11 = dst->nb[1] / ggml_type_size(dst->type); + uint32_t nb12 = dst->nb[2] / ggml_type_size(dst->type); + uint32_t nb13 = dst->nb[3] / ggml_type_size(dst->type); vk_op_rope_push_constants rope { - (uint32_t)mode, (uint32_t)src0->ne[0], (uint32_t)ggml_nrows(src0), (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], - freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1]}, theta_scale, - has_ff, (uint32_t)src0->ne[2], nb01, nb02, + (uint32_t)mode, (uint32_t)ggml_nrows(src0), (uint32_t)n_dims, freq_scale, + freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1]}, theta_scale, has_ff, { sections[0], sections[1], sections[2], sections[3] }, is_imrope, backprop, set_rows_stride, + + (uint32_t)src0->ne[0], + (uint32_t)src0->ne[1], + (uint32_t)src0->ne[2], + nb01, nb02, nb03, + nb11, nb12, nb13, }; return rope; @@ -14776,6 +14885,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm case GGML_OP_REPEAT_BACK: return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32; case GGML_OP_ROPE: + return ggml_is_contiguous_rows(op) && ggml_is_contiguous_rows(op->src[0]); case GGML_OP_ROPE_BACK: case GGML_OP_NONE: case GGML_OP_RESHAPE: diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp index 3ce8d07be8..914f131c96 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp @@ -94,6 +94,10 @@ void main() { } } + const uint32_t mo_stride = CEIL_DIV(KV, 16 * Bc); + // mo_offset will point to the tile starting at row i*Br and col 0 + uint32_t mo_offset = mo_stride * i; + #if BLOCK_SIZE > 1 uint32_t k_offset = (ik2*p.nb12 + ik3*p.nb13) / BLOCK_BYTE_SIZE; uint32_t v_offset = (iv2*p.nb22 + iv3*p.nb23) / BLOCK_BYTE_SIZE; @@ -104,15 +108,28 @@ void main() { uint32_t m_offset = gqa_iq1*KV; if (p.nem2 != 1 || p.nem3 != 1) { m_offset += ((iq3 % p.nem3) * p.nem2 + (iq2 % p.nem2)) * p.nem1 * KV; + mo_offset += ((iq3 % p.nem3) * p.nem2 + (iq2 % p.nem2)) * CEIL_DIV(p.nem1, Br) * mo_stride; } + uint32_t mask_opt = 0; + uint32_t mask_opt_idx = ~0; + [[dont_unroll]] for (uint32_t j = start_j; j < end_j; ++j) { - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { + if (USE_MASK_OPT && mask_opt_idx != j / 16) { + mask_opt_idx = j / 16; + mask_opt = data_mask_opt[mo_offset + mask_opt_idx]; + } + uint32_t mask_opt_bits = (mask_opt >> ((j % 16) * 2)) & 0x3; + if (mask_opt_bits == MASK_OPT_ALL_NEG_INF) { + // skip this block + continue; + } + // Only load if the block is not all zeros + if (MASK_ENABLE && mask_opt_bits != MASK_OPT_ALL_ZERO) { bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0; - float max_mask = NEG_FLT_MAX_OVER_2; [[unroll]] for (uint32_t idx = 0; idx < Bc * Br; idx += gl_WorkGroupSize.x) { uint32_t c = (idx + tid) % Bc; uint32_t r = (idx + tid) / Bc; @@ -120,25 +137,12 @@ void main() { if ((!KV_bounds_check || j * Bc + c < KV) && (!nem1_bounds_check || i * Br + r < p.nem1)) { float m = float(data_m[m_offset + (i * Br + r) * m_stride + (j * Bc + c)]); masksh[c][r] = m; - max_mask = max(max_mask, m); } else { masksh[c][r] = float(0); } } } - // skip the block if the mask is entirely -inf - bool all_less = subgroupAll(max_mask <= NEG_FLT_MAX_OVER_2); barrier(); - if (gl_SubgroupInvocationID == 0) { - tmpsh[gl_SubgroupID] = all_less ? NEG_FLT_MAX_OVER_2 : 0.0f; - } - barrier(); - [[unroll]] for (uint s = 0; s < gl_NumSubgroups; ++s) { - max_mask = max(max_mask, tmpsh[s]); - } - if (max_mask <= NEG_FLT_MAX_OVER_2) { - continue; - } } float Sf[Br][cols_per_thread]; @@ -177,7 +181,7 @@ void main() { } } - if (p.logit_softcap != 0.0f) { + if (LOGIT_SOFTCAP) { [[unroll]] for (uint32_t r = 0; r < Br; ++r) { [[unroll]] for (uint32_t c = 0; c < cols_per_thread; ++c) { Sf[r][c] = p.logit_softcap * tanh(Sf[r][c]); @@ -185,7 +189,7 @@ void main() { } } - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { + if (MASK_ENABLE && mask_opt_bits != MASK_OPT_ALL_ZERO) { [[unroll]] for (uint32_t c = 0; c < cols_per_thread; ++c) { [[unroll]] for (uint32_t r = 0; r < Br; ++r) { float mvf = masksh[c * cols_per_iter + col_tid][r]; @@ -256,9 +260,6 @@ void main() { barrier(); } - // prevent race on tmpsh - barrier(); - // reduce across threads [[unroll]] for (uint32_t r = 0; r < Br; ++r) { diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl index 23a4d2c005..4142c1e6ea 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.glsl @@ -10,6 +10,11 @@ layout (constant_id = 5) const uint32_t Clamp = 0; layout (constant_id = 6) const uint32_t D_split = 16; layout (constant_id = 7) const uint32_t SubGroupSize = 32; layout (constant_id = 8) const uint32_t K_LOAD_SHMEM = 0; +layout (constant_id = 9) const uint32_t Flags = 0; + +const bool USE_MASK_OPT = (Flags & 1) != 0; +const bool MASK_ENABLE = (Flags & 2) != 0; +const bool LOGIT_SOFTCAP = (Flags & 4) != 0; // Round up head sizes to a multiple of 16, for coopmat1/coopmat2 paths const uint32_t HSK_pad = (HSK + 15) & ~15; @@ -59,13 +64,17 @@ layout (push_constant) uniform parameter { } p; #define SINK_ENABLE_BIT (1<<24) -#define MASK_ENABLE_BIT (1<<16) #define N_LOG2_MASK 0xFFFF layout (binding = 4) readonly buffer S {float data_s[];}; layout (binding = 5) writeonly buffer O {D_TYPE data_o[];}; +layout (binding = 6) readonly buffer MO {uint32_t data_mask_opt[];}; + +#define MASK_OPT_ALL_NEG_INF 1 +#define MASK_OPT_ALL_ZERO 2 + #define BINDING_IDX_K 0 #define BINDING_IDX_V 1 #if defined(DATA_A_F32) @@ -231,3 +240,7 @@ void init_indices() // and breaking the alignment detection. m_stride = (p.gqa_ratio > 1) ? (p.gqa_ratio >> 16) : KV; } + +// Bias applied to softmax to stay in fp16 range. +// Based on ggml-cuda issue https://github.com/ggml-org/llama.cpp/issues/18606 +const float FATTN_KQ_MAX_OFFSET = 3.0f*0.6931f; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp index 83d52d19d6..b317773823 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp @@ -42,8 +42,6 @@ D_TYPE perElemOpGqaStore(const in uint32_t r, const in uint32_t c, const in D_TY return elem; } -shared float tmpsh[row_split]; - const uint32_t qstride = HSK_pad / 4 + 2; // in units of f16vec4 shared f16vec4 Qf[Br * qstride]; @@ -134,6 +132,10 @@ void main() { } } + const uint32_t mo_stride = CEIL_DIV(KV, 16 * Bc); + // mo_offset will point to the tile starting at row i*Br and col 0 + uint32_t mo_offset = mo_stride * i; + #if BLOCK_SIZE > 1 uint32_t k_offset = (ik2*p.nb12 + ik3*p.nb13) / BLOCK_BYTE_SIZE; uint32_t v_offset = (iv2*p.nb22 + iv3*p.nb23) / BLOCK_BYTE_SIZE; @@ -144,66 +146,74 @@ void main() { uint32_t m_offset = gqa_iq1*KV; if (p.nem2 != 1 || p.nem3 != 1) { m_offset += ((iq3 % p.nem3) * p.nem2 + (iq2 % p.nem2)) * p.nem1 * KV; + mo_offset += ((iq3 % p.nem3) * p.nem2 + (iq2 % p.nem2)) * CEIL_DIV(p.nem1, Br) * mo_stride; } + uint32_t mask_opt = 0; + uint32_t mask_opt_idx = ~0; + [[dont_unroll]] for (uint32_t j = start_j; j < end_j; ++j) { f16vec4 mask_cache[Bc * Br / 4 / WorkGroupSize]; - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { - bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0; + [[unroll]] for (uint32_t idx = 0; idx < mask_cache.length(); ++idx) { + mask_cache[idx] = f16vec4(0); + } - float max_mask = NEG_FLT_MAX_OVER_2; - [[unroll]] for (uint32_t idx = 0; idx < Bc * Br / 4; idx += gl_WorkGroupSize.x) { - uint32_t c = (idx + tid) / (Br / 4); - uint32_t r = (idx + tid) % (Br / 4); - if (idx + tid < Bc * Br / 4 || idx + gl_WorkGroupSize.x <= Bc * Br / 4) { - if ((!KV_bounds_check || j * Bc + c < KV)) { - f16vec4 m; - if (!nem1_bounds_check || i * Br + r * 4 + 3 < p.nem1) { - m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], - data_m[m_offset + (i * Br + r * 4 + 1) * m_stride + (j * Bc + c)], - data_m[m_offset + (i * Br + r * 4 + 2) * m_stride + (j * Bc + c)], - data_m[m_offset + (i * Br + r * 4 + 3) * m_stride + (j * Bc + c)]); - max_mask = max(max(max(max(max_mask, float(m[0])), float(m[1])), float(m[2])), float(m[3])); - } else if (i * Br + r * 4 + 2 < p.nem1) { - m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], - data_m[m_offset + (i * Br + r * 4 + 1) * m_stride + (j * Bc + c)], - data_m[m_offset + (i * Br + r * 4 + 2) * m_stride + (j * Bc + c)], - 0.0); - max_mask = max(max(max(max_mask, float(m[0])), float(m[1])), float(m[2])); - } else if (i * Br + r * 4 + 1 < p.nem1) { - m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], - data_m[m_offset + (i * Br + r * 4 + 1) * m_stride + (j * Bc + c)], - 0.0, - 0.0); - max_mask = max(max(max_mask, float(m[0])), float(m[1])); - } else if (i * Br + r * 4 < p.nem1) { - m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], - 0.0, - 0.0, - 0.0); - max_mask = max(max_mask, float(m[0])); - } else { - m = f16vec4(0.0); + if (MASK_ENABLE) { + + if (USE_MASK_OPT && mask_opt_idx != j / 16) { + mask_opt_idx = j / 16; + mask_opt = data_mask_opt[mo_offset + mask_opt_idx]; + } + uint32_t mask_opt_bits = (mask_opt >> ((j % 16) * 2)) & 0x3; + if (mask_opt_bits == MASK_OPT_ALL_NEG_INF) { + // skip this block + continue; + } + // Only load if the block is not all zeros + if (mask_opt_bits != MASK_OPT_ALL_ZERO) { + bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0; + + float max_mask = NEG_FLT_MAX_OVER_2; + [[unroll]] for (uint32_t idx = 0; idx < Bc * Br / 4; idx += gl_WorkGroupSize.x) { + uint32_t c = (idx + tid) / (Br / 4); + uint32_t r = (idx + tid) % (Br / 4); + if (idx + tid < Bc * Br / 4 || idx + gl_WorkGroupSize.x <= Bc * Br / 4) { + if ((!KV_bounds_check || j * Bc + c < KV)) { + f16vec4 m; + if (!nem1_bounds_check || i * Br + r * 4 + 3 < p.nem1) { + m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], + data_m[m_offset + (i * Br + r * 4 + 1) * m_stride + (j * Bc + c)], + data_m[m_offset + (i * Br + r * 4 + 2) * m_stride + (j * Bc + c)], + data_m[m_offset + (i * Br + r * 4 + 3) * m_stride + (j * Bc + c)]); + max_mask = max(max(max(max(max_mask, float(m[0])), float(m[1])), float(m[2])), float(m[3])); + } else if (i * Br + r * 4 + 2 < p.nem1) { + m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], + data_m[m_offset + (i * Br + r * 4 + 1) * m_stride + (j * Bc + c)], + data_m[m_offset + (i * Br + r * 4 + 2) * m_stride + (j * Bc + c)], + 0.0); + max_mask = max(max(max(max_mask, float(m[0])), float(m[1])), float(m[2])); + } else if (i * Br + r * 4 + 1 < p.nem1) { + m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], + data_m[m_offset + (i * Br + r * 4 + 1) * m_stride + (j * Bc + c)], + 0.0, + 0.0); + max_mask = max(max(max_mask, float(m[0])), float(m[1])); + } else if (i * Br + r * 4 < p.nem1) { + m = f16vec4(data_m[m_offset + (i * Br + r * 4 ) * m_stride + (j * Bc + c)], + 0.0, + 0.0, + 0.0); + max_mask = max(max_mask, float(m[0])); + } else { + m = f16vec4(0.0); + } + mask_cache[idx / WorkGroupSize] = m; } - mask_cache[idx / WorkGroupSize] = m; } } } - // skip the block if the mask is entirely -inf - bool all_less = subgroupAll(max_mask <= NEG_FLT_MAX_OVER_2); - barrier(); - if (gl_SubgroupInvocationID == 0) { - tmpsh[gl_SubgroupID] = all_less ? NEG_FLT_MAX_OVER_2 : 0.0f; - } - barrier(); - [[unroll]] for (uint s = 0; s < gl_NumSubgroups; ++s) { - max_mask = max(max_mask, tmpsh[s]); - } - if (max_mask <= NEG_FLT_MAX_OVER_2) { - continue; - } } if (K_LOAD_SHMEM != 0) { @@ -293,7 +303,7 @@ void main() { coopMatStore(SfMat, sfsh, coord, sfshstride, gl_CooperativeMatrixLayoutRowMajor); barrier(); - if (p.logit_softcap != 0.0f) { + if (LOGIT_SOFTCAP) { [[unroll]] for (uint32_t idx = 0; idx < Bc * Br / 4; idx += gl_WorkGroupSize.x) { uint32_t c = (idx + tid) / (Br / 4); uint32_t r = (idx + tid) % (Br / 4); @@ -304,7 +314,7 @@ void main() { barrier(); } - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { + if (MASK_ENABLE) { [[unroll]] for (uint32_t idx = 0; idx < Bc * Br / 4; idx += gl_WorkGroupSize.x) { uint32_t c = (idx + tid) / (Br / 4); uint32_t r = (idx + tid) % (Br / 4); diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp index 54f1b0b622..39f0c4d23b 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp @@ -117,7 +117,7 @@ void main() { Qf16 = coopmat(Q); Qf16 *= float16_t(p.scale); - coopmat O = coopmat(0); + coopmat O = coopmat(0); coopmat L, M; @@ -138,48 +138,53 @@ void main() { coopMatPerElementNV(slopeMat, slopeMat, perElemOpComputeSlope, iq2); } + const uint32_t mo_stride = CEIL_DIV(KV, 16 * Bc); + // mo_offset will point to the tile starting at row i*Br and col 0 + uint32_t mo_offset = mo_stride * i; + uint32_t m_offset = gqa_iq1*KV * 2 /*sizeof(float16_t)*/; if (p.nem2 != 1 || p.nem3 != 1) { m_offset += ((iq3 % p.nem3) * p.nem2 + (iq2 % p.nem2)) * p.nem1 * KV * 2 /*sizeof(float16_t)*/; + mo_offset += ((iq3 % p.nem3) * p.nem2 + (iq2 % p.nem2)) * CEIL_DIV(p.nem1, Br) * mo_stride; } + uint32_t mask_opt = 0; + uint32_t mask_opt_idx = ~0; + [[dont_unroll]] for (uint32_t j = start_j; j < end_j; ++j) { - coopmat mv; - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { - bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0; + coopmat mv = coopmat(0); + if (MASK_ENABLE) { - if (nem1_bounds_check) { - tensorLayoutNV<2, gl_CooperativeMatrixClampModeConstantNV> tensorLayoutM = createTensorLayoutNV(2, gl_CooperativeMatrixClampModeConstantNV); - tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, p.nem1, KV); - tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1); - tensorLayoutM = setTensorLayoutClampValueNV(tensorLayoutM, 0xfc00); // -inf in float16_t + if (USE_MASK_OPT && mask_opt_idx != j / 16) { + mask_opt_idx = j / 16; + mask_opt = data_mask_opt[mo_offset + mask_opt_idx]; + } + uint32_t mask_opt_bits = (mask_opt >> ((j % 16) * 2)) & 0x3; + if (mask_opt_bits == MASK_OPT_ALL_NEG_INF) { + // skip this block + continue; + } + // Only load if the block is not all zeros + if (mask_opt_bits != MASK_OPT_ALL_ZERO) { + bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0; - coopmat mvmax; + if (nem1_bounds_check) { + tensorLayoutNV<2, gl_CooperativeMatrixClampModeConstantNV> tensorLayoutM = createTensorLayoutNV(2, gl_CooperativeMatrixClampModeConstantNV); + tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, p.nem1, KV); + tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1); + tensorLayoutM = setTensorLayoutClampValueNV(tensorLayoutM, 0xfc00); // -inf in float16_t - coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc)); + coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc)); + } else { + tensorLayoutNV<2, Clamp> tensorLayoutM = createTensorLayoutNV(2, Clamp); + // Don't clamp against nem1 when GQA is enabled + uint32_t m_height = p.gqa_ratio > 1 ? ~0 : p.nem1; + tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, m_height, KV); + tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1); - // skip the block if the mask is entirely -inf - coopMatReduceNV(mvmax, mv, gl_CooperativeMatrixReduceRowAndColumnNV, maxReduceFp16); - if (mvmax[0] <= NEG_FLT_MAX_OVER_2) { - continue; - } - } else { - tensorLayoutNV<2, Clamp> tensorLayoutM = createTensorLayoutNV(2, Clamp); - // Don't clamp against nem1 when GQA is enabled - uint32_t m_height = p.gqa_ratio > 1 ? ~0 : p.nem1; - tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, m_height, KV); - tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1); - - coopmat mvmax; - - coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc)); - - // skip the block if the mask is entirely -inf - coopMatReduceNV(mvmax, mv, gl_CooperativeMatrixReduceRowAndColumnNV, maxReduceFp16); - if (mvmax[0] <= NEG_FLT_MAX_OVER_2) { - continue; + coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc)); } } } @@ -192,14 +197,14 @@ void main() { coopMatLoadTensorNV(K_T, data_k, k_offset, sliceTensorLayoutNV(tensorLayoutK, j * Bc, Bc, 0, HSK_pad), tensorViewTranspose DECODEFUNC); S = coopMatMulAdd(Qf16, K_T, S); - if (p.logit_softcap != 0.0f) { + if (LOGIT_SOFTCAP) { [[unroll]] for (int k = 0; k < S.length(); ++k) { S[k] = ACC_TYPE(p.logit_softcap)*tanh(S[k]); } } - if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) { + if (MASK_ENABLE) { S += slopeMat*coopmat(mv); } @@ -218,6 +223,8 @@ void main() { coopMatReduceNV(rowmax, S, gl_CooperativeMatrixReduceRowNV, maxReduce); + rowmax += coopmat(FATTN_KQ_MAX_OFFSET); + coopmat Mold = M; // M = max(rowmax, Mold) @@ -260,11 +267,8 @@ void main() { // resize eM by using smear/reduce coopMatReduceNV(eMdiag, eM, gl_CooperativeMatrixReduceRowNV, smearReduce); - // multiply with fp16 accumulation, then add to O. - coopmat PV = coopmat(0); - PV = coopMatMulAdd(P_A, V, PV); - - O = eMdiag * O + coopmat(PV); + O *= coopmat(eMdiag); + O = coopMatMulAdd(P_A, V, O); } // If there is split_k, then the split_k resolve shader does the final @@ -306,7 +310,7 @@ void main() { if (sink > Mr[i]) { ms = exp(Mr[i] - sink); - O[i] *= ms; + O[i] *= float16_t(ms); } else { vs = exp(sink - Mr[i]); } @@ -320,15 +324,16 @@ void main() { Ldiag[k] = (Ldiag[k] == 0.0) ? ACC_TYPE(0.0) : (ACC_TYPE(1.0) / Ldiag[k]); } - O = Ldiag*O; + coopmat O_D = coopmat(O); + + O_D = coopmat(Ldiag)*O_D; #if defined(ACC_TYPE_MAX) - [[unroll]] for (uint i = 0; i < O.length(); ++i) { O[i] = clamp(O[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); } + [[unroll]] for (uint i = 0; i < O_D.length(); ++i) { O_D[i] = clamp(O_D[i], D_TYPE(-ACC_TYPE_MAX), D_TYPE(ACC_TYPE_MAX)); } #endif uint32_t o_offset = gqa_iq1*p.ne1*HSV + iq3*p.ne2*p.ne1*HSV; - coopmat O_D = coopmat(O); if (p.gqa_ratio > 1) { coopMatPerElementNV(O_D, O_D, perElemOpGqaStore, o_offset, iq2, N); } else { diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_mask_opt.comp b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_mask_opt.comp new file mode 100644 index 0000000000..8c92c1adcd --- /dev/null +++ b/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_mask_opt.comp @@ -0,0 +1,142 @@ +#version 450 + +#extension GL_EXT_control_flow_attributes : enable +#extension GL_EXT_shader_16bit_storage : enable +#extension GL_KHR_shader_subgroup_arithmetic : enable + +layout (constant_id = 0) const uint BLOCK_SIZE = 128; +layout (constant_id = 1) const uint NUM_SUBGROUPS = 4; +layout (constant_id = 2) const uint Br = 32; +layout (constant_id = 3) const uint Bc = 32; + +layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; + +layout (binding = 0) readonly buffer A {float16_t data_a[];}; +layout (binding = 0) readonly buffer Av4 {f16vec4 data_av4[];}; +layout (binding = 1) writeonly buffer D {uint data_d[];}; + +layout (push_constant) uniform parameter { + uint nem0; + uint nem1; + uint nem2; + uint nbm1; + uint nbm2; + uint nbm3; + uint nbd1; + uint nbd2; + uint nbd3; +}; + +#define MASK_OPT_ALL_NEG_INF 1 +#define MASK_OPT_ALL_ZERO 2 + +shared float minsh[NUM_SUBGROUPS]; +shared float maxsh[NUM_SUBGROUPS]; + +// For each Br x Bc block of the mask (input) buffer, read all values and check +// if it's all -inf or all zero. Write out a two-bit code indicating which it is +// (or zero for neither). Each workgroup processes 16 tiles and writes out a +// 32-bit result mask. +// +// TODO: This is a lot of work per workgroup, might make sense to split this into +// more workgroups in the future. +void main() { + // Each workgroup handles a row + const uint tid = gl_LocalInvocationIndex; + const uint i0 = gl_WorkGroupID.x; + const uint i1 = gl_WorkGroupID.y; + const uint i2 = gl_WorkGroupID.z % nem2; + const uint i3 = gl_WorkGroupID.z / nem2; + + float FLT_MAX_OVER_2 = uintBitsToFloat(0x7EFFFFFF); + + uint result = 0; + + // Fast path for fully in-bounds blocks where we can do f16vec4 loads + if ((nem0 % Bc) == 0 && (nem1 % Br) == 0 && + ((Br * Bc) % (BLOCK_SIZE * 4)) == 0) { + [[unroll]] for (uint block_x = 0; block_x < 16; ++block_x) { + float min_v = FLT_MAX_OVER_2; + float max_v = -FLT_MAX_OVER_2; + [[unroll]] for (uint i = 0; i < Br * Bc / 4; i += BLOCK_SIZE) { + uint j0 = (i + tid) % (Bc / 4); + uint j1 = (i + tid) / (Bc / 4); + + j0 *= 4; + j0 += (i0 * 16 + block_x) * Bc; + j1 += i1 * Br; + + vec4 f = vec4(data_av4[(j0 + j1 * nbm1 + i2 * nbm2 + i3 * nbm3) / 4]); + [[unroll]] for (int c = 0; c < 4; ++c) { + min_v = min(min_v, f[c]); + max_v = max(max_v, f[c]); + } + } + min_v = subgroupMin(min_v); + max_v = subgroupMax(max_v); + if (gl_SubgroupInvocationID == 0) { + minsh[gl_SubgroupID] = min_v; + maxsh[gl_SubgroupID] = max_v; + } + barrier(); + if (tid == 0) { + [[unroll]] for (uint i = 0; i < NUM_SUBGROUPS; ++i) { + min_v = min(min_v, minsh[i]); + max_v = max(max_v, maxsh[i]); + } + if (max_v <= -FLT_MAX_OVER_2) { + result |= 1 << (2*block_x); + } + if (min_v == 0.0f && max_v == 0.0f) { + result |= 2 << (2*block_x); + } + } + barrier(); + } + } else { + [[unroll]] for (uint block_x = 0; block_x < 16; ++block_x) { + float min_v = FLT_MAX_OVER_2; + float max_v = -FLT_MAX_OVER_2; + [[unroll]] for (uint i = 0; i < Br * Bc; i += BLOCK_SIZE) { + if ((Br * Bc % BLOCK_SIZE) != 0 && i + tid >= Br * Bc) { + continue; + } + uint j0 = (i + tid) % Bc; + uint j1 = (i + tid) / Bc; + + j0 += (i0 * 16 + block_x) * Bc; + j1 += i1 * Br; + + if (j0 < nem0 && j1 < nem1) { + float f = float(data_a[j0 + j1 * nbm1 + i2 * nbm2 + i3 * nbm3]); + min_v = min(min_v, f); + max_v = max(max_v, f); + } + } + min_v = subgroupMin(min_v); + max_v = subgroupMax(max_v); + if (gl_SubgroupInvocationID == 0) { + minsh[gl_SubgroupID] = min_v; + maxsh[gl_SubgroupID] = max_v; + } + barrier(); + if (tid == 0) { + [[unroll]] for (uint i = 0; i < NUM_SUBGROUPS; ++i) { + min_v = min(min_v, minsh[i]); + max_v = max(max_v, maxsh[i]); + } + if (max_v <= -FLT_MAX_OVER_2) { + result |= 1 << (2*block_x); + } + if (min_v == 0.0f && max_v == 0.0f) { + result |= 2 << (2*block_x); + } + } + barrier(); + } + } + + if (tid == 0) { + data_d[i0 + i1 * nbd1 + i2 * nbd2 + i3 * nbd3] = result; + } +} diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp b/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp index 9d6d366542..55b89f19a7 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp @@ -112,12 +112,11 @@ void rms_norm(uint num_iters) { #if RMS_NORM_ROPE_FUSION barrier(); rope_params rp = p.rope; - uint rope_row = (samp*nchannels + channel)*nrows + row; for (uint t = 2*tid; t < ncols; t += 2*BLOCK_SIZE) { if (rp.rope_mode == GGML_ROPE_TYPE_NEOX) { - rope_neox(t, rope_row, rp); + rope_neox(t, row, channel, samp, rp); } else if (rp.rope_mode == GGML_ROPE_TYPE_NORMAL) { - rope_norm(t, rope_row, rp); + rope_norm(t, row, channel, samp, rp); } } #endif diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rope_funcs.glsl b/ggml/src/ggml-vulkan/vulkan-shaders/rope_funcs.glsl index aacec98469..2e53459909 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rope_funcs.glsl +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rope_funcs.glsl @@ -4,12 +4,12 @@ float rope_yarn_ramp(const float low, const float high, const uint i0) { return 1.0f - min(1.0f, max(0.0f, y)); } -uint rope_a_coord(const uint i0, const uint i01, const uint i02, rope_params p) { +uint rope_a_coord(const uint i0, const uint i01, const uint i02, const uint i03, rope_params p) { #if RMS_NORM_ROPE_FUSION // Per-row offset in shared memory const uint ix = i0; #else - const uint ix = i02*p.nb02 + i01*p.nb01 + i0; + const uint ix = i03*p.nb03 + i02*p.nb02 + i01*p.nb01 + i0; #endif return ix; } @@ -34,26 +34,19 @@ void rope_yarn(const float theta_extrap, const uint i0, out float cos_theta, out sin_theta = sin(theta) * mscale; } -void rope_norm(const uint i0, const uint i1, rope_params p) { - uint ne0 = p.ncols; - uint ne1 = p.p_delta_rows; - - if (i0 >= ne0) { +void rope_norm(const uint i0, const uint i1, const uint i2, const uint i3, rope_params p) { + if (i0 >= p.ne00) { return; } - // i1 is actually i2*nb2+i1, but the rows are contiguous - const uint i01 = i1 % ne1; - const uint i02 = i1 / ne1; - - uint idst = i1*ne0 + i0; - const uint ix = rope_a_coord(i0, i01, i02, p); + uint idst = i0 + i1 * p.nb11 + i2 * p.nb12 + i3 * p.nb13; + const uint ix = rope_a_coord(i0, i1, i2, i3, p); // Fusion optimization: ROPE + VIEW + SET_ROWS. // The rope output is viewed as a 1D tensor and offset based on a row index in rope_data_i. if (p.set_rows_stride != 0) { - idst = i01*ne0 + i0; - idst += rope_data_i[i02].x * p.set_rows_stride; + idst = i1*p.nb11 + i0; + idst += rope_data_i[i2].x * p.set_rows_stride; } if (i0 >= p.n_dims) { @@ -63,7 +56,7 @@ void rope_norm(const uint i0, const uint i1, rope_params p) { return; } - const float theta_base = rope_data_pos[i02] * pow(p.theta_scale, i0/2.0f); + const float theta_base = rope_data_pos[i2] * pow(p.theta_scale, i0/2.0f); const float freq_factor = p.has_ff != 0 ? rope_data_ff[i0/2] : 1.0f; @@ -77,25 +70,19 @@ void rope_norm(const uint i0, const uint i1, rope_params p) { rope_data_d[idst + 1] = ROPE_D_TYPE(x0*sin_theta + x1*cos_theta); } -void rope_neox(const uint i0, const uint i1, rope_params p) { - uint ne0 = p.ncols; - uint ne1 = p.p_delta_rows; - - if (i0 >= ne0) { +void rope_neox(const uint i0, const uint i1, const uint i2, const uint i3, rope_params p) { + if (i0 >= p.ne00) { return; } - const uint i01 = i1 % ne1; - const uint i02 = i1 / ne1; - - uint idst = i1*ne0 + i0/2; - const uint ix = rope_a_coord(i0/2, i01, i02, p); + uint idst = i0/2 + i1 * p.nb11 + i2 * p.nb12 + i3 * p.nb13; + const uint ix = rope_a_coord(i0/2, i1, i2, i3, p); // Fusion optimization: ROPE + VIEW + SET_ROWS. // The rope output is viewed as a 1D tensor and offset based on a row index in rope_data_i. if (p.set_rows_stride != 0) { - idst = i01*ne0 + i0/2; - idst += rope_data_i[i02].x * p.set_rows_stride; + idst = i1*p.nb11 + i0/2; + idst += rope_data_i[i2].x * p.set_rows_stride; } if (i0 >= p.n_dims) { @@ -105,7 +92,7 @@ void rope_neox(const uint i0, const uint i1, rope_params p) { return; } - const float theta_base = rope_data_pos[i02] * pow(p.theta_scale, i0/2.0f); + const float theta_base = rope_data_pos[i2] * pow(p.theta_scale, i0/2.0f); const float freq_factor = p.has_ff != 0 ? rope_data_ff[i0/2] : 1.0f; @@ -120,26 +107,19 @@ void rope_neox(const uint i0, const uint i1, rope_params p) { } -void rope_multi(const uint i0, const uint i1, rope_params p) { - uint ne0 = p.ncols; - uint ne1 = p.p_delta_rows; - uint ne2 = p.ne02; - - if (i0 >= ne0) { +void rope_multi(const uint i0, const uint i1, const uint i2, const uint i3, rope_params p) { + if (i0 >= p.ne00) { return; } - const uint i01 = i1 % ne1; - const uint i02 = i1 / ne1; - - uint idst = i1*ne0 + i0/2; - const uint ix = rope_a_coord(i0/2, i01, i02, p); + uint idst = i0/2 + i1 * p.nb11 + i2 * p.nb12 + i3 * p.nb13; + const uint ix = rope_a_coord(i0/2, i1, i2, i3, p); // Fusion optimization: ROPE + VIEW + SET_ROWS. // The rope output is viewed as a 1D tensor and offset based on a row index in rope_data_i. if (p.set_rows_stride != 0) { - idst = i01*ne0 + i0/2; - idst += rope_data_i[i02].x * p.set_rows_stride; + idst = i1*p.nb11 + i0/2; + idst += rope_data_i[i2].x * p.set_rows_stride; } if (i0 >= p.n_dims) { @@ -156,26 +136,26 @@ void rope_multi(const uint i0, const uint i1, rope_params p) { float theta_base = 0.0; if (p.is_imrope != 0) { if (sector % 3 == 1 && sector < 3 * p.sections[1]) { - theta_base = rope_data_pos[i02 + ne2 * 1]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2 + p.ne02 * 1]*pow(p.theta_scale, i0/2.0f); } else if (sector % 3 == 2 && sector < 3 * p.sections[2]) { - theta_base = rope_data_pos[i02 + ne2 * 2]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2 + p.ne02 * 2]*pow(p.theta_scale, i0/2.0f); } else if (sector % 3 == 0 && sector < 3 * p.sections[0]) { - theta_base = rope_data_pos[i02]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2]*pow(p.theta_scale, i0/2.0f); } else { - theta_base = rope_data_pos[i02 + ne2 * 3]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2 + p.ne02 * 3]*pow(p.theta_scale, i0/2.0f); } } else { if (sector < p.sections[0]) { - theta_base = rope_data_pos[i02]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2]*pow(p.theta_scale, i0/2.0f); } else if (sector >= p.sections[0] && sector < sec_w) { - theta_base = rope_data_pos[i02 + ne2 * 1]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2 + p.ne02 * 1]*pow(p.theta_scale, i0/2.0f); } else if (sector >= sec_w && sector < sec_w + p.sections[2]) { - theta_base = rope_data_pos[i02 + ne2 * 2]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2 + p.ne02 * 2]*pow(p.theta_scale, i0/2.0f); } else if (sector >= sec_w + p.sections[2]) { - theta_base = rope_data_pos[i02 + ne2 * 3]*pow(p.theta_scale, i0/2.0f); + theta_base = rope_data_pos[i2 + p.ne02 * 3]*pow(p.theta_scale, i0/2.0f); } } @@ -191,20 +171,13 @@ void rope_multi(const uint i0, const uint i1, rope_params p) { rope_data_d[idst + p.n_dims/2] = ROPE_D_TYPE(x0*sin_theta + x1*cos_theta); } -void rope_vision(const uint i0, const uint i1, rope_params p) { - uint ne0 = p.ncols; - uint ne1 = p.p_delta_rows; - uint ne2 = p.ne02; - - if (i0 >= ne0) { +void rope_vision(const uint i0, const uint i1, const uint i2, const uint i3, rope_params p) { + if (i0 >= p.ne00) { return; } - const uint i01 = i1 % ne1; - const uint i02 = i1 / ne1; - - const uint idst = i1*ne0 + i0/2; - const uint ix = rope_a_coord(i0/2, i01, i02, p); + const uint idst = i0/2 + i1 * p.nb11 + i2 * p.nb12 + i3 * p.nb13; + const uint ix = rope_a_coord(i0/2, i1, i2, i3, p); const int sect_dims = p.sections[0] + p.sections[1]; const int sec_w = p.sections[1] + p.sections[0]; @@ -213,11 +186,11 @@ void rope_vision(const uint i0, const uint i1, rope_params p) { float theta_base = 0.0; if (sector < p.sections[0]) { const uint p0 = sector; - theta_base = rope_data_pos[i02]*pow(p.theta_scale, p0); + theta_base = rope_data_pos[i2]*pow(p.theta_scale, p0); } else if (sector >= p.sections[0] && sector < sec_w) { const uint p0 = sector - p.sections[0]; - theta_base = rope_data_pos[i02 + ne2]*pow(p.theta_scale, p0); + theta_base = rope_data_pos[i2 + p.ne02]*pow(p.theta_scale, p0); } const float freq_factor = p.has_ff != 0 ? rope_data_ff[i0/2] : 1.0f; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rope_multi.comp b/ggml/src/ggml-vulkan/vulkan-shaders/rope_multi.comp index f7587468a8..1528fbeeae 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rope_multi.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rope_multi.comp @@ -5,10 +5,13 @@ void main() { const uint i0 = 2*gl_GlobalInvocationID.y; - // i1 is actually i2*nb2+i1, but the rows are contiguous - const uint i1 = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; - if (i1 >= pc.nrows) { + const uint row = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; + if (row >= pc.nrows) { return; } - rope_multi(i0, i1, pc); + const uint i3 = row / (pc.ne01*pc.ne02); + const uint i2 = (row - i3 * pc.ne01*pc.ne02) / pc.ne01; + const uint i1 = (row - i3 * pc.ne01*pc.ne02 - i2 * pc.ne01); + + rope_multi(i0, i1, i2, i3, pc); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rope_neox.comp b/ggml/src/ggml-vulkan/vulkan-shaders/rope_neox.comp index acb8ed7815..ad0896095d 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rope_neox.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rope_neox.comp @@ -5,10 +5,13 @@ void main() { const uint i0 = 2*gl_GlobalInvocationID.y; - // i1 is actually i2*nb2+i1, but the rows are contiguous - const uint i1 = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; - if (i1 >= pc.nrows) { + const uint row = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; + if (row >= pc.nrows) { return; } - rope_neox(i0, i1, pc); + const uint i3 = row / (pc.ne01*pc.ne02); + const uint i2 = (row - i3 * pc.ne01*pc.ne02) / pc.ne01; + const uint i1 = (row - i3 * pc.ne01*pc.ne02 - i2 * pc.ne01); + + rope_neox(i0, i1, i2, i3, pc); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rope_norm.comp b/ggml/src/ggml-vulkan/vulkan-shaders/rope_norm.comp index 0033cdb224..11220817df 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rope_norm.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rope_norm.comp @@ -5,10 +5,13 @@ void main() { const uint i0 = 2*gl_GlobalInvocationID.y; - // i1 is actually i2*nb2+i1, but the rows are contiguous - const uint i1 = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; - if (i1 >= pc.nrows) { + const uint row = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; + if (row >= pc.nrows) { return; } - rope_norm(i0, i1, pc); + const uint i3 = row / (pc.ne01*pc.ne02); + const uint i2 = (row - i3 * pc.ne01*pc.ne02) / pc.ne01; + const uint i1 = (row - i3 * pc.ne01*pc.ne02 - i2 * pc.ne01); + + rope_norm(i0, i1, i2, i3, pc); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rope_params.glsl b/ggml/src/ggml-vulkan/vulkan-shaders/rope_params.glsl index 939cf3c51c..ec6ceaca9b 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rope_params.glsl +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rope_params.glsl @@ -5,24 +5,29 @@ struct rope_params { uint rope_mode; - uint ncols; uint nrows; uint n_dims; float freq_scale; - uint p_delta_rows; float freq_base; float ext_factor; float attn_factor; float corr_dims[2]; float theta_scale; uint has_ff; - uint ne02; - uint nb01; - uint nb02; int sections[4]; uint is_imrope; uint is_back; uint set_rows_stride; + + uint ne00; + uint ne01; + uint ne02; + uint nb01; + uint nb02; + uint nb03; + uint nb11; + uint nb12; + uint nb13; }; #endif // !defined(GGML_ROPE_PARAMS) diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/rope_vision.comp b/ggml/src/ggml-vulkan/vulkan-shaders/rope_vision.comp index d93800b5e7..ca71efb2f5 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/rope_vision.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/rope_vision.comp @@ -5,10 +5,13 @@ void main() { const uint i0 = 2*gl_GlobalInvocationID.y; - // i1 is actually i2*nb2+i1, but the rows are contiguous - const uint i1 = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; - if (i1 >= pc.nrows) { + const uint row = gl_GlobalInvocationID.x + 32768 * gl_GlobalInvocationID.z; + if (row >= pc.nrows) { return; } - rope_vision(i0, i1, pc); + const uint i3 = row / (pc.ne01*pc.ne02); + const uint i2 = (row - i3 * pc.ne01*pc.ne02) / pc.ne01; + const uint i1 = (row - i3 * pc.ne01*pc.ne02 - i2 * pc.ne01); + + rope_vision(i0, i1, i2, i3, pc); } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index bbdbf9dcaa..42ebc21e2a 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -330,7 +330,7 @@ void string_to_spv_func(std::string name, std::string in_path, std::string out_p std::vector cmd = {GLSLC, "-fshader-stage=compute", target_env, in_path, "-o", out_path}; #endif - // disable spirv-opt for coopmat shaders for https://github.com/ggerganov/llama.cpp/issues/10734 + // disable spirv-opt for coopmat shaders for https://github.com/ggml-org/llama.cpp/issues/10734 // disable spirv-opt for bf16 shaders for https://github.com/ggml-org/llama.cpp/issues/15344 // disable spirv-opt for rope shaders for https://github.com/ggml-org/llama.cpp/issues/16860 if (!coopmat && name.find("bf16") == std::string::npos && name.find("rope") == std::string::npos) { @@ -790,6 +790,8 @@ void process_shaders() { string_to_spv("split_k_reduce", "mul_mat_split_k_reduce.comp", {}); string_to_spv("fa_split_k_reduce", "flash_attn_split_k_reduce.comp", {}); + string_to_spv("fa_mask_opt", "flash_attn_mask_opt.comp", {}); + string_to_spv("quantize_q8_1", "quantize_q8_1.comp", {}); string_to_spv("quantize_q8_1_subgroup", "quantize_q8_1.comp", {{"USE_SUBGROUPS", "1"}}); diff --git a/ggml/src/ggml-webgpu/ggml-webgpu-shader-lib.hpp b/ggml/src/ggml-webgpu/ggml-webgpu-shader-lib.hpp index 84d88e81d4..6997f6bdd3 100644 --- a/ggml/src/ggml-webgpu/ggml-webgpu-shader-lib.hpp +++ b/ggml/src/ggml-webgpu/ggml-webgpu-shader-lib.hpp @@ -465,4 +465,73 @@ inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_unary_shader( return result; } +/** Binary **/ + +struct ggml_webgpu_binary_pipeline_key { + int type; + int op; + bool inplace; + bool overlap; + + bool operator==(const ggml_webgpu_binary_pipeline_key & other) const { + return type == other.type && op == other.op && inplace == other.inplace && overlap == other.overlap; + } +}; + +struct ggml_webgpu_binary_pipeline_key_hash { + size_t operator()(const ggml_webgpu_binary_pipeline_key & key) const { + size_t seed = 0; + ggml_webgpu_hash_combine(seed, key.type); + ggml_webgpu_hash_combine(seed, key.op); + ggml_webgpu_hash_combine(seed, key.inplace); + ggml_webgpu_hash_combine(seed, key.overlap); + return seed; + } +}; + +struct ggml_webgpu_binary_shader_lib_context { + ggml_webgpu_binary_pipeline_key key; + uint32_t max_wg_size; +}; + +inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_binary_shader( + pre_wgsl::Preprocessor & preprocessor, + const char * shader_src, + const ggml_webgpu_binary_shader_lib_context & context) { + std::vector defines; + std::string op_name = ggml_op_name((ggml_op) context.key.op); + std::string variant = op_name; + + defines.push_back(std::string("OP_") + op_name); + + switch (context.key.type) { + case GGML_TYPE_F32: + defines.push_back("TYPE_F32"); + variant += "_f32"; + break; + case GGML_TYPE_F16: + defines.push_back("TYPE_F16"); + variant += "_f16"; + break; + default: + GGML_ABORT("Unsupported type for binary shader"); + } + + if (context.key.inplace) { + defines.push_back("INPLACE"); + variant += "_inplace"; + } else if (context.key.overlap) { + defines.push_back("OVERLAP"); + variant += "_overlap"; + } + + defines.push_back(std::string("WG_SIZE=") + std::to_string(context.max_wg_size)); + ggml_webgpu_processed_shader result; + result.wgsl = preprocessor.preprocess(shader_src, defines); + result.variant = variant; + ggml_webgpu_generic_shader_decisions * decisions = new ggml_webgpu_generic_shader_decisions(); + decisions->wg_size = context.max_wg_size; + result.decisions = decisions; + return result; +} #endif // GGML_WEBGPU_SHADER_LIB_HPP diff --git a/ggml/src/ggml-webgpu/ggml-webgpu.cpp b/ggml/src/ggml-webgpu/ggml-webgpu.cpp index 22e2bfeb4c..f7ceca1121 100644 --- a/ggml/src/ggml-webgpu/ggml-webgpu.cpp +++ b/ggml/src/ggml-webgpu/ggml-webgpu.cpp @@ -146,8 +146,13 @@ struct webgpu_submission_futures { struct webgpu_buf_pool { std::vector free; - std::mutex mutex; - + // The pool must be synchronized because + // 1. The memset pool is shared globally by every ggml buffer, + // since allocating a pool per ggml buffer would consume too much memory. + // 2. For the per-thread buffer pools in webgpu_context, + // buffers are allocated and freed in Dawn callbacks, + // which can run on a different thread than the calling thread. + std::mutex mutex; std::condition_variable cv; void init(wgpu::Device device, @@ -266,7 +271,7 @@ struct webgpu_command { #endif }; -struct webgpu_capabilities_base { +struct webgpu_capabilities { wgpu::Limits limits; bool supports_subgroup_matrix = false; @@ -286,11 +291,11 @@ struct webgpu_global_context_struct { wgpu::Device device; wgpu::Queue queue; - webgpu_capabilities_base capabilities; + webgpu_capabilities capabilities; // Shared buffer to move data from device to host - wgpu::Buffer get_tensor_staging_buf; + wgpu::Buffer get_tensor_staging_buf; // Global mutex for pipeline and staging buffer, will be refactored to exclude pipeline caches. - std::recursive_mutex mutex; + std::recursive_mutex mutex; webgpu_buf_pool memset_buf_pool; std::map memset_pipelines; // variant or type index @@ -343,13 +348,12 @@ struct webgpu_context_struct { std::unordered_map set_rows_pipelines; - std::map> get_rows_pipelines; // src_type, vectorized + std::map> get_rows_pipelines; // src_type, vectorized - std::map> cpy_pipelines; // src_type, dst_type - std::map> add_pipelines; // type, inplace - std::map> sub_pipelines; // type, inplace - std::map> mul_pipelines; // type, inplace - std::map> div_pipelines; // type, inplace + std::map> cpy_pipelines; // src_type, dst_type + + std::unordered_map + binary_pipelines; std::map rms_norm_pipelines; // inplace std::map>> rope_pipelines; // type, ff, inplace @@ -361,7 +365,6 @@ struct webgpu_context_struct { std::unordered_map pad_pipelines; size_t memset_bytes_per_thread; - }; typedef std::shared_ptr webgpu_context; @@ -383,9 +386,8 @@ struct ggml_backend_webgpu_device_context { // Per-thread data required to actually run WebGPU operations in a backend instance struct ggml_backend_webgpu_context { - webgpu_context webgpu_ctx; - std::once_flag init_once; - std::string name; + webgpu_context webgpu_ctx; + std::string name; }; // Per-thread data related to buffers @@ -820,6 +822,28 @@ static bool ggml_webgpu_tensor_equal(ggml_tensor * a, ggml_tensor * b) { (ggml_webgpu_tensor_offset(a) == ggml_webgpu_tensor_offset(b)); } +// Used to determine if two tensors share the same buffer and their byte ranges overlap, +static bool ggml_webgpu_tensor_overlap(ggml_tensor * a, ggml_tensor * b) { + return (ggml_webgpu_tensor_buf(a).Get() == ggml_webgpu_tensor_buf(b).Get()) && + ggml_webgpu_tensor_offset(a) < (ggml_webgpu_tensor_offset(b) + ggml_nbytes(b)) && + ggml_webgpu_tensor_offset(b) < (ggml_webgpu_tensor_offset(a) + ggml_nbytes(a)); +} + +struct binary_overlap_flags { + bool inplace; // src0 == dst + bool overlap; // src1 == dst +}; + +static binary_overlap_flags ggml_webgpu_detect_binary_overlap(ggml_tensor * src0, + ggml_tensor * src1, + ggml_tensor * dst) { + binary_overlap_flags flags = {}; + flags.inplace = ggml_webgpu_tensor_equal(src0, dst); + flags.overlap = ggml_webgpu_tensor_overlap(src1, dst); + + return flags; +} + static webgpu_command ggml_webgpu_cpy(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) { uint32_t ne = (uint32_t) ggml_nelements(dst); @@ -861,20 +885,15 @@ static webgpu_command ggml_webgpu_pad(webgpu_context & ctx, ggml_tensor * src, g }; webgpu_pipeline pipeline; - { - // TODO: remove guard once pipeline caches are per-thread - std::lock_guard lock(ctx->global_ctx->mutex); - auto it = ctx->pad_pipelines.find(pipeline_key); - if (it != ctx->pad_pipelines.end()) { - pipeline = it->second; - } else { - ggml_webgpu_processed_shader processed = - ggml_webgpu_preprocess_pad_shader(ctx->p, wgsl_pad, shader_lib_ctx); - pipeline = - ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); - pipeline.context = processed.decisions; - ctx->pad_pipelines.emplace(pipeline_key, pipeline); - } + auto it = ctx->pad_pipelines.find(pipeline_key); + if (it != ctx->pad_pipelines.end()) { + pipeline = it->second; + } else { + ggml_webgpu_processed_shader processed = ggml_webgpu_preprocess_pad_shader(ctx->p, wgsl_pad, shader_lib_ctx); + pipeline = + ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); + pipeline.context = processed.decisions; + ctx->pad_pipelines.emplace(pipeline_key, pipeline); } ggml_webgpu_generic_shader_decisions decisions = @@ -944,20 +963,16 @@ static std::optional ggml_webgpu_set_rows(webgpu_context & ctx, }; webgpu_pipeline pipeline; - // TODO: remove guard once pipeline caches are per-thread - { - std::lock_guard lock(ctx->global_ctx->mutex); - auto it = ctx->set_rows_pipelines.find(key); - if (it != ctx->set_rows_pipelines.end()) { - pipeline = it->second; - } else { - ggml_webgpu_processed_shader processed = - ggml_webgpu_preprocess_set_rows_shader(ctx->p, wgsl_set_rows, shader_lib_ctx); - pipeline = - ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); - pipeline.context = processed.decisions; - ctx->set_rows_pipelines.emplace(key, pipeline); - } + auto it = ctx->set_rows_pipelines.find(key); + if (it != ctx->set_rows_pipelines.end()) { + pipeline = it->second; + } else { + ggml_webgpu_processed_shader processed = + ggml_webgpu_preprocess_set_rows_shader(ctx->p, wgsl_set_rows, shader_lib_ctx); + pipeline = + ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); + pipeline.context = processed.decisions; + ctx->set_rows_pipelines.emplace(key, pipeline); } ggml_webgpu_generic_shader_decisions decisions = @@ -1261,29 +1276,25 @@ static webgpu_command ggml_webgpu_flash_attn(webgpu_context & ctx, }; webgpu_pipeline pipeline; - // TODO: remove guard once pipeline caches are per-thread - { - std::lock_guard lock(ctx->global_ctx->mutex); - auto it = ctx->flash_attn_pipelines.find(key); - if (it != ctx->flash_attn_pipelines.end()) { - pipeline = it->second; - } else { - ggml_webgpu_flash_attn_shader_lib_context shader_lib_ctx = { - .key = key, - .sg_mat_m = ctx->global_ctx->capabilities.sg_mat_m, - .sg_mat_n = ctx->global_ctx->capabilities.sg_mat_n, - .sg_mat_k = ctx->global_ctx->capabilities.sg_mat_k, - .wg_mem_limit_bytes = ctx->global_ctx->capabilities.limits.maxComputeWorkgroupStorageSize, - .max_subgroup_size = ctx->global_ctx->capabilities.max_subgroup_size - }; + auto it = ctx->flash_attn_pipelines.find(key); + if (it != ctx->flash_attn_pipelines.end()) { + pipeline = it->second; + } else { + ggml_webgpu_flash_attn_shader_lib_context shader_lib_ctx = { + .key = key, + .sg_mat_m = ctx->global_ctx->capabilities.sg_mat_m, + .sg_mat_n = ctx->global_ctx->capabilities.sg_mat_n, + .sg_mat_k = ctx->global_ctx->capabilities.sg_mat_k, + .wg_mem_limit_bytes = ctx->global_ctx->capabilities.limits.maxComputeWorkgroupStorageSize, + .max_subgroup_size = ctx->global_ctx->capabilities.max_subgroup_size + }; - ggml_webgpu_processed_shader processed = - ggml_webgpu_preprocess_flash_attn_shader(ctx->p, wgsl_flash_attn, shader_lib_ctx); - pipeline = - ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); - pipeline.context = processed.decisions; - ctx->flash_attn_pipelines.emplace(key, pipeline); - } + ggml_webgpu_processed_shader processed = + ggml_webgpu_preprocess_flash_attn_shader(ctx->p, wgsl_flash_attn, shader_lib_ctx); + pipeline = + ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); + pipeline.context = processed.decisions; + ctx->flash_attn_pipelines.emplace(key, pipeline); } ggml_webgpu_flash_attn_shader_decisions decisions = @@ -1308,20 +1319,16 @@ static webgpu_command ggml_webgpu_unary_op(webgpu_context & ctx, ggml_tensor * s }; webgpu_pipeline pipeline; - { - // TODO: remove guard once pipeline caches are per-thread - std::lock_guard lock(ctx->global_ctx->mutex); - auto it = ctx->unary_pipelines.find(pipeline_key); - if (it != ctx->unary_pipelines.end()) { - pipeline = it->second; - } else { - ggml_webgpu_processed_shader processed = - ggml_webgpu_preprocess_unary_shader(ctx->p, wgsl_unary, shader_lib_ctx); - pipeline = - ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); - pipeline.context = processed.decisions; - ctx->unary_pipelines.emplace(pipeline_key, pipeline); - } + auto it = ctx->unary_pipelines.find(pipeline_key); + if (it != ctx->unary_pipelines.end()) { + pipeline = it->second; + } else { + ggml_webgpu_processed_shader processed = + ggml_webgpu_preprocess_unary_shader(ctx->p, wgsl_unary, shader_lib_ctx); + pipeline = + ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); + pipeline.context = processed.decisions; + ctx->unary_pipelines.emplace(pipeline_key, pipeline); } ggml_webgpu_generic_shader_decisions decisions = @@ -1389,14 +1396,42 @@ static webgpu_command ggml_webgpu_unary_op(webgpu_context & ctx, ggml_tensor * s return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x); } -static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx, - ggml_tensor * src0, - ggml_tensor * src1, - ggml_tensor * dst, - webgpu_pipeline & pipeline, - bool inplace) { +static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx, + ggml_tensor * src0, + ggml_tensor * src1, + ggml_tensor * dst) { + binary_overlap_flags flags = ggml_webgpu_detect_binary_overlap(src0, src1, dst); + + ggml_webgpu_binary_pipeline_key pipeline_key = { + .type = dst->type, + .op = dst->op, + .inplace = flags.inplace, + .overlap = flags.overlap, + }; + ggml_webgpu_binary_shader_lib_context shader_lib_ctx = { + .key = pipeline_key, .max_wg_size = ctx->global_ctx->capabilities.limits.maxComputeInvocationsPerWorkgroup + }; + + webgpu_pipeline pipeline; + auto it = ctx->binary_pipelines.find(pipeline_key); + if (it != ctx->binary_pipelines.end()) { + pipeline = it->second; + } else { + ggml_webgpu_processed_shader processed = + ggml_webgpu_preprocess_binary_shader(ctx->p, wgsl_binary, shader_lib_ctx); + pipeline = + ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); + pipeline.context = processed.decisions; + ctx->binary_pipelines.emplace(pipeline_key, pipeline); + } + + ggml_webgpu_generic_shader_decisions decisions = + *static_cast(pipeline.context); + + uint32_t ne = (uint32_t) ggml_nelements(dst); + std::vector params = { - (uint32_t) ggml_nelements(dst), + ne, (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)), (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)), @@ -1413,24 +1448,30 @@ static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx, (uint32_t) src1->ne[3], }; - std::vector entries = { - { .binding = 0, - .buffer = ggml_webgpu_tensor_buf(src0), - .offset = ggml_webgpu_tensor_align_offset(ctx, src0), - .size = ggml_webgpu_tensor_binding_size(ctx, src0) }, - { .binding = 1, - .buffer = ggml_webgpu_tensor_buf(src1), - .offset = ggml_webgpu_tensor_align_offset(ctx, src1), - .size = ggml_webgpu_tensor_binding_size(ctx, src1) } - }; - if (!inplace) { + std::vector entries; + + entries.push_back({ + .binding = 0, + .buffer = ggml_webgpu_tensor_buf(src0), + .offset = ggml_webgpu_tensor_align_offset(ctx, src0), + .size = ggml_webgpu_tensor_binding_size(ctx, src0), + }); + + entries.push_back({ + .binding = 1, + .buffer = ggml_webgpu_tensor_buf(src1), + .offset = ggml_webgpu_tensor_align_offset(ctx, src1), + .size = ggml_webgpu_tensor_binding_size(ctx, src1), + }); + + if (!flags.inplace && !flags.overlap) { entries.push_back({ .binding = 2, .buffer = ggml_webgpu_tensor_buf(dst), .offset = ggml_webgpu_tensor_align_offset(ctx, dst), .size = ggml_webgpu_tensor_binding_size(ctx, dst) }); } - uint32_t wg_x = CEIL_DIV(ggml_nelements(dst), WEBGPU_MAX_WG_SIZE); + uint32_t wg_x = CEIL_DIV(ne, decisions.wg_size); return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x); } @@ -1743,19 +1784,15 @@ static webgpu_command ggml_webgpu_argmax(webgpu_context & ctx, ggml_tensor * src }; webgpu_pipeline pipeline; - { - // TODO: remove guard once pipeline caches are per-thread - std::lock_guard lock(ctx->global_ctx->mutex); - auto it = ctx->argmax_pipelines.find(shader_lib_ctx.vec4); - if (it != ctx->argmax_pipelines.end()) { - pipeline = it->second; - } else { - ggml_webgpu_processed_shader processed = - ggml_webgpu_preprocess_generic_shader(ctx->p, wgsl_argmax, shader_lib_ctx, "argmax"); - pipeline = - ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); - ctx->argmax_pipelines.emplace(shader_lib_ctx.vec4, pipeline); - } + auto it = ctx->argmax_pipelines.find(shader_lib_ctx.vec4); + if (it != ctx->argmax_pipelines.end()) { + pipeline = it->second; + } else { + ggml_webgpu_processed_shader processed = + ggml_webgpu_preprocess_generic_shader(ctx->p, wgsl_argmax, shader_lib_ctx, "argmax"); + pipeline = + ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); + ctx->argmax_pipelines.emplace(shader_lib_ctx.vec4, pipeline); } uint32_t wg_x = ggml_nelements(dst); return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x); @@ -1772,9 +1809,8 @@ static webgpu_command ggml_webgpu_argsort(webgpu_context & ctx, ggml_tensor * sr .order = order }; - std::lock_guard lock(ctx->global_ctx->mutex); - webgpu_pipeline argsort_pipeline; - auto it = ctx->argsort_pipelines.find(order); + webgpu_pipeline argsort_pipeline; + auto it = ctx->argsort_pipelines.find(order); if (it != ctx->argsort_pipelines.end()) { argsort_pipeline = it->second; } else { @@ -1963,19 +1999,15 @@ static webgpu_command ggml_webgpu_cumsum(webgpu_context & ctx, ggml_tensor * src .max_wg_size = ctx->global_ctx->capabilities.limits.maxComputeInvocationsPerWorkgroup, }; webgpu_pipeline pipeline; - // TODO: remove guard once pipeline caches are per-thread - { - std::lock_guard lock(ctx->global_ctx->mutex); - auto it = ctx->cumsum_pipelines.find(1); - if (it != ctx->cumsum_pipelines.end()) { - pipeline = it->second; - } else { - ggml_webgpu_processed_shader processed = - ggml_webgpu_preprocess_generic_shader(ctx->p, wgsl_cumsum, shader_lib_ctx, "cumsum"); - pipeline = - ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); - ctx->cumsum_pipelines.emplace(1, pipeline); - } + auto it = ctx->cumsum_pipelines.find(1); + if (it != ctx->cumsum_pipelines.end()) { + pipeline = it->second; + } else { + ggml_webgpu_processed_shader processed = + ggml_webgpu_preprocess_generic_shader(ctx->p, wgsl_cumsum, shader_lib_ctx, "cumsum"); + pipeline = + ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); + ctx->cumsum_pipelines.emplace(1, pipeline); } uint32_t wg_x = ggml_nrows(dst); return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x); @@ -2009,19 +2041,15 @@ static webgpu_command ggml_webgpu_sum_rows(webgpu_context & ctx, ggml_tensor * s }; webgpu_pipeline pipeline; - { - // TODO: remove guard once pipeline caches are per-thread - std::lock_guard lock(ctx->global_ctx->mutex); - auto it = ctx->sum_rows_pipelines.find(1); - if (it != ctx->sum_rows_pipelines.end()) { - pipeline = it->second; - } else { - ggml_webgpu_processed_shader processed = - ggml_webgpu_preprocess_generic_shader(ctx->p, wgsl_sum_rows, shader_lib_ctx, "sum_rows"); - pipeline = - ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); - ctx->sum_rows_pipelines.emplace(1, pipeline); - } + auto it = ctx->sum_rows_pipelines.find(1); + if (it != ctx->sum_rows_pipelines.end()) { + pipeline = it->second; + } else { + ggml_webgpu_processed_shader processed = + ggml_webgpu_preprocess_generic_shader(ctx->p, wgsl_sum_rows, shader_lib_ctx, "sum_rows"); + pipeline = + ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str()); + ctx->sum_rows_pipelines.emplace(1, pipeline); } uint32_t wg_x = total_sum ? 1 : ggml_nrows(dst); return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x); @@ -2065,25 +2093,10 @@ static std::optional ggml_webgpu_encode_node(webgpu_context ctx, return std::nullopt; #endif case GGML_OP_ADD: - { - int inplace = ggml_webgpu_tensor_equal(src0, node); - return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->add_pipelines[node->type][inplace], inplace); - } case GGML_OP_SUB: - { - int inplace = ggml_webgpu_tensor_equal(src0, node); - return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->sub_pipelines[node->type][inplace], inplace); - } case GGML_OP_MUL: - { - int inplace = ggml_webgpu_tensor_equal(src0, node); - return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->mul_pipelines[node->type][inplace], inplace); - } case GGML_OP_DIV: - { - int inplace = ggml_webgpu_tensor_equal(src0, node); - return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->div_pipelines[node->type][inplace], inplace); - } + return ggml_webgpu_binary_op(ctx, src0, src1, node); case GGML_OP_RMS_NORM: return ggml_webgpu_rms_norm(ctx, src0, node); case GGML_OP_ROPE: @@ -2692,58 +2705,6 @@ static void ggml_webgpu_init_cpy_pipeline(webgpu_context & webgpu_ctx) { ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_cpy_f16_f16, "cpy_f16_f16", constants); } -static void ggml_webgpu_init_add_pipeline(webgpu_context & webgpu_ctx) { - std::vector constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE); - - webgpu_ctx->add_pipelines[GGML_TYPE_F32][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f32, "add_f32", constants); - webgpu_ctx->add_pipelines[GGML_TYPE_F16][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f16, "add_f16", constants); - webgpu_ctx->add_pipelines[GGML_TYPE_F32][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f32_inplace, "add_f32_inplace", constants); - webgpu_ctx->add_pipelines[GGML_TYPE_F16][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f16_inplace, "add_f16_inplace", constants); -} - -static void ggml_webgpu_init_sub_pipeline(webgpu_context & webgpu_ctx) { - std::vector constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE); - - webgpu_ctx->sub_pipelines[GGML_TYPE_F32][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f32, "sub_f32", constants); - webgpu_ctx->sub_pipelines[GGML_TYPE_F16][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f16, "sub_f16", constants); - webgpu_ctx->sub_pipelines[GGML_TYPE_F32][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f32_inplace, "sub_f32_inplace", constants); - webgpu_ctx->sub_pipelines[GGML_TYPE_F16][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f16_inplace, "sub_f16_inplace", constants); -} - -static void ggml_webgpu_init_mul_pipeline(webgpu_context & webgpu_ctx) { - std::vector constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE); - - webgpu_ctx->mul_pipelines[GGML_TYPE_F32][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f32, "mul_f32", constants); - webgpu_ctx->mul_pipelines[GGML_TYPE_F16][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f16, "mul_f16", constants); - webgpu_ctx->mul_pipelines[GGML_TYPE_F32][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f32_inplace, "mul_f32_inplace", constants); - webgpu_ctx->mul_pipelines[GGML_TYPE_F16][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f16_inplace, "mul_f16_inplace", constants); -} - -static void ggml_webgpu_init_div_pipeline(webgpu_context & webgpu_ctx) { - std::vector constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE); - - webgpu_ctx->div_pipelines[GGML_TYPE_F32][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f32, "div_f32", constants); - webgpu_ctx->div_pipelines[GGML_TYPE_F16][0] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f16, "div_f16", constants); - webgpu_ctx->div_pipelines[GGML_TYPE_F32][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f32_inplace, "div_f32_inplace", constants); - webgpu_ctx->div_pipelines[GGML_TYPE_F16][1] = - ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f16_inplace, "div_f16_inplace", constants); -} - static void ggml_webgpu_init_rms_norm_pipeline(webgpu_context & webgpu_ctx) { std::vector constants = ggml_webgpu_wg_size_entry(WEBGPU_ROW_SPLIT_WG_SIZE); @@ -3016,10 +2977,10 @@ static bool create_webgpu_device(ggml_backend_webgpu_reg_context * ctx) { #ifdef GGML_WEBGPU_GPU_PROFILE // Initialize buffer pool for timestamp queries, used for profiling - ctx->webgpu_global_ctx->timestamp_query_buf_pool.init(ctx->webgpu_global_ctx->device, WEBGPU_NUM_TIMESTAMP_QUERY_BUFS, - WEBGPU_TIMESTAMP_QUERY_BUF_SIZE_BYTES, - wgpu::BufferUsage::QueryResolve | wgpu::BufferUsage::CopySrc, - wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopyDst); + ctx->webgpu_global_ctx->timestamp_query_buf_pool.init( + ctx->webgpu_global_ctx->device, WEBGPU_NUM_TIMESTAMP_QUERY_BUFS, WEBGPU_TIMESTAMP_QUERY_BUF_SIZE_BYTES, + wgpu::BufferUsage::QueryResolve | wgpu::BufferUsage::CopySrc, + wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopyDst); #endif GGML_LOG_INFO( @@ -3045,10 +3006,6 @@ static webgpu_context initialize_webgpu_context(ggml_backend_dev_t dev) { ggml_webgpu_init_mul_mat_pipeline(webgpu_ctx); ggml_webgpu_init_get_rows_pipeline(webgpu_ctx); ggml_webgpu_init_cpy_pipeline(webgpu_ctx); - ggml_webgpu_init_add_pipeline(webgpu_ctx); - ggml_webgpu_init_sub_pipeline(webgpu_ctx); - ggml_webgpu_init_mul_pipeline(webgpu_ctx); - ggml_webgpu_init_div_pipeline(webgpu_ctx); ggml_webgpu_init_rms_norm_pipeline(webgpu_ctx); ggml_webgpu_init_rope_pipeline(webgpu_ctx); ggml_webgpu_init_glu_pipeline(webgpu_ctx); diff --git a/ggml/src/ggml-webgpu/wgsl-shaders/bin_op.tmpl.wgsl b/ggml/src/ggml-webgpu/wgsl-shaders/bin_op.tmpl.wgsl deleted file mode 100644 index 1ce4d83fa8..0000000000 --- a/ggml/src/ggml-webgpu/wgsl-shaders/bin_op.tmpl.wgsl +++ /dev/null @@ -1,188 +0,0 @@ -#define(VARIANTS) - -[ - { - "SHADER_NAME": "add_f32", - "REPLS": { - "TYPE" : "f32", - "OP": "+" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "add_f16", - "REPLS": { - "TYPE" : "f16", - "OP": "+" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "add_f32_inplace", - "REPLS": { - "TYPE" : "f32", - "OP": "+" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "add_f16_inplace", - "REPLS": { - "TYPE" : "f16", - "OP": "+" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "mul_f32", - "REPLS": { - "TYPE" : "f32", - "OP": "*" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "mul_f16", - "REPLS": { - "TYPE" : "f16", - "OP": "*" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "mul_f32_inplace", - "REPLS": { - "TYPE" : "f32", - "OP": "*" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "mul_f16_inplace", - "REPLS": { - "TYPE" : "f16", - "OP": "*" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "sub_f32", - "REPLS": { - "TYPE" : "f32", - "OP": "-" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "sub_f16", - "REPLS": { - "TYPE" : "f16", - "OP": "-" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "sub_f32_inplace", - "REPLS": { - "TYPE" : "f32", - "OP": "-" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "sub_f16_inplace", - "REPLS": { - "TYPE" : "f16", - "OP": "-" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "div_f32", - "REPLS": { - "TYPE" : "f32", - "OP": "/" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "div_f16", - "REPLS": { - "TYPE" : "f16", - "OP": "/" - }, - "DECLS": ["NOT_INPLACE"] - }, - { - "SHADER_NAME": "div_f32_inplace", - "REPLS": { - "TYPE" : "f32", - "OP": "/" - }, - "DECLS": ["INPLACE"] - }, - { - "SHADER_NAME": "div_f16_inplace", - "REPLS": { - "TYPE" : "f16", - "OP": "/" - }, - "DECLS": ["INPLACE"] - } -] - -#end(VARIANTS) - -#define(DECLS) - -#decl(NOT_INPLACE) - -fn update(dst_i: u32, src0_i: u32, src1_i: u32) { - dst[dst_i] = src0[src0_i] {{OP}} src1[src1_i]; -} - -@group(0) @binding(2) -var dst: array<{{TYPE}}>; - -@group(0) @binding(3) -var params: Params; - -#enddecl(NOT_INPLACE) - -#decl(INPLACE) - -fn update(dst_i: u32, src0_i: u32, src1_i: u32) { - src0[dst_i] = src0[src0_i] {{OP}} src1[src1_i]; -} - -@group(0) @binding(2) -var params: Params; - -#enddecl(INPLACE) - -#end(DECLS) - - -#define(SHADER) - -enable f16; - -#include "binary_head.tmpl" - -@group(0) @binding(0) -var src0: array<{{TYPE}}>; - -@group(0) @binding(1) -var src1: array<{{TYPE}}>; - -DECLS - -override wg_size: u32; -@compute @workgroup_size(wg_size) -fn main(@builtin(global_invocation_id) gid: vec3) { - if (gid.x < params.ne) { - update(params.offset_dst + gid.x, params.offset_src0 + gid.x, params.offset_src1 + src1_index(gid.x)); - } -} - -#end(SHADER) diff --git a/ggml/src/ggml-webgpu/wgsl-shaders/binary.wgsl b/ggml/src/ggml-webgpu/wgsl-shaders/binary.wgsl new file mode 100644 index 0000000000..55dd66408a --- /dev/null +++ b/ggml/src/ggml-webgpu/wgsl-shaders/binary.wgsl @@ -0,0 +1,107 @@ +enable f16; + +struct Params { + ne: u32, + + // offsets in elements + offset_src0: u32, + offset_src1: u32, + offset_dst: u32, + + stride_src1_0: u32, + stride_src1_1: u32, + stride_src1_2: u32, + stride_src1_3: u32, + + a_ne0: u32, + a_ne1: u32, + a_ne2: u32, + + b_ne0: u32, + b_ne1: u32, + b_ne2: u32, + b_ne3: u32, +}; + +fn src1_index(_i: u32) -> u32 { + var i = _i; + let a_i3 = i / (params.a_ne2 * params.a_ne1 * params.a_ne0); + i = i % (params.a_ne2 * params.a_ne1 * params.a_ne0); + let a_i2 = i / (params.a_ne1 * params.a_ne0); + i = i % (params.a_ne1 * params.a_ne0); + let a_i1 = i / params.a_ne0; + let a_i0 = i % params.a_ne0; + + // handle repetition of b + // index loops back to the beginning and repeats after elements are exhausted = modulo + let b_i0 = a_i0 % params.b_ne0; + let b_i1 = a_i1 % params.b_ne1; + let b_i2 = a_i2 % params.b_ne2; + let b_i3 = a_i3 % params.b_ne3; + + // compute index for position in b's flat array + return b_i0 * params.stride_src1_0 + + b_i1 * params.stride_src1_1 + + b_i2 * params.stride_src1_2 + + b_i3 * params.stride_src1_3; +} + +#ifdef TYPE_F32 +#define DataType f32 +#endif +#ifdef TYPE_F16 +#define DataType f16 +#endif + +@group(0) @binding(0) +var src0: array; + +@group(0) @binding(1) +var src1 : array; + +#ifdef INPLACE +@group(0) @binding(2) +var params: Params; + +#elif defined(OVERLAP) +@group(0) @binding(2) +var params: Params; + +#else +@group(0) @binding(2) +var dst: array; + +@group(0) @binding(3) +var params: Params; +#endif + +fn op(a: DataType, b: DataType) -> DataType { +#ifdef OP_ADD + return a + b; +#elif defined(OP_SUB) + return a - b; +#elif defined(OP_MUL) + return a * b; +#elif defined(OP_DIV) + return a / b; +#endif +} + +fn update(dst_i: u32, src0_i: u32, src1_i: u32){ + let result = op(src0[src0_i], src1[src1_i]); + +#ifdef INPLACE + src0[dst_i] = result; +#elif defined(OVERLAP) + src1[dst_i] = result; +#else + dst[dst_i] = result; +#endif +} + +@compute @workgroup_size(WG_SIZE) +fn main(@builtin(global_invocation_id) gid: vec3) { + if (gid.x < params.ne) { + update(params.offset_dst + gid.x, params.offset_src0 + gid.x, params.offset_src1 + src1_index(gid.x)); + } +} diff --git a/ggml/src/ggml-webgpu/wgsl-shaders/binary_head.tmpl b/ggml/src/ggml-webgpu/wgsl-shaders/binary_head.tmpl deleted file mode 100644 index 4b254f468d..0000000000 --- a/ggml/src/ggml-webgpu/wgsl-shaders/binary_head.tmpl +++ /dev/null @@ -1,45 +0,0 @@ -struct Params { - ne: u32, - - // offsets in elements - offset_src0: u32, - offset_src1: u32, - offset_dst: u32, - - stride_src1_0: u32, - stride_src1_1: u32, - stride_src1_2: u32, - stride_src1_3: u32, - - a_ne0: u32, - a_ne1: u32, - a_ne2: u32, - - b_ne0: u32, - b_ne1: u32, - b_ne2: u32, - b_ne3: u32, -}; - -fn src1_index(_i: u32) -> u32 { - var i = _i; - let a_i3 = i / (params.a_ne2 * params.a_ne1 * params.a_ne0); - i = i % (params.a_ne2 * params.a_ne1 * params.a_ne0); - let a_i2 = i / (params.a_ne1 * params.a_ne0); - i = i % (params.a_ne1 * params.a_ne0); - let a_i1 = i / params.a_ne0; - let a_i0 = i % params.a_ne0; - - // handle repetition of b - // index loops back to the beginning and repeats after elements are exhausted = modulo - let b_i0 = a_i0 % params.b_ne0; - let b_i1 = a_i1 % params.b_ne1; - let b_i2 = a_i2 % params.b_ne2; - let b_i3 = a_i3 % params.b_ne3; - - // compute index for position in b's flat array - return b_i0 * params.stride_src1_0 + - b_i1 * params.stride_src1_1 + - b_i2 * params.stride_src1_2 + - b_i3 * params.stride_src1_3; -} diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 1725ad1654..500cb6b72f 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -6562,7 +6562,7 @@ static void ggml_compute_backward( case GGML_OP_DIAG_MASK_INF: { if (src0_needs_grads) { /* ggml_diag_mask_inf_impl() shouldn't be here */ - /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */ + /* ref: https://github.com/ggml-org/llama.cpp/pull/4203#discussion_r1412377992 */ const int n_past = ((const int32_t *) tensor->op_params)[0]; ggml_add_or_set(ctx, cgraph, isrc0, ggml_diag_mask_zero_impl(ctx, grad, n_past, false)); } @@ -7517,8 +7517,11 @@ void ggml_quantize_free(void) { iq2xs_free_impl(GGML_TYPE_IQ2_XXS); iq2xs_free_impl(GGML_TYPE_IQ2_XS); + iq2xs_free_impl(GGML_TYPE_IQ2_S); iq2xs_free_impl(GGML_TYPE_IQ1_S); + iq2xs_free_impl(GGML_TYPE_IQ1_M); iq3xs_free_impl(256); + iq3xs_free_impl(512); ggml_critical_section_end(); } diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 229d9db5e2..54b321f920 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -146,6 +146,8 @@ class Keys: ALTUP_ACTIVE_IDX = "{arch}.altup.active_idx" ALTUP_NUM_INPUTS = "{arch}.altup.num_inputs" EMBD_LENGTH_PER_LAYER_INP = "{arch}.embedding_length_per_layer_input" + SWIGLU_CLAMP_EXP = "{arch}.swiglu_clamp_exp" + SWIGLU_CLAMP_SHEXP = "{arch}.swiglu_clamp_shexp" DENSE_FEAT_IN_SIZE = "{arch}.{dense}_feat_in" DENSE_FEAT_OUT_SIZE = "{arch}.{dense}_feat_out" @@ -179,20 +181,20 @@ class Keys: TEMPERATURE_SCALE = "{arch}.attention.temperature_scale" class Rope: - DIMENSION_COUNT = "{arch}.rope.dimension_count" - DIMENSION_SECTIONS = "{arch}.rope.dimension_sections" - FREQ_BASE = "{arch}.rope.freq_base" - FREQ_BASE_SWA = "{arch}.rope.freq_base_swa" - SCALING_TYPE = "{arch}.rope.scaling.type" - SCALING_FACTOR = "{arch}.rope.scaling.factor" - SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor" - SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length" - SCALING_FINETUNED = "{arch}.rope.scaling.finetuned" - SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier" - SCALING_YARN_EXT_FACTOR = "{arch}.rope.scaling.yarn_ext_factor" - SCALING_YARN_ATTN_FACTOR = "{arch}.rope.scaling.yarn_attn_factor" - SCALING_YARN_BETA_FAST = "{arch}.rope.scaling.yarn_beta_fast" - SCALING_YARN_BETA_SLOW = "{arch}.rope.scaling.yarn_beta_slow" + DIMENSION_COUNT = "{arch}.rope.dimension_count" + DIMENSION_SECTIONS = "{arch}.rope.dimension_sections" + FREQ_BASE = "{arch}.rope.freq_base" + FREQ_BASE_SWA = "{arch}.rope.freq_base_swa" + SCALING_TYPE = "{arch}.rope.scaling.type" + SCALING_FACTOR = "{arch}.rope.scaling.factor" + SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor" + SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length" + SCALING_FINETUNED = "{arch}.rope.scaling.finetuned" + SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier" + SCALING_YARN_EXT_FACTOR = "{arch}.rope.scaling.yarn_ext_factor" + SCALING_YARN_ATTN_FACTOR = "{arch}.rope.scaling.yarn_attn_factor" + SCALING_YARN_BETA_FAST = "{arch}.rope.scaling.yarn_beta_fast" + SCALING_YARN_BETA_SLOW = "{arch}.rope.scaling.yarn_beta_slow" class Split: LLM_KV_SPLIT_NO = "split.no" @@ -207,6 +209,9 @@ class Keys: GROUP_COUNT = "{arch}.ssm.group_count" DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms" + class KDA: + HEAD_DIM = "{arch}.kda.head_dim" + class WKV: HEAD_SIZE = "{arch}.wkv.head_size" @@ -284,6 +289,8 @@ class Keys: class ClipVision: PROJECTOR_TYPE = "clip.vision.projector_type" # for mixed modality models IMAGE_SIZE = "clip.vision.image_size" + IMAGE_MIN_PIXELS = "clip.vision.image_min_pixels" + IMAGE_MAX_PIXELS = "clip.vision.image_max_pixels" PREPROC_IMAGE_SIZE = "clip.vision.preproc_image_size" PATCH_SIZE = "clip.vision.patch_size" EMBEDDING_LENGTH = "clip.vision.embedding_length" @@ -457,8 +464,10 @@ class MODEL_ARCH(IntEnum): PANGU_EMBED = auto() MISTRAL3 = auto() MIMO2 = auto() + STEP35 = auto() LLAMA_EMBED = auto() MAINCODER = auto() + KIMI_LINEAR = auto() class VISION_PROJECTOR_TYPE(IntEnum): @@ -549,6 +558,14 @@ class MODEL_TENSOR(IntEnum): SSM_NORM = auto() SSM_OUT = auto() SSM_BETA_ALPHA = auto() # qwen3next + SSM_CONV1D_Q = auto() # Kimi Linear + SSM_CONV1D_K = auto() # Kimi Linear + SSM_CONV1D_V = auto() # Kimi Linear + SSM_F_A = auto() # Kimi Linear + SSM_F_B = auto() # Kimi Linear + SSM_BETA = auto() # Kimi Linear + SSM_G_A = auto() # Kimi Linear + SSM_G_B = auto() # Kimi Linear TIME_MIX_W0 = auto() TIME_MIX_W1 = auto() TIME_MIX_W2 = auto() @@ -878,8 +895,10 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.PANGU_EMBED: "pangu-embedded", MODEL_ARCH.MISTRAL3: "mistral3", MODEL_ARCH.MIMO2: "mimo2", + MODEL_ARCH.STEP35: "step35", MODEL_ARCH.LLAMA_EMBED: "llama-embed", MODEL_ARCH.MAINCODER: "maincoder", + MODEL_ARCH.KIMI_LINEAR: "kimi-linear", } VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = { @@ -967,6 +986,14 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = { MODEL_TENSOR.SSM_NORM: "blk.{bid}.ssm_norm", MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out", MODEL_TENSOR.SSM_BETA_ALPHA: "blk.{bid}.ssm_ba", + MODEL_TENSOR.SSM_CONV1D_Q: "blk.{bid}.ssm_conv1d_q", # Kimi Linear + MODEL_TENSOR.SSM_CONV1D_K: "blk.{bid}.ssm_conv1d_k", # Kimi Linear + MODEL_TENSOR.SSM_CONV1D_V: "blk.{bid}.ssm_conv1d_v", # Kimi Linear + MODEL_TENSOR.SSM_F_A: "blk.{bid}.ssm_f_a", # Kimi Linear + MODEL_TENSOR.SSM_F_B: "blk.{bid}.ssm_f_b", # Kimi Linear + MODEL_TENSOR.SSM_BETA: "blk.{bid}.ssm_beta", # Kimi Linear + MODEL_TENSOR.SSM_G_A: "blk.{bid}.ssm_g_a", # Kimi Linear + MODEL_TENSOR.SSM_G_B: "blk.{bid}.ssm_g_b", # Kimi Linear MODEL_TENSOR.TIME_MIX_W0: "blk.{bid}.time_mix_w0", MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1", MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2", @@ -3341,6 +3368,32 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_UP_EXP, MODEL_TENSOR.FFN_EXP_PROBS_B, ], + MODEL_ARCH.STEP35: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ROPE_FREQS, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_Q_NORM, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_K_NORM, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_GATE, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + MODEL_TENSOR.FFN_UP_SHEXP, + MODEL_TENSOR.FFN_GATE_SHEXP, + MODEL_TENSOR.FFN_DOWN_SHEXP, + MODEL_TENSOR.FFN_EXP_PROBS_B, + ], MODEL_ARCH.LLAMA_EMBED: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -3377,6 +3430,47 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.KIMI_LINEAR: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_Q_A, + MODEL_TENSOR.ATTN_Q_B, + MODEL_TENSOR.ATTN_KV_A_MQA, + MODEL_TENSOR.ATTN_KV_B, + MODEL_TENSOR.ATTN_K_B, + MODEL_TENSOR.ATTN_V_B, + MODEL_TENSOR.ATTN_Q_A_NORM, + MODEL_TENSOR.ATTN_KV_A_NORM, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + MODEL_TENSOR.FFN_GATE_INP, + MODEL_TENSOR.FFN_GATE_EXP, + MODEL_TENSOR.FFN_DOWN_EXP, + MODEL_TENSOR.FFN_UP_EXP, + MODEL_TENSOR.SSM_CONV1D_Q, + MODEL_TENSOR.SSM_CONV1D_K, + MODEL_TENSOR.SSM_CONV1D_V, + MODEL_TENSOR.SSM_F_A, + MODEL_TENSOR.SSM_F_B, + MODEL_TENSOR.SSM_BETA, + MODEL_TENSOR.SSM_A, + MODEL_TENSOR.SSM_G_A, + MODEL_TENSOR.SSM_G_B, + MODEL_TENSOR.SSM_DT, + MODEL_TENSOR.SSM_NORM, + MODEL_TENSOR.FFN_EXP_PROBS_B, + MODEL_TENSOR.FFN_GATE_SHEXP, + MODEL_TENSOR.FFN_DOWN_SHEXP, + MODEL_TENSOR.FFN_UP_SHEXP, + ], # TODO } @@ -3690,12 +3784,12 @@ KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS # RoPE -KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT -KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE -KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE -KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR -KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN -KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED +KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT +KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE +KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE +KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR +KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN +KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED # SSM KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL @@ -3705,6 +3799,9 @@ KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK KEY_SSM_GROUP_COUNT = Keys.SSM.GROUP_COUNT KEY_SSM_DT_B_C_RMS = Keys.SSM.DT_B_C_RMS +# KDA +KEY_KDA_HEAD_DIM = Keys.KDA.HEAD_DIM + # tokenization KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 7fbb78866b..62172b24c3 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -824,6 +824,12 @@ class GGUFWriter: def add_expert_gating_func(self, value: ExpertGatingFuncType) -> None: self.add_uint32(Keys.LLM.EXPERT_GATING_FUNC.format(arch=self.arch), value.value) + def add_swiglu_clamp_exp(self, values: Sequence[float]) -> None: + self.add_array(Keys.LLM.SWIGLU_CLAMP_EXP.format(arch=self.arch), values) + + def add_swiglu_clamp_shexp(self, values: Sequence[float]) -> None: + self.add_array(Keys.LLM.SWIGLU_CLAMP_SHEXP.format(arch=self.arch), values) + def add_expert_group_scale(self, value: float) -> None: self.add_float32(Keys.LLM.EXPERT_GROUP_SCALE.format(arch=self.arch), value) @@ -980,6 +986,9 @@ class GGUFWriter: def add_ssm_dt_b_c_rms(self, value: bool) -> None: self.add_bool(Keys.SSM.DT_B_C_RMS.format(arch=self.arch), value) + def add_kda_head_dim(self, value: int) -> None: + self.add_uint32(Keys.KDA.HEAD_DIM.format(arch=self.arch), value) + def add_tokenizer_model(self, model: str) -> None: self.add_string(Keys.Tokenizer.MODEL, model) @@ -1113,6 +1122,12 @@ class GGUFWriter: def add_vision_image_size(self, value: int) -> None: self.add_uint32(Keys.ClipVision.IMAGE_SIZE, value) + def add_vision_max_pixels(self, value: int) -> None: + self.add_uint32(Keys.ClipVision.IMAGE_MAX_PIXELS, value) + + def add_vision_min_pixels(self, value: int) -> None: + self.add_uint32(Keys.ClipVision.IMAGE_MIN_PIXELS, value) + def add_vision_preproc_image_size(self, value: int) -> None: self.add_uint32(Keys.ClipVision.PREPROC_IMAGE_SIZE, value) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 35350c3fe1..ba4f644dc2 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -359,6 +359,7 @@ class TensorNameMap: MODEL_TENSOR.ATTN_GATE: ( "model.layers.{bid}.self_attn.gate_proj", # afmoe + "model.layers.{bid}.self_attn.g_proj", # step3.5 head-wise attention gate ), # Feed-forward norm @@ -423,6 +424,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.router.gate", # afmoe "layers.{bid}.gate", # mistral-large "backbone.layers.{bid}.mixer.gate", # nemotron-h-moe + "model.layers.{bid}.moe.gate", # step3.5 ), MODEL_TENSOR.FFN_GATE_INP_SHEXP: ( @@ -438,6 +440,8 @@ class TensorNameMap: "model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2 "backbone.layers.{bid}.mixer.gate.e_score_correction", # nemotron-h-moe "model.layers.{bid}.mlp.e_score_correction", # exaone-moe + "model.layers.{bid}.block_sparse_moe.gate.e_score_correction", # kimi + "model.layers.{bid}.moe.router_bias", # step3.5 expert selection bias ), # Feed-forward up @@ -492,6 +496,7 @@ class TensorNameMap: "model.layers.{bid}.feed_forward.experts.up_proj", # llama4 "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker + "model.layers.{bid}.moe.up_proj", # step3.5 ), MODEL_TENSOR.FFN_UP_SHEXP: ( @@ -502,6 +507,8 @@ class TensorNameMap: "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan "layers.{bid}.shared_experts.w3", # mistral-large "backbone.layers.{bid}.mixer.shared_experts.up_proj", # nemotron-h-moe + "model.layers.{bid}.block_sparse_moe.shared_experts.up_proj", # kimi + "model.layers.{bid}.share_expert.up_proj", # step3.5 ), MODEL_TENSOR.FFN_UP_CHEXP: ( @@ -541,6 +548,7 @@ class TensorNameMap: "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged) "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4 "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker + "model.layers.{bid}.moe.gate_proj", # step3.5 ), MODEL_TENSOR.FFN_GATE_SHEXP: ( @@ -549,6 +557,8 @@ class TensorNameMap: "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4 "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan "layers.{bid}.shared_experts.w1", # mistral-large + "model.layers.{bid}.block_sparse_moe.shared_experts.gate_proj", # kimi + "model.layers.{bid}.share_expert.gate_proj", # step3.5 ), MODEL_TENSOR.FFN_GATE_CHEXP: ( @@ -603,6 +613,7 @@ class TensorNameMap: "model.layers.{bid}.feed_forward.experts.down_proj", # llama4 "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker + "model.layers.{bid}.moe.down_proj", # step3.5 ), MODEL_TENSOR.FFN_DOWN_SHEXP: ( @@ -613,6 +624,8 @@ class TensorNameMap: "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan "layers.{bid}.shared_experts.w2", # mistral-large "backbone.layers.{bid}.mixer.shared_experts.down_proj", # nemotron-h-moe + "model.layers.{bid}.block_sparse_moe.shared_experts.down_proj", # kimi + "model.layers.{bid}.share_expert.down_proj", # step3.5 ), MODEL_TENSOR.FFN_DOWN_CHEXP: ( @@ -759,6 +772,7 @@ class TensorNameMap: "model.layers.layers.{bid}.mixer.dt_proj", # plamo2 "model.layers.{bid}.linear_attn.dt_proj", # qwen3next "backbone.layers.{bid}.mixer.dt", # nemotron-h-moe + "model.layers.{bid}.self_attn.dt_proj", # kimi ), MODEL_TENSOR.SSM_DT_NORM: ( @@ -772,6 +786,7 @@ class TensorNameMap: "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid "model.layers.layers.{bid}.mixer.A_log", # plamo2 "model.layers.{bid}.linear_attn.A_log", # qwen3next + "model.layers.{bid}.self_attn.A_log", # kimi ), MODEL_TENSOR.SSM_B_NORM: ( @@ -797,6 +812,7 @@ class TensorNameMap: "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid "model.layers.{bid}.linear_attn.norm", # qwen3next "backbone.layers.{bid}.mixer.norm", # mamba2 + "model.layers.{bid}.self_attn.o_norm", # kimi ), MODEL_TENSOR.SSM_OUT: ( @@ -811,6 +827,31 @@ class TensorNameMap: "model.layers.{bid}.linear_attn.in_proj_ba", # qwen3next ), + # Kimi Linear KDA (using SSM_ prefix for consistency) + MODEL_TENSOR.SSM_CONV1D_Q: ( + "model.layers.{bid}.self_attn.q_conv1d", + ), + MODEL_TENSOR.SSM_CONV1D_K: ( + "model.layers.{bid}.self_attn.k_conv1d", + ), + MODEL_TENSOR.SSM_CONV1D_V: ( + "model.layers.{bid}.self_attn.v_conv1d", + ), + MODEL_TENSOR.SSM_F_A: ( + "model.layers.{bid}.self_attn.f_a_proj", + ), + MODEL_TENSOR.SSM_F_B: ( + "model.layers.{bid}.self_attn.f_b_proj", + ), + MODEL_TENSOR.SSM_BETA: ( + "model.layers.{bid}.self_attn.b_proj", + ), + MODEL_TENSOR.SSM_G_A: ( + "model.layers.{bid}.self_attn.g_a_proj", + ), + MODEL_TENSOR.SSM_G_B: ( + "model.layers.{bid}.self_attn.g_b_proj", + ), MODEL_TENSOR.TIME_MIX_W0: ( "model.layers.{bid}.attention.w0", # rwkv7 ), diff --git a/gguf-py/pyproject.toml b/gguf-py/pyproject.toml index f6c4cd14e7..48693ae3e3 100644 --- a/gguf-py/pyproject.toml +++ b/gguf-py/pyproject.toml @@ -23,7 +23,7 @@ numpy = ">=1.17" tqdm = ">=4.27" pyyaml = ">=5.1" requests = ">=2.25" -sentencepiece = { version = ">=0.1.98,<=0.2.0", optional = true } +sentencepiece = { version = ">=0.1.98,<0.3.0", optional = true } PySide6 = { version = "^6.9", python = ">=3.9,<3.14", optional = true } [tool.poetry.dev-dependencies] diff --git a/pyproject.toml b/pyproject.toml index 3d71b055a8..422f53c7c7 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -17,7 +17,7 @@ classifiers = [ [tool.poetry.dependencies] python = ">=3.9" numpy = "^1.25.0" -sentencepiece = ">=0.1.98,<=0.2.0" +sentencepiece = ">=0.1.98,<0.3.0" transformers = ">=4.35.2,<5.0.0" protobuf = ">=4.21.0,<5.0.0" gguf = { path = "./gguf-py" } diff --git a/requirements/requirements-convert_legacy_llama.txt b/requirements/requirements-convert_legacy_llama.txt index dbab3b9508..4898bf7ee2 100644 --- a/requirements/requirements-convert_legacy_llama.txt +++ b/requirements/requirements-convert_legacy_llama.txt @@ -1,5 +1,5 @@ numpy~=1.26.4 -sentencepiece~=0.2.0 +sentencepiece>=0.1.98,<0.3.0 transformers>=4.57.1,<5.0.0 diff --git a/scripts/bench-models.sh b/scripts/bench-models.sh old mode 100644 new mode 100755 index 744b0de359..c241013040 --- a/scripts/bench-models.sh +++ b/scripts/bench-models.sh @@ -7,47 +7,54 @@ ARGS_BB="-c 270336 -npp 512,4096,8192 -npl 1,2,4,8,16,32 -ntg 32" ARGS_B="-d 0,4096,8192,16384,32768 -p 2048 -n 32" QUICK=0 +DIO=0 while (( "$#" )); do - case "$1" in - --quick) QUICK=1; shift ;; - *) shift ;; - esac + case "$1" in + --quick) QUICK=1; shift ;; + --dio) DIO=1; shift ;; + *) shift ;; + esac done if (( QUICK )); then - ARGS_BB="-c 20480 -npp 512,4096 -npl 1,2,4 -ntg 32" - ARGS_B="-d 0 -p 2048 -n 32" + ARGS_BB="-c 20480 -npp 512,4096 -npl 1,2,4 -ntg 32" + ARGS_B="-d 0 -p 2048 -n 32" +fi + +if (( DIO )); then + ARGS_BB="${ARGS_BB} --no-mmap --direct-io" + ARGS_B="${ARGS_B} -mmp 0 -dio 1" fi run_model() { - local HFR=$1 - local HFF=$2 + local HFR=$1 + local HFF=$2 - printf "## ${HFR}\n" | tee -a "$RESULTS" - printf "\n" | tee -a "$RESULTS" - printf "Model: https://huggingface.co/${HFR}\n" | tee -a "$RESULTS" - printf "\n" | tee -a "$RESULTS" + printf "## ${HFR}\n" | tee -a "$RESULTS" + printf "\n" | tee -a "$RESULTS" + printf "Model: https://huggingface.co/${HFR}\n" | tee -a "$RESULTS" + printf "\n" | tee -a "$RESULTS" - printf -- "- \`llama-batched-bench\`\n" | tee -a "$RESULTS" - printf "\n" | tee -a "$RESULTS" + printf -- "- \`llama-batched-bench\`\n" | tee -a "$RESULTS" + printf "\n" | tee -a "$RESULTS" - ./bin/llama-batched-bench \ - -hfr "${HFR}" -hff "${HFF}" \ - -m "${HFF}" -fa 1 -ub 2048 --no-mmap \ - ${ARGS_BB} | tee -a "$RESULTS" + ./bin/llama-batched-bench \ + -hfr "${HFR}" -hff "${HFF}" \ + -m "${HFF}" -fa 1 -ub 2048 \ + ${ARGS_BB} | tee -a "$RESULTS" - printf "\n" | tee -a "$RESULTS" + printf "\n" | tee -a "$RESULTS" - printf -- "- \`llama-bench\`\n" | tee -a "$RESULTS" - printf "\n" | tee -a "$RESULTS" + printf -- "- \`llama-bench\`\n" | tee -a "$RESULTS" + printf "\n" | tee -a "$RESULTS" - ./bin/llama-bench \ - -m "${HFF}" -fa 1 -ub 2048 -mmp 0 \ - ${ARGS_B} | tee -a "$RESULTS" + ./bin/llama-bench \ + -m "${HFF}" -fa 1 -ub 2048 \ + ${ARGS_B} | tee -a "$RESULTS" - printf "\n" | tee -a "$RESULTS" + printf "\n" | tee -a "$RESULTS" - printf "\n" + printf "\n" } run_model "ggml-org/gpt-oss-20b-GGUF" "gpt-oss-20b-mxfp4.gguf" @@ -55,6 +62,7 @@ run_model "ggml-org/gpt-oss-120b-GGUF" "gpt-oss-120b-mxfp4- run_model "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF" "qwen3-coder-30b-a3b-instruct-q8_0.gguf" run_model "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF" "qwen2.5-coder-7b-q8_0.gguf" run_model "ggml-org/gemma-3-4b-it-qat-GGUF" "gemma-3-4b-it-qat-Q4_0.gguf" +run_model "ggml-org/GLM-4.7-Flash-GGUF" "GLM-4.7-Flash-Q8_0.gguf" if [[ -f models-extra.txt ]]; then while read -r HFR HFF; do diff --git a/scripts/sync_vendor.py b/scripts/sync_vendor.py index 0771942d49..1ff6a9a40f 100755 --- a/scripts/sync_vendor.py +++ b/scripts/sync_vendor.py @@ -12,8 +12,8 @@ vendor = { # "https://github.com/mackron/miniaudio/raw/refs/tags/0.11.23/miniaudio.h": "vendor/miniaudio/miniaudio.h", "https://github.com/mackron/miniaudio/raw/669ed3e844524fcd883231b13095baee9f6de304/miniaudio.h": "vendor/miniaudio/miniaudio.h", - "https://raw.githubusercontent.com/yhirose/cpp-httplib/refs/tags/v0.30.1/httplib.h": "vendor/cpp-httplib/httplib.h", - "https://raw.githubusercontent.com/yhirose/cpp-httplib/refs/tags/v0.30.1/LICENSE": "vendor/cpp-httplib/LICENSE", + "https://raw.githubusercontent.com/yhirose/cpp-httplib/refs/tags/v0.30.2/httplib.h": "vendor/cpp-httplib/httplib.h", + "https://raw.githubusercontent.com/yhirose/cpp-httplib/refs/tags/v0.30.2/LICENSE": "vendor/cpp-httplib/LICENSE", "https://raw.githubusercontent.com/sheredom/subprocess.h/b49c56e9fe214488493021017bf3954b91c7c1f5/subprocess.h": "vendor/sheredom/subprocess.h", } diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index f337afd6b3..2115fc4255 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -31,7 +31,7 @@ add_library(llama llama-model-saver.cpp llama-model.cpp llama-quant.cpp - llama-sampling.cpp + llama-sampler.cpp llama-vocab.cpp unicode-data.cpp unicode.cpp @@ -84,6 +84,7 @@ add_library(llama models/internlm2.cpp models/jais.cpp models/jamba.cpp + models/kimi-linear.cpp models/lfm2.cpp models/llada-moe.cpp models/llada.cpp @@ -134,6 +135,7 @@ add_library(llama models/stablelm.cpp models/starcoder.cpp models/starcoder2.cpp + models/step35-iswa.cpp models/t5-dec.cpp models/t5-enc.cpp models/wavtokenizer-dec.cpp diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp index a54bc1956a..bd78f1e556 100644 --- a/src/llama-arch.cpp +++ b/src/llama-arch.cpp @@ -117,9 +117,11 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_RND1, "rnd1" }, { LLM_ARCH_PANGU_EMBED, "pangu-embedded" }, { LLM_ARCH_MISTRAL3, "mistral3" }, - { LLM_ARCH_MIMO2, "mimo2" }, + { LLM_ARCH_MIMO2, "mimo2" }, + { LLM_ARCH_STEP35, "step35" }, { LLM_ARCH_LLAMA_EMBED, "llama-embed" }, { LLM_ARCH_MAINCODER, "maincoder" }, + { LLM_ARCH_KIMI_LINEAR, "kimi-linear" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -161,6 +163,8 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" }, { LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" }, { LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH, "%s.expert_chunk_feed_forward_length" }, + { LLM_KV_SWIGLU_CLAMP_EXP, "%s.swiglu_clamp_exp" }, + { LLM_KV_SWIGLU_CLAMP_SHEXP, "%s.swiglu_clamp_shexp" }, { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" }, { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" }, { LLM_KV_EXPERT_COUNT, "%s.expert_count" }, @@ -219,21 +223,21 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" }, { LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" }, - { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, - { LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" }, - { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, - { LLM_KV_ROPE_FREQ_BASE_SWA, "%s.rope.freq_base_swa" }, - { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, - { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" }, - { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" }, - { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" }, - { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" }, - { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" }, - { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" }, - { LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, "%s.rope.scaling.yarn_ext_factor" }, - { LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, "%s.rope.scaling.yarn_attn_factor" }, - { LLM_KV_ROPE_SCALING_YARN_BETA_FAST, "%s.rope.scaling.yarn_beta_fast" }, - { LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, "%s.rope.scaling.yarn_beta_slow" }, + { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, + { LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" }, + { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, + { LLM_KV_ROPE_FREQ_BASE_SWA, "%s.rope.freq_base_swa" }, + { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, + { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" }, + { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" }, + { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" }, + { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" }, + { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" }, + { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" }, + { LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, "%s.rope.scaling.yarn_ext_factor" }, + { LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, "%s.rope.scaling.yarn_attn_factor" }, + { LLM_KV_ROPE_SCALING_YARN_BETA_FAST, "%s.rope.scaling.yarn_beta_fast" }, + { LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, "%s.rope.scaling.yarn_beta_slow" }, { LLM_KV_SPLIT_NO, "split.no" }, { LLM_KV_SPLIT_COUNT, "split.count" }, @@ -246,6 +250,8 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_SSM_GROUP_COUNT, "%s.ssm.group_count" }, { LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" }, + { LLM_KV_KDA_HEAD_DIM, "%s.kda.head_dim" }, + { LLM_KV_WKV_HEAD_SIZE, "%s.wkv.head_size" }, { LLM_KV_POSNET_EMBEDDING_LENGTH, "%s.posnet.embedding_length" }, @@ -371,6 +377,15 @@ static const std::map LLM_TENSOR_NAMES = { { LLM_TENSOR_SSM_DT_NORM, "blk.%d.ssm_dt_norm" }, { LLM_TENSOR_SSM_B_NORM, "blk.%d.ssm_b_norm" }, { LLM_TENSOR_SSM_C_NORM, "blk.%d.ssm_c_norm" }, + { LLM_TENSOR_SSM_CONV1D_Q, "blk.%d.ssm_conv1d_q" }, + { LLM_TENSOR_SSM_CONV1D_K, "blk.%d.ssm_conv1d_k" }, + { LLM_TENSOR_SSM_CONV1D_V, "blk.%d.ssm_conv1d_v" }, + { LLM_TENSOR_SSM_F_A, "blk.%d.ssm_f_a" }, + { LLM_TENSOR_SSM_F_B, "blk.%d.ssm_f_b" }, + { LLM_TENSOR_SSM_BETA, "blk.%d.ssm_beta" }, + { LLM_TENSOR_SSM_G_A, "blk.%d.ssm_g_a" }, + { LLM_TENSOR_SSM_G_B, "blk.%d.ssm_g_b" }, + { LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" }, { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" }, { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" }, { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" }, @@ -2267,6 +2282,35 @@ static std::set llm_get_tensor_names(llm_arch arch) { LLM_TENSOR_FFN_UP_EXPS, LLM_TENSOR_FFN_EXP_PROBS_B, }; + case LLM_ARCH_STEP35: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ROPE_FACTORS_LONG, + LLM_TENSOR_ROPE_FACTORS_SHORT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_GATE, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_EXP_PROBS_B, + }; case LLM_ARCH_GPTJ: case LLM_ARCH_UNKNOWN: return { @@ -2289,6 +2333,54 @@ static std::set llm_get_tensor_names(llm_arch arch) { LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_UP, }; + case LLM_ARCH_KIMI_LINEAR: + return { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_FFN_NORM, + // Dense FFN (layer 0 only) + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + // MoE FFN (layers 1+) + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_DOWN_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_EXP_PROBS_B, + // Shared experts + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + // KDA (using SSM_ enum prefix, keeping GGUF names for backward compat) + LLM_TENSOR_SSM_CONV1D_Q, + LLM_TENSOR_SSM_CONV1D_K, + LLM_TENSOR_SSM_CONV1D_V, + LLM_TENSOR_SSM_F_A, + LLM_TENSOR_SSM_F_B, + LLM_TENSOR_SSM_BETA, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_G_A, + LLM_TENSOR_SSM_G_B, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_NORM, + // MLA + LLM_TENSOR_ATTN_Q_A, + LLM_TENSOR_ATTN_Q_B, + LLM_TENSOR_ATTN_Q_A_NORM, + LLM_TENSOR_ATTN_KV_A_MQA, + LLM_TENSOR_ATTN_KV_B, + LLM_TENSOR_ATTN_K_B, + LLM_TENSOR_ATTN_V_B, + LLM_TENSOR_ATTN_KV_A_NORM, + }; default: GGML_ABORT("unknown architecture for tensor mapping"); } @@ -2392,6 +2484,15 @@ static const std::map LLM_TENSOR_INFOS = { {LLM_TENSOR_SSM_C_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_SSM_D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_SSM_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + // Kimi KDA - Conv tensors are 4D [d_conv, 1, d_inner, 1], reshaped to 2D at runtime + {LLM_TENSOR_SSM_CONV1D_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_CONV1D_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_CONV1D_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_SSM_F_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_F_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_BETA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_G_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_G_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, {LLM_TENSOR_TIME_MIX_LERP_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_TIME_MIX_LN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, {LLM_TENSOR_CHANNEL_MIX_LERP_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, @@ -2573,6 +2674,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) { case LLM_ARCH_NEMOTRON_H: case LLM_ARCH_NEMOTRON_H_MOE: case LLM_ARCH_QWEN3NEXT: + case LLM_ARCH_KIMI_LINEAR: return true; default: return false; diff --git a/src/llama-arch.h b/src/llama-arch.h index 270d28b16a..e8263369b8 100644 --- a/src/llama-arch.h +++ b/src/llama-arch.h @@ -122,8 +122,10 @@ enum llm_arch { LLM_ARCH_PANGU_EMBED, LLM_ARCH_MISTRAL3, LLM_ARCH_MIMO2, + LLM_ARCH_STEP35, LLM_ARCH_LLAMA_EMBED, LLM_ARCH_MAINCODER, + LLM_ARCH_KIMI_LINEAR, LLM_ARCH_UNKNOWN, }; @@ -165,6 +167,8 @@ enum llm_kv { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH, + LLM_KV_SWIGLU_CLAMP_EXP, + LLM_KV_SWIGLU_CLAMP_SHEXP, LLM_KV_USE_PARALLEL_RESIDUAL, LLM_KV_TENSOR_DATA_LAYOUT, LLM_KV_EXPERT_COUNT, @@ -250,6 +254,8 @@ enum llm_kv { LLM_KV_SSM_GROUP_COUNT, LLM_KV_SSM_DT_B_C_RMS, + LLM_KV_KDA_HEAD_DIM, + LLM_KV_WKV_HEAD_SIZE, LLM_KV_TOKENIZER_MODEL, @@ -398,6 +404,15 @@ enum llm_tensor { LLM_TENSOR_SSM_NORM, LLM_TENSOR_SSM_OUT, LLM_TENSOR_SSM_BETA_ALPHA, // qwen3next + // Kimi Linear KDA (using SSM_ prefix for consistency) + LLM_TENSOR_SSM_CONV1D_Q, // kimi: Q conv1d weight + LLM_TENSOR_SSM_CONV1D_K, // kimi: K conv1d weight + LLM_TENSOR_SSM_CONV1D_V, // kimi: V conv1d weight + LLM_TENSOR_SSM_F_A, // kimi: forget gate projection A + LLM_TENSOR_SSM_F_B, // kimi: forget gate projection B + LLM_TENSOR_SSM_BETA, // kimi: beta mixing coefficient + LLM_TENSOR_SSM_G_A, // kimi: output gate projection A + LLM_TENSOR_SSM_G_B, // kimi: output gate projection B LLM_TENSOR_TIME_MIX_W0, LLM_TENSOR_TIME_MIX_W1, LLM_TENSOR_TIME_MIX_W2, diff --git a/src/llama-chat.cpp b/src/llama-chat.cpp index 3c7e0afdae..c415a998f3 100644 --- a/src/llama-chat.cpp +++ b/src/llama-chat.cpp @@ -233,7 +233,7 @@ int32_t llm_chat_apply_template( llm_chat_template tmpl, const std::vector & chat, std::string & dest, bool add_ass) { - // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527 + // Taken from the research: https://github.com/ggml-org/llama.cpp/issues/5527 std::stringstream ss; if (tmpl == LLM_CHAT_TEMPLATE_CHATML) { // chatml template diff --git a/src/llama-context.cpp b/src/llama-context.cpp index 10b306a853..a6df893a31 100644 --- a/src/llama-context.cpp +++ b/src/llama-context.cpp @@ -317,6 +317,7 @@ llama_context::llama_context( auto dev_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get())); if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU) { // ignore CPU backend + // TODO: should we ignore ACCEL types too? continue; } auto * dev = ggml_backend_get_device(backend.get()); @@ -1026,11 +1027,7 @@ bool llama_context::set_sampler(llama_seq_id seq_id, llama_sampler * sampler) { llama_sampler_chain_n(sampler) > 0; if (sampler && can_offload) { - ggml_backend_buffer_type_t buft = ggml_backend_dev_buffer_type(model.dev_output()); - auto * host_buft = ggml_backend_dev_host_buffer_type(model.dev_output()); - if (host_buft) { - buft = host_buft; - } + auto * buft = ggml_backend_dev_buffer_type(model.dev_output()); sampler->iface->backend_init(sampler, buft); @@ -2016,7 +2013,7 @@ void llama_context::output_reorder() { // uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const { - if (model.arch == LLM_ARCH_QWEN3NEXT) { + if (model.arch == LLM_ARCH_QWEN3NEXT || model.arch == LLM_ARCH_KIMI_LINEAR) { return std::max(n_tokens * 40, 32u * model.n_tensors()); } uint32_t res = std::max(1024u, 8u*model.n_tensors()); diff --git a/src/llama-grammar.cpp b/src/llama-grammar.cpp index 64ea2fd00a..2d55070cec 100644 --- a/src/llama-grammar.cpp +++ b/src/llama-grammar.cpp @@ -2,7 +2,7 @@ #include "llama-impl.h" #include "llama-vocab.h" -#include "llama-sampling.h" +#include "llama-sampler.h" #include #include diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp index 16d42c4ae3..bba747d37b 100644 --- a/src/llama-graph.cpp +++ b/src/llama-graph.cpp @@ -13,6 +13,8 @@ #include #include #include +#include +#include #include void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) { @@ -533,6 +535,50 @@ bool llm_graph_input_mem_hybrid::can_reuse(const llm_graph_params & params) { return res; } +// TODO: Hybrid input classes are a bit redundant. +// Instead of creating a hybrid input, the graph can simply create 2 separate inputs. +// Refactoring is required in the future. +void llm_graph_input_mem_hybrid_k::set_input(const llama_ubatch * ubatch) { + mctx->get_attn()->set_input_k_idxs(inp_attn->self_k_idxs, ubatch); + + mctx->get_attn()->set_input_kq_mask(inp_attn->self_kq_mask, ubatch, cparams.causal_attn); + + const int64_t n_rs = mctx->get_recr()->get_n_rs(); + + if (inp_rs->s_copy) { + GGML_ASSERT(ggml_backend_buffer_is_host(inp_rs->s_copy->buffer)); + int32_t * data = (int32_t *) inp_rs->s_copy->data; + + // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n + for (uint32_t i = 0; i < n_rs; ++i) { + data[i] = mctx->get_recr()->s_copy(i); + } + } +} + +bool llm_graph_input_mem_hybrid_k::can_reuse(const llm_graph_params & params) { + const auto * mctx = static_cast(params.mctx); + + this->mctx = mctx; + + bool res = true; + + res &= inp_attn->self_k_idxs->ne[0] == params.ubatch.n_tokens; + + res &= inp_attn->self_kq_mask->ne[0] == mctx->get_attn()->get_n_kv(); + res &= inp_attn->self_kq_mask->ne[1] == params.ubatch.n_tokens; + + res &= inp_rs->s_copy->ne[0] == mctx->get_recr()->get_n_rs(); + + res &= inp_rs->s_copy_main->ne[0] == params.ubatch.n_seqs; + res &= inp_rs->s_copy_extra->ne[0] == mctx->get_recr()->get_n_rs() - params.ubatch.n_seqs; + + res &= inp_rs->head == mctx->get_recr()->get_head(); + res &= inp_rs->rs_z == mctx->get_recr()->get_rs_z(); + + return res; +} + void llm_graph_input_mem_hybrid_iswa::set_input(const llama_ubatch * ubatch) { const auto * attn_ctx = mctx->get_attn(); @@ -970,6 +1016,26 @@ ggml_tensor * llm_graph_context::build_ffn( switch (type_op) { case LLM_FFN_SILU: if (gate && type_gate == LLM_FFN_PAR) { + // Step35: HF clamps gate (after SiLU) and up before multiplication + if (arch == LLM_ARCH_STEP35 && il >= 0) { + const float limit = hparams.swiglu_clamp_shexp[il]; + constexpr float eps = 1e-6f; + if (limit > eps) { + ggml_tensor * gate_act = ggml_silu(ctx0, cur); + cb(gate_act, "ffn_silu", il); + gate_act = ggml_clamp(ctx0, gate_act, -INFINITY, limit); + cb(gate_act, "ffn_silu_clamped", il); + + tmp = ggml_clamp(ctx0, tmp, -limit, limit); + cb(tmp, "ffn_up_clamped", il); + + cur = ggml_mul(ctx0, gate_act, tmp); + cb(cur, "ffn_swiglu_limited", il); + type_gate = LLM_FFN_SEQ; + break; + } + } + cur = ggml_swiglu_split(ctx0, cur, tmp); cb(cur, "ffn_swiglu", il); type_gate = LLM_FFN_SEQ; @@ -1272,6 +1338,25 @@ ggml_tensor * llm_graph_context::build_moe_ffn( switch (type_op) { case LLM_FFN_SILU: if (gate_exps) { + // Step35: per-layer clamp for routed experts + if (arch == LLM_ARCH_STEP35 && il >= 0) { + const float limit = hparams.swiglu_clamp_exp[il]; + constexpr float eps = 1e-6f; + if (limit > eps) { + ggml_tensor * gate_act = ggml_silu(ctx0, cur); + cb(gate_act, "ffn_moe_silu", il); + gate_act = ggml_clamp(ctx0, gate_act, -INFINITY, limit); + cb(gate_act, "ffn_moe_silu_clamped", il); + + up = ggml_clamp(ctx0, up, -limit, limit); + cb(up, "ffn_moe_up_clamped", il); + + cur = ggml_mul(ctx0, gate_act, up); + cb(cur, "ffn_moe_swiglu_limited", il); + break; + } + } + cur = ggml_swiglu_split(ctx0, cur, up); cb(cur, "ffn_moe_swiglu", il); } else { @@ -2268,6 +2353,17 @@ llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const { return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp)); } +llm_graph_input_mem_hybrid_k * llm_graph_context::build_inp_mem_hybrid_k() const { + const auto * mctx_cur = static_cast(mctx); + + auto inp_rs = build_rs_inp_impl (ctx0, ubatch, mctx_cur->get_recr()); + auto inp_attn = build_attn_inp_k_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn()); + + auto inp = std::make_unique(cparams, std::move(inp_attn), std::move(inp_rs), mctx_cur); + + return (llm_graph_input_mem_hybrid_k *) res->add_input(std::move(inp)); +} + llm_graph_input_mem_hybrid_iswa * llm_graph_context::build_inp_mem_hybrid_iswa() const { const auto * mctx_cur = static_cast(mctx); @@ -2419,6 +2515,9 @@ void llm_graph_context::build_sampling() const { return; } + std::array outs; + outs[0] = res->t_logits; + auto inp_sampling = std::make_unique(samplers); res->add_input(std::move(inp_sampling)); @@ -2439,14 +2538,14 @@ void llm_graph_context::build_sampling() const { // add a dummy row of logits // this trick makes the graph static, regardless of which samplers are activated // this is important in order to minimize graph reallocations - // TODO: use `ggml_build_forward_select()` when available (https://github.com/ggml-org/llama.cpp/pull/18550) ggml_tensor * logits_t = ggml_pad(ctx0, res->t_logits, 0, 1, 0, 0); for (const auto & [seq_id, sampler] : samplers) { const auto it = seq_to_logit_row.find(seq_id); // inactive samplers always work on the first row - const auto row_idx = seq_to_logit_row.find(seq_id) != seq_to_logit_row.end() ? it->second : 0; + const auto row_idx = it != seq_to_logit_row.end() ? it->second : 0; + const int i_out = it != seq_to_logit_row.end() ? 1 : 0; ggml_tensor * logits_seq = ggml_view_1d(ctx0, logits_t, logits_t->ne[0], row_idx * logits_t->nb[1]); ggml_format_name(logits_seq, "logits_seq_%d", seq_id); @@ -2463,22 +2562,26 @@ void llm_graph_context::build_sampling() const { if (data.sampled != nullptr) { res->t_sampled[seq_id] = data.sampled; - ggml_build_forward_expand(gf, data.sampled); + outs[1] = data.sampled; + ggml_build_forward_select(gf, outs.data(), outs.size(), i_out); } if (data.probs != nullptr) { res->t_sampled_probs[seq_id] = data.probs; - ggml_build_forward_expand(gf, data.probs); + outs[1] = data.probs; + ggml_build_forward_select(gf, outs.data(), outs.size(), i_out); } if (data.logits != nullptr) { res->t_sampled_logits[seq_id] = data.logits; - ggml_build_forward_expand(gf, data.logits); + outs[1] = data.logits; + ggml_build_forward_select(gf, outs.data(), outs.size(), i_out); } if (data.candidates != nullptr) { res->t_candidates[seq_id] = data.candidates; - ggml_build_forward_expand(gf, data.candidates); + outs[1] = data.candidates; + ggml_build_forward_select(gf, outs.data(), outs.size(), i_out); } } diff --git a/src/llama-graph.h b/src/llama-graph.h index 4090d8116c..1d69ff1a6f 100644 --- a/src/llama-graph.h +++ b/src/llama-graph.h @@ -433,6 +433,34 @@ public: const llama_memory_hybrid_context * mctx; }; +class llm_graph_input_mem_hybrid_k : public llm_graph_input_i { +public: + llm_graph_input_mem_hybrid_k( + const llama_cparams & cparams, + std::unique_ptr inp_attn, + std::unique_ptr inp_rs, + const llama_memory_hybrid_context * mctx) : + inp_attn(std::move(inp_attn)), + inp_rs(std::move(inp_rs)), + cparams(cparams), + mctx(mctx) { } + virtual ~llm_graph_input_mem_hybrid_k() = default; + + void set_input(const llama_ubatch * ubatch) override; + + bool can_reuse(const llm_graph_params & params) override; + + std::unique_ptr inp_attn; + std::unique_ptr inp_rs; + + llm_graph_input_attn_k * get_attn() const { return inp_attn.get(); } + llm_graph_input_rs * get_recr() const { return inp_rs.get(); } + + const llama_cparams cparams; + + const llama_memory_hybrid_context * mctx; +}; + class llm_graph_input_mem_hybrid_iswa : public llm_graph_input_i { public: llm_graph_input_mem_hybrid_iswa( @@ -960,6 +988,7 @@ struct llm_graph_context { // llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const; + llm_graph_input_mem_hybrid_k * build_inp_mem_hybrid_k() const; llm_graph_input_mem_hybrid_iswa * build_inp_mem_hybrid_iswa() const; diff --git a/src/llama-hparams.cpp b/src/llama-hparams.cpp index 392f9160ce..756dda1a7a 100644 --- a/src/llama-hparams.cpp +++ b/src/llama-hparams.cpp @@ -139,6 +139,13 @@ uint32_t llama_hparams::n_embd_r() const { return n_embd * (n_shortconv_l_cache - 1); } + if (n_embd_head_kda != 0) { + // for Kimi KDA layers + // Conv state for Q, K, V: 3 * (d_conv - 1) * n_head * head_dim + const uint32_t d_inner = n_head() * n_embd_head_kda; // 32 * 128 = 4096 + return 3 * (ssm_d_conv > 0 ? ssm_d_conv - 1 : 3) * d_inner; + } + // TODO: maybe support other convolution strides than 1 // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed // Corresponds to Mamba's conv_states size @@ -151,6 +158,13 @@ uint32_t llama_hparams::n_embd_s() const { return n_embd * wkv_head_size; } + if (n_embd_head_kda != 0) { + // for Kimi KDA layers + // Full recurrent state: head_dim * head_dim * n_head + // h tensor shape for delta attention: [head_dim, head_dim, n_head] + return n_embd_head_kda * n_embd_head_kda * n_head(); // 128 * 128 * 32 = 524288 + } + // corresponds to Mamba's ssm_states size return ssm_d_state * ssm_d_inner; } diff --git a/src/llama-hparams.h b/src/llama-hparams.h index caed0ec1b7..6c695bdbf6 100644 --- a/src/llama-hparams.h +++ b/src/llama-hparams.h @@ -137,6 +137,9 @@ struct llama_hparams { uint32_t ssm_dt_rank = 0; uint32_t ssm_n_group = 0; + // for Kimi Linear KDA + uint32_t n_embd_head_kda = 0; + // for hybrid state space models std::array recurrent_layer_arr; @@ -195,7 +198,7 @@ struct llama_hparams { uint32_t n_deepstack_layers = 0; // needed by encoder-decoder models (e.g. T5, FLAN-T5) - // ref: https://github.com/ggerganov/llama.cpp/pull/8141 + // ref: https://github.com/ggml-org/llama.cpp/pull/8141 llama_token dec_start_token_id = LLAMA_TOKEN_NULL; uint32_t dec_n_layer = 0; @@ -203,6 +206,11 @@ struct llama_hparams { enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; + + // Step35: optional per-layer clamps for (Swi)GLU + std::array swiglu_clamp_exp; // clamping for expert FFN + std::array swiglu_clamp_shexp; // shared expert + // this value n_pattern means that every nth layer is dense (i.e. non-SWA) // dense_first means whether the pattern is start with a dense layer // note that if n_pattern == 0, all layers are SWA diff --git a/src/llama-kv-cache-iswa.cpp b/src/llama-kv-cache-iswa.cpp index 3a34102a23..26e2cb4270 100644 --- a/src/llama-kv-cache-iswa.cpp +++ b/src/llama-kv-cache-iswa.cpp @@ -218,7 +218,9 @@ llama_memory_context_ptr llama_kv_cache_iswa::init_update(llama_context * lctx, } bool llama_kv_cache_iswa::get_can_shift() const { - return kv_base->get_size() == kv_swa->get_size(); + return kv_base->get_can_shift() && + kv_swa->get_can_shift() && + kv_base->get_size() == kv_swa->get_size(); } void llama_kv_cache_iswa::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const { diff --git a/src/llama-kv-cache.cpp b/src/llama-kv-cache.cpp index c35cd6761b..cb702b2a59 100644 --- a/src/llama-kv-cache.cpp +++ b/src/llama-kv-cache.cpp @@ -974,6 +974,10 @@ void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch & } bool llama_kv_cache::get_can_shift() const { + // Step35 uses per-layer RoPE dims; K-shift assumes a single global n_rot. + if (model.arch == LLM_ARCH_STEP35) { + return false; + } return true; } diff --git a/src/llama-model.cpp b/src/llama-model.cpp index 72490a89b5..674d06c891 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -125,10 +125,12 @@ const char * llm_type_name(llm_type type) { case LLM_TYPE_21B_A3B: return "21B.A3B"; case LLM_TYPE_30B_A3B: return "30B.A3B"; case LLM_TYPE_31B_A3_5B: return "31B.A3.5B"; + case LLM_TYPE_48B_A3B: return "48B.A3B"; case LLM_TYPE_80B_A3B: return "80B.A3B"; case LLM_TYPE_100B_A6B: return "100B.A6B"; case LLM_TYPE_102B_A12B: return "102B.A12B"; case LLM_TYPE_106B_A12B: return "106B.A12B"; + case LLM_TYPE_196B_A11B: return "196B.A11B"; case LLM_TYPE_230B_A10B: return "230B.A10B"; case LLM_TYPE_235B_A22B: return "235B.A22B"; case LLM_TYPE_300B_A47B: return "300B.A47B"; @@ -559,6 +561,8 @@ void llama_model::load_hparams(llama_model_loader & ml) { std::fill(hparams.xielu_alpha_p.begin(), hparams.xielu_alpha_p.end(), 0.0f); std::fill(hparams.xielu_beta.begin(), hparams.xielu_beta.end(), 0.0f); std::fill(hparams.xielu_eps.begin(), hparams.xielu_eps.end(), 0.0f); + std::fill(hparams.swiglu_clamp_exp.begin(), hparams.swiglu_clamp_exp.end(), 0.0f); + std::fill(hparams.swiglu_clamp_shexp.begin(), hparams.swiglu_clamp_shexp.end(), 0.0f); ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false); ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false); @@ -2450,6 +2454,66 @@ void llama_model::load_hparams(llama_model_loader & ml) { default: type = LLM_TYPE_UNKNOWN; } } break; + case LLM_ARCH_KIMI_LINEAR: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla_impl); + ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla_impl); + ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); + ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot); + ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); + ml.get_key(LLM_KV_KDA_HEAD_DIM, hparams.n_embd_head_kda); + + // MLA qk_rope_head_dim (for reference) + // qk_rope_head_dim = 64, qk_nope_head_dim = 128, qk_head_dim = 192 + + // Mark KDA layers as recurrent using n_head_kv pattern (like Jamba) + // Set n_head_kv = 0 for KDA layers (recurrent), n_head_kv = n_head for MLA layers (attention) + for (uint32_t i = 0; i < hparams.n_layer; ++i) { + hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0; // KDA layers are recurrent + } + + // MoE parameters - Kimi uses moe_intermediate_size = 1024 + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); + ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); + ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); + ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func); + + switch (hparams.n_layer) { + case 27: type = LLM_TYPE_48B_A3B; break; // Kimi-Linear-48B-A3B + default: type = LLM_TYPE_UNKNOWN; + } + } break; + case LLM_ARCH_STEP35: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + hparams.swa_type = LLAMA_SWA_TYPE_STANDARD; + + // MoE + SWA parameters + ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); + ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false); + ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false); + ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false); + + // Step35 uses sigmoid gating by default (if not set in GGUF) + if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) { + hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID; + } + + ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); + ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa); + ml.get_key_or_arr(LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, hparams.swa_layers, hparams.n_layer); + ml.get_key_or_arr(LLM_KV_SWIGLU_CLAMP_EXP, hparams.swiglu_clamp_exp, hparams.n_layer, false); + ml.get_key_or_arr(LLM_KV_SWIGLU_CLAMP_SHEXP, hparams.swiglu_clamp_shexp, hparams.n_layer, false); + + switch (hparams.n_layer) { + case 45: type = LLM_TYPE_196B_A11B; break; + default: type = LLM_TYPE_UNKNOWN; + } + } break; default: throw std::runtime_error("unsupported model architecture"); } @@ -6752,6 +6816,141 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0); } } break; + case LLM_ARCH_KIMI_LINEAR: + { + tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); + + for (int i = 0; i < n_layer; ++i) { + auto & layer = layers[i]; + + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + + // Check for KDA specific tensors to determine layer type or if it's a mixed model + // Assuming KDA layer if KDA tensors are present + + // KDA uses head_dim = 128 (from linear_attn_config.head_dim) + const int64_t n_embd_head_k_kda = hparams.n_embd_head_kda; + const int64_t n_embd_head_v_kda = hparams.n_embd_head_kda; + const int64_t ssm_d_conv = hparams.ssm_d_conv; + + // Try loading KDA specific tensors (using SSM_ prefix) + // Conv1d weights: try 4D first, then 3D (quantization may remove trailing 1) + // 4D: [d_conv, 1, d_inner, 1], 3D: [d_conv, 1, d_inner] + layer.ssm_q_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_Q, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head, 1}, TENSOR_NOT_REQUIRED); + if (!layer.ssm_q_conv) { + layer.ssm_q_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_Q, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head}, TENSOR_NOT_REQUIRED); + } + + if (layer.ssm_q_conv) { + // KDA Layer - Conv1d weights may be 3D or 4D + layer.ssm_k_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_K, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head, 1}, TENSOR_NOT_REQUIRED); + if (!layer.ssm_k_conv) { + layer.ssm_k_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_K, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head}, 0); + } + layer.ssm_v_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_V, "weight", i), {ssm_d_conv, 1, n_embd_head_v_kda * n_head, 1}, TENSOR_NOT_REQUIRED); + if (!layer.ssm_v_conv) { + layer.ssm_v_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_V, "weight", i), {ssm_d_conv, 1, n_embd_head_v_kda * n_head}, 0); + } + + // q, k, v projections + // Python: q_proj, k_proj, v_proj + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k_kda * n_head}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_head_k_kda * n_head}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_head_v_kda * n_head}, 0); + + // KDA specific projections + // f_a_proj, f_b_proj + layer.ssm_f_a = create_tensor(tn(LLM_TENSOR_SSM_F_A, "weight", i), {n_embd, n_embd_head_k_kda}, 0); // head_dim + layer.ssm_f_b = create_tensor(tn(LLM_TENSOR_SSM_F_B, "weight", i), {n_embd_head_k_kda, n_embd_head_k_kda * n_head}, 0); // projection_size + + // b_proj (beta mixing coefficient) + layer.ssm_beta = create_tensor(tn(LLM_TENSOR_SSM_BETA, "weight", i), {n_embd, n_head}, 0); + + // A_log - Shape in GGUF: [1, num_heads, 1, 1] (4D) or [1, num_heads] (2D after quantization) Note: -exp(A_log) is applied in convert_hf_to_gguf.py + layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head, 1, 1}, TENSOR_NOT_REQUIRED); + if (!layer.ssm_a) { + layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0); + } + + // dt_bias - shape [n_embd_head_k_kda * n_head] = [4096] + layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_embd_head_k_kda * n_head}, 0); + + // g_a_proj, g_b_proj (output gate) + layer.ssm_g_a = create_tensor(tn(LLM_TENSOR_SSM_G_A, "weight", i), {n_embd, n_embd_head_k_kda}, 0); + layer.ssm_g_b = create_tensor(tn(LLM_TENSOR_SSM_G_B, "weight", i), {n_embd_head_k_kda, n_embd_head_k_kda * n_head}, 0); + + // o_norm (reusing SSM_NORM) + layer.ssm_o_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {n_embd_head_k_kda}, 0); // FusedRMSNormGated + + // o_proj + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_v_kda * n_head, n_embd}, 0); + + } else { + // MLA Layer - use MLA-specific head dimensions + const int64_t q_lora_rank = hparams.n_lora_q; + const int64_t kv_lora_rank = hparams.n_lora_kv; + const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla(); + const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla(); + + layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, TENSOR_NOT_REQUIRED); + layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0); + + if (layer.attn_q_a_norm) { + layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0); + layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0); + } else { + // Kimi MLA without Q compression: wq = [n_embd, n_head * n_embd_head_k_mla] + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0); + } + + // Kimi: qk_rope_head_dim = 64 (actual RoPE dimension for MLA) + // Note: hparams.n_rot may be 72 (from conversion) but actual is 64 + const int64_t qk_rope_head_dim = hparams.n_rot; // From config: qk_rope_head_dim + layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + qk_rope_head_dim}, 0); + // Support Legacy GGUFs that don't split wkv_b (MLA KV cache disabled) + layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_k_mla - qk_rope_head_dim + n_embd_head_v_mla)}, TENSOR_NOT_REQUIRED); + if (!layer.wkv_b) { // MLA KV cache enabled + layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_k_mla - qk_rope_head_dim, kv_lora_rank, n_head}, 0); + layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0); + } + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0); + } + + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + + // MoE intermediate size (different from dense FFN) + const int64_t n_ff_exp = hparams.n_ff_exp; + + // Kimi uses n_layer_dense_lead to determine which layers use dense FFN vs MoE + // first_k_dense_replace = 1 means layer 0 uses dense FFN, layers 1+ use MoE + if (i < (int) hparams.n_layer_dense_lead) { + // Dense FFN layer - use normal n_ff + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + } else { + // MoE layer - use n_ff_exp (1024) instead of n_ff (9216) + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0); + + // Shared experts use moe_intermediate_size * num_shared_experts + // Kimi: shared_expert_intermediate_size = 1024 * 1 = 1024 + // Tensors are 2D: [n_embd, n_ff_shexp] or [n_ff_shexp, n_embd] + const int64_t n_ff_shexp_actual = n_ff_exp * (hparams.n_expert_shared > 0 ? hparams.n_expert_shared : 1); + layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp_actual}, TENSOR_NOT_REQUIRED); + layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp_actual, n_embd}, TENSOR_NOT_REQUIRED); + layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp_actual}, TENSOR_NOT_REQUIRED); + + layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0); + } + } + } break; case LLM_ARCH_COGVLM: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); @@ -6940,6 +7139,72 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED); } } break; + case LLM_ARCH_STEP35: + { + tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + // output + output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); + + // STEP35 supports per-layer partial RoPE dims; rope factors are stored as a single shared tensor + // ("rope_freqs.weight") and ggml uses only the first (n_rot_l/2) entries per layer. + uint32_t n_rot_max = 0; + for (int i = 0; i < n_layer; ++i) { + n_rot_max = std::max(n_rot_max, hparams.n_rot); + } + if (n_rot_max == 0) { + n_rot_max = n_rot; + } + + for (int i = 0; i < n_layer; ++i) { + auto & layer = layers[i]; + + const uint32_t n_head_l = hparams.n_head(i); + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i); + + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, TENSOR_NOT_REQUIRED); + layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, TENSOR_NOT_REQUIRED); + + // optional rope factors (llama3) / longrope tensors + if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) { + layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot_max/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); + layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot_max/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); + } else { + layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot_max/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0)); + } + + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_l}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_v * n_head_l, n_embd}, 0); + + // head-wise attention gate (Step35 self_attn.g_proj) + layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), {n_embd, n_head_l}, TENSOR_NOT_REQUIRED); + + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + + // dense MLP (leading dense blocks) + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, TENSOR_NOT_REQUIRED); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED); + + // MoE routed experts + selection bias (router_bias) + const int64_t n_ff_exp = hparams.n_ff_exp; + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, TENSOR_NOT_REQUIRED); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED); + layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED); + + // shared expert MLP + layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, TENSOR_NOT_REQUIRED); + layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, TENSOR_NOT_REQUIRED); + layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, TENSOR_NOT_REQUIRED); + } + } break; case LLM_ARCH_MAINCODER: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); @@ -8086,6 +8351,14 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const { { llm = std::make_unique(*this, params); } break; + case LLM_ARCH_KIMI_LINEAR: + { + llm = std::make_unique(*this, params); + } break; + case LLM_ARCH_STEP35: + { + llm = std::make_unique(*this, params); + } break; default: GGML_ABORT("fatal error"); } @@ -8235,6 +8508,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) { case LLM_ARCH_WAVTOKENIZER_DEC: case LLM_ARCH_NEMOTRON_H: case LLM_ARCH_NEMOTRON_H_MOE: + case LLM_ARCH_KIMI_LINEAR: return LLAMA_ROPE_TYPE_NONE; // use what we call a normal RoPE, operating on pairs of consecutive head values @@ -8330,6 +8604,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) { case LLM_ARCH_AFMOE: case LLM_ARCH_QWEN3NEXT: case LLM_ARCH_MIMO2: + case LLM_ARCH_STEP35: return LLAMA_ROPE_TYPE_NEOX; case LLM_ARCH_QWEN2VL: diff --git a/src/llama-model.h b/src/llama-model.h index d1de16e3f2..7b580043b3 100644 --- a/src/llama-model.h +++ b/src/llama-model.h @@ -118,10 +118,12 @@ enum llm_type { LLM_TYPE_21B_A3B, // Ernie MoE small LLM_TYPE_30B_A3B, LLM_TYPE_31B_A3_5B, + LLM_TYPE_48B_A3B, // Kimi Linear LLM_TYPE_80B_A3B, // Qwen3 Next LLM_TYPE_100B_A6B, LLM_TYPE_102B_A12B, // Solar-Open LLM_TYPE_106B_A12B, // GLM-4.5-Air + LLM_TYPE_196B_A11B, // Step3.5-Flash LLM_TYPE_230B_A10B, // Minimax M2 LLM_TYPE_235B_A22B, LLM_TYPE_300B_A47B, // Ernie MoE big @@ -411,6 +413,18 @@ struct llama_layer { struct ggml_tensor * ffn_act_beta = nullptr; struct ggml_tensor * ffn_act_eps = nullptr; + // Kimi Linear KDA (using ssm_ prefix for consistency) + // Note: ssm_dt_b already exists above (mamba bias), reused for Kimi dt_bias + struct ggml_tensor * ssm_q_conv = nullptr; + struct ggml_tensor * ssm_k_conv = nullptr; + struct ggml_tensor * ssm_v_conv = nullptr; + struct ggml_tensor * ssm_f_a = nullptr; + struct ggml_tensor * ssm_f_b = nullptr; + struct ggml_tensor * ssm_beta = nullptr; + struct ggml_tensor * ssm_g_a = nullptr; + struct ggml_tensor * ssm_g_b = nullptr; + struct ggml_tensor * ssm_o_norm = nullptr; + struct llama_layer_posnet posnet; struct llama_layer_convnext convnext; diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp index 776222cb6f..a7891647c3 100644 --- a/src/llama-quant.cpp +++ b/src/llama-quant.cpp @@ -787,9 +787,9 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std:: quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight"); quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight"); - // do not quantize Mamba's small yet 2D weights + // do not quantize Mamba /Kimi's small conv1d weights // NOTE: can't use LLM_TN here because the layer number is not known - quantize &= name.find("ssm_conv1d.weight") == std::string::npos; + quantize &= name.find("ssm_conv1d") == std::string::npos; quantize &= name.find("shortconv.conv.weight") == std::string::npos; // do not quantize RWKV's small yet 2D weights diff --git a/src/llama-sampling.cpp b/src/llama-sampler.cpp similarity index 98% rename from src/llama-sampling.cpp rename to src/llama-sampler.cpp index 5dde513065..9bbc5dbde2 100644 --- a/src/llama-sampling.cpp +++ b/src/llama-sampler.cpp @@ -1,4 +1,4 @@ -#include "llama-sampling.h" +#include "llama-sampler.h" #include "llama-impl.h" #include "llama-vocab.h" @@ -1025,11 +1025,7 @@ struct llama_sampler_dist : public llama_sampler_backend { std::mt19937 rng; - // backend input - struct ggml_tensor * inp_uniform; - - ggml_context_ptr inp_ctx; - ggml_backend_buffer_ptr inp_buf; + ggml_tensor * inp_uniform; }; static const char * llama_sampler_dist_name(const struct llama_sampler * smpl) { @@ -1138,37 +1134,10 @@ static bool llama_sampler_dist_backend_init( ggml_backend_buffer_type_t buft) { auto * sctx = (llama_sampler_dist *) smpl->ctx; - // allocate inputs - { - ggml_init_params params = { - /*.mem_size =*/ ggml_tensor_overhead(), - /*.mem_buffer =*/ nullptr, - /*.no_alloc =*/ true, - }; - - sctx->inp_ctx.reset(ggml_init(params)); - - // Create the uniform random scalar input tensor. This will be set by - // llama_sampler_dist_backend_set_input after this graph is built. - sctx->inp_uniform = ggml_new_tensor_1d(sctx->inp_ctx.get(), GGML_TYPE_F32, 1); - ggml_set_name (sctx->inp_uniform, "uniform"); - ggml_set_input(sctx->inp_uniform); - - // Allocate all tensors from our context to the backend - sctx->inp_buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(sctx->inp_ctx.get(), buft)); - - ggml_backend_buffer_clear(sctx->inp_buf.get(), 0); - } - const bool res = llama_sampler_backend_support(smpl, buft); sctx->init(res); - if (!res) { - sctx->inp_ctx.reset(nullptr); - sctx->inp_buf.reset(nullptr); - } - return res; } @@ -1178,8 +1147,13 @@ static void llama_sampler_dist_backend_apply( struct ggml_cgraph * gf, struct llama_sampler_data * data) { GGML_UNUSED(gf); + auto * sctx = (llama_sampler_dist *) smpl->ctx; + sctx->inp_uniform = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); + ggml_set_name (sctx->inp_uniform, "uniform"); + ggml_set_input(sctx->inp_uniform); + struct ggml_tensor * probs = ggml_soft_max(ctx, data->logits); ggml_set_name(probs, "dist_probs"); @@ -1226,6 +1200,7 @@ static void llama_sampler_dist_backend_apply( static void llama_sampler_dist_backend_set_input(struct llama_sampler * smpl) { auto * sctx = (llama_sampler_dist *) smpl->ctx; + GGML_ASSERT(sctx->inp_uniform != nullptr); // We sample in double precision and cast to float to match rnd numbers of @@ -1262,8 +1237,6 @@ struct llama_sampler * llama_sampler_init_dist(uint32_t seed) { /* .seed_cur = */ seed_cur, /* .rng = */ std::mt19937(seed_cur), /* .inp_uniform = */ nullptr, - /* .inp_ctx = */ nullptr, - /* .inp_buf = */ nullptr, } ); } @@ -3461,9 +3434,6 @@ struct llama_sampler_logit_bias : public llama_sampler_backend { struct ggml_tensor * inp_logit_bias; struct ggml_tensor * inp_logit_idxs; - - ggml_context_ptr inp_ctx; - ggml_backend_buffer_ptr inp_buf; }; static const char * llama_sampler_logit_bias_name(const struct llama_sampler * smpl) { @@ -3526,6 +3496,16 @@ static void llama_sampler_logit_bias_backend_apply( return; } + const size_t n = sctx->logit_bias.size(); + + sctx->inp_logit_bias = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n); + ggml_set_name(sctx->inp_logit_bias, "logit_bias"); + ggml_set_input(sctx->inp_logit_bias); + + sctx->inp_logit_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n); + ggml_set_name(sctx->inp_logit_idxs, "logit_idxs"); + ggml_set_input(sctx->inp_logit_idxs); + ggml_tensor * cur = ggml_fill(ctx, data->logits, 0.0f); cur = ggml_reshape_2d(ctx, cur, 1, ggml_nelements(cur)); @@ -3562,6 +3542,8 @@ static void llama_sampler_logit_bias_backend_set_input(struct llama_sampler * sm static bool llama_sampler_logit_bias_backend_init( struct llama_sampler * smpl, ggml_backend_buffer_type_t buft) { + GGML_UNUSED(buft); + auto * sctx = (llama_sampler_logit_bias *) smpl->ctx; sctx->init(true); @@ -3570,29 +3552,6 @@ static bool llama_sampler_logit_bias_backend_init( return true; } - ggml_init_params params = { - /*.mem_size =*/ 2*ggml_tensor_overhead(), - /*.mem_buffer =*/ nullptr, - /*.no_alloc =*/ true, - }; - - sctx->inp_ctx.reset(ggml_init(params)); - - const size_t n = sctx->logit_bias.size(); - - sctx->inp_logit_bias = ggml_new_tensor_2d(sctx->inp_ctx.get(), GGML_TYPE_F32, 1, n); - ggml_set_name(sctx->inp_logit_bias, "logit_bias"); - ggml_set_input(sctx->inp_logit_bias); - - sctx->inp_logit_idxs = ggml_new_tensor_1d(sctx->inp_ctx.get(), GGML_TYPE_I32, n); - ggml_set_name(sctx->inp_logit_idxs, "logit_idxs"); - ggml_set_input(sctx->inp_logit_idxs); - - // Allocate all tensors from our context to the backend - sctx->inp_buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(sctx->inp_ctx.get(), buft)); - - ggml_backend_buffer_clear(sctx->inp_buf.get(), 0); - return true; } @@ -3628,8 +3587,6 @@ struct llama_sampler * llama_sampler_init_logit_bias( /* .to_search = */ {}, /* .inp_logit_bias = */ nullptr, /* .inp_logit_idxs = */ nullptr, - /* .inp_ctx = */ nullptr, - /* .inp_buf = */ nullptr, } ); } diff --git a/src/llama-sampling.h b/src/llama-sampler.h similarity index 92% rename from src/llama-sampling.h rename to src/llama-sampler.h index 6a963c0bb7..b9bfc20d25 100644 --- a/src/llama-sampling.h +++ b/src/llama-sampler.h @@ -1,7 +1,5 @@ #pragma once -// TODO: rename llama-sampling.h/.cpp to llama-sampler.h/.cpp ? - #include "llama.h" #include diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index a23950d007..6d6bdfa090 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -90,7 +90,7 @@ static_assert(std::is_trivially_copyable::value, "llm_symbol is not // // SPM tokenizer // original implementation: -// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 +// https://github.com/ggml-org/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 // struct llm_bigram_spm { @@ -285,7 +285,7 @@ struct llm_tokenizer_bpe : llm_tokenizer { // original regex from tokenizer.json //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", - // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989 + // adapted: https://github.com/ggml-org/llama.cpp/pull/6920#issuecomment-2080233989 "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", }; break; @@ -1752,26 +1752,33 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { // read bpe merges and populate bpe ranks const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); + // Kimi-K2 uses custom tokenization without traditional BPE merges + const bool is_kimi_k2 = (tokenizer_pre == "kimi-k2"); + if (merges_keyidx == -1) { - throw std::runtime_error("cannot find tokenizer merges in model file\n"); - } - - const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); - for (int i = 0; i < n_merges; i++) { - const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); - //GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); - - std::string first; - std::string second; - - const size_t pos = word.find(' ', 1); - - if (pos != std::string::npos) { - first = word.substr(0, pos); - second = word.substr(pos + 1); + if (!is_kimi_k2) { + throw std::runtime_error("cannot find tokenizer merges in model file\n"); } + // Kimi-K2 doesn't need merges, skip + LLAMA_LOG_INFO("%s: Kimi-K2 tokenizer detected, skipping BPE merges\n", __func__); + } else { + const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); + for (int i = 0; i < n_merges; i++) { + const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); + //GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); - bpe_ranks.emplace(std::make_pair(first, second), i); + std::string first; + std::string second; + + const size_t pos = word.find(' ', 1); + + if (pos != std::string::npos) { + first = word.substr(0, pos); + second = word.substr(pos + 1); + } + + bpe_ranks.emplace(std::make_pair(first, second), i); + } } // default special tokens @@ -2226,6 +2233,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { || t.first == "<|end_of_text|>" // granite || t.first == "" || t.first == "_" + || t.first == "[EOT]" // Kimi-K2 || t.first == "<|end▁of▁sentence|>" // DeepSeek || t.first == "" // smoldocling ) { @@ -2262,6 +2270,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { || t.first == "
"
                         || t.first == "▁
"          // CodeLlama
                         || t.first == "<|code_prefix|>" // GLM-4.5
+                        || t.first == "<|prefix|>"      // Falcon-H1-Tiny-Coder
                         ) {
                     special_fim_pre_id = t.second;
                     if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
@@ -2282,6 +2291,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
                         || t.first == ""
                         || t.first == "▁"         // CodeLlama
                         || t.first == "<|code_suffix|>" // GLM-4.5
+                        || t.first == "<|suffix|>"      // Falcon-H1-Tiny-Coder
                         ) {
                     special_fim_suf_id = t.second;
                     if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
@@ -2302,6 +2312,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
                         || t.first == ""
                         || t.first == "▁"         // CodeLlama
                         || t.first == "<|code_middle|>" // GLM-4.5
+                        || t.first == "<|middle|>"      // Falcon-H1-Tiny-Coder
                         ) {
                     special_fim_mid_id = t.second;
                     if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
@@ -2319,6 +2330,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
                         || t.first == ""
                         || t.first == ""   // Granite
                         || t.first == ""
+                        || t.first == "[PAD]" // Kimi-K2
                         ) {
                     special_fim_pad_id = t.second;
                     if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
@@ -2390,7 +2402,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
 
         // maintain a list of tokens that cause end-of-generation
         // this is currently determined based on the token text, which is obviously not ideal
-        // ref: https://github.com/ggerganov/llama.cpp/issues/9606
+        // ref: https://github.com/ggml-org/llama.cpp/issues/9606
         special_eog_ids.clear();
 
         if (special_fim_pad_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_pad_id) == 0) {
@@ -2421,6 +2433,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
                     || t.first == "<|eom_id|>"
                     || t.first == ""
                     || t.first == "_"
+                    || t.first == "[EOT]" // Kimi-K2
+                    || t.first == "[EOS]" // Kimi-K2
                     || t.first == "<|end_of_text|>"
                     || t.first == "" // smoldocling
                ) {
@@ -3079,7 +3093,7 @@ std::vector llama_vocab::impl::tokenize(
 }
 
 int32_t llama_vocab::impl::token_to_piece(llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) const {
-    // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
+    // ref: https://github.com/ggml-org/llama.cpp/pull/7587#discussion_r1620983843
     static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
     const llama_token_attr attr = token_get_attr(token);
     if (!special && (attr & attr_special)) {
diff --git a/src/models/deepseek2.cpp b/src/models/deepseek2.cpp
index 297dca5136..987f449934 100644
--- a/src/models/deepseek2.cpp
+++ b/src/models/deepseek2.cpp
@@ -14,7 +14,7 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
     const uint32_t kv_lora_rank = hparams.n_lora_kv;
 
     // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
-    // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
+    // See https://github.com/ggml-org/llama.cpp/discussions/7416 for detailed explanation.
     // And also: https://github.com/ggml-org/llama.cpp/pull/17945 [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
 
     // first cancel the adjustment from llama_hparams::yarn_attn_factor_adjust to get the original attn_factor
diff --git a/src/models/kimi-linear.cpp b/src/models/kimi-linear.cpp
new file mode 100644
index 0000000000..0f037d1a39
--- /dev/null
+++ b/src/models/kimi-linear.cpp
@@ -0,0 +1,772 @@
+#include "models.h"
+#include "ggml.h"
+
+#define CHUNK_SIZE 64
+
+// Causal Conv1d function for Q,K,V
+// When qkv is 0, it is Q, 1 is K, 2 is V
+static ggml_tensor * causal_conv1d(ggml_cgraph * gf, ggml_context * ctx0, ggml_tensor * conv_states_all, ggml_tensor * conv_state_all, int64_t qkv, ggml_tensor * x, ggml_tensor * proj_w, ggml_tensor * conv_w, int64_t d_conv, int64_t head_dim, int64_t n_head, int64_t n_seq_tokens, int64_t n_seqs, int64_t n_tokens, int64_t kv_head) {
+    const int64_t d_inner = head_dim * n_head;
+    const int64_t conv_state_size = (d_conv - 1) * d_inner;
+    const int64_t n_embd_r_total = 3 * conv_state_size;  // Q + K + V
+
+    // conv_state_all is [n_embd_r_total, n_seqs], split into Q, K, V
+    // Each conv state is [(d_conv-1) * d_inner] per sequence, need to reshape to [d_conv-1, d_inner, n_seqs]
+    // Memory layout: for each seq, Q state is first conv_state_size elements, then K, then V
+    // conv_state_all has stride: nb[0] = element_size, nb[1] = n_embd_r_total * element_size
+    // View Q conv state: offset 0, size conv_state_size per seq
+    // conv_state_all is [n_embd_r_total, n_seqs] with memory layout:
+    //   state[i + seq * n_embd_r_total] where i = conv_step + channel * (d_conv-1) + {0, conv_state_size, 2*conv_state_size} for Q/K/V
+    // We want [d_conv-1, d_inner, n_seqs] view:
+    //   nb1 = (d_conv-1) * element_size (stride between channels)
+    //   nb2 = n_embd_r_total * element_size (stride between seqs)
+    ggml_tensor * conv_state_x = ggml_view_3d(ctx0, conv_state_all, d_conv - 1, d_inner, n_seqs,
+        (d_conv - 1) * ggml_element_size(conv_state_all),  // nb1: stride between channels
+        n_embd_r_total * ggml_element_size(conv_state_all),  // nb2: stride between seqs
+        qkv * conv_state_size * ggml_element_size(conv_state_all));
+
+// Causal Conv1d function for Q,K,V
+// When qkv is 0, it is Q, 1 is K, 2 is V
+    // Step 1: Q, K, V projections -> [d_inner, n_tokens]
+    ggml_tensor * x_proj = ggml_mul_mat(ctx0, proj_w, x);
+
+    // Reshape input: {d_inner, n_tokens} -> {d_inner, n_seq_tokens, n_seqs}
+    ggml_tensor * x_3d = ggml_reshape_3d(ctx0, x_proj, d_inner, n_seq_tokens, n_seqs);
+
+    // Concat Q conv state and current input: {d_conv-1 + n_seq_tokens, d_inner, n_seqs}
+    ggml_tensor * conv_x = ggml_concat(ctx0, conv_state_x, ggml_transpose(ctx0, x_3d), 0);
+
+    // Save last (d_conv-1) columns back to Q conv state
+    ggml_tensor * last_conv_x = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs,
+        conv_x->nb[1], conv_x->nb[2], n_seq_tokens * conv_x->nb[0]);
+    ggml_build_forward_expand(gf,
+        ggml_cpy(ctx0, last_conv_x,
+            ggml_view_1d(ctx0, conv_states_all, conv_state_size * n_seqs,
+                (kv_head * n_embd_r_total + qkv * conv_state_size) * ggml_element_size(conv_states_all))));
+    // Reshape conv weight: GGUF [d_conv, 1, d_inner, 1] -> ggml_ssm_conv expects [d_conv, d_inner]
+    // GGUF stores as [d_conv, 1, d_inner, 1] with memory layout w[conv_step + channel * d_conv]
+    // vLLM stores as [d_inner, d_conv] with memory layout w[channel * d_conv + conv_step]
+    // ggml_ssm_conv computes: c[conv_step + channel * d_conv]
+    // GGUF layout: [d_conv, 1, d_inner] or [d_conv, 1, d_inner, 1] -> reshape to [d_conv, d_inner]
+    // Reshape conv weight from [d_conv, 1, d_inner, 1] to [d_conv, d_inner] for ggml_ssm_conv
+    ggml_tensor * conv_weight = ggml_reshape_2d(ctx0, conv_w, d_conv, d_inner);
+
+    // Apply conv1d
+    // ggml_ssm_conv output: {d_inner, n_seq_tokens, n_seqs}
+    ggml_tensor * Xcur = ggml_ssm_conv(ctx0, conv_x, conv_weight);
+    // Reshape to 2D for bias add: {d_inner, n_tokens}
+    Xcur = ggml_reshape_2d(ctx0, Xcur, d_inner, n_tokens);
+    Xcur = ggml_silu(ctx0, Xcur);
+
+    return ggml_reshape_4d(ctx0, Xcur, head_dim, n_head, n_seq_tokens, n_seqs);
+}
+
+llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params) :
+    llm_graph_context_mamba(params), model(model) {
+    ggml_tensor * cur;
+    ggml_tensor * inpL;
+
+    inpL = build_inp_embd(model.tok_embd);
+    cb(inpL, "model.embed_tokens", -1);
+
+    // Note: Kimi MLA does NOT use RoPE (rotary_emb=None in vLLM)
+    // So we don't need inp_pos
+
+    auto * inp_kv = !hparams.is_mla() ? build_inp_mem_hybrid() : nullptr;
+    auto * inp_k = hparams.is_mla() ? build_inp_mem_hybrid_k() : nullptr;
+    auto * inp_rs = hparams.is_mla() ? inp_k->get_recr() : inp_kv->get_recr();
+    auto * inp_attn_kv = !hparams.is_mla() ? inp_kv->get_attn() : nullptr;
+    auto * inp_attn_k = hparams.is_mla() ? inp_k->get_attn() : nullptr;
+
+    // Output ids for selecting which tokens to output
+    ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+    ggml_tensor * chunked_causal_mask =
+        ggml_tri(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, CHUNK_SIZE, CHUNK_SIZE), 1.0f),
+                    GGML_TRI_TYPE_LOWER);
+
+    ggml_tensor * chunked_identity = ggml_diag(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, CHUNK_SIZE), 1.0f));
+    ggml_tensor * chunked_diag_mask = ggml_add(ctx0, chunked_causal_mask, chunked_identity);
+
+    ggml_build_forward_expand(gf, chunked_causal_mask);
+    ggml_build_forward_expand(gf, chunked_identity);
+    ggml_build_forward_expand(gf, chunked_diag_mask);
+
+    // Kimi dimension constants
+    const int64_t n_head = hparams.n_head();
+    const int64_t head_dim = hparams.n_embd_head_kda;
+    const int64_t d_conv = hparams.ssm_d_conv;
+    const int64_t d_inner = n_head * head_dim;  // 32 * 128 = 4096
+    const int64_t n_seqs = ubatch.n_seqs;
+    const int64_t n_seq_tokens = ubatch.n_seq_tokens;
+
+    // Verify batch consistency for recurrent layers
+    GGML_ASSERT(n_seqs != 0);
+    GGML_ASSERT(ubatch.equal_seqs());
+    GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
+
+    // MLA params
+    const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla();
+    const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla();
+    const int64_t kv_lora_rank = hparams.n_lora_kv;
+    // qk_rope_head_dim = 64 (from Kimi config) which is hparams.n_rot
+    // Confirmed from tensor shape: wkv_a_mqa [2304, 576] = [n_embd, kv_lora_rank + qk_rope_head_dim]
+    const int64_t n_embd_head_qk_rope = hparams.n_rot;  // config.qk_rope_head_dim
+    const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;  // 192 - 64 = 128
+    // Attention scale for MLA
+    const float kq_scale_mla = 1.0f / sqrtf((float)n_embd_head_k_mla);
+
+    for (int il = 0; il < n_layer; ++il) {
+        const auto & layer = model.layers[il];
+        ggml_tensor * inpSA = inpL;
+
+        // Attention Norm
+        cur = build_norm(inpL, layer.attn_norm, NULL, LLM_NORM_RMS, il);
+        cb(cur, "attn_norm", il);
+
+        // Check layer type by checking which tensors exist
+        // KDA layers have ssm_a_log tensor, MLA layers have wkv_a_mqa tensor
+        bool is_kda = (layer.ssm_a != nullptr);
+        bool is_mla = (layer.wkv_a_mqa != nullptr);
+
+        if (is_kda) {
+            // === KDA Layer (Kimi Delta Attention) with Recurrent State ===
+            // Reference: vLLM kda.py
+            const auto * mctx_cur = inp_rs->mctx;
+            const auto kv_head = mctx_cur->get_head();
+
+            // Get conv states from r_l tensor (Q, K, V each have separate state)
+            ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
+            cb(conv_states_all, "conv_states_all", il);
+            ggml_tensor * conv_state_all = build_rs(inp_rs, conv_states_all, hparams.n_embd_r(), n_seqs);
+            ggml_tensor * Qcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 0, cur, layer.wq, layer.ssm_q_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head);
+            ggml_tensor * Kcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 1, cur, layer.wk, layer.ssm_k_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head);
+            ggml_tensor * Vcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 2, cur, layer.wv, layer.ssm_v_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head);
+
+            // g1 = -exp(A_log) * softplus(f_b(f_a(x)) + dt_bias)
+            ggml_tensor * f_a = ggml_mul_mat(ctx0, layer.ssm_f_a, cur);
+            ggml_tensor * g1 = ggml_mul_mat(ctx0, layer.ssm_f_b, f_a);
+            cb(g1, "g1 f_b(f_a(cur))", il);
+            g1 = ggml_add(ctx0, g1, layer.ssm_dt_b);
+            g1 = ggml_softplus(ctx0, g1);
+            g1 = ggml_reshape_3d(ctx0, g1, head_dim, n_head, n_tokens);
+
+            // A_log shape is [1, n_head] or [1, n_head, 1, 1], need to broadcast to [head_dim, n_head, n_tokens]. No need to -exp(a_log) because it was done in convert_hf_to_gguf.py
+            // Reshape to [1, n_head, 1] for broadcasting with g1 [head_dim, n_head, n_tokens]
+            ggml_tensor * A = ggml_reshape_3d(ctx0, layer.ssm_a, 1, n_head, 1);
+            g1 = ggml_mul(ctx0, g1, A);
+            cb(g1, "kda_g1", il);
+
+            // Compute beta (mixing coefficient)
+            ggml_tensor * beta = ggml_mul_mat(ctx0, layer.ssm_beta, cur);
+            beta = ggml_reshape_4d(ctx0, beta, n_head, 1, n_seq_tokens, n_seqs);
+            cb(beta, "kda_beta", il);
+
+            // Reshape for KDA recurrence
+            // {n_embd, n_tokens} -> {n_embd, n_seq_tokens, n_seqs}
+            cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
+
+            g1 = ggml_reshape_4d(ctx0, g1, head_dim, n_head, n_seq_tokens, n_seqs);
+
+            // Get SSM state and compute KDA recurrence using ggml_kda_scan
+            ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
+            ggml_tensor * state = build_rs(inp_rs, ssm_states_all, hparams.n_embd_s(), n_seqs);
+            state = ggml_reshape_4d(ctx0, state, head_dim, head_dim, n_head, n_seqs);
+            // Choose between build_kda_chunking and build_kda_recurrent based on n_tokens
+            std::pair attn_out = n_seq_tokens == 1 ?
+                build_kda_autoregressive(Qcur, Kcur, Vcur, g1, beta, state, il) :
+                build_kda_chunking(Qcur, Kcur, Vcur, g1, beta, state, chunked_causal_mask, chunked_identity, chunked_diag_mask, il);
+
+            ggml_tensor * output = attn_out.first;
+            ggml_tensor * new_state = attn_out.second;
+            cb(output, "attn_output", il);
+            cb(new_state, "new_state", il);
+
+            // Update the recurrent states
+            ggml_build_forward_expand(gf,
+                                     ggml_cpy(ctx0, new_state,
+                                              ggml_view_1d(ctx0, ssm_states_all, hparams.n_embd_s() * n_seqs,
+                                                           kv_head * hparams.n_embd_s() * ggml_element_size(ssm_states_all))));
+
+            // Output gating g2 = g_b(g_a(x))
+            ggml_tensor * cur_2d = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
+            ggml_tensor * g_a = ggml_mul_mat(ctx0, layer.ssm_g_a, cur_2d);
+            ggml_tensor * g2 = ggml_mul_mat(ctx0, layer.ssm_g_b, g_a);
+            cb(g2, "g2 g_b(g_a(cur_2d))", il);
+            g2 = ggml_reshape_3d(ctx0, g2, head_dim, n_head, n_seq_tokens * n_seqs);
+
+            // Apply o_norm with sigmoid gating
+            // Note: Kimi model uses sigmoid gating, not SiLU (despite FusedRMSNormGated default being swish)
+            // Formula: output = RMSNorm(x) * sigmoid(g)
+            ggml_tensor * attn_out_final = ggml_reshape_3d(ctx0, output, head_dim, n_head,  n_seq_tokens * n_seqs);
+            ggml_tensor * normed = build_norm(attn_out_final, layer.ssm_o_norm, nullptr, LLM_NORM_RMS, il);
+            cb(normed, "kda_normed", il);
+            ggml_tensor * gate = ggml_sigmoid(ctx0, g2);
+            ggml_tensor * gated = ggml_mul(ctx0, normed, gate);
+
+            // Output projection
+            gated = ggml_cont_2d(ctx0, gated, d_inner, n_tokens);
+            cur = ggml_mul_mat(ctx0, layer.wo, gated);
+            cb(cur, "kda_out", il);
+
+        } else if (is_mla) {
+            // === MLA Layer (Multi-head Latent Attention) without KV Cache ===
+            // Reference: vLLM mla.py
+            // Step 1: Q projection and reshape
+            // vLLM Kimi: q = q_proj(hidden_states), then view as [n_tokens, n_head, qk_head_dim]
+            // Note: Kimi MLA does NOT use RoPE (rotary_emb=None in vLLM)
+            ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.wq, cur);
+
+            // Step 2: KV compression
+            // kv_cmpr_pe = kv_a_proj_with_mqa(hidden_states) -> [kv_lora_rank + qk_rope_head_dim, n_tokens]
+            ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, layer.wkv_a_mqa, cur);
+
+            // Split: kv_cmpr = kv_lora[:kv_lora_rank], k_pe = kv_lora[kv_lora_rank:]
+            ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe, kv_lora_rank, n_tokens,
+                ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), 0);
+            ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe, n_embd_head_qk_rope, 1, n_tokens,
+                ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
+                ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
+                ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
+            // Note: Kimi MLA does NOT apply RoPE (rotary_emb=None in vLLM)
+            // k_pe is used directly without RoPE
+            // Normalize kv_c
+            kv_cmpr = build_norm(kv_cmpr, layer.attn_kv_a_norm, nullptr, LLM_NORM_RMS, il);
+
+            if (layer.wk_b && layer.wv_b) { // MLA KV cache enabled
+                // extract q_nope
+                ggml_tensor * q_nope =
+                    ggml_view_3d(ctx0, Qcur, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(Qcur->type, n_embd_head_k_mla),
+                                 ggml_row_size(Qcur->type, n_embd_head_k_mla) * n_head, 0);
+                cb(q_nope, "q_nope", il);
+
+                // and {n_embd_head_qk_rope, n_head, n_tokens}
+                ggml_tensor * q_pe = ggml_view_3d(
+                    ctx0, Qcur, n_embd_head_qk_rope, n_head, n_tokens, ggml_row_size(Qcur->type, n_embd_head_k_mla),
+                    ggml_row_size(Qcur->type, n_embd_head_k_mla) * n_head, ggml_row_size(Qcur->type, n_embd_head_qk_nope));
+                cb(q_pe, "q_pe", il);
+
+                // {n_embd_head_qk_nope, n_tokens, n_head}
+                q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
+                cb(q_nope, "q_nope_perm", il);
+
+                // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
+                ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, layer.wk_b, q_nope);
+                cb(q_nope_absorbed, "q_nope_absorbed", il);
+
+                // {kv_lora_rank, n_head, n_tokens}
+                q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
+                cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
+
+                // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
+                // note: rope must go first for in-place context shifting in build_rope_shift()
+                Qcur = ggml_concat(ctx0, q_nope_absorbed, q_pe, 0);
+                cb(Qcur, "Qcur", il);
+
+                kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
+                cb(kv_cmpr, "kv_cmpr_reshape", il);
+
+                // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
+                ggml_tensor * Kcur = ggml_concat(ctx0, kv_cmpr, k_pe, 0);
+                cb(Kcur, "Kcur", il);
+
+                // {kv_lora_rank, 1, n_tokens}
+                ggml_tensor * Vcur = kv_cmpr;
+                cb(Vcur, "Vcur", il);
+
+                cur = build_attn(inp_attn_k, layer.wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, layer.wv_b, kq_scale_mla, il);
+                cb(cur, "mla_out", il);
+            } else { // MLA KV cache disabled. Fall back to MHA KV cache.
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k_mla, n_head, n_tokens);
+                cb(Qcur, "mla_Q", il);
+                // KV decompression: kv = kv_b_proj(kv_c_normed)
+                ggml_tensor * kv = ggml_mul_mat(ctx0, layer.wkv_b, kv_cmpr);
+                const int64_t kv_per_head = n_embd_head_qk_nope + n_embd_head_v_mla;
+
+                // Split kv into k_nope and v
+                ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
+                    ggml_row_size(kv->type, kv_per_head),
+                    ggml_row_size(kv->type, kv_per_head * n_head), 0);
+                ggml_tensor * Vcur = ggml_view_3d(ctx0, kv, n_embd_head_v_mla, n_head, n_tokens,
+                    ggml_row_size(kv->type, kv_per_head),
+                    ggml_row_size(kv->type, kv_per_head * n_head),
+                    ggml_row_size(kv->type, n_embd_head_qk_nope));
+                Vcur = ggml_cont(ctx0, Vcur);
+                cb(Vcur, "mla_V", il);
+
+                // Concatenate k_nope + k_pe (broadcast k_pe to all heads)
+                // K = [k_nope, k_pe] where k_nope is [qk_nope_head_dim, n_head, n_tokens]
+                // and k_pe is [qk_rope_head_dim, 1, n_tokens] broadcast to all heads
+                // Need to broadcast k_pe from [qk_rope, 1, n_tokens] to [qk_rope, n_head, n_tokens]
+                ggml_tensor * k_pe_target = ggml_new_tensor_3d(ctx0, k_pe->type, n_embd_head_qk_rope, n_head, n_tokens);
+                ggml_tensor * k_pe_repeated = ggml_repeat(ctx0, k_pe, k_pe_target);
+                ggml_tensor * Kcur = ggml_concat(ctx0, k_pe_repeated, k_nope, 0);
+                cb(Kcur, "mla_K", il);
+
+                // Direct softmax attention (with MHA KV cache)
+                // Use build_attn with inp_attn for proper mask handling
+                cur = build_attn(inp_attn_kv, layer.wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale_mla, il);
+                cb(cur, "mla_out", il);
+            }
+        } else {
+            // Unknown layer type - this should not happen
+            GGML_ABORT("Kimi layer is neither KDA nor MLA - missing required tensors");
+        }
+
+        // On last layer, select only the output tokens
+        if (il == n_layer - 1 && inp_out_ids) {
+            cur   = ggml_get_rows(ctx0, cur,   inp_out_ids);
+            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+        }
+
+        // Residual
+        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+        cb(ffn_inp, "ffn_inp", il);
+
+        // FFN Norm
+        cur = build_norm(ffn_inp, layer.ffn_norm, NULL, LLM_NORM_RMS, il);
+        cb(cur, "ffn_norm", il);
+
+        if ((uint32_t) il < hparams.n_layer_dense_lead) {
+            // Dense FFN layer
+            cur = build_ffn(cur,
+                layer.ffn_up, NULL, NULL,
+                layer.ffn_gate, NULL, NULL,
+                layer.ffn_down, NULL, NULL,
+                NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
+            cb(cur, "ffn_out", il);
+        } else {
+            // MoE layer
+            // Kimi uses moe_renormalize=True and routed_scaling_factor (stored as expert_weights_scale) = 2.446
+            ggml_tensor * moe_out = build_moe_ffn(cur,
+                layer.ffn_gate_inp,
+                layer.ffn_up_exps,
+                layer.ffn_gate_exps,
+                layer.ffn_down_exps,
+                layer.ffn_exp_probs_b,
+                hparams.n_expert,
+                hparams.n_expert_used,
+                LLM_FFN_SILU, true,
+                true, hparams.expert_weights_scale,
+                (llama_expert_gating_func_type) hparams.expert_gating_func,
+                il);
+            cb(moe_out, "ffn_moe_out", il);
+
+            // Shared expert
+            {
+                ggml_tensor * ffn_shexp = build_ffn(cur,
+                        layer.ffn_up_shexp, NULL, NULL,
+                        layer.ffn_gate_shexp, NULL, NULL,
+                        layer.ffn_down_shexp, NULL, NULL,
+                        NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
+                cb(ffn_shexp, "ffn_shexp", il);
+
+                cur = ggml_add(ctx0, moe_out, ffn_shexp);
+                cb(cur, "ffn_out", il);
+            }
+        }
+        // Residual
+        cur = ggml_add(ctx0, cur, ffn_inp);
+
+        cur = build_cvec(cur, il);
+        cb(cur, "l_out", il);
+
+        inpL = cur;
+    }
+    cur = inpL;
+
+    // Final Norm
+    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
+
+    cb(cur, "result_norm", -1);
+    res->t_embd = cur;
+
+    // Output
+    cur = ggml_mul_mat(ctx0, model.output, cur);
+    cb(cur, "result_output", -1);
+    res->t_logits = cur;
+
+    ggml_build_forward_expand(gf, cur);
+}
+
+/*
+    This is a ggml implementation of the naive_chunk_kda function of
+    https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/kda/naive.py
+*/
+std::pair llm_build_kimi_linear::build_kda_chunking(
+        ggml_tensor * q,
+        ggml_tensor * k,
+        ggml_tensor * v,
+        ggml_tensor * gk,
+        ggml_tensor * beta,
+        ggml_tensor * state,
+        ggml_tensor * causal_mask,
+        ggml_tensor * identity,
+        ggml_tensor * diag_mask,
+        int           il) {
+    GGML_ASSERT(ggml_is_contiguous(state));
+
+    const int64_t S_k      = q->ne[0];
+    const int64_t H_k      = q->ne[1];
+    const int64_t n_tokens = q->ne[2];
+    const int64_t n_seqs   = q->ne[3];
+
+    const int64_t S_v = v->ne[0];
+    const int64_t H_v = v->ne[1];
+
+    GGML_ASSERT(v->ne[2] == n_tokens);
+    GGML_ASSERT(k->ne[2] == n_tokens);
+    GGML_ASSERT(gk->ne[0] == S_v && gk->ne[1] == H_v && gk->ne[2] == n_tokens && gk->ne[3] == n_seqs);
+    GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
+    GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v && state->ne[2] == H_v && state->ne[3] == n_seqs);
+
+    GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
+    GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
+
+    GGML_ASSERT(H_k == H_v);  // we did a repeat to make sure this is the case
+
+    // TODO: can this ever be false?
+    const bool use_qk_l2norm = true;
+
+    if (use_qk_l2norm) {
+        const float eps_norm = hparams.f_norm_rms_eps;
+
+        q = ggml_l2_norm(ctx0, q, eps_norm);
+        k = ggml_l2_norm(ctx0, k, eps_norm);
+    }
+
+    const float scale = 1.0f / sqrtf(S_v);
+
+    beta = ggml_sigmoid(ctx0, beta);
+
+    cb(q, "q_in", il);
+    cb(k, "k_in", il);
+    cb(v, "v_in", il);
+    cb(beta, "beta_in", il);
+    cb(gk, "gk_in", il);
+
+    q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs);
+    k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs);
+    v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
+    gk = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
+
+    beta  = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3));
+    state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
+
+    cb(q, "q_perm", il);
+    cb(k, "k_perm", il);
+    cb(v, "v_perm", il);
+    cb(beta, "beta_perm", il);
+    cb(gk, "gk_perm", il);
+    cb(state, "state_in", il);
+
+    GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs);
+    GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs);
+    GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs);
+    GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs);
+
+    // Do padding
+    const int64_t chunk_size = CHUNK_SIZE;
+
+    const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size;
+    const int64_t n_chunks = (n_tokens + pad) / chunk_size;
+
+    q = ggml_pad(ctx0, q, 0, pad, 0, 0);
+    k = ggml_pad(ctx0, k, 0, pad, 0, 0);
+    v = ggml_pad(ctx0, v, 0, pad, 0, 0);
+    gk = ggml_pad(ctx0, gk, 0, pad, 0, 0);
+    beta = ggml_pad(ctx0, beta, 0, pad, 0, 0);
+
+    cb(q, "q_pad", il);
+    cb(k, "k_pad", il);
+    cb(v, "v_pad", il);
+    cb(beta, "beta_pad", il);
+    cb(gk, "gk_pad", il);
+
+    ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
+    ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
+
+    cb(v_beta, "v_beta", il);
+    cb(k_beta, "k_beta", il);
+
+    const int64_t HB = H_k * n_seqs;
+
+    q      = ggml_cont_4d(ctx0, q,      S_k, chunk_size, n_chunks, HB);
+    k      = ggml_cont_4d(ctx0, k,      S_k, chunk_size, n_chunks, HB);
+    k_beta = ggml_cont_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, HB);
+    v      = ggml_cont_4d(ctx0, v,      S_v, chunk_size, n_chunks, HB);
+    v_beta = ggml_cont_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, HB);
+
+    gk    = ggml_cont_4d(ctx0, gk, S_k, chunk_size, n_chunks, HB);
+    beta = ggml_cont_4d(ctx0, beta, 1, chunk_size, n_chunks, HB);
+
+    // switch for cumsum
+    gk = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk, 1, 0, 2, 3), chunk_size, S_k, n_chunks, HB);
+    cb(gk, "gk", il);
+    ggml_tensor * gk_cumsum = ggml_cumsum(ctx0, gk);
+    cb(gk_cumsum, "gk_cumsum", il);
+
+/*
+    Compute Akk and Aqk loop together
+    Akk loop:
+    for i in range(BT):
+        k_i = k[..., i, :] # k_i [B,H,NT,S]
+        g_i = g[..., i:i+1, :] # g_i [B,H,NT,1,S]
+        A[..., i] = torch.einsum('... c d, ... d -> ... c', k * (g - g_i).exp(), k_i)
+    Aqk loop:
+    for j in range(BT):
+        k_j = k[:, :, i, j]
+        g_j = g[:, :, i, j:j+1, :]
+        A[..., j] = torch.einsum('... c d, ... d -> ... c', q_i * (g_i - g_j).exp(), k_j)
+*/
+    const int64_t CHB = n_chunks * H_k * n_seqs;
+    ggml_tensor * gkcs_i = ggml_reshape_4d(ctx0, gk_cumsum, chunk_size, 1, S_k, CHB);  // [chunk_size, 1, S_k, CHB]
+    ggml_tensor * gkcs_j = ggml_reshape_4d(ctx0, gkcs_i, 1, chunk_size, S_k, CHB);  // [1, chunk_size, S_k, CHB]
+
+    ggml_tensor * gkcs_j_bc = ggml_repeat_4d(ctx0, gkcs_j, chunk_size, chunk_size, S_k, CHB);  // [1, chunk_size, S_k, CHB] -> [chunk_size, chunk_size, S_k, CHB]
+    // decay_mask [chunk_size,chunk_size,S_k,CHB]
+    ggml_tensor * decay_mask = ggml_sub(ctx0, gkcs_j_bc, gkcs_i);
+    cb(decay_mask, "decay_mask", il);
+
+    decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
+    cb(decay_mask, "decay_masked", il);
+    decay_mask = ggml_exp(ctx0, decay_mask);
+    decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
+
+    // decay_mask [S_k,BT_j,BT_i,CHB] *Note* second and third chunk_sizes are switched
+    decay_mask = ggml_cont_4d(ctx0, ggml_permute(ctx0, decay_mask, 2, 1, 0, 3), S_k, chunk_size, chunk_size, CHB);
+
+    ggml_tensor * k_i = ggml_reshape_4d(ctx0, k, S_k, chunk_size, 1, CHB);
+    ggml_tensor * k_j = ggml_reshape_4d(ctx0, k, S_k, 1, chunk_size, CHB);
+    ggml_tensor * q_i = ggml_reshape_4d(ctx0, q, S_k, chunk_size, 1, CHB);
+
+    ggml_tensor * decay_k_i = ggml_mul(ctx0, decay_mask, k_i);
+    ggml_tensor * decay_q_i = ggml_mul(ctx0, decay_mask, q_i);
+
+    // decay_k_i [S.BT,BT,CHB] @ k_j [S,1,BT,CHB] = Akk [BT,1,BT,CHB]
+    ggml_tensor * Akk = ggml_mul_mat(ctx0, decay_k_i, k_j);
+    ggml_tensor * Aqk = ggml_mul_mat(ctx0, decay_q_i, k_j);
+    Akk = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_4d(ctx0, Akk, chunk_size, chunk_size, n_chunks, HB)));
+    Aqk = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_4d(ctx0, Aqk, chunk_size, chunk_size, n_chunks, HB)));
+    cb(Akk, "Akk", il);
+    cb(Aqk, "Aqk", il);
+
+    Akk = ggml_mul(ctx0, Akk, beta);
+    Akk = ggml_neg(ctx0, ggml_mul(ctx0, Akk, causal_mask));
+    cb(Akk, "attn_pre_solve", il);
+
+    Aqk = ggml_mul(ctx0, Aqk, diag_mask);
+    Aqk = ggml_scale(ctx0, Aqk, scale); // scale q
+    cb(Aqk, "Aqk_masked", il);
+
+    // for i in range(1, chunk_size):
+    //          row = attn[..., i, :i].clone()
+    //          sub = attn[..., :i, :i].clone()
+    //          attn[..., i, :i] = row + (row.unsqueeze(-1) * sub).sum(-2)
+    // attn = attn + torch.eye(chunk_size, dtype=attn.dtype, device=attn.device)
+    //
+    // We reduce this to a linear triangular solve: AX = B, where B = attn, A = I - tril(A)
+    ggml_tensor * attn_lower = ggml_mul(ctx0, Akk, causal_mask);
+    ggml_tensor * lhs        = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower);
+
+    ggml_tensor * lin_solve  = ggml_solve_tri(ctx0, lhs, Akk, true, true, false);
+    Akk                      = ggml_mul(ctx0, lin_solve, causal_mask);
+    Akk                      = ggml_add(ctx0, Akk, identity);
+
+    cb(Akk, "attn_solved", il);
+
+    // switch back for downstream
+    gk_cumsum = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk_cumsum, 1, 0, 2, 3), S_k, chunk_size, n_chunks, HB);
+    ggml_tensor * gkexp      = ggml_exp(ctx0, gk_cumsum);
+    cb(gk_cumsum, "gk_cumsum", il);
+
+    // u = (A*beta[..., None, :]) @ v  aka U_[t]
+    ggml_tensor * vb = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), Akk);
+
+    ggml_tensor * kbeta_gkexp = ggml_mul(ctx0, k_beta, gkexp);
+    cb(kbeta_gkexp, "kbeta_gkexp", il);
+
+    ggml_tensor * k_cumdecay = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gkexp)), Akk);
+    cb(k_cumdecay, "k_cumdecay", il);
+
+    ggml_tensor * core_attn_out = nullptr;
+    ggml_tensor * new_state = ggml_dup(ctx0, state);
+
+    cb(new_state, "new_state", il);
+
+    for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
+// extract one chunk worth of data
+        auto chunkify = [=](ggml_tensor * t) {
+                    return ggml_cont(ctx0, ggml_view_4d(ctx0, t, t->ne[0], chunk_size, 1, t->ne[3],
+                t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk));
+        };
+        auto chunkify_A = [=](ggml_tensor * t) {
+                    return ggml_cont(ctx0, ggml_view_4d(ctx0, t, chunk_size, chunk_size, 1, t->ne[3],
+                t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk));
+        };
+
+
+// k [S,BT,NT,H*B] => k_chunk [S,BT,1,H*B]
+        ggml_tensor * k_chunk = chunkify(k);
+        ggml_tensor * q_chunk = chunkify(q);
+        ggml_tensor * vb_chunk = chunkify(vb);
+
+// gk_cumsum [S,BT,NT,H*B] => gk_cs_chunk [S,BT,1,H*B]
+        ggml_tensor * gk_cs_chunk = chunkify(gk_cumsum);
+        ggml_tensor * k_cumdecay_chunk = chunkify(k_cumdecay);
+        ggml_tensor * gkexp_chunk = ggml_exp(ctx0, gk_cs_chunk);
+        ggml_tensor * Aqk_chunk = chunkify_A(Aqk);
+
+        ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs);
+
+        // new_state [S,S,1,H*B] k_cumdecay_chunk [S,BT,1,H*B]
+        // v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state or W_[t] @ S_[t]
+        ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk);
+
+        // v_new = v_i - v_prime or U_[t] - W_[t]*S_[t]
+        ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, vb_chunk, v_prime), v_prime);
+        ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
+
+        // q_chunk [S,BT,1,H*B] gkexp_chunk [S,BT,1,H*B]
+        // attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
+        // or Gamma_[t]*Q_]t] @ S
+        ggml_tensor * q_gk_exp   = ggml_mul(ctx0, q_chunk, gkexp_chunk);
+        ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_gk_exp);
+        attn_inter = ggml_scale(ctx0, attn_inter, scale); // scale q
+
+        // v_new_t [S,BT,1,H*B] Aqk [BT,BT,1,H*B]
+        // core_attn_out[:, :, i] = attn_inter + attn @ v_new or A' @ (U_[t] - W_[t]*S_[t])
+        ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, Aqk_chunk);
+
+        // o[:, :, i] = (q_i * g_i.exp()) @ S + A @ v_i
+        ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn);
+
+        core_attn_out = core_attn_out == nullptr ? core_attn_out_chunk : ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 1);
+
+        ggml_tensor * gk_cum_last =
+            ggml_cont(ctx0, ggml_view_4d(ctx0, gk_cs_chunk, gk_cs_chunk->ne[0], 1, gk_cs_chunk->ne[2], gk_cs_chunk->ne[3],
+                                        gk_cs_chunk->nb[1], gk_cs_chunk->nb[2], gk_cs_chunk->nb[3],
+                                        gk_cs_chunk->nb[1] * (gk_cs_chunk->ne[1] - 1)));
+
+        ggml_tensor * gkexp_last = ggml_exp(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, gk_cum_last)));
+
+        ggml_tensor * gk_diff = ggml_neg(ctx0, ggml_sub(ctx0, gk_cs_chunk, gk_cum_last));
+
+        ggml_tensor * gk_diff_exp = ggml_exp(ctx0, gk_diff);
+
+        ggml_tensor * key_gkdiff = ggml_mul(ctx0, k_chunk, gk_diff_exp);
+
+        // rearrange((g_i[:,:,-1:] - g_i).exp()*k_i, 'b h c k -> b h k c') @ (U_[t] - W_[t] @ S)
+        ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, ggml_cont(ctx0, ggml_transpose(ctx0, key_gkdiff)));
+
+        new_state = ggml_add(ctx0,
+            ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gkexp_last, gkexp_last->ne[0], gkexp_last->ne[1], H_v, n_seqs)),
+            ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs));
+    }
+
+    core_attn_out = ggml_cont_4d(ctx0, core_attn_out, S_v, chunk_size * n_chunks, H_v, n_seqs);
+
+    // truncate padded tokens
+    ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out,
+            S_v, n_tokens, H_v, n_seqs,
+            ggml_row_size(core_attn_out->type, S_v),
+            ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks),
+            ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks * H_v), 0);
+    output_tokens = ggml_cont(ctx0, output_tokens);
+    // permute back to (S_v, H_v, n_tokens, n_seqs)
+    output_tokens = ggml_permute(ctx0, output_tokens, 0, 2, 1, 3);
+    output_tokens = ggml_cont(ctx0, output_tokens);
+
+    cb(new_state, "output_state", il);
+
+    return {output_tokens, new_state};
+}
+
+std::pair llm_build_kimi_linear::build_kda_autoregressive(
+    ggml_tensor * q,
+    ggml_tensor * k,
+    ggml_tensor * v,
+    ggml_tensor * gk,
+    ggml_tensor * beta,
+    ggml_tensor * state,
+    int il) {
+    GGML_ASSERT(ggml_is_contiguous(v));
+    GGML_ASSERT(ggml_is_contiguous(gk));
+
+    const int64_t S_k      = q->ne[0];
+    const int64_t H_k      = q->ne[1];
+    const int64_t n_tokens = q->ne[2];
+    const int64_t n_seqs   = q->ne[3];
+
+    const int64_t S_v = v->ne[0];
+    const int64_t H_v = v->ne[1];
+
+    GGML_ASSERT(n_tokens == 1);
+    GGML_ASSERT(v->ne[2] == n_tokens);
+    GGML_ASSERT(k->ne[2] == n_tokens);
+    GGML_ASSERT(gk->ne[0] == S_k && gk->ne[1] == H_k && gk->ne[2] == n_tokens && gk->ne[3] == n_seqs);
+    GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
+    GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_k && state->ne[2] == H_v && state->ne[3] == n_seqs);
+
+    GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
+    GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
+
+    GGML_ASSERT(H_k == H_v);  // we did a repeat to make sure this is the case
+
+    const float eps_norm = hparams.f_norm_rms_eps;
+
+    q = ggml_l2_norm(ctx0, q, eps_norm);
+    k = ggml_l2_norm(ctx0, k, eps_norm);
+
+    const float scale = 1.0f / sqrtf(S_v);
+
+    q    = ggml_scale(ctx0, q, scale);
+    beta = ggml_sigmoid(ctx0, beta);
+
+    cb(q, "q_in", il);
+    cb(k, "k_in", il);
+    cb(v, "v_in", il);
+    cb(beta, "beta_in", il);
+    cb(gk, "gk_in", il);
+
+// g [H,1,B,1] g_t [1,H,B,1] => [1,1,H,B]
+// gk [S,H,1,B] => [S,1,H,B] gk_t [1,S,H,B]
+// beta [H,1,1,B] beta_t [1,H,1,B] => [1,1,H,B]
+    gk = ggml_reshape_4d(ctx0, gk, S_k, 1, H_k, n_seqs);
+    ggml_tensor * gk_t = ggml_cont(ctx0, ggml_transpose(ctx0, gk));
+    ggml_tensor * beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs);
+
+    // Apply exponential to gk_t
+    gk_t = ggml_exp(ctx0, gk_t);
+    // Apply the gated delta rule for the single timestep
+    // last_recurrent_state = last_recurrent_state * gk_t
+    // S = S * g_i[..., None].exp()
+    state = ggml_mul(ctx0, state, gk_t);
+
+    ggml_tensor * state_t = ggml_cont(ctx0, ggml_transpose(ctx0, state));
+
+// state [S,S,H,B] k [S,1,H,B] k_state [S_v,1,H,B]
+    k = ggml_reshape_4d(ctx0, k, S_k, 1, H_k, n_seqs);
+    ggml_tensor * k_state = ggml_mul_mat(ctx0, state_t, k);
+
+    // v_i - (k_i[..., None] * S).sum(-2)
+    v = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs);
+    ggml_tensor * v_diff = ggml_sub(ctx0, v, k_state);
+
+    // b_i[..., None] * k_i
+    ggml_tensor * k_beta = ggml_mul(ctx0, k, beta_t);
+
+    // S = S + torch.einsum('b h k, b h v -> b h k v', b_i[..., None] * k_i, v_i - (k_i[..., None] * S).sum(-2))
+    // v_diff_t [1,S_v,H,B] k_beta_t [1,S_k,H,B] state [S_v,S_k,H,B]
+    state = ggml_add(ctx0, state, ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_diff)), ggml_cont(ctx0, ggml_transpose(ctx0, k_beta))));
+
+    q = ggml_reshape_4d(ctx0, q, S_k, 1, H_k, n_seqs);
+    state_t = ggml_cont(ctx0, ggml_transpose(ctx0, state));
+    ggml_tensor * core_attn_out = ggml_mul_mat(ctx0, state_t, q);
+    // core_attn_out should be [S_v, 1, H_v, n_seqs] after this
+    cb(core_attn_out, "output_tokens", il);
+    cb(state, "new_state", il);
+
+    return {core_attn_out, state};
+}
+
diff --git a/src/models/models.h b/src/models/models.h
index 3a44f7f140..cfcbb9aaa5 100644
--- a/src/models/models.h
+++ b/src/models/models.h
@@ -288,6 +288,33 @@ struct llm_build_jamba : public llm_graph_context_mamba {
     llm_build_jamba(const llama_model & model, const llm_graph_params & params);
 };
 
+struct llm_build_kimi_linear : public llm_graph_context_mamba {
+    llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params);
+
+    std::pair build_kda_autoregressive(
+                ggml_tensor * q,
+                ggml_tensor * k,
+                ggml_tensor * v,
+                ggml_tensor * gk,
+                ggml_tensor * beta,
+                ggml_tensor * state,
+                        int   il);
+
+    std::pair build_kda_chunking(
+                ggml_tensor * q,
+                ggml_tensor * k,
+                ggml_tensor * v,
+                ggml_tensor * gk,
+                ggml_tensor * beta,
+                ggml_tensor * state,
+                ggml_tensor * causal_mask,
+                ggml_tensor * identity,
+                ggml_tensor * diag_mask,
+                        int   il);
+
+    const llama_model & model;
+};
+
 struct llm_build_lfm2 : public llm_graph_context {
     const llama_model & model;
 
@@ -556,6 +583,10 @@ struct llm_build_starcoder : public llm_graph_context {
     llm_build_starcoder(const llama_model & model, const llm_graph_params & params);
 };
 
+struct llm_build_step35_iswa : public llm_graph_context {
+    llm_build_step35_iswa(const llama_model & model, const llm_graph_params & params);
+};
+
 struct llm_build_t5_dec : public llm_graph_context {
     llm_build_t5_dec(const llama_model & model, const llm_graph_params & params);
 };
diff --git a/src/models/openelm.cpp b/src/models/openelm.cpp
index ee46a3375e..fbf682ec83 100644
--- a/src/models/openelm.cpp
+++ b/src/models/openelm.cpp
@@ -43,7 +43,7 @@ llm_build_openelm::llm_build_openelm(const llama_model & model, const llm_graph_
             ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head);
             cb(Kcur, "Kcur", il);
 
-            ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
+            ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv));
             cb(Vcur, "Vcur", il);
 
             Qcur = build_norm(Qcur,
diff --git a/src/models/qwen3next.cpp b/src/models/qwen3next.cpp
index 57b6659baf..99b1a76a48 100644
--- a/src/models/qwen3next.cpp
+++ b/src/models/qwen3next.cpp
@@ -265,9 +265,15 @@ std::pair llm_build_qwen3next::build_delta_net_chu
     cb(g_diff, "g_diff", il); // shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
 
     ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
-    ggml_tensor * key_gdiff = ggml_mul(ctx0, k, g_diff_exp);
+    ggml_tensor * g_diff_exp_t = ggml_reshape_4d(ctx0, g_diff_exp,
+                                                 1, chunk_size, n_chunks, g_diff_exp->ne[3]);
+
+    ggml_tensor * key_gdiff = ggml_mul(ctx0, k, g_diff_exp_t);
     cb(key_gdiff, "key_gdiff", il); // shape: (S_k, chunk_size, n_chunks, H_v * n_seqs)
 
+    ggml_tensor * key_gdiff_t = ggml_cont(ctx0, ggml_transpose(ctx0, key_gdiff));
+    cb(key_gdiff_t, "key_gdiff_t", il); // shape: (chunk_size, S_k, n_chunks, H_v * n_seqs)
+
 
     // state to be updated per chunk
     ggml_tensor * new_state = state; // ggml_dup(ctx0, state);
@@ -322,9 +328,9 @@ std::pair llm_build_qwen3next::build_delta_net_chu
             : ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 2);
 
         // kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
-        ggml_tensor * k_gdiff = ggml_cont(ctx0, get_slice_2d(ctx0, key_gdiff, chunk));
+        ggml_tensor * k_gdiff_t = get_slice_2d(ctx0, key_gdiff_t, chunk);
         //ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, k_gdiff, v_new); // this is slower on metal, why?
-        ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, ggml_cont(ctx0, ggml_transpose(ctx0, k_gdiff)));
+        ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, k_gdiff_t);
 
         // last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
         ggml_tensor * gexp_last_chunk = ggml_cont(ctx0, get_slice_2d(ctx0, g_last_exp, chunk));
diff --git a/src/models/step35-iswa.cpp b/src/models/step35-iswa.cpp
new file mode 100644
index 0000000000..f8737815a6
--- /dev/null
+++ b/src/models/step35-iswa.cpp
@@ -0,0 +1,168 @@
+#include "models.h"
+
+llm_build_step35_iswa::llm_build_step35_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
+    ggml_tensor * cur;
+    ggml_tensor * inpL;
+
+    inpL = build_inp_embd(model.tok_embd);
+    ggml_tensor * inp_pos     = build_inp_pos();
+    auto        * inp_attn    = build_attn_inp_kv_iswa();
+    ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+    for (int il = 0; il < n_layer; ++il) {
+        ggml_tensor * inpSA = inpL;
+
+        const uint32_t n_head_l    = hparams.n_head(il);
+        const uint32_t n_head_kv_l = hparams.n_head_kv(il);
+
+        const float freq_base_l  = model.get_rope_freq_base(cparams, il);
+        const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
+
+        cur = inpL;
+
+        // dump pre-attn RMSNorm input to pinpoint layer boundary issues
+        cb(cur, "attn_norm_in", il);
+
+        // self-attention
+        {
+            cur = build_norm(cur, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il);
+            cb(cur, "attn_norm", il);
+            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+
+            cb(Qcur, "Qcur", il);
+            cb(Kcur, "Kcur", il);
+            cb(Vcur, "Vcur", il);
+
+            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head_l,    n_tokens);
+            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv_l, n_tokens);
+            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head_v, n_head_kv_l, n_tokens);
+
+            // Q/K per-head RMSNorm (Step35 q_norm / k_norm)
+            if (model.layers[il].attn_q_norm) {
+                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, nullptr, LLM_NORM_RMS, il);
+                cb(Qcur, "Qcur_normed", il);
+            }
+            if (model.layers[il].attn_k_norm) {
+                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, nullptr, LLM_NORM_RMS, il);
+                cb(Kcur, "Kcur_normed", il);
+            }
+
+            // RoPE (partial rotary factors per layer)
+            const bool is_swa = hparams.is_swa(il);
+            ggml_tensor * rope_factors = is_swa ? nullptr : model.get_rope_factors(cparams, il);
+            const int64_t n_rot_l = is_swa ? hparams.n_rot : (hparams.n_rot / 2);
+            Qcur = ggml_rope_ext(
+                ctx0, Qcur, inp_pos, rope_factors,
+                n_rot_l, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
+                ext_factor, attn_factor, beta_fast, beta_slow
+            );
+            Kcur = ggml_rope_ext(
+                ctx0, Kcur, inp_pos, rope_factors,
+                n_rot_l, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
+                ext_factor, attn_factor, beta_fast, beta_slow
+            );
+            cb(Qcur, "Qcur_pos", il);
+            cb(Kcur, "Kcur_pos", il);
+
+            const float kq_scale = 1.0f / sqrtf(float(n_embd_head_k));
+            ggml_tensor * attn_out = build_attn(inp_attn,
+                    nullptr, nullptr,
+                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
+            cb(attn_out, "attn_out", il);
+            // head-wise attention gate: sigmoid(g_proj(x)) in torch
+            if (model.layers[il].wqkv_gate) {
+                ggml_tensor * gate = build_lora_mm(model.layers[il].wqkv_gate, cur); // [n_head_l, n_tokens]
+                cb(gate, "attn_gate", il);
+
+                gate = ggml_sigmoid(ctx0, gate);
+                cb(gate, "attn_gate_sigmoid", il);
+
+                // reshape + broadcast to [n_embd_head_v, n_head_l, n_tokens]
+                ggml_tensor * attn_3d = ggml_reshape_3d(ctx0, attn_out, n_embd_head_v, n_head_l, n_tokens);
+                ggml_tensor * gate_3d = ggml_reshape_3d(ctx0, gate,       1,          n_head_l, n_tokens);
+                cb(gate_3d, "attn_gate_3d", il);
+
+                attn_3d = ggml_mul(ctx0, attn_3d, gate_3d);
+                cb(attn_3d, "attn_gated_3d", il);
+
+                attn_out = ggml_reshape_2d(ctx0, attn_3d, n_embd_head_v * n_head_l, n_tokens);
+                cb(attn_out, "attn_gated", il);
+            }
+
+            // output projection
+            cur = build_lora_mm(model.layers[il].wo, attn_out);
+            cb(cur, "attn_proj", il);
+        }
+
+        if (il == n_layer - 1 && inp_out_ids) {
+            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+        }
+
+        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+        cb(ffn_inp, "ffn_inp", il);
+
+        cur = build_norm(ffn_inp, model.layers[il].ffn_norm, nullptr, LLM_NORM_RMS, il);
+        cb(cur, "ffn_norm", il);
+
+        // feed-forward
+        if (model.layers[il].ffn_gate_inp == nullptr) {
+            // dense MLP
+            cur = build_ffn(cur,
+                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   nullptr,
+                    model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, nullptr,
+                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, nullptr,
+                    nullptr,
+                    LLM_FFN_SILU, LLM_FFN_PAR, il);
+            cb(cur, "ffn_out", il);
+        } else {
+            // MoE routed experts
+            const bool  norm_w  = hparams.expert_weights_norm;
+            const float w_scale = hparams.expert_weights_scale;
+            const bool  scale_w = w_scale != 0.0f;
+            ggml_tensor * moe_out = build_moe_ffn(cur,
+                    model.layers[il].ffn_gate_inp,
+                    model.layers[il].ffn_up_exps,
+                    model.layers[il].ffn_gate_exps,
+                    model.layers[il].ffn_down_exps,
+                    model.layers[il].ffn_exp_probs_b,
+                    n_expert, n_expert_used,
+                    LLM_FFN_SILU,
+                    norm_w, scale_w, w_scale,
+                    (llama_expert_gating_func_type) hparams.expert_gating_func,
+                    il);
+            cb(moe_out, "ffn_moe_out", il);
+
+            // shared expert MLP (always added on MoE layers in Step35)
+            ggml_tensor * sh_out = build_ffn(cur,
+                    model.layers[il].ffn_up_shexp,   nullptr, nullptr,
+                    model.layers[il].ffn_gate_shexp, nullptr, nullptr,
+                    model.layers[il].ffn_down_shexp, nullptr, nullptr,
+                    nullptr,
+                    LLM_FFN_SILU, LLM_FFN_PAR, il);
+            cb(sh_out, "ffn_shared_out", il);
+
+            cur = ggml_add(ctx0, moe_out, sh_out);
+            cb(cur, "ffn_out", il);
+        }
+        cur = ggml_add(ctx0, cur, ffn_inp);
+        cur = build_cvec(cur, il);
+        cb(cur, "l_out", il);
+
+        inpL = cur;
+    }
+
+    cur = inpL;
+
+    cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1);
+    cb(cur, "result_norm", -1);
+    res->t_embd = cur;
+
+    cur = build_lora_mm(model.output, cur);
+    cb(cur, "result_output", -1);
+    res->t_logits = cur;
+
+    ggml_build_forward_expand(gf, cur);
+}
diff --git a/src/unicode.cpp b/src/unicode.cpp
index b47dcbe619..adfc489d1f 100644
--- a/src/unicode.cpp
+++ b/src/unicode.cpp
@@ -497,49 +497,26 @@ static std::vector unicode_regex_split_custom_llama3(const std::string &
     return bpe_offsets;
 }
 
-// use std::wregex to split the text
-static std::vector unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector & offsets) {
-    std::wregex expr(regex_expr, std::regex_constants::optimize | std::regex_constants::nosubs);
+template 
+static std::vector unicode_regex_split_stl(const std::basic_string & text, const std::basic_string & regex, const std::vector & offsets) {
+    using BidirIt = typename std::basic_string::const_iterator;
+#ifdef _MSC_VER
+    // Bypass bug in MSVC: https://github.com/ggml-org/llama.cpp/issues/17830
+    constexpr auto regex_flags = std::regex_constants::ECMAScript;
+#else
+    constexpr auto regex_flags = std::regex_constants::optimize | std::regex_constants::nosubs;
+#endif
+    std::basic_regex expr(regex, regex_flags);
     std::vector bpe_offsets; // store the offset of each word
     bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
     size_t start = 0;
     for (auto offset : offsets) {
-        std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr);
-        std::wcregex_iterator end;
+        std::regex_iterator it(text.begin() + start, text.begin() + start + offset, expr);
+        std::regex_iterator end;
 
         int64_t start_idx = 0;
         while (it != end) {
-            std::wcmatch match = *it;
-            if (match.position() > start_idx) {
-                bpe_offsets.emplace_back(match.position() - start_idx);
-            }
-            bpe_offsets.emplace_back(match.length());
-            start_idx = match.position() + match.length();
-            ++it;
-        }
-
-        if (start_idx < (int64_t) offset) {
-            bpe_offsets.emplace_back(offset - start_idx);
-        }
-        start += offset;
-    }
-
-    return bpe_offsets;
-}
-
-// use std::regex to split the text
-static std::vector unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector & offsets) {
-    std::regex expr(regex_expr, std::regex_constants::optimize | std::regex_constants::nosubs);
-    std::vector bpe_offsets; // store the offset of each word
-    bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
-    size_t start = 0;
-    for (auto offset : offsets) {
-        std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr);
-        std::cregex_iterator end;
-
-        int64_t start_idx = 0;
-        while (it != end) {
-            std::cmatch match = *it;
+            std::match_results match = *it;
             if (match.position() > start_idx) {
                 bpe_offsets.emplace_back(match.position() - start_idx);
             }
diff --git a/tests/test-autorelease.cpp b/tests/test-autorelease.cpp
index 35b09aaeac..ca87c56a8f 100644
--- a/tests/test-autorelease.cpp
+++ b/tests/test-autorelease.cpp
@@ -1,4 +1,4 @@
-// ref: https://github.com/ggerganov/llama.cpp/issues/4952#issuecomment-1892864763
+// ref: https://github.com/ggml-org/llama.cpp/issues/4952#issuecomment-1892864763
 
 #include 
 #include 
diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp
index 411467e968..6fe1780f3b 100644
--- a/tests/test-backend-ops.cpp
+++ b/tests/test-backend-ops.cpp
@@ -169,20 +169,22 @@ static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float m
     const int blck0 = 128;
     const int blck1 = 64;
 
-    // number of INF blocks
-    const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
+    // number of INF/zero blocks
+    const int n_inf_zero_blocks = 0.2*(ne0*ne1*ne2*ne3)/(blck0*blck1);
 
-    for (int b = 0; b < n_inf_blocks; b++) {
+    for (int b = 0; b < n_inf_zero_blocks; b++) {
         const int p3 = (rd() % ne3);
         const int p2 = (rd() % ne2);
         const int p1 = (rd() % ne1);
         const int p0 = (rd() % ne0);
 
+        bool inf = rd() & 1;
+
         for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
             const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
 
             for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
-                data_f32[idx + i0] = -INFINITY;
+                data_f32[idx + i0] = inf ? -INFINITY : 0.0f;
             }
         }
     }
@@ -8032,6 +8034,8 @@ static std::vector> make_test_cases_eval() {
         for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_IMROPE, GGML_ROPE_TYPE_VISION}) {
             for (bool ff : {false, true}) {
                 test_cases.emplace_back(new test_rope(type, {128,  32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true));
+                test_cases.emplace_back(new test_rope(type, {128,  32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 1, true, true));
+                test_cases.emplace_back(new test_rope(type, {128,  32, 2, 3}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 1, true, true));
             }
         }
     }
@@ -8227,6 +8231,7 @@ static std::vector> make_test_cases_eval() {
                                                 for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
                                                     if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
                                                     for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
+                                                        if (type_KV != GGML_TYPE_F16 && hsk != 64 && hsk != 72) continue;
                                                         test_cases.emplace_back(new test_flash_attn_ext(
                                                                     hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
                                                         // run fewer test cases permuted
@@ -8591,6 +8596,13 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
             output_printer->print_operation(info);
             return false;
         }
+        // Use reference implementation on the CPU backend for comparison
+        using ggml_backend_cpu_set_use_ref_t = void (*)(ggml_backend_t, bool);
+        auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend_cpu));
+        auto * set_use_ref = (ggml_backend_cpu_set_use_ref_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_set_use_ref");
+        if (set_use_ref) {
+            set_use_ref(backend_cpu, true);
+        }
 
         size_t n_ok = 0;
         size_t                   tests_run = 0;
diff --git a/tests/test-jinja.cpp b/tests/test-jinja.cpp
index f6114f1e2f..1f25c6ae71 100644
--- a/tests/test-jinja.cpp
+++ b/tests/test-jinja.cpp
@@ -189,12 +189,24 @@ static void test_conditionals(testing & t) {
         "negated"
     );
 
-    test_template(t, "in operator",
+    test_template(t, "in operator (element in array)",
         "{% if 'x' in items %}found{% endif %}",
         {{"items", json::array({"x", "y"})}},
         "found"
     );
 
+    test_template(t, "in operator (substring)",
+        "{% if 'bc' in 'abcd' %}found{% endif %}",
+        json::object(),
+        "found"
+    );
+
+    test_template(t, "in operator (object key)",
+        "{% if 'key' in obj %}found{% endif %}",
+        {{"obj", {{"key", 1}, {"other", 2}}}},
+        "found"
+    );
+
     test_template(t, "is defined",
         "{% if x is defined %}yes{% else %}no{% endif %}",
         {{"x", 1}},
@@ -1036,6 +1048,42 @@ static void test_tests(testing & t) {
         json::object(),
         "yes"
     );
+
+    test_template(t, "is in (array, true)",
+        "{{ 'yes' if 2 is in([1, 2, 3]) }}",
+        json::object(),
+        "yes"
+    );
+
+    test_template(t, "is in (array, false)",
+        "{{ 'yes' if 5 is in([1, 2, 3]) else 'no' }}",
+        json::object(),
+        "no"
+    );
+
+    test_template(t, "is in (string)",
+        "{{ 'yes' if 'bc' is in('abcde') }}",
+        json::object(),
+        "yes"
+    );
+
+    test_template(t, "is in (object keys)",
+        "{{ 'yes' if 'a' is in(obj) }}",
+        {{"obj", {{"a", 1}, {"b", 2}}}},
+        "yes"
+    );
+
+    test_template(t, "reject with in test",
+        "{{ items | reject('in', skip) | join(', ') }}",
+        {{"items", json::array({"a", "b", "c", "d"})}, {"skip", json::array({"b", "d"})}},
+        "a, c"
+    );
+
+    test_template(t, "select with in test",
+        "{{ items | select('in', keep) | join(', ') }}",
+        {{"items", json::array({"a", "b", "c", "d"})}, {"keep", json::array({"b", "c"})}},
+        "b, c"
+    );
 }
 
 static void test_string_methods(testing & t) {
diff --git a/tools/completion/completion.cpp b/tools/completion/completion.cpp
index f368a2f4c6..977132756f 100644
--- a/tools/completion/completion.cpp
+++ b/tools/completion/completion.cpp
@@ -674,15 +674,12 @@ int main(int argc, char ** argv) {
                 }
             }
 
-            for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
-                int n_eval = (int) embd.size() - i;
-                if (n_eval > params.n_batch) {
-                    n_eval = params.n_batch;
-                }
-
+            if (!embd.empty()) {
+                int n_eval = (int) embd.size();
                 LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
 
-                if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
+                GGML_ASSERT(n_eval <= params.n_batch);
+                if (llama_decode(ctx, llama_batch_get_one(embd.data(), n_eval))) {
                     LOG_ERR("%s : failed to eval\n", __func__);
                     return 1;
                 }
@@ -743,7 +740,7 @@ int main(int argc, char ** argv) {
                 common_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
 
                 ++n_consumed;
-                if ((int) embd.size() >= params.n_batch) {
+                if ((int) embd.size() == params.n_batch) {
                     break;
                 }
             }
diff --git a/tools/cvector-generator/pca.hpp b/tools/cvector-generator/pca.hpp
index e88bbdde93..afd3bf6380 100644
--- a/tools/cvector-generator/pca.hpp
+++ b/tools/cvector-generator/pca.hpp
@@ -290,7 +290,7 @@ static void power_iteration(
     ggml_gallocr_free(allocr);
 
     // TODO @ngxson : The output vector is randomly inverted
-    // Solution: https://github.com/ggerganov/llama.cpp/pull/8069#issuecomment-2185328171
+    // Solution: https://github.com/ggml-org/llama.cpp/pull/8069#issuecomment-2185328171
 }
 
 static void run_pca(
diff --git a/tools/export-lora/export-lora.cpp b/tools/export-lora/export-lora.cpp
index f038019b00..41f426208f 100644
--- a/tools/export-lora/export-lora.cpp
+++ b/tools/export-lora/export-lora.cpp
@@ -190,7 +190,7 @@ struct lora_merge_ctx {
         gguf_set_val_u32(ctx_out, "general.file_type", LLAMA_FTYPE_MOSTLY_F16);
 
         // check if all lora adapters have the same tensors
-        // TODO: remove this when we can support merging subset of adapters. Ref: https://github.com/ggerganov/llama.cpp/pull/8607#discussion_r1686027777
+        // TODO: remove this when we can support merging subset of adapters. Ref: https://github.com/ggml-org/llama.cpp/pull/8607#discussion_r1686027777
         static const char * err_no_subset_adapter = "Input adapters do not have the same list of tensors. This is not yet supported. Please merge the adapter one-by-one instead of merging all at once.";
         if (adapters.size() > 1) {
             for (size_t i = 1; i < adapters.size(); ++i) {
diff --git a/tools/mtmd/clip-impl.h b/tools/mtmd/clip-impl.h
index 7b012f6d5e..3bc93ead86 100644
--- a/tools/mtmd/clip-impl.h
+++ b/tools/mtmd/clip-impl.h
@@ -36,6 +36,8 @@
 // vision-specific
 #define KEY_VISION_PROJ_TYPE    "clip.vision.projector_type" // for models with mixed modalities
 #define KEY_IMAGE_SIZE          "clip.vision.image_size"
+#define KEY_IMAGE_MIN_PIXELS    "clip.vision.image_min_pixels"
+#define KEY_IMAGE_MAX_PIXELS    "clip.vision.image_max_pixels"
 #define KEY_PREPROC_IMAGE_SIZE  "clip.vision.preproc_image_size"
 #define KEY_PATCH_SIZE          "clip.vision.patch_size"
 #define KEY_IMAGE_MEAN          "clip.vision.image_mean"
diff --git a/tools/perplexity/README.md b/tools/perplexity/README.md
index 33a46d1a2e..eb3846072e 100644
--- a/tools/perplexity/README.md
+++ b/tools/perplexity/README.md
@@ -29,7 +29,7 @@ In addition to the KL divergence the following statistics are calculated with `-
 * Mean change in "correct" token probability. Positive values mean the model gets better at prediction, negative values mean it gets worse.
 * Pearson correlation coefficient of the "correct" token probabilites between models.
 * Percentiles of change in "correct" token probability. Positive values mean the model gets better at prediction, negative values mean it gets worse. Can be used to judge noise vs. quality loss from quantization. If the percentiles are symmetric then the quantization is essentially just adding noise. If the negative values are significantly larger than the positive values then this indicates that the model is actually becoming worse from the quantization.
-* The root mean square of the change in token probabilities. If you were to assume that the quantization simply causes Gaussian noise on the token probabilities then this would be the standard deviation of said noise. The uncertainty on the value is calculated that the change in token probabilities follows a Gaussian distribution. Related discussion: https://github.com/ggerganov/llama.cpp/discussions/2875 .
+* The root mean square of the change in token probabilities. If you were to assume that the quantization simply causes Gaussian noise on the token probabilities then this would be the standard deviation of said noise. The uncertainty on the value is calculated that the change in token probabilities follows a Gaussian distribution. Related discussion: https://github.com/ggml-org/llama.cpp/discussions/2875 .
 * Same top p: Percentage of how often the token was assigned the highest probabilites by both models. The uncertainty is calculated from the Gaussian approximation of the binomial distribution.
 
 ## LLaMA 3 8b Scoreboard
diff --git a/tools/server/public_legacy/index-new.html b/tools/server/public_legacy/index-new.html
index cbfbbdf280..e2f39d6687 100644
--- a/tools/server/public_legacy/index-new.html
+++ b/tools/server/public_legacy/index-new.html
@@ -1096,7 +1096,7 @@ return html`
           
           
         
       `;
diff --git a/tools/server/public_legacy/index.html b/tools/server/public_legacy/index.html
index 75f39330a7..98d56ea8b1 100644
--- a/tools/server/public_legacy/index.html
+++ b/tools/server/public_legacy/index.html
@@ -1281,7 +1281,7 @@
 
           
         
       `;
diff --git a/tools/server/public_legacy/theme-mangotango.css b/tools/server/public_legacy/theme-mangotango.css
index e433802453..315daf734a 100755
--- a/tools/server/public_legacy/theme-mangotango.css
+++ b/tools/server/public_legacy/theme-mangotango.css
@@ -1,5 +1,5 @@
 /* Author: Yazan Agha-Schrader */
-/* Inspiration from llama.cpp logo/banner https://github.com/ggerganov/llama.cpp#readme */
+/* Inspiration from llama.cpp logo/banner https://github.com/ggml-org/llama.cpp#readme */
 
 .theme-mangotango {
 
diff --git a/tools/server/server-context.cpp b/tools/server/server-context.cpp
index 7f9c3c566b..b71d496eeb 100644
--- a/tools/server/server-context.cpp
+++ b/tools/server/server-context.cpp
@@ -740,6 +740,11 @@ private:
 
         slots.clear();
 
+        const bool can_spec = common_speculative_is_compat(ctx);
+        if (!can_spec) {
+            SRV_WRN("%s", "speculative decoding not supported by this context\n");
+        }
+
         // initialize slots
         for (int i = 0; i < params_base.n_parallel; i++) {
             server_slot slot;
@@ -752,7 +757,7 @@ private:
             slot.prompt.tokens.has_mtmd = mctx != nullptr;
 
             // try speculative decoding
-            {
+            if (can_spec) {
                 slot.spec = common_speculative_init(params_base.speculative, slot.ctx);
                 if (slot.spec) {
                     if (mctx) {
diff --git a/tools/server/server-models.cpp b/tools/server/server-models.cpp
index 803cb02e6e..57655476af 100644
--- a/tools/server/server-models.cpp
+++ b/tools/server/server-models.cpp
@@ -767,7 +767,7 @@ static bool router_validate_model(const std::string & name, server_models & mode
     }
     auto meta = models.get_meta(name);
     if (!meta.has_value()) {
-        res_err(res, format_error_response("model not found", ERROR_TYPE_INVALID_REQUEST));
+        res_err(res, format_error_response(string_format("model '%s' not found", name.c_str()), ERROR_TYPE_INVALID_REQUEST));
         return false;
     }
     if (models_autoload) {
diff --git a/tools/server/themes/buttons-top/index.html b/tools/server/themes/buttons-top/index.html
index 3fb88fcc88..cb5af587aa 100644
--- a/tools/server/themes/buttons-top/index.html
+++ b/tools/server/themes/buttons-top/index.html
@@ -1032,7 +1032,7 @@
 
           
         
       `;
diff --git a/tools/server/themes/wild/index.html b/tools/server/themes/wild/index.html
index 73f36d4b29..601f7762cd 100644
--- a/tools/server/themes/wild/index.html
+++ b/tools/server/themes/wild/index.html
@@ -1036,7 +1036,7 @@
 
           
         
       `;
diff --git a/vendor/cpp-httplib/CMakeLists.txt b/vendor/cpp-httplib/CMakeLists.txt
index 3d938d9f36..a8a59e02f4 100644
--- a/vendor/cpp-httplib/CMakeLists.txt
+++ b/vendor/cpp-httplib/CMakeLists.txt
@@ -3,9 +3,14 @@ license_add_file("cpp-httplib" "LICENSE")
 
 find_package(Threads REQUIRED)
 
+llama_add_compile_flags()
+
 add_library(${TARGET} STATIC httplib.cpp httplib.h)
-if (NOT MSVC)
-    # disable warnings in 3rd party code
+
+# disable warnings in 3rd party code
+if (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
+    target_compile_options(${TARGET} PRIVATE /w)
+else()
     target_compile_options(${TARGET} PRIVATE -w)
 endif()
 
@@ -34,7 +39,7 @@ if (LLAMA_BUILD_BORINGSSL)
     set(FIPS OFF CACHE BOOL "Enable FIPS (BoringSSL)")
 
     set(BORINGSSL_GIT "https://boringssl.googlesource.com/boringssl" CACHE STRING "BoringSSL git repository")
-    set(BORINGSSL_VERSION "0.20251002.0" CACHE STRING "BoringSSL version")
+    set(BORINGSSL_VERSION "0.20260204.0" CACHE STRING "BoringSSL version")
 
     message(STATUS "Fetching BoringSSL version ${BORINGSSL_VERSION}")
 
@@ -146,6 +151,23 @@ elseif (LLAMA_OPENSSL)
     endif()
 endif()
 
+# disable warnings in 3rd party code
+if(LLAMA_BUILD_BORINGSSL OR LLAMA_BUILD_LIBRESSL)
+    if (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
+        target_compile_options(ssl PRIVATE /w)
+        target_compile_options(crypto PRIVATE /w)
+        if(LLAMA_BUILD_BORINGSSL)
+            target_compile_options(fipsmodule PRIVATE /w)
+        endif()
+    else()
+        target_compile_options(ssl PRIVATE -w)
+        target_compile_options(crypto PRIVATE -w)
+        if(LLAMA_BUILD_BORINGSSL)
+            target_compile_options(fipsmodule PRIVATE -w)
+        endif()
+    endif()
+endif()
+
 if (CPPHTTPLIB_OPENSSL_SUPPORT)
     target_compile_definitions(${TARGET} PUBLIC CPPHTTPLIB_OPENSSL_SUPPORT) # used in server.cpp
     if (APPLE AND CMAKE_SYSTEM_NAME STREQUAL "Darwin")
diff --git a/vendor/cpp-httplib/httplib.cpp b/vendor/cpp-httplib/httplib.cpp
index d707e65fd3..ba5f9c8ff9 100644
--- a/vendor/cpp-httplib/httplib.cpp
+++ b/vendor/cpp-httplib/httplib.cpp
@@ -117,6 +117,8 @@ time_t parse_http_date(const std::string &date_str) {
 
 #ifdef _WIN32
   return _mkgmtime(&tm_buf);
+#elif defined _AIX
+  return mktime(&tm_buf);
 #else
   return timegm(&tm_buf);
 #endif
@@ -1376,7 +1378,7 @@ int getaddrinfo_with_timeout(const char *node, const char *service,
 
   // Allocate on the heap, so the resolver thread can keep using the data.
   auto state = std::make_shared();
-  state->node = node;
+  if (node) { state->node = node; }
   state->service = service;
   state->hints = *hints;
 
@@ -2896,10 +2898,20 @@ bool parse_range_header(const std::string &s, Ranges &ranges) try {
         return;
       }
 
-      const auto first =
-          static_cast(lhs.empty() ? -1 : std::stoll(lhs));
-      const auto last =
-          static_cast(rhs.empty() ? -1 : std::stoll(rhs));
+      ssize_t first = -1;
+      if (!lhs.empty()) {
+        ssize_t v;
+        auto res = detail::from_chars(lhs.data(), lhs.data() + lhs.size(), v);
+        if (res.ec == std::errc{}) { first = v; }
+      }
+
+      ssize_t last = -1;
+      if (!rhs.empty()) {
+        ssize_t v;
+        auto res = detail::from_chars(rhs.data(), rhs.data() + rhs.size(), v);
+        if (res.ec == std::errc{}) { last = v; }
+      }
+
       if ((first == -1 && last == -1) ||
           (first != -1 && last != -1 && first > last)) {
         all_valid_ranges = false;
@@ -2974,25 +2986,17 @@ bool parse_accept_header(const std::string &s,
         return;
       }
 
-#ifdef CPPHTTPLIB_NO_EXCEPTIONS
       {
-        std::istringstream iss(quality_str);
-        iss >> accept_entry.quality;
-
-        // Check if conversion was successful and entire string was consumed
-        if (iss.fail() || !iss.eof()) {
+        double v = 0.0;
+        auto res = detail::from_chars(
+            quality_str.data(), quality_str.data() + quality_str.size(), v);
+        if (res.ec == std::errc{}) {
+          accept_entry.quality = v;
+        } else {
           has_invalid_entry = true;
           return;
         }
       }
-#else
-      try {
-        accept_entry.quality = std::stod(quality_str);
-      } catch (...) {
-        has_invalid_entry = true;
-        return;
-      }
-#endif
       // Check if quality is in valid range [0.0, 1.0]
       if (accept_entry.quality < 0.0 || accept_entry.quality > 1.0) {
         has_invalid_entry = true;
@@ -5570,13 +5574,26 @@ bool Server::read_content(Stream &strm, Request &req, Response &res) {
           strm, req, res,
           // Regular
           [&](const char *buf, size_t n) {
+            // Prevent arithmetic overflow when checking sizes.
+            // Avoid computing (req.body.size() + n) directly because
+            // adding two unsigned `size_t` values can wrap around and
+            // produce a small result instead of indicating overflow.
+            // Instead, check using subtraction: ensure `n` does not
+            // exceed the remaining capacity `max_size() - size()`.
+            if (req.body.size() >= req.body.max_size() ||
+                n > req.body.max_size() - req.body.size()) {
+              return false;
+            }
+
             // Limit decompressed body size to payload_max_length_ to protect
             // against "zip bomb" attacks where a small compressed payload
             // decompresses to a massive size.
-            if (req.body.size() + n > payload_max_length_ ||
-                req.body.size() + n > req.body.max_size()) {
+            if (payload_max_length_ > 0 &&
+                (req.body.size() >= payload_max_length_ ||
+                 n > payload_max_length_ - req.body.size())) {
               return false;
             }
+
             req.body.append(buf, n);
             return true;
           },
@@ -5666,22 +5683,29 @@ bool Server::read_content_core(
   // oversized request and fail early (causing connection close). For SSL
   // builds we cannot reliably peek the decrypted application bytes, so keep
   // the original behaviour.
-#if !defined(CPPHTTPLIB_OPENSSL_SUPPORT) && !defined(_WIN32)
+#if !defined(CPPHTTPLIB_OPENSSL_SUPPORT)
   if (!req.has_header("Content-Length") &&
       !detail::is_chunked_transfer_encoding(req.headers)) {
-    socket_t s = strm.socket();
-    if (s != INVALID_SOCKET) {
-      // Peek up to payload_max_length_ + 1 bytes. If more than
-      // payload_max_length_ bytes are pending, reject the request.
-      size_t to_peek =
-          (payload_max_length_ > 0)
-              ? (std::min)(payload_max_length_ + 1, static_cast(4096))
-              : 1;
-      std::vector peekbuf(to_peek);
-      ssize_t n = ::recv(s, peekbuf.data(), to_peek, MSG_PEEK);
-      if (n > 0 && static_cast(n) > payload_max_length_) {
-        // Indicate failure so connection will be closed.
-        return false;
+    // Only peek if payload_max_length is set to a finite value
+    if (payload_max_length_ > 0 &&
+        payload_max_length_ < (std::numeric_limits::max)()) {
+      socket_t s = strm.socket();
+      if (s != INVALID_SOCKET) {
+        // Peek to check if there is any pending data
+        char peekbuf[1];
+        ssize_t n = ::recv(s, peekbuf, 1, MSG_PEEK);
+        if (n > 0) {
+          // There is data, so read it with payload limit enforcement
+          auto result = detail::read_content_without_length(
+              strm, payload_max_length_, out);
+          if (result == detail::ReadContentResult::PayloadTooLarge) {
+            res.status = StatusCode::PayloadTooLarge_413;
+            return false;
+          } else if (result != detail::ReadContentResult::Success) {
+            return false;
+          }
+          return true;
+        }
       }
     }
     return true;
@@ -6656,7 +6680,8 @@ void ClientImpl::close_socket(Socket &socket) {
 }
 
 bool ClientImpl::read_response_line(Stream &strm, const Request &req,
-                                           Response &res) const {
+                                           Response &res,
+                                           bool skip_100_continue) const {
   std::array buf{};
 
   detail::stream_line_reader line_reader(strm, buf.data(), buf.size());
@@ -6677,8 +6702,8 @@ bool ClientImpl::read_response_line(Stream &strm, const Request &req,
   res.status = std::stoi(std::string(m[2]));
   res.reason = std::string(m[3]);
 
-  // Ignore '100 Continue'
-  while (res.status == StatusCode::Continue_100) {
+  // Ignore '100 Continue' (only when not using Expect: 100-continue explicitly)
+  while (skip_100_continue && res.status == StatusCode::Continue_100) {
     if (!line_reader.getline()) { return false; } // CRLF
     if (!line_reader.getline()) { return false; } // next response line
 
@@ -7463,7 +7488,8 @@ bool ClientImpl::write_content_with_provider(Stream &strm,
 }
 
 bool ClientImpl::write_request(Stream &strm, Request &req,
-                                      bool close_connection, Error &error) {
+                                      bool close_connection, Error &error,
+                                      bool skip_body) {
   // Prepare additional headers
   if (close_connection) {
     if (!req.has_header("Connection")) {
@@ -7582,7 +7608,59 @@ bool ClientImpl::write_request(Stream &strm, Request &req,
     }
   }
 
+  // After sending request line and headers, wait briefly for an early server
+  // response (e.g. 4xx) and avoid sending a potentially large request body
+  // unnecessarily. This workaround is only enabled on Windows because Unix
+  // platforms surface write errors (EPIPE) earlier; on Windows kernel send
+  // buffering can accept large writes even when the peer already responded.
+  // Check the stream first (which covers SSL via `is_readable()`), then
+  // fall back to select on the socket. Only perform the wait for very large
+  // request bodies to avoid interfering with normal small requests and
+  // reduce side-effects. Poll briefly (up to 50ms as default) for an early
+  // response. Skip this check when using Expect: 100-continue, as the protocol
+  // handles early responses properly.
+#if defined(_WIN32)
+  if (!skip_body &&
+      req.body.size() > CPPHTTPLIB_WAIT_EARLY_SERVER_RESPONSE_THRESHOLD &&
+      req.path.size() > CPPHTTPLIB_REQUEST_URI_MAX_LENGTH) {
+    auto start = std::chrono::high_resolution_clock::now();
+
+    for (;;) {
+      // Prefer socket-level readiness to avoid SSL_pending() false-positives
+      // from SSL internals. If the underlying socket is readable, assume an
+      // early response may be present.
+      auto sock = strm.socket();
+      if (sock != INVALID_SOCKET && detail::select_read(sock, 0, 0) > 0) {
+        return false;
+      }
+
+      // Fallback to stream-level check for non-socket streams or when the
+      // socket isn't reporting readable. Avoid using `is_readable()` for
+      // SSL, since `SSL_pending()` may report buffered records that do not
+      // indicate a complete application-level response yet.
+      if (!is_ssl() && strm.is_readable()) { return false; }
+
+      auto now = std::chrono::high_resolution_clock::now();
+      auto elapsed =
+          std::chrono::duration_cast(now - start)
+              .count();
+      if (elapsed >= CPPHTTPLIB_WAIT_EARLY_SERVER_RESPONSE_TIMEOUT_MSECOND) {
+        break;
+      }
+
+      std::this_thread::sleep_for(std::chrono::milliseconds(1));
+    }
+  }
+#endif
+
   // Body
+  if (skip_body) { return true; }
+
+  return write_request_body(strm, req, error);
+}
+
+bool ClientImpl::write_request_body(Stream &strm, Request &req,
+                                           Error &error) {
   if (req.body.empty()) {
     return write_content_with_provider(strm, req, error);
   }
@@ -7758,8 +7836,20 @@ void ClientImpl::output_error_log(const Error &err,
 bool ClientImpl::process_request(Stream &strm, Request &req,
                                         Response &res, bool close_connection,
                                         Error &error) {
-  // Send request
-  if (!write_request(strm, req, close_connection, error)) { return false; }
+  // Auto-add Expect: 100-continue for large bodies
+  if (CPPHTTPLIB_EXPECT_100_THRESHOLD > 0 && !req.has_header("Expect")) {
+    auto body_size = req.body.empty() ? req.content_length_ : req.body.size();
+    if (body_size >= CPPHTTPLIB_EXPECT_100_THRESHOLD) {
+      req.set_header("Expect", "100-continue");
+    }
+  }
+
+  // Check for Expect: 100-continue
+  auto expect_100_continue = req.get_header_value("Expect") == "100-continue";
+
+  // Send request (skip body if using Expect: 100-continue)
+  auto write_request_success =
+      write_request(strm, req, close_connection, error, expect_100_continue);
 
 #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
   if (is_ssl()) {
@@ -7774,14 +7864,48 @@ bool ClientImpl::process_request(Stream &strm, Request &req,
   }
 #endif
 
+  // Handle Expect: 100-continue with timeout
+  if (expect_100_continue && CPPHTTPLIB_EXPECT_100_TIMEOUT_MSECOND > 0) {
+    time_t sec = CPPHTTPLIB_EXPECT_100_TIMEOUT_MSECOND / 1000;
+    time_t usec = (CPPHTTPLIB_EXPECT_100_TIMEOUT_MSECOND % 1000) * 1000;
+    auto ret = detail::select_read(strm.socket(), sec, usec);
+    if (ret <= 0) {
+      // Timeout or error: send body anyway (server didn't respond in time)
+      if (!write_request_body(strm, req, error)) { return false; }
+      expect_100_continue = false; // Switch to normal response handling
+    }
+  }
+
   // Receive response and headers
-  if (!read_response_line(strm, req, res) ||
+  // When using Expect: 100-continue, don't auto-skip `100 Continue` response
+  if (!read_response_line(strm, req, res, !expect_100_continue) ||
       !detail::read_headers(strm, res.headers)) {
-    error = Error::Read;
+    if (write_request_success) { error = Error::Read; }
     output_error_log(error, &req);
     return false;
   }
 
+  if (!write_request_success) { return false; }
+
+  // Handle Expect: 100-continue response
+  if (expect_100_continue) {
+    if (res.status == StatusCode::Continue_100) {
+      // Server accepted, send the body
+      if (!write_request_body(strm, req, error)) { return false; }
+
+      // Read the actual response
+      res.headers.clear();
+      res.body.clear();
+      if (!read_response_line(strm, req, res) ||
+          !detail::read_headers(strm, res.headers)) {
+        error = Error::Read;
+        output_error_log(error, &req);
+        return false;
+      }
+    }
+    // If not 100 Continue, server returned an error; proceed with that response
+  }
+
   // Body
   if ((res.status != StatusCode::NoContent_204) && req.method != "HEAD" &&
       req.method != "CONNECT") {
@@ -9543,7 +9667,7 @@ bool SSLClient::load_certs() {
         last_openssl_error_ = ERR_get_error();
         ret = false;
       }
-    } else {
+    } else if (!ca_cert_store_) {
       auto loaded = false;
 #ifdef _WIN32
       loaded =
@@ -9790,7 +9914,11 @@ bool SSLClient::verify_host_with_common_name(X509 *server_cert) const {
 
 bool SSLClient::check_host_name(const char *pattern,
                                        size_t pattern_len) const {
-  if (host_.size() == pattern_len && host_ == pattern) { return true; }
+  // Exact match (case-insensitive)
+  if (host_.size() == pattern_len &&
+      detail::case_ignore::equal(host_, std::string(pattern, pattern_len))) {
+    return true;
+  }
 
   // Wildcard match
   // https://bugs.launchpad.net/ubuntu/+source/firefox-3.0/+bug/376484
@@ -9805,9 +9933,23 @@ bool SSLClient::check_host_name(const char *pattern,
   auto itr = pattern_components.begin();
   for (const auto &h : host_components_) {
     auto &p = *itr;
-    if (p != h && p != "*") {
-      auto partial_match = (p.size() > 0 && p[p.size() - 1] == '*' &&
-                            !p.compare(0, p.size() - 1, h));
+    if (!httplib::detail::case_ignore::equal(p, h) && p != "*") {
+      bool partial_match = false;
+      if (!p.empty() && p[p.size() - 1] == '*') {
+        const auto prefix_length = p.size() - 1;
+        if (prefix_length == 0) {
+          partial_match = true;
+        } else if (h.size() >= prefix_length) {
+          partial_match =
+              std::equal(p.begin(),
+                         p.begin() + static_cast(
+                                         prefix_length),
+                         h.begin(), [](const char ca, const char cb) {
+                           return httplib::detail::case_ignore::to_lower(ca) ==
+                                  httplib::detail::case_ignore::to_lower(cb);
+                         });
+        }
+      }
       if (!partial_match) { return false; }
     }
     ++itr;
diff --git a/vendor/cpp-httplib/httplib.h b/vendor/cpp-httplib/httplib.h
index 613020d12c..7c7790f41f 100644
--- a/vendor/cpp-httplib/httplib.h
+++ b/vendor/cpp-httplib/httplib.h
@@ -8,8 +8,8 @@
 #ifndef CPPHTTPLIB_HTTPLIB_H
 #define CPPHTTPLIB_HTTPLIB_H
 
-#define CPPHTTPLIB_VERSION "0.30.1"
-#define CPPHTTPLIB_VERSION_NUM "0x001E01"
+#define CPPHTTPLIB_VERSION "0.30.2"
+#define CPPHTTPLIB_VERSION_NUM "0x001E02"
 
 /*
  * Platform compatibility check
@@ -98,6 +98,22 @@
 #define CPPHTTPLIB_CLIENT_MAX_TIMEOUT_MSECOND 0
 #endif
 
+#ifndef CPPHTTPLIB_EXPECT_100_THRESHOLD
+#define CPPHTTPLIB_EXPECT_100_THRESHOLD 1024
+#endif
+
+#ifndef CPPHTTPLIB_EXPECT_100_TIMEOUT_MSECOND
+#define CPPHTTPLIB_EXPECT_100_TIMEOUT_MSECOND 1000
+#endif
+
+#ifndef CPPHTTPLIB_WAIT_EARLY_SERVER_RESPONSE_THRESHOLD
+#define CPPHTTPLIB_WAIT_EARLY_SERVER_RESPONSE_THRESHOLD (1024 * 1024)
+#endif
+
+#ifndef CPPHTTPLIB_WAIT_EARLY_SERVER_RESPONSE_TIMEOUT_MSECOND
+#define CPPHTTPLIB_WAIT_EARLY_SERVER_RESPONSE_TIMEOUT_MSECOND 50
+#endif
+
 #ifndef CPPHTTPLIB_IDLE_INTERVAL_SECOND
 #define CPPHTTPLIB_IDLE_INTERVAL_SECOND 0
 #endif
@@ -286,8 +302,10 @@ using socket_t = int;
 #include 
 #include 
 #include 
+#include 
 #include 
 #include 
+#include 
 #include 
 #include 
 #include 
@@ -305,6 +323,7 @@ using socket_t = int;
 #include 
 #include 
 #include 
+#include 
 #include 
 #include 
 #include 
@@ -494,6 +513,69 @@ private:
   bool execute_on_destruction;
 };
 
+// Simple from_chars implementation for integer and double types (C++17
+// substitute)
+template  struct from_chars_result {
+  const char *ptr;
+  std::errc ec;
+};
+
+template 
+inline from_chars_result from_chars(const char *first, const char *last,
+                                       T &value, int base = 10) {
+  value = 0;
+  const char *p = first;
+  bool negative = false;
+
+  if (p != last && *p == '-') {
+    negative = true;
+    ++p;
+  }
+  if (p == last) { return {first, std::errc::invalid_argument}; }
+
+  T result = 0;
+  for (; p != last; ++p) {
+    char c = *p;
+    int digit = -1;
+    if ('0' <= c && c <= '9') {
+      digit = c - '0';
+    } else if ('a' <= c && c <= 'z') {
+      digit = c - 'a' + 10;
+    } else if ('A' <= c && c <= 'Z') {
+      digit = c - 'A' + 10;
+    } else {
+      break;
+    }
+
+    if (digit < 0 || digit >= base) { break; }
+    if (result > ((std::numeric_limits::max)() - digit) / base) {
+      return {p, std::errc::result_out_of_range};
+    }
+    result = result * base + digit;
+  }
+
+  if (p == first || (negative && p == first + 1)) {
+    return {first, std::errc::invalid_argument};
+  }
+
+  value = negative ? -result : result;
+  return {p, std::errc{}};
+}
+
+// from_chars for double (simple wrapper for strtod)
+inline from_chars_result from_chars(const char *first, const char *last,
+                                            double &value) {
+  std::string s(first, last);
+  char *endptr = nullptr;
+  errno = 0;
+  value = std::strtod(s.c_str(), &endptr);
+  if (endptr == s.c_str()) { return {first, std::errc::invalid_argument}; }
+  if (errno == ERANGE) {
+    return {first + (endptr - s.c_str()), std::errc::result_out_of_range};
+  }
+  return {first + (endptr - s.c_str()), std::errc{}};
+}
+
 } // namespace detail
 
 enum SSLVerifierResponse {
@@ -1848,10 +1930,11 @@ private:
   Result send_(Request &&req);
 
   socket_t create_client_socket(Error &error) const;
-  bool read_response_line(Stream &strm, const Request &req,
-                          Response &res) const;
+  bool read_response_line(Stream &strm, const Request &req, Response &res,
+                          bool skip_100_continue = true) const;
   bool write_request(Stream &strm, Request &req, bool close_connection,
-                     Error &error);
+                     Error &error, bool skip_body = false);
+  bool write_request_body(Stream &strm, Request &req, Error &error);
   void prepare_default_headers(Request &r, bool for_stream,
                                const std::string &ct);
   bool redirect(Request &req, Response &res, Error &error);
@@ -3243,10 +3326,11 @@ private:
       msg.id = value;
     } else if (field == "retry") {
       // Parse retry interval in milliseconds
-      try {
-        retry_ms = std::stoi(value);
-      } catch (...) {
-        // Invalid retry value, ignore
+      {
+        int v = 0;
+        auto res =
+            detail::from_chars(value.data(), value.data() + value.size(), v);
+        if (res.ec == std::errc{}) { retry_ms = v; }
       }
     }
     // Unknown fields are ignored per SSE spec