Merge branch 'master' into dev-refactoring

This commit is contained in:
hongruichen 2025-06-09 14:42:37 +08:00
commit da5dc57872
219 changed files with 13996 additions and 7834 deletions

View File

@ -49,6 +49,6 @@ charset = unset
trim_trailing_whitespace = unset
insert_final_newline = unset
[tools/mtmd/miniaudio.h]
[vendor/miniaudio/miniaudio.h]
trim_trailing_whitespace = unset
insert_final_newline = unset

7
.github/labeler.yml vendored
View File

@ -86,3 +86,10 @@ nix:
embedding:
- changed-files:
- any-glob-to-any-file: examples/embedding/
Ascend NPU:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-cann.h
- ggml/src/ggml-cann/**
- docs/backend/CANN.md

View File

@ -26,12 +26,12 @@ jobs:
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libcurl4-openssl-dev:riscv64
g++-14-riscv64-linux-gnu
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
@ -72,12 +72,12 @@ jobs:
glslc \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libvulkan-dev:riscv64 \
libcurl4-openssl-dev:riscv64
libvulkan-dev:riscv64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
@ -118,12 +118,12 @@ jobs:
build-essential \
glslc \
crossbuild-essential-arm64 \
libvulkan-dev:arm64 \
libcurl4-openssl-dev:arm64
libvulkan-dev:arm64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
@ -163,12 +163,12 @@ jobs:
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-powerpc64le-linux-gnu \
g++-14-powerpc64le-linux-gnu \
libcurl4-openssl-dev:ppc64el
g++-14-powerpc64le-linux-gnu
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
@ -209,12 +209,12 @@ jobs:
glslc \
gcc-14-powerpc64le-linux-gnu \
g++-14-powerpc64le-linux-gnu \
libvulkan-dev:ppc64el \
libcurl4-openssl-dev:ppc64el
libvulkan-dev:ppc64el
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
@ -231,3 +231,116 @@ jobs:
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
debian-13-loongarch64-cpu-cross:
runs-on: ubuntu-24.04
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
steps:
- uses: actions/checkout@v4
- name: Setup LoongArch
run: |
rm -f /etc/apt/sources.list.d/*
cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list
deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main
EOF
( echo 'quiet "true";'; \
echo 'APT::Get::Assume-Yes "true";'; \
echo 'APT::Install-Recommends "false";'; \
echo 'Acquire::Check-Valid-Until "false";'; \
echo 'Acquire::Retries "5";'; \
) > /etc/apt/apt.conf.d/99snapshot-repos
apt-get update
apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip
dpkg --add-architecture loong64
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list
deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main
EOF
apt-get update || true ;# Prevent failure due to missing URLs.
apt-get install -y --no-install-recommends \
build-essential \
gcc-14-loongarch64-linux-gnu \
g++-14-loongarch64-linux-gnu
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=loongarch64 \
-DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
debian-13-loongarch64-vulkan-cross:
runs-on: ubuntu-24.04
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
steps:
- uses: actions/checkout@v4
- name: Setup LoongArch
run: |
rm -f /etc/apt/sources.list.d/*
cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list
deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main
EOF
( echo 'quiet "true";'; \
echo 'APT::Get::Assume-Yes "true";'; \
echo 'APT::Install-Recommends "false";'; \
echo 'Acquire::Check-Valid-Until "false";'; \
echo 'Acquire::Retries "5";'; \
) > /etc/apt/apt.conf.d/99snapshot-repos
apt-get update
apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip
dpkg --add-architecture loong64
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list
deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main
EOF
apt-get update || true ;# Prevent failure due to missing URLs.
apt-get install -y --no-install-recommends \
build-essential \
glslc \
gcc-14-loongarch64-linux-gnu \
g++-14-loongarch64-linux-gnu \
libvulkan-dev:loong64
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=loongarch64 \
-DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)

View File

@ -839,12 +839,12 @@ jobs:
-DGGML_CUDA=ON
cmake --build build
windows-2019-cmake-cuda:
runs-on: windows-2019
windows-2022-cmake-cuda:
runs-on: windows-2022
strategy:
matrix:
cuda: ['12.4', '11.7']
cuda: ['12.4']
steps:
- name: Clone
@ -878,7 +878,7 @@ jobs:
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
cmake -S . -B build -G "Ninja Multi-Config" ^
-DLLAMA_BUILD_SERVER=ON ^
-DGGML_NATIVE=OFF ^

View File

@ -131,8 +131,9 @@ jobs:
include:
- build: 'x64'
os: ubuntu-22.04
- build: 'arm64'
os: ubuntu-22.04-arm
# GGML_BACKEND_DL and GGML_CPU_ALL_VARIANTS are not currently supported on arm
# - build: 'arm64'
# os: ubuntu-22.04-arm
runs-on: ${{ matrix.os }}
@ -159,6 +160,9 @@ jobs:
id: cmake_build
run: |
cmake -B build \
-DGGML_BACKEND_DL=ON \
-DGGML_NATIVE=OFF \
-DGGML_CPU_ALL_VARIANTS=ON \
-DLLAMA_FATAL_WARNINGS=ON \
${{ env.CMAKE_ARGS }}
cmake --build build --config Release -j $(nproc)
@ -207,6 +211,9 @@ jobs:
id: cmake_build
run: |
cmake -B build \
-DGGML_BACKEND_DL=ON \
-DGGML_NATIVE=OFF \
-DGGML_CPU_ALL_VARIANTS=ON \
-DGGML_VULKAN=ON \
${{ env.CMAKE_ARGS }}
cmake --build build --config Release -j $(nproc)
@ -373,11 +380,11 @@ jobs:
name: llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip
windows-cuda:
runs-on: windows-2019
runs-on: windows-2022
strategy:
matrix:
cuda: ['12.4', '11.7']
cuda: ['12.4']
steps:
- name: Clone
@ -405,7 +412,7 @@ jobs:
id: cmake_build
shell: cmd
run: |
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
cmake -S . -B build -G "Ninja Multi-Config" ^
-DGGML_BACKEND_DL=ON ^
-DGGML_NATIVE=OFF ^

View File

@ -180,7 +180,7 @@ jobs:
server-windows:
runs-on: windows-2019
runs-on: windows-2022
steps:
- name: Clone

View File

@ -160,6 +160,11 @@ if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
if (MINGW)
# Target Windows 8 for PrefetchVirtualMemory
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
endif()
#
# build the library
#

View File

@ -3,6 +3,7 @@
![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Release](https://img.shields.io/github/v/release/ggml-org/llama.cpp)](https://github.com/ggml-org/llama.cpp/releases)
[![Server](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml/badge.svg)](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
@ -28,6 +29,30 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
----
## Quick start
Getting started with llama.cpp is straightforward. Here are several ways to install it on your machine:
- Install `llama.cpp` using [brew, nix or winget](docs/install.md)
- Run with Docker - see our [Docker documentation](docs/docker.md)
- Download pre-built binaries from the [releases page](https://github.com/ggml-org/llama.cpp/releases)
- Build from source by cloning this repository - check out [our build guide](docs/build.md)
Once installed, you'll need a model to work with. Head to the [Obtaining and quantizing models](#obtaining-and-quantizing-models) section to learn more.
Example command:
```sh
# Use a local model file
llama-cli -m my_model.gguf
# Or download and run a model directly from Hugging Face
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
# Launch OpenAI-compatible API server
llama-server -hf ggml-org/gemma-3-1b-it-GGUF
```
## Description
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
@ -130,6 +155,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
<details>
<summary>Bindings</summary>
- Python: [ddh0/easy-llama](https://github.com/ddh0/easy-llama)
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
@ -229,6 +255,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
</details>
## Supported backends
| Backend | Target devices |
@ -245,16 +272,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
## Building the project
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. Possible methods for obtaining the binaries:
- Clone this repository and build locally, see [how to build](docs/build.md)
- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md)
- Use a Docker image, see [documentation for Docker](docs/docker.md)
- Download pre-built binaries from [releases](https://github.com/ggml-org/llama.cpp/releases)
## Obtaining and quantizing models
The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](https://huggingface.co/models?library=gguf&sort=trending) compatible with `llama.cpp`:
@ -262,7 +279,11 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`.
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`. For example:
```sh
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
```
By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable `MODEL_ENDPOINT`. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. `MODEL_ENDPOINT=https://www.modelscope.cn/`.

View File

@ -46,7 +46,20 @@ if [ ! -z ${GG_BUILD_METAL} ]; then
fi
if [ ! -z ${GG_BUILD_CUDA} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON"
if command -v nvidia-smi >/dev/null 2>&1; then
CUDA_ARCH=$(nvidia-smi --query-gpu=compute_cap --format=csv,noheader,nounits 2>/dev/null | head -1 | tr -d '.')
if [[ -n "$CUDA_ARCH" && "$CUDA_ARCH" =~ ^[0-9]+$ ]]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=${CUDA_ARCH}"
else
echo "Warning: Using fallback CUDA architectures"
CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=61;70;75;80;86;89"
fi
else
echo "Error: nvidia-smi not found, cannot build with CUDA"
exit 1
fi
fi
if [ ! -z ${GG_BUILD_SYCL} ]; then

View File

@ -58,23 +58,20 @@ add_library(${TARGET} STATIC
arg.cpp
arg.h
base64.hpp
chat.cpp
chat.h
chat-parser.cpp
chat-parser.h
chat.cpp
chat.h
common.cpp
common.h
console.cpp
console.h
json-schema-to-grammar.cpp
json.hpp
json-partial.h
json-partial.cpp
json-partial.h
json-schema-to-grammar.cpp
llguidance.cpp
log.cpp
log.h
minja/chat-template.hpp
minja/minja.hpp
ngram-cache.cpp
ngram-cache.h
regex-partial.cpp
@ -147,7 +144,7 @@ if (LLAMA_LLGUIDANCE)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance ${LLGUIDANCE_PLATFORM_LIBS})
endif ()
target_include_directories(${TARGET} PUBLIC .)
target_include_directories(${TARGET} PUBLIC . ../vendor)
target_compile_features (${TARGET} PUBLIC cxx_std_17)
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)

View File

@ -1,10 +1,11 @@
#include "gguf.h" // for reading GGUF splits
#include "arg.h"
#include "chat.h"
#include "common.h"
#include "gguf.h" // for reading GGUF splits
#include "json-schema-to-grammar.h"
#include "log.h"
#include "sampling.h"
#include "chat.h"
// fix problem with std::min and std::max
#if defined(_WIN32)
@ -15,6 +16,9 @@
#include <windows.h>
#endif
#define JSON_ASSERT GGML_ASSERT
#include <nlohmann/json.hpp>
#include <algorithm>
#include <climits>
#include <cstdarg>
@ -34,8 +38,6 @@
#include <future>
#endif
#include "json-schema-to-grammar.h"
using json = nlohmann::ordered_json;
std::initializer_list<enum llama_example> mmproj_examples = {
@ -1346,9 +1348,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
));
add_opt(common_arg(
{"--prio"}, "N",
string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority),
string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority),
[](common_params & params, int prio) {
if (prio < 0 || prio > 3) {
if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) {
throw std::invalid_argument("invalid value");
}
params.cpuparams.priority = (enum ggml_sched_priority) prio;
@ -2867,6 +2869,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"(default: deepseek)",
[](common_params & params, const std::string & value) {
/**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
else if (value == "deepseek-legacy") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY; }
else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
else { throw std::invalid_argument("invalid value"); }
}

View File

@ -154,9 +154,10 @@ bool common_chat_msg_parser::try_parse_reasoning(const std::string & start_think
if (!rest.empty()) {
handle_reasoning(rest, /* closed */ !is_partial());
}
if (!syntax_.thinking_forced_open) {
throw common_chat_msg_partial_exception(end_think);
}
// Allow unclosed thinking tags, for now (https://github.com/ggml-org/llama.cpp/issues/13812, https://github.com/ggml-org/llama.cpp/issues/13877)
// if (!syntax_.thinking_forced_open) {
// throw common_chat_msg_partial_exception(end_think);
// }
return true;
}
}

View File

@ -2,9 +2,10 @@
#include "chat.h"
#include "json-partial.h"
#include "json.hpp"
#include "regex-partial.h"
#include <nlohmann/json.hpp>
#include <optional>
#include <string>
#include <vector>

View File

@ -1,13 +1,14 @@
#include "chat.h"
#include "chat-parser.h"
#include "common.h"
#include "json-partial.h"
#include "json-schema-to-grammar.h"
#include "log.h"
#include "json-partial.h"
#include "minja/chat-template.hpp"
#include "minja/minja.hpp"
#include "regex-partial.h"
#include <minja/chat-template.hpp>
#include <minja/minja.hpp>
#include <cstdio>
#include <exception>
#include <iostream>
@ -16,7 +17,6 @@
#include <string>
#include <vector>
static std::string format_time(const std::chrono::system_clock::time_point & now, const std::string & format) {
auto time = std::chrono::system_clock::to_time_t(now);
auto local_time = *std::localtime(&time);
@ -82,10 +82,10 @@ json common_chat_msg::to_json_oaicompat() const
std::vector<common_chat_msg_diff> common_chat_msg_diff::compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg) {
std::vector<common_chat_msg_diff> diffs;
// if (previous_msg.reasoning_content != current.reasoning_content) {
// auto & diff = diffs.emplace_back();
// diff.reasoning_content_delta = string_diff(previous_msg.reasoning_content, current.reasoning_content);
// }
if (previous_msg.reasoning_content != new_msg.reasoning_content) {
auto & diff = diffs.emplace_back();
diff.reasoning_content_delta = string_diff(previous_msg.reasoning_content, new_msg.reasoning_content);
}
if (previous_msg.content != new_msg.content) {
auto & diff = diffs.emplace_back();
diff.content_delta = string_diff(previous_msg.content, new_msg.content);
@ -385,9 +385,9 @@ json common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & t
template <> json common_chat_msg_diff_to_json_oaicompat(const common_chat_msg_diff & diff) {
json delta = json::object();
// if (!diff.reasoning_content_delta.empty()) {
// delta["reasoning_content"] = msg.reasoning_content;
// }
if (!diff.reasoning_content_delta.empty()) {
delta["reasoning_content"] = diff.reasoning_content_delta;
}
if (!diff.content_delta.empty()) {
delta["content"] = diff.content_delta;
}
@ -598,6 +598,7 @@ const char * common_reasoning_format_name(common_reasoning_format format) {
switch (format) {
case COMMON_REASONING_FORMAT_NONE: return "none";
case COMMON_REASONING_FORMAT_DEEPSEEK: return "deepseek";
case COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY: return "deepseek-legacy";
default:
throw std::runtime_error("Unknown reasoning format");
}

View File

@ -70,7 +70,7 @@ struct common_chat_msg {
};
struct common_chat_msg_diff {
// std::string reasoning_content_delta;
std::string reasoning_content_delta;
std::string content_delta;
size_t tool_call_index = std::string::npos;
common_chat_tool_call tool_call_delta;

View File

@ -203,6 +203,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
DWORD p = NORMAL_PRIORITY_CLASS;
switch (prio) {
case GGML_SCHED_PRIO_LOW: p = BELOW_NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break;
@ -228,6 +229,7 @@ bool set_process_priority(enum ggml_sched_priority prio) {
int p = 0;
switch (prio) {
case GGML_SCHED_PRIO_LOW: p = 5; break;
case GGML_SCHED_PRIO_NORMAL: p = 0; break;
case GGML_SCHED_PRIO_MEDIUM: p = -5; break;
case GGML_SCHED_PRIO_HIGH: p = -10; break;
@ -903,13 +905,16 @@ struct common_init_result common_init_from_params(common_params & params) {
ok = false;
}
if (llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, reranking will not work\n", __func__);
ok = false;
}
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
if (llama_vocab_sep(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
if (!has_eos && !has_sep) {
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
ok = false;
} else if (!has_eos) {
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
} else if (!has_sep) {
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
ok = false;
}
@ -929,7 +934,7 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false;
}
@ -1036,7 +1041,7 @@ struct common_init_result common_init_from_params(common_params & params) {
if (llama_model_has_decoder(model)) {
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
}
llama_kv_self_clear(lctx);
llama_memory_clear(llama_get_memory(lctx), true);
llama_synchronize(lctx);
llama_perf_context_reset(lctx);
llama_set_warmup(lctx, false);

View File

@ -215,7 +215,8 @@ struct common_params_vocoder {
enum common_reasoning_format {
COMMON_REASONING_FORMAT_NONE,
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
};
struct common_params {

View File

@ -1,9 +1,10 @@
#include <json-partial.h>
#include "ggml.h"
#include "log.h"
#include <string>
#include "json-partial.h"
#include <json.hpp>
#include "log.h"
#include <nlohmann/json.hpp>
#include <string>
using json = nlohmann::ordered_json;

View File

@ -1,5 +1,6 @@
#pragma once
#include <json.hpp>
#include <nlohmann/json.hpp>
// Healing marker (empty if the JSON was fully parsed / wasn't healed).
struct common_healing_marker {

View File

@ -1,8 +1,9 @@
#include "json-schema-to-grammar.h"
#include "common.h"
#include <nlohmann/json.hpp>
#include <algorithm>
#include <fstream>
#include <map>
#include <regex>
#include <sstream>

View File

@ -1,9 +1,9 @@
#pragma once
#include "ggml.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include <nlohmann/json_fwd.hpp>
#include <functional>
#include <string>
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
bool force_gbnf = false);

View File

@ -144,6 +144,8 @@ llama_tokens common_speculative_gen_draft(
auto & smpl = spec->smpl;
auto & prompt = spec->prompt;
auto * mem = llama_get_memory(ctx);
int reuse_i = 0;
int reuse_n = 0;
@ -173,7 +175,7 @@ llama_tokens common_speculative_gen_draft(
result.reserve(params.n_draft);
if (reuse_n == 0) {
llama_kv_self_clear(ctx);
llama_memory_clear(mem, false);
prompt.clear();
} else {
@ -192,14 +194,14 @@ llama_tokens common_speculative_gen_draft(
}
if (reuse_i > 0) {
llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
llama_memory_seq_rm (mem, 0, 0, reuse_i);
llama_memory_seq_add(mem, 0, reuse_i, -1, -reuse_i);
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
}
if (reuse_n < (int) prompt.size()) {
llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
llama_memory_seq_rm (mem, 0, reuse_n, -1);
prompt.erase(prompt.begin() + reuse_n, prompt.end());
}

View File

@ -423,16 +423,19 @@ class ModelBase:
try:
# for security reason, we don't allow loading remote code by default
# if a model need remote code, we will fallback to config.json
return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
except Exception as e:
logger.warning(f"Failed to load model config from {dir_model}: {e}")
logger.warning("Trying to load config.json instead")
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
config = json.load(f)
if "llm_config" in config:
# rename for InternVL
config["text_config"] = config["llm_config"]
return config
if "llm_config" in config:
# rename for InternVL
config["text_config"] = config["llm_config"]
if "thinker_config" in config:
# rename for Qwen2.5-Omni
config["text_config"] = config["thinker_config"]["text_config"]
return config
@classmethod
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
@ -520,15 +523,15 @@ class TextModel(ModelBase):
self.gguf_writer.add_context_length(n_ctx)
logger.info(f"gguf: context length = {n_ctx}")
if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
self.gguf_writer.add_embedding_length(n_embd)
logger.info(f"gguf: embedding length = {n_embd}")
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
self.gguf_writer.add_feed_forward_length(n_ff)
logger.info(f"gguf: feed forward length = {n_ff}")
if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
self.gguf_writer.add_head_count(n_head)
logger.info(f"gguf: head count = {n_head}")
@ -671,12 +674,12 @@ class TextModel(ModelBase):
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
# ref: https://huggingface.co/tiiuae/falcon-7b
res = "falcon"
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
res = "falcon3"
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
res = "bert-bge"
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
res = "falcon3"
if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
# ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
res = "bert-bge-large"
@ -728,9 +731,6 @@ class TextModel(ModelBase):
if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
res = "jina-v2-code"
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
res = "chatglm-bpe"
if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
# ref: https://huggingface.co/LumiOpen/Viking-7B
res = "viking"
@ -761,9 +761,6 @@ class TextModel(ModelBase):
if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
# ref: https://huggingface.co/facebook/chameleon-7b
res = "chameleon"
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
res = "minerva-7b"
if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
# ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
res = "roberta-bpe"
@ -794,15 +791,24 @@ class TextModel(ModelBase):
if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
# ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
res = "llama4"
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
res = "glm4"
if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
# ref: https://huggingface.co/mistral-community/pixtral-12b
res = "pixtral"
if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
# ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
res = "seed-coder"
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
res = "chatglm-bpe"
if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
res = "chatglm-bpe"
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
res = "glm4"
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
res = "minerva-7b"
if res is None:
logger.warning("\n")
@ -1041,6 +1047,10 @@ class TextModel(ModelBase):
special_vocab.chat_template = "rwkv-world"
# hack: Add '\n\n' as the EOT token to make it chat normally
special_vocab._set_special_token("eot", 261)
# hack: Override these as they have already been set (incorrectly)
special_vocab.special_token_ids["bos"] = 0
special_vocab.special_token_ids["eos"] = 0
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
@ -1121,18 +1131,21 @@ class MmprojModel(ModelBase):
preprocessor_config: dict[str, Any]
global_config: dict[str, Any]
n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
has_vision_encoder: bool = True # by default
has_audio_encoder: bool = False
# for models having multiple encoders, we need to separate their hparams
hparams_vision: dict[str, Any] | None = None
hparams_audio: dict[str, Any] | None = None
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
if self.has_vision_encoder and self.has_audio_encoder:
raise NotImplementedError("both vision + audio not supported yet")
# get n_embd of the text model
if "text_config" not in self.hparams:
self.hparams["text_config"] = {}
@ -1143,22 +1156,32 @@ class MmprojModel(ModelBase):
assert self.n_embd_text > 0, "n_embd not found in hparams"
# move vision config to the top level, while preserving the original hparams in global_config
self.global_config = self.hparams
import copy
self.global_config = copy.deepcopy(self.hparams)
self.hparams_vision = self.get_vision_config()
self.hparams_audio = self.get_audio_config()
if "vision_config" in self.hparams:
self.hparams = self.hparams["vision_config"]
elif "audio_config" in self.hparams:
self.hparams = self.hparams["audio_config"]
else:
if self.hparams_vision is None and self.hparams_audio is None:
raise ValueError("vision_config / audio_config not found in hparams")
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"])
# for compat with vision-only models
self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
# TODO @ngxson : this is a hack to support both vision and audio encoders
have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
# load preprocessor config
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
self.preprocessor_config = json.load(f)
def get_vision_config(self) -> dict[str, Any] | None:
return self.global_config.get("vision_config")
def get_audio_config(self) -> dict[str, Any] | None:
return self.global_config.get("audio_config")
def set_type(self):
self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
@ -1170,33 +1193,49 @@ class MmprojModel(ModelBase):
self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
# vision config
self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
self.gguf_writer.add_vision_block_count(self.block_count)
self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
# preprocessor config
self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
elif self.has_audio_encoder:
if self.has_audio_encoder:
self.gguf_writer.add_clip_has_audio_encoder(True)
self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
# audio config
self.gguf_writer.add_audio_embedding_length(self.find_hparam(["hidden_size"]))
self.gguf_writer.add_audio_feed_forward_length(self.find_hparam(["intermediate_size"]))
self.gguf_writer.add_audio_block_count(self.block_count)
self.gguf_writer.add_audio_head_count(self.find_hparam(["num_attention_heads"]))
self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
else:
if not self.has_vision_encoder and not self.has_audio_encoder:
raise ValueError("MmprojModel must have either vision or audio encoder")
def write_vocab(self):
raise ValueError("MmprojModel does not support vocab writing")
def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
assert self.hparams_vision is not None
return self._find_param(self.hparams_vision, keys, optional)
def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
assert self.hparams_audio is not None
return self._find_param(self.hparams_audio, keys, optional)
def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
key = next((k for k in keys if k in obj), None)
if key is not None:
return obj[key]
if optional:
return None
raise KeyError(f"could not find any of: {keys}")
@ModelBase.register("GPTNeoXForCausalLM")
class GPTNeoXModel(TextModel):
@ -1809,7 +1848,8 @@ class StableLMModel(TextModel):
"MistralForCausalLM",
"MixtralForCausalLM",
"VLlama3ForCausalLM",
"LlavaForConditionalGeneration")
"LlavaForConditionalGeneration",
"LlamaModel")
class LlamaModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLAMA
undo_permute = True
@ -1889,6 +1929,8 @@ class LlamaModel(TextModel):
if is_vision_tensor:
return [] # skip vision tensors
elif self.hf_arch == "LlamaModel":
name = "model." + name
elif name.startswith("model.text_model"):
name = name.replace("text_model.", "") # for SmolVLM
elif name.startswith("language_model."):
@ -2137,6 +2179,9 @@ class Llama4VisionModel(MmprojModel):
# process vision tensors
if "positional_embedding_vlm" in name and ".weight" not in name:
name += ".weight"
if "multi_modal_projector.linear_1" in name:
# despite the name with number postfix, this is a single fully connected layer
return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC], data_torch)]
return [(self.map_tensor_name(name), data_torch)]
return []
@ -2674,7 +2719,12 @@ class Qwen2Model(TextModel):
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
@ModelBase.register(
"Qwen2VLModel",
"Qwen2VLForConditionalGeneration",
"Qwen2_5_VLForConditionalGeneration",
"Qwen2_5OmniModel",
)
class Qwen2VLModel(TextModel):
model_arch = gguf.MODEL_ARCH.QWEN2VL
@ -2692,8 +2742,11 @@ class Qwen2VLModel(TextModel):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if name.startswith("visual."):
# skip visual tensors
if name.startswith("thinker."):
name = name.replace("thinker.", "")
if name.startswith("visual") or name.startswith("audio") or \
name.startswith("talker") or name.startswith("token2wav"):
# skip multimodal tensors
return []
return [(self.map_tensor_name(name), data_torch)]
@ -2702,21 +2755,27 @@ class Qwen2VLModel(TextModel):
class Qwen2VLVisionModel(MmprojModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.hparams["image_size"] = self.hparams.get("image_size", 560)
assert self.hparams_vision is not None
self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
# rename config.json values
self.hparams["num_attention_heads"] = self.hparams.get("num_heads")
self.hparams["num_hidden_layers"] = self.hparams.get("depth")
if "embed_dim" in self.hparams: # qwen2vl
self.hparams["intermediate_size"] = self.hparams.get("hidden_size")
self.hparams["hidden_size"] = self.hparams.get("embed_dim")
self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
if "embed_dim" in self.hparams_vision: # qwen2vl
self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
if self.global_config['model_type'] == 'qwen2_vl':
assert self.hparams_vision is not None
hparams = self.hparams_vision
model_type = self.global_config['model_type']
if model_type == 'qwen2_vl':
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
elif self.global_config['model_type'] == 'qwen2_5_vl':
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
if model_type == 'qwen2_5_omni':
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
else:
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
self.gguf_writer.add_vision_use_silu(True)
# find n_wa_pattern (window attention pattern)
fullatt_block_indexes = hparams.get("fullatt_block_indexes")
@ -2774,6 +2833,66 @@ class Qwen2VLVisionModel(MmprojModel):
return [] # skip other tensors
@ModelBase.register("Qwen2_5OmniModel")
class Qwen25OmniModel(Qwen2VLVisionModel):
has_vision_encoder = True
has_audio_encoder = True
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
assert self.hparams_audio is not None
self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
def set_gguf_parameters(self):
super().set_gguf_parameters()
assert self.hparams_audio is not None
self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
def get_vision_config(self) -> dict[str, Any] | None:
return self.global_config["thinker_config"].get("vision_config")
def get_audio_config(self) -> dict[str, Any] | None:
return self.global_config["thinker_config"].get("audio_config")
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# SinusoidsPositionEmbedding
assert self.hparams_audio is not None
max_timescale = 10000
length = 1500
channels = self.hparams_audio["hidden_size"]
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
yield ("audio_tower.embed_positions.weight", pos_embd)
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
if ".conv" in name and ".weight" in name:
return gguf.GGMLQuantizationType.F16
return False
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.startswith("thinker."):
name = name.replace("thinker.", "")
if name.startswith("audio_tower"):
# process audio tensors
if "conv1.bias" in name or "conv2.bias" in name:
# transpose conv1 and conv2 bias
data_torch = data_torch.unsqueeze(-1)
if "audio_bos_eos_token" in name:
# this tensor is left unused in transformers code
# https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
return []
return [(self.map_tensor_name(name), data_torch)]
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("InternVisionModel")
class InternVisionModel(MmprojModel):
def set_gguf_parameters(self):
@ -3570,7 +3689,7 @@ class InternLM3Model(TextModel):
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
@ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
class BertModel(TextModel):
model_arch = gguf.MODEL_ARCH.BERT
@ -3578,11 +3697,20 @@ class BertModel(TextModel):
super().__init__(*args, **kwargs)
self.vocab_size = None
if cls_out_labels := self.hparams.get("id2label"):
if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
# Remove dummy labels added by AutoConfig
cls_out_labels = None
self.cls_out_labels = cls_out_labels
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_causal_attention(False)
self._try_set_pooling_type()
if self.cls_out_labels:
self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
def set_vocab(self):
tokens, toktypes, tokpre = self.get_vocab_base()
self.vocab_size = len(tokens)
@ -3633,6 +3761,14 @@ class BertModel(TextModel):
if name.startswith("cls.seq_relationship"):
return []
if self.cls_out_labels:
# For BertForSequenceClassification (direct projection layer)
if name == "classifier.weight":
name = "classifier.out_proj.weight"
if name == "classifier.bias":
name = "classifier.out_proj.bias"
return [(self.map_tensor_name(name), data_torch)]
def _xlmroberta_tokenizer_init(self) -> None:
@ -3652,62 +3788,111 @@ class BertModel(TextModel):
from sentencepiece import sentencepiece_model_pb2 as model
tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
tokenizer_json = {}
tokenizer_config_json = {}
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
tokenizer_path = self.dir_model / 'tokenizer.json'
tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
from base64 import b64decode
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
with open(tokenizer_path, "r", encoding="utf-8") as fp:
tokenizer_json = json.load(fp)
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
if tokenizer_config_path.is_file():
with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
tokenizer_config_json = json.load(fp)
add_prefix = tokenizer.add_prefix_space
remove_whitespaces = tokenizer.clean_up_tokenization_spaces
precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
else:
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
if isinstance(tokenizer, SentencePieceProcessor):
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
else:
added_vocab = tokenizer.get_added_vocab()
unk_token = tokenizer_config_json.get("unk_token")
unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
for i in range(1, pad_count + 1):
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.UNUSED)
for token_id in range(tokenizer.vocab_size):
piece = tokenizer._convert_id_to_token(token_id)
if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
text = piece.encode("utf-8")
score = tokenizer_json["model"]["vocab"][token_id][1]
# realign tokens (see HF tokenizer code)
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
toktypes = [
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.UNKNOWN,
] + toktypes[3:-1]
toktype = SentencePieceTokenTypes.NORMAL
if token_id == unk_token_id:
toktype = SentencePieceTokenTypes.UNKNOWN
elif token_id in tokenizer.all_special_ids:
toktype = SentencePieceTokenTypes.CONTROL
elif token_id in added_vocab.values():
toktype = SentencePieceTokenTypes.USER_DEFINED
# No reliable way to detect this, but jina doesn't have any
# elif tokenizer.IsByte(token_id):
# toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
if isinstance(tokenizer, SentencePieceProcessor):
# realign tokens (see HF tokenizer code)
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
toktypes = [
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.UNKNOWN,
] + toktypes[3:-1]
if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
# Add mask token missing from sentencepiece.bpe.model
tokens[250001] = b'<mask>'
scores[250001] = 0.0
toktypes[250001] = SentencePieceTokenTypes.CONTROL
self.gguf_writer.add_tokenizer_model("t5")
self.gguf_writer.add_tokenizer_pre("default")
@ -3727,7 +3912,27 @@ class BertModel(TextModel):
self.gguf_writer.add_add_eos_token(True)
@ModelBase.register("RobertaModel")
@ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
class DistilBertModel(BertModel):
model_arch = gguf.MODEL_ARCH.BERT
def set_gguf_parameters(self):
self.gguf_writer.add_layer_norm_eps(1e-12)
logger.info("gguf: layer norm epsilon = 1e-12")
super().set_gguf_parameters()
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.startswith("distilbert."):
name = name[11:]
# These layers act as MLM head, so we don't need them
if name.startswith("vocab_"):
return []
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
class RobertaModel(BertModel):
model_arch = gguf.MODEL_ARCH.BERT

View File

@ -1,28 +1,6 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# This script downloads the tokenizer models of the specified models from Huggingface and
# generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
#
# This is necessary in order to analyze the type of pre-tokenizer used by the model and
# provide the necessary information to llama.cpp via the GGUF header in order to implement
# the same pre-tokenizer.
#
# ref: https://github.com/ggml-org/llama.cpp/pull/6920
#
# Instructions:
#
# - Add a new model to the "models" list
# - Run the script with your huggingface token:
#
# python3 convert_hf_to_gguf_update.py <huggingface_token>
#
# - The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
# - Update llama.cpp with the new pre-tokenizer if necessary
#
# TODO: generate tokenizer tests for llama.cpp
#
import logging
import os
import pathlib
@ -32,6 +10,7 @@ import requests
import sys
import json
import shutil
import argparse
from hashlib import sha256
from enum import IntEnum, auto
@ -41,6 +20,11 @@ logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("convert_hf_to_gguf_update")
sess = requests.Session()
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
convert_py = convert_py_pth.read_text(encoding="utf-8")
hf_token_pth = pathlib.Path.home() / ".cache" / "huggingface" / "token"
hf_token = hf_token_pth.read_text(encoding="utf-8").strip() if hf_token_pth.exists() else None
class TOKENIZER_TYPE(IntEnum):
SPM = auto()
@ -49,20 +33,49 @@ class TOKENIZER_TYPE(IntEnum):
UGM = auto()
DOC_STRING = """
This script downloads the tokenizer models of the specified models from Huggingface and
generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
/!\\ It is intended to be used by contributors and is not meant to be run by end users
This is necessary in order to analyze the type of pre-tokenizer used by the model and
provide the necessary information to llama.cpp via the GGUF header in order to implement
the same pre-tokenizer.
ref: https://github.com/ggml-org/llama.cpp/pull/6920
Instructions:
- Add a new model to the "models" list
- Run the script with your huggingface token
By default, token will be read from ~/.cache/huggingface/token
- The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
- Update llama.cpp with the new pre-tokenizer if necessary
"""
# TODO: generate tokenizer tests for llama.cpp
parser = argparse.ArgumentParser(description=DOC_STRING, formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
"--full", action="store_true",
help="download full list of models - make sure you have access to all of them",
)
parser.add_argument(
"hf_token",
help="optional HF token",
nargs="?",
)
args = parser.parse_args()
hf_token = args.hf_token if args.hf_token is not None else hf_token
if hf_token is None:
logger.error("HF token is required. Please provide it as an argument or set it in ~/.cache/huggingface/token")
sys.exit(1)
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
# will be updated with time - contributions welcome
CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
if len(sys.argv) == 2:
token = sys.argv[1]
if not token.startswith("hf_"):
logger.info("Huggingface token seems invalid")
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
sys.exit(1)
else:
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
sys.exit(1)
# TODO: add models here, base models preferred
models = [
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
@ -103,7 +116,6 @@ models = [
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
@ -114,11 +126,19 @@ models = [
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
{"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", },
{"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", },
]
# some models are known to be broken upstream, so we will skip them as exceptions
pre_computed_hashes = [
# chatglm-bpe has 2 hashes, why?
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b"},
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
]
def download_file_with_auth(url, token, save_path):
headers = {"Authorization": f"Bearer {token}"}
@ -169,9 +189,29 @@ def download_model(model):
if os.path.isfile(save_path):
logger.info(f"{name}: File {save_path} already exists - skipping")
continue
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
download_file_with_auth(f"{repo}/resolve/main/{file}", hf_token, save_path)
# get list of existing models and chkhsh from the convert_hf_to_gguf.py file
# returns mapping res --> chkhsh
def get_existing_models(convert_py):
pattern = r'if chkhsh == "([a-f0-9]{64})":\s*\n\s*.*\s*res = "([^"]+)"'
matches = re.findall(pattern, convert_py)
output = {}
for chkhsh, res in matches:
output[res] = chkhsh
return output
existing_models = {}
all_models = models.copy()
if not args.full:
# Filter out models that already exist in convert_hf_to_gguf.py
existing_models = get_existing_models(convert_py)
all_models = models.copy()
models = [model for model in all_models if model["name"] not in existing_models]
logging.info(f"Downloading {len(models)} models...")
for model in models:
try:
download_model(model)
@ -182,9 +222,10 @@ for model in models:
# generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function:
src_ifs = ""
for model in models:
for model in [*all_models, *pre_computed_hashes]:
name = model["name"]
tokt = model["tokt"]
chkhsh = model.get("chkhsh")
if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM:
continue
@ -195,35 +236,44 @@ for model in models:
continue
# create the tokenizer
try:
if name == "t5":
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
continue # Skip to the next model if the tokenizer can't be loaded
if chkhsh is not None:
# if the model has a pre-computed hash, use it
logger.info(f"Using pre-computed hash for model {name}: {chkhsh}")
elif name in existing_models:
# if the model already exists in convert_hf_to_gguf.py, skip compute hash
chkhsh = existing_models[name]
else:
# otherwise, compute the hash of the tokenizer
try:
logger.info(f"Loading tokenizer from {f'models/tokenizers/{name}'}...")
if name == "t5":
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
continue # Skip to the next model if the tokenizer can't be loaded
chktok = tokenizer.encode(CHK_TXT)
chkhsh = sha256(str(chktok).encode()).hexdigest()
chktok = tokenizer.encode(CHK_TXT)
chkhsh = sha256(str(chktok).encode()).hexdigest()
logger.info(f"model: {name}")
logger.info(f"tokt: {tokt}")
logger.info(f"repo: {model['repo']}")
logger.info(f"chktok: {chktok}")
logger.info(f"chkhsh: {chkhsh}")
logger.info(f"model: {name}")
logger.info(f"tokt: {tokt}")
logger.info(f"repo: {model['repo']}")
logger.info(f"chktok: {chktok}")
logger.info(f"chkhsh: {chkhsh}")
# print the "pre_tokenizer" content from the tokenizer.json
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
cfg = json.load(f)
normalizer = cfg["normalizer"]
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
pre_tokenizer = cfg["pre_tokenizer"]
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
if "ignore_merges" in cfg["model"]:
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
# print the "pre_tokenizer" content from the tokenizer.json
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
cfg = json.load(f)
normalizer = cfg["normalizer"]
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
pre_tokenizer = cfg["pre_tokenizer"]
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
if "ignore_merges" in cfg["model"]:
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
logger.info("")
logger.info("")
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
src_ifs += f" # ref: {model['repo']}\n"
@ -271,8 +321,6 @@ src_func = f"""
return res
"""
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
convert_py = convert_py_pth.read_text(encoding="utf-8")
convert_py = re.sub(
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
lambda m: m.group(1) + src_func + m.group(3),
@ -288,7 +336,7 @@ logger.info("+++ convert_hf_to_gguf.py was updated")
tests = [
"ied 4 ½ months",
"Führer",
"Äpfel",
"",
" ",
" ",
@ -367,6 +415,10 @@ for model in models:
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
continue # Skip this model and continue with the next one in the loop
if not os.path.exists(f"models/ggml-vocab-{name}.gguf"):
logger.info(f"Skip vocab files for model {name}, no GGUF file found")
continue
with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
for text in tests:
f.write(f"{text}")

View File

@ -1,5 +1,9 @@
# Build llama.cpp locally
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server.
**To get the Code:**
```bash
@ -63,6 +67,7 @@ cmake --build build --config Release
cmake --preset x64-windows-llvm-release
cmake --build build-x64-windows-llvm-release
```
- Curl usage is enabled by default and can be turned off with `-DLLAMA_CURL=OFF`. Otherwise you need to install development libraries for libcurl.
## BLAS Build

View File

@ -2,7 +2,6 @@
[chat.h](../common/chat.h) (https://github.com/ggml-org/llama.cpp/pull/9639) adds support for [OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) and is used in:
- `llama-server` when started w/ `--jinja` flag
- `llama-cli` (WIP: https://github.com/ggml-org/llama.cpp/pull/11556)
## Universal support w/ Native & Generic handlers

View File

@ -1,28 +1,42 @@
# Install pre-built version of llama.cpp
## Homebrew
| Install via | Windows | Mac | Linux |
|-------------|---------|-----|-------|
| Winget | ✅ | | |
| Homebrew | | ✅ | ✅ |
| MacPorts | | ✅ | |
| Nix | | ✅ | ✅ |
On Mac and Linux, the homebrew package manager can be used via
## Winget (Windows)
```sh
winget install llama.cpp
```
The package is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/issues/8188
## Homebrew (Mac and Linux)
```sh
brew install llama.cpp
```
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668
## MacPorts
## MacPorts (Mac)
```sh
sudo port install llama.cpp
```
see also: https://ports.macports.org/port/llama.cpp/details/
## Nix
See also: https://ports.macports.org/port/llama.cpp/details/
On Mac and Linux, the Nix package manager can be used via
## Nix (Mac and Linux)
```sh
nix profile install nixpkgs#llama-cpp
```
For flake enabled installs.
Or
@ -34,13 +48,3 @@ nix-env --file '<nixpkgs>' --install --attr llama-cpp
For non-flake enabled installs.
This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164).
## Flox
On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via
```sh
flox install llama-cpp
```
Flox follows the nixpkgs build of llama.cpp.

View File

@ -98,3 +98,12 @@ NOTE: some models may require large context window, for example: `-c 8192`
# note: no pre-quantized GGUF this model, as they have very poor result
# ref: https://github.com/ggml-org/llama.cpp/pull/13760
```
**Mixed modalities**:
```sh
# Qwen2.5 Omni
# Capabilities: audio input, vision input
(tool_name) -hf ggml-org/Qwen2.5-Omni-3B-GGUF
(tool_name) -hf ggml-org/Qwen2.5-Omni-7B-GGUF
```

View File

@ -116,7 +116,7 @@ if llama_decode(context, batch) != 0 {
}
for i in 1 ..< n_parallel {
llama_kv_self_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
llama_memory_seq_cp(llama_get_memory(context), 0, Int32(i), 0, batch.n_tokens)
}
if n_parallel > 1 {

View File

@ -37,7 +37,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_self_clear(ctx);
llama_memory_clear(llama_get_memory(ctx), true);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
@ -236,9 +236,24 @@ int main(int argc, char ** argv) {
LOG("\n");
}
} else if (pooling_type == LLAMA_POOLING_TYPE_RANK) {
const uint32_t n_cls_out = llama_model_n_cls_out(model);
std::vector<std::string> cls_out_labels;
for (uint32_t i = 0; i < n_cls_out; i++) {
const char * label = llama_model_cls_label(model, i);
const std::string label_i(label == nullptr ? "" : label);
cls_out_labels.emplace_back(label_i.empty() ? std::to_string(i) : label_i);
}
for (int j = 0; j < n_embd_count; j++) {
// NOTE: if you change this log - update the tests in ci/run.sh
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
for (uint32_t i = 0; i < n_cls_out; i++) {
// NOTE: if you change this log - update the tests in ci/run.sh
if (n_cls_out == 1) {
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
} else {
LOG("rerank score %d: %8.3f [%s]\n", j, emb[j * n_embd + i], cls_out_labels[i].c_str());
}
}
}
} else {
// print the first part of the embeddings or for a single prompt, the full embedding

View File

@ -45,7 +45,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
}
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_self_clear(ctx);
llama_memory_clear(llama_get_memory(ctx), true);
llama_set_embeddings(ctx, true);
llama_set_causal_attn(ctx, false);
@ -102,7 +102,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
llama_token eos_token = llama_vocab_eos(vocab);
llama_kv_self_clear(ctx);
llama_memory_clear(llama_get_memory(ctx), true);
llama_set_embeddings(ctx, false);
llama_set_causal_attn(ctx, true);

View File

@ -194,7 +194,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
}
batch->logits[batch->n_tokens - 1] = true;
llama_kv_self_clear(context);
llama_memory_clear(llama_get_memory(context), false);
const auto t_pp_start = ggml_time_us();
if (llama_decode(context, *batch) != 0) {
@ -206,7 +206,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
LOGi("Benchmark text generation (tg)");
llama_kv_self_clear(context);
llama_memory_clear(llama_get_memory(context), false);
const auto t_tg_start = ggml_time_us();
for (i = 0; i < tg; i++) {
@ -223,7 +223,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
const auto t_tg_end = ggml_time_us();
llama_kv_self_clear(context);
llama_memory_clear(llama_get_memory(context), false);
const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0;
const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0;
@ -448,5 +448,5 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
extern "C"
JNIEXPORT void JNICALL
Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
llama_kv_self_clear(reinterpret_cast<llama_context *>(context));
llama_memory_clear(llama_get_memory(reinterpret_cast<llama_context *>(context)), true);
}

View File

@ -210,7 +210,7 @@ actor LlamaContext {
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
llama_kv_self_clear(context)
llama_memory_clear(llama_get_memory(context), false)
let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000;
@ -223,7 +223,7 @@ actor LlamaContext {
// bench text generation
llama_kv_self_clear(context)
llama_memory_clear(llama_get_memory(context), false)
let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000;
@ -242,7 +242,7 @@ actor LlamaContext {
let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000;
llama_kv_self_clear(context)
llama_memory_clear(llama_get_memory(context), false)
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
@ -292,7 +292,7 @@ actor LlamaContext {
func clear() {
tokens_list.removeAll()
temporary_invalid_cchars.removeAll()
llama_kv_self_clear(context)
llama_memory_clear(llama_get_memory(context), true)
}
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {

View File

@ -60,6 +60,8 @@ int main(int argc, char ** argv) {
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * mem = llama_get_memory(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
// Tokenize the prompt
@ -94,7 +96,7 @@ int main(int argc, char ** argv) {
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
llama_memory_seq_cp(mem, 0, s, -1, -1);
}
const auto t_enc_end = ggml_time_us();
@ -427,17 +429,17 @@ int main(int argc, char ** argv) {
// KV cache management
// if no verification token matched, we simply remove all cells from this batch -> no fragmentation
llama_kv_self_seq_rm(ctx, -1, n_past, -1);
llama_memory_seq_rm(mem, -1, n_past, -1);
if (seq_id_best != 0) {
// if a verification token matched, we keep the best sequence and remove the rest
// this leads to some KV cache fragmentation
llama_kv_self_seq_keep(ctx, seq_id_best);
llama_kv_self_seq_cp (ctx, seq_id_best, 0, -1, -1);
llama_kv_self_seq_rm (ctx, seq_id_best, -1, -1);
llama_memory_seq_keep(mem, seq_id_best);
llama_memory_seq_cp (mem, seq_id_best, 0, -1, -1);
llama_memory_seq_rm (mem, seq_id_best, -1, -1);
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
llama_memory_seq_cp(mem, 0, s, -1, -1);
}
}
}

View File

@ -181,7 +181,7 @@ int main(int argc, char ** argv){
// KV cache management
// clean the cache of draft tokens that weren't accepted
llama_kv_self_seq_rm(ctx, 0, n_past, -1);
llama_memory_seq_rm(llama_get_memory(ctx), 0, n_past, -1);
common_batch_clear(batch_tgt);
common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);

View File

@ -4,7 +4,7 @@ Simplified simulation of serving incoming requests in parallel
## Example
Generate 128 client requests (`-ns 128`), simulating 8 concurrent clients (`-np 8`). The system prompt is shared (`-pps`), meaning that it is computed once at the start. The client requests consist of 10 junk questions (`-j 10`) followed by the actual question.
Generate 128 client requests (`-ns 128`), simulating 8 concurrent clients (`-np 8`). The system prompt is shared (`-pps`), meaning that it is computed once at the start. The client requests consist of up to 10 junk questions (`--junk 10`) followed by the actual question.
```bash
llama-parallel -m model.gguf -np 8 -ns 128 --top-k 1 -pps --junk 10 -c 16384

View File

@ -158,7 +158,7 @@ int main(int argc, char ** argv) {
common_params params;
params.n_predict = 128;
params.n_junk = 0;
params.n_junk = 1;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) {
return 1;
@ -182,7 +182,7 @@ int main(int argc, char ** argv) {
const bool is_sp_shared = params.is_pp_shared;
// extra text to insert in each client's prompt in order to make it larger
const int32_t n_junk = params.n_junk;
const int32_t n_junk = std::max(1, params.n_junk);
// init llama.cpp
llama_backend_init();
@ -194,6 +194,8 @@ int main(int argc, char ** argv) {
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * mem = llama_get_memory(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
// load the prompts from an external file if there are any
@ -259,7 +261,7 @@ int main(int argc, char ** argv) {
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i <= n_clients; ++i) {
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
llama_memory_seq_cp(mem, 0, i, -1, -1);
}
LOG_INF("\n");
@ -286,9 +288,9 @@ int main(int argc, char ** argv) {
if (batch.n_tokens == 0) {
// all sequences have ended - clear the entire KV cache
for (int i = 1; i <= n_clients; ++i) {
llama_kv_self_seq_rm(ctx, i, -1, -1);
llama_memory_seq_rm(mem, i, -1, -1);
// but keep the system prompt
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
llama_memory_seq_cp(mem, 0, i, -1, -1);
}
LOG_INF("%s: clearing the KV cache\n", __func__);
@ -315,7 +317,10 @@ int main(int argc, char ** argv) {
} else {
client.prompt += k_system;
}
for (int i = 0; i < n_junk; ++i) {
const int n_junk_cur = rand() % n_junk;
for (int i = 0; i < n_junk_cur; ++i) {
const int r = rand() % k_questions.size();
client.prompt += "User:\n" + k_questions[r] + "\nAssistant:\n " + k_answers[r] + "\n";
}
@ -340,7 +345,7 @@ int main(int argc, char ** argv) {
client.n_decoded = 0;
client.i_batch = batch.n_tokens - 1;
LOG_INF("\033[31mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id);
LOG_INF("\033[31mClient %3d, seq %4d, junk = %4d, started decoding ...\033[0m\n", client.id, client.seq_id, n_junk_cur);
g_seq_id += 1;
@ -359,7 +364,9 @@ int main(int argc, char ** argv) {
// process in chunks of params.n_batch
int32_t n_batch = params.n_batch;
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
int32_t i_next = 0;
for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
// experiment: process in powers of 2
//if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) {
// n_batch /= 2;
@ -367,7 +374,7 @@ int main(int argc, char ** argv) {
// continue;
//}
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
llama_batch batch_view = {
n_tokens,
@ -387,19 +394,24 @@ int main(int argc, char ** argv) {
return 1;
}
LOG_ERR("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
LOG_WRN("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
n_cache_miss += 1;
// retry with half the batch size to try to find a free slot in the KV cache
n_batch /= 2;
i -= n_batch;
continue;
}
LOG_DBG("%s : decoded batch of %d tokens\n", __func__, n_tokens);
// move the head of the batch forward with the number of tokens we just processed
i_next = i + n_tokens;
// on successful decode, restore the original batch size
n_batch = params.n_batch;
for (auto & client : clients) {
if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) {
continue;
@ -437,8 +449,8 @@ int main(int argc, char ** argv) {
}
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
llama_kv_self_seq_rm(ctx, client.id + 1, -1, -1);
llama_kv_self_seq_cp(ctx, 0, client.id + 1, -1, -1);
llama_memory_seq_rm(mem, client.id + 1, -1, -1);
llama_memory_seq_cp(mem, 0, client.id + 1, -1, -1);
const auto t_main_end = ggml_time_us();

View File

@ -126,6 +126,8 @@ int main(int argc, char ** argv) {
int n_past = 0;
auto * mem = llama_get_memory(ctx);
// fill the KV cache
for (int i = 0; i < n_ctx; i += n_batch) {
if (i > 0 && n_grp > 1) {
@ -133,11 +135,10 @@ int main(int argc, char ** argv) {
const int ib = i/n_batch - 1;
const int bd = n_batch_grp*(n_grp - 1);
llama_kv_self_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
llama_kv_self_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
llama_kv_self_update (ctx);
llama_memory_seq_add(mem, 0, n_past - n_batch, n_past, ib*bd);
llama_memory_seq_div(mem, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
}
common_batch_clear(batch);
@ -167,12 +168,10 @@ int main(int argc, char ** argv) {
LOG_INF("%s: shifting KV cache with %d\n", __func__, n_discard);
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_self_defrag (ctx);
llama_kv_self_update (ctx);
llama_memory_seq_rm (mem, 0, n_keep , n_keep + n_discard);
llama_memory_seq_add(mem, 0, n_keep + n_discard, n_ctx, -n_discard);
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
common_batch_clear(batch);
@ -198,12 +197,10 @@ int main(int argc, char ** argv) {
if (n_discard > 0) {
LOG_INF("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_self_defrag (ctx);
llama_kv_self_update (ctx);
llama_memory_seq_rm (mem, 0, n_keep , n_keep + n_discard);
llama_memory_seq_add(mem, 0, n_keep + n_discard, n_ctx, -n_discard);
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
n_past = llama_memory_seq_pos_max(mem, 0) + 1;
}
}

View File

@ -83,7 +83,7 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
static void batch_process(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_self_clear(ctx);
llama_memory_clear(llama_get_memory(ctx), false);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);

View File

@ -196,7 +196,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
// erase whole kv
llama_kv_self_clear(ctx3);
llama_memory_clear(llama_get_memory(ctx3), true);
fprintf(stderr, "%s : kv cache cleared\n", __func__);
// restore kv into seq 1

View File

@ -98,7 +98,7 @@ int main(int argc, char ** argv) {
auto generate = [&](const std::string & prompt) {
std::string response;
const bool is_first = llama_kv_self_seq_pos_max(ctx, 0) == 0;
const bool is_first = llama_memory_seq_pos_max(llama_get_memory(ctx), 0) == 0;
// tokenize the prompt
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
@ -113,7 +113,7 @@ int main(int argc, char ** argv) {
while (true) {
// check if we have enough space in the context to evaluate this batch
int n_ctx = llama_n_ctx(ctx);
int n_ctx_used = llama_kv_self_seq_pos_max(ctx, 0);
int n_ctx_used = llama_memory_seq_pos_max(llama_get_memory(ctx), 0);
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf("\033[0m\n");
fprintf(stderr, "context size exceeded\n");

View File

@ -217,7 +217,7 @@ int main(int argc, char ** argv) {
{
LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past);
llama_kv_self_seq_rm(ctx_tgt, 0, n_past, -1);
llama_memory_seq_rm(llama_get_memory(ctx_tgt), 0, n_past, -1);
}
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {

View File

@ -142,6 +142,8 @@ int main(int argc, char ** argv) {
}
}
auto * mem_tgt = llama_get_memory(ctx_tgt);
auto * mem_dft = llama_get_memory(ctx_dft);
// Tokenize the prompt
std::vector<llama_token> inp;
@ -420,14 +422,14 @@ int main(int argc, char ** argv) {
{
LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
llama_kv_self_seq_keep(ctx_dft, s_keep);
llama_kv_self_seq_cp (ctx_dft, s_keep, 0, -1, -1);
llama_kv_self_seq_keep(ctx_dft, 0);
llama_memory_seq_keep(mem_dft, s_keep);
llama_memory_seq_cp (mem_dft, s_keep, 0, -1, -1);
llama_memory_seq_keep(mem_dft, 0);
llama_kv_self_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
llama_kv_self_seq_keep(ctx_tgt, s_keep);
llama_kv_self_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
llama_kv_self_seq_keep(ctx_tgt, 0);
llama_memory_seq_rm (mem_tgt, s_keep, n_past_tgt, -1);
llama_memory_seq_keep(mem_tgt, s_keep);
llama_memory_seq_cp (mem_tgt, s_keep, 0, -1, -1);
llama_memory_seq_keep(mem_tgt, 0);
}
for (int s = 0; s < n_seq_dft; ++s) {
@ -444,7 +446,7 @@ int main(int argc, char ** argv) {
common_batch_clear(batch_dft);
common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
llama_kv_self_seq_rm(ctx_dft, 0, n_past_dft, -1);
llama_memory_seq_rm(mem_dft, 0, n_past_dft, -1);
// LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
llama_decode(ctx_dft, batch_dft);
@ -503,8 +505,8 @@ int main(int argc, char ** argv) {
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_draft_split) {
LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
llama_kv_self_seq_rm(ctx_dft, n_seq_cur, -1, -1);
llama_kv_self_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
llama_memory_seq_rm(mem_dft, n_seq_cur, -1, -1);
llama_memory_seq_cp(mem_dft, s, n_seq_cur, -1, -1);
// all previous tokens from this branch are now also part of the new branch
for (int t = 0; t < batch_tgt.n_tokens; ++t) {
@ -585,9 +587,9 @@ int main(int argc, char ** argv) {
// evaluate the target model on the drafted tokens
{
llama_kv_self_seq_keep(ctx_tgt, 0);
llama_memory_seq_keep(mem_tgt, 0);
for (int s = 1; s < n_seq_dft; ++s) {
llama_kv_self_seq_cp(ctx_tgt, 0, s, -1, -1);
llama_memory_seq_cp(mem_tgt, 0, s, -1, -1);
}
// LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());

View File

@ -129,6 +129,7 @@ option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF)
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
option(GGML_VXE "ggml: enable vxe" ON)
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
@ -136,7 +137,7 @@ set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
set(GGML_CPU_POWERPC_CPUTYPE "" CACHE STRING "ggml: CPU type for PowerPC")
if (WIN32)
if (MINGW)
set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows version")
endif()
@ -176,7 +177,6 @@ option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks"
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF)
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF)
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_KOMPUTE "ggml: use Kompute" OFF)

View File

@ -24,3 +24,28 @@ function(ggml_get_flags CCID CCVER)
set(GF_C_FLAGS ${C_FLAGS} PARENT_SCOPE)
set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE)
endfunction()
function(ggml_get_system_arch)
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
set(GGML_SYSTEM_ARCH "ARM" PARENT_SCOPE)
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR
CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
set(GGML_SYSTEM_ARCH "x86" PARENT_SCOPE)
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR
"${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
set(GGML_SYSTEM_ARCH "PowerPC" PARENT_SCOPE)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
set(GGML_SYSTEM_ARCH "loongarch64" PARENT_SCOPE)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
set(GGML_SYSTEM_ARCH "riscv64" PARENT_SCOPE)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
set(GGML_SYSTEM_ARCH "s390x" PARENT_SCOPE)
else()
set(GGML_SYSTEM_ARCH "UNKNOWN" PARENT_SCOPE)
endif()
endfunction()

View File

@ -935,6 +935,15 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
// repeat a to the specified shape
GGML_API struct ggml_tensor * ggml_repeat_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
// sums repetitions in a into shape of b
GGML_API struct ggml_tensor * ggml_repeat_back(
struct ggml_context * ctx,
@ -2086,9 +2095,6 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
// print info and performance information for the graph
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
@ -2172,6 +2178,7 @@ extern "C" {
// scheduling priorities
enum ggml_sched_priority {
GGML_SCHED_PRIO_LOW = -1,
GGML_SCHED_PRIO_NORMAL,
GGML_SCHED_PRIO_MEDIUM,
GGML_SCHED_PRIO_HIGH,

View File

@ -109,6 +109,8 @@ if (MSVC)
else ()
set(CMAKE_GENERATOR_PLATFORM_LWR "")
endif ()
ggml_get_system_arch()
message(STATUS "GGML_SYSTEM_ARCH: ${GGML_SYSTEM_ARCH}")
if (NOT MSVC)
if (GGML_STATIC)
@ -123,7 +125,6 @@ if (NOT MSVC)
endif()
if (MINGW)
# Target Windows 8 for PrefetchVirtualMemory
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
endif()
@ -194,6 +195,7 @@ add_library(ggml-base
../include/ggml-opt.h
../include/gguf.h
ggml.c
ggml.cpp
ggml-alloc.c
ggml-backend.cpp
ggml-opt.cpp
@ -224,6 +226,7 @@ function(ggml_add_backend_library backend)
set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL)
add_dependencies(ggml ${backend})
install(TARGETS ${backend} LIBRARY DESTINATION ${CMAKE_INSTALL_BINDIR})
else()
add_library(${backend} ${ARGN})
target_link_libraries(ggml PUBLIC ${backend})
@ -287,16 +290,20 @@ if (GGML_CPU_ALL_VARIANTS)
if (NOT GGML_BACKEND_DL)
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
endif()
ggml_add_cpu_backend_variant(x64)
ggml_add_cpu_backend_variant(sse42 SSE42)
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA)
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
if (NOT MSVC)
# MSVC doesn't support AMX
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
if (GGML_SYSTEM_ARCH STREQUAL "x86")
ggml_add_cpu_backend_variant(x64)
ggml_add_cpu_backend_variant(sse42 SSE42)
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA)
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
if (NOT MSVC)
# MSVC doesn't support AMX
ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
endif()
else()
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported on ${GGML_SYSTEM_ARCH}")
endif()
elseif (GGML_CPU)
ggml_add_cpu_backend_variant_impl("")

View File

@ -1340,7 +1340,10 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
// allocate graph
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
// the re-allocation may cause the split inputs to be moved to a different address
ggml_backend_sched_synchronize(sched);
// synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
#endif
@ -1564,7 +1567,6 @@ bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgra
ggml_backend_sched_split_graph(sched, graph);
if (!ggml_backend_sched_alloc_splits(sched)) {
return false;
}
@ -1598,6 +1600,12 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
if (!sched->is_alloc) {
// if the graph is not already allocated, always use copy 0 after a synchronization
// this ensures that during generation the same copy is used every time,
// which avoids changes in the graph that could cause CUDA or other graphs to be disabled
sched->cur_copy = 0;
}
}
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {

View File

@ -81,7 +81,7 @@ if (BLAS_FOUND)
target_link_libraries (ggml-blas PRIVATE ${BLAS_LIBRARIES})
target_include_directories(ggml-blas PRIVATE ${BLAS_INCLUDE_DIRS})
else()
message(ERROR "BLAS not found, please refer to "
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
" to set correct GGML_BLAS_VENDOR")
message(FATAL_ERROR "BLAS not found, please refer to "
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
" to set correct GGML_BLAS_VENDOR")
endif()

View File

@ -30,6 +30,7 @@ string(TOLOWER ${SOC_TYPE} SOC_VERSION) # SOC_VERSION need lower
string(REGEX MATCH "[0-9]+[a-zA-Z]" SOC_TYPE_MAJOR_SN "${SOC_VERSION}")
set(SOC_TYPE_COMPILE_OPTION "ASCEND_${SOC_TYPE_MAJOR_SN}")
string(TOUPPER ${SOC_TYPE_COMPILE_OPTION} SOC_TYPE_COMPILE_OPTION)
message(STATUS "CANN: SOC_VERSION = ${SOC_VERSION}")
if (CANN_INSTALL_DIR)
# Only Support Linux.

View File

@ -82,13 +82,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
target_link_libraries(${GGML_CPU_NAME} PUBLIC memkind)
endif()
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
if (GGML_SYSTEM_ARCH STREQUAL "ARM")
message(STATUS "ARM detected")
if (MSVC AND NOT CMAKE_C_COMPILER_ID STREQUAL "Clang")
message(FATAL_ERROR "MSVC is not supported for ARM, use clang")
else()
@ -170,12 +165,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
endforeach()
endif()
endif()
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
elseif (GGML_SYSTEM_ARCH STREQUAL "x86")
message(STATUS "x86 detected")
if (MSVC)
# instruction set detection for MSVC only
if (GGML_NATIVE)
@ -299,7 +290,26 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
endif()
endif()
endif()
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR "${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
if (GGML_BACKEND_DL)
if (GGML_NATIVE)
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
endif()
# The feature detection code is compiled as a separate target so that
# it can be built without the architecture flags
# Since multiple variants of the CPU backend may be included in the same
# build, using set_source_files_properties() to set the arch flags is not possible
set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats)
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp)
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS})
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME})
endif()
elseif (GGML_SYSTEM_ARCH STREQUAL "PowerPC")
message(STATUS "PowerPC detected")
if (GGML_NATIVE)
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
@ -308,7 +318,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
execute_process(COMMAND bash -c "prtconf |grep 'Implementation' | head -n 1" OUTPUT_VARIABLE POWER10_M)
endif()
string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M}")
string(TOUPPER "${POWER10_M}" POWER10_M_UPPER)
string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M_UPPER}")
string(REGEX REPLACE "POWER *([0-9]+)" "\\1" EXTRACTED_NUMBER "${MATCHED_STRING}")
if (EXTRACTED_NUMBER GREATER_EQUAL 10)
@ -325,9 +336,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
list(APPEND ARCH_FLAGS -mcpu=${GGML_CPU_POWERPC_CPUTYPE})
endif()
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
elseif (GGML_SYSTEM_ARCH STREQUAL "loongarch64")
message(STATUS "loongarch64 detected")
list(APPEND ARCH_FLAGS -march=loongarch64)
if (GGML_LASX)
list(APPEND ARCH_FLAGS -mlasx)
@ -335,16 +345,18 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
if (GGML_LSX)
list(APPEND ARCH_FLAGS -mlsx)
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
message(STATUS "RISC-V detected")
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
message(STATUS "riscv64 detected")
if (GGML_RVV)
if (GGML_RV_ZFH)
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -DGGML_RV_ZFH -mabi=lp64d)
if (GGML_XTHEADVECTOR)
list(APPEND ARCH_FLAGS -march=rv64gc_xtheadvector -mabi=lp64d)
elseif (GGML_RV_ZFH)
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -mabi=lp64d)
else()
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
endif()
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
message(STATUS "s390x detected")
file(READ "/proc/cpuinfo" CPUINFO_CONTENTS)
string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
@ -477,25 +489,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
target_compile_options(${GGML_CPU_NAME} PRIVATE ${ARCH_FLAGS})
target_compile_definitions(${GGML_CPU_NAME} PRIVATE ${ARCH_DEFINITIONS})
if (GGML_BACKEND_DL)
if (GGML_NATIVE)
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
endif()
# The feature detection code is compiled as a separate target so that
# it can be built without the architecture flags
# Since multiple variants of the CPU backend may be included in the same
# build, using set_source_files_properties() to set the arch flags is not possible
set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats)
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp)
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS})
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME})
endif()
if (EMSCRIPTEN)
set_target_properties(${GGML_CPU_NAME} PROPERTIES COMPILE_FLAGS "-msimd128")
endif()

View File

@ -1191,7 +1191,7 @@ static void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, c
}
}
return;
#elif defined(__riscv_v_intrinsic)
#elif defined __riscv_v
if (__riscv_vlenb() >= QK4_0) {
const size_t vl = QK4_0;
@ -3783,7 +3783,7 @@ static void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, c
}
return;
}
#elif defined(__riscv_v_intrinsic)
#elif defined __riscv_v
if (__riscv_vlenb() >= QK4_0) {
const size_t vl = QK4_0;

View File

@ -320,21 +320,17 @@ inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b)
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#endif
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#else
#endif
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
#if !defined(__riscv)
#elif defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>

View File

@ -883,7 +883,7 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
_mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
#endif
}
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl = QK8_0;
@ -1221,7 +1221,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
_mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
#endif
}
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl = QK8_1;
@ -2384,7 +2384,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl = qk / 2;
for (; ib < nb; ++ib) {
@ -2774,7 +2774,7 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
sumf = hsum_float_8(acc) + summs;
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl = qk / 2;
for (; ib < nb; ++ib) {
@ -3121,7 +3121,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
sumf = hsum_float_8(acc);
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl;
size_t vlenb = __riscv_vlenb();
@ -3460,7 +3460,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
sumf = hsum_float_8(acc) + summs;
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl;
size_t vlenb = __riscv_vlenb();
@ -3897,7 +3897,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
sumf = hsum_float_8(accum);
#elif defined(__riscv_v_intrinsic)
#elif defined(__riscv_v)
size_t vl = qk;
for (; ib < nb; ++ib) {
@ -5100,14 +5100,111 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#elif defined __riscv_v_intrinsic
#elif defined __riscv_xtheadvector
float sumf = 0;
uint8_t atmp[16];
for (int i = 0; i < nb; ++i) {
const uint8_t * q2 = x[i].qs;
const int8_t * q8 = y[i].qs;
const uint8_t * sc = x[i].scales;
const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
uint8_t *patmp = atmp;
int vsums;
int tmp;
__asm__ __volatile__(
"th.vsetvli zero, %[vl16], e8, m1\n\t"
"th.vmv.v.x v8, zero\n\t"
"th.vlb.v v1, (%[sc])\n\t"
"th.vand.vi v0, v1, 0xF\n\t"
"th.vsrl.vi v1, v1, 4\n\t"
"th.vsb.v v0, (%[scale])\n\t"
"th.vwaddu.vx v16, v1, zero\n\t"
"th.vsetvli zero, %[vl16], e16, m2\n\t"
"th.vlh.v v2, (%[bsums])\n\t"
"th.vwmul.vv v4, v16, v2\n\t"
"th.vsetvli zero, %[vl16], e32, m4\n\t"
"th.vredsum.vs v8, v4, v8\n\t"
"th.vmv.x.s %[vsums], v8"
: [tmp] "=&r" (tmp), [vsums] "=&r" (vsums)
: [sc] "r" (sc), [scale] "r" (atmp), [bsums] "r" (y[i].bsums)
, [vl16] "r" (16)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
sumf += dmin * vsums;
int isum = 0;
for (int j = 0; j < QK_K/128; ++j) {
__asm__ __volatile__(
"th.vsetvli zero, %[vl32], e8, m2\n\t"
"th.vlb.v v0, (%[q2])\n\t"
"th.vsrl.vi v2, v0, 2\n\t"
"th.vsrl.vi v4, v0, 4\n\t"
"th.vsrl.vi v6, v0, 6\n\t"
"th.vand.vi v0, v0, 0x3\n\t"
"th.vand.vi v2, v2, 0x3\n\t"
"th.vand.vi v4, v4, 0x3\n\t"
"th.vsetvli zero, %[vl128], e8, m8\n\t"
"th.vlb.v v8, (%[q8])\n\t"
"th.vsetvli zero, %[vl64], e8, m4\n\t"
"th.vwmul.vv v16, v0, v8\n\t"
"th.vwmul.vv v24, v4, v12\n\t"
"th.vsetvli zero, %[vl16], e16, m2\n\t"
"th.vmv.v.x v0, zero\n\t"
"th.vwredsum.vs v10, v16, v0\n\t"
"th.vwredsum.vs v9, v18, v0\n\t"
"th.vwredsum.vs v8, v20, v0\n\t"
"th.vwredsum.vs v7, v22, v0\n\t"
"th.vwredsum.vs v11, v24, v0\n\t"
"th.vwredsum.vs v12, v26, v0\n\t"
"th.vwredsum.vs v13, v28, v0\n\t"
"th.vwredsum.vs v14, v30, v0\n\t"
"li %[tmp], 4\n\t"
"th.vsetvli zero, %[tmp], e32, m1\n\t"
"th.vslideup.vi v10, v9, 1\n\t"
"th.vslideup.vi v8, v7, 1\n\t"
"th.vslideup.vi v11, v12, 1\n\t"
"th.vslideup.vi v13, v14, 1\n\t"
"th.vslideup.vi v10, v8, 2\n\t"
"th.vslideup.vi v11, v13, 2\n\t"
"li %[tmp], 8\n\t"
"th.vsetvli zero, %[tmp], e32, m2\n\t"
"th.vlbu.v v12, (%[scale])\n\t"
"th.vmul.vv v10, v10, v12\n\t"
"th.vredsum.vs v0, v10, v0\n\t"
"th.vmv.x.s %[tmp], v0\n\t"
"add %[isum], %[isum], %[tmp]"
: [tmp] "=&r" (tmp), [isum] "+&r" (isum)
: [q2] "r" (q2), [scale] "r" (patmp), [q8] "r" (q8)
, [vl16] "r" (16), [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
q2 += 32; q8 += 128; patmp += 8;
}
sumf += dall * isum;
}
*s = sumf;
#elif defined __riscv_v
float sumf = 0;
uint8_t atmp[16];
const int vector_length = __riscv_vlenb() * 8;
float sumf = 0;
uint8_t temp_01[32] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
uint8_t atmp[16];
switch (vector_length) {
case 256:
@ -6137,14 +6234,141 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#elif defined __riscv_v_intrinsic
#elif defined __riscv_xtheadvector
uint32_t aux[3];
uint32_t utmp[4];
const int vector_length = __riscv_vlenb() * 8;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const uint8_t * restrict q3 = x[i].qs;
const uint8_t * restrict qh = x[i].hmask;
const int8_t * restrict q8 = y[i].qs;
int8_t * scale = (int8_t *)utmp;
int tmp;
__asm__ __volatile__(
"li %[tmp], 12\n\t"
"th.vsetvli zero, %[tmp], e8, m1\n\t"
"th.vlb.v v0, (%[s6b])\n\t"
"th.vmv.v.v v2, v0\n\t"
"li %[tmp], 2\n\t"
"th.vsetvli zero, %[tmp], e64, m1\n\t"
"th.vmv.v.x v9, %[sh]\n\t"\
"th.vslidedown.vi v1, v0, 1\n\t"
"th.vslide1up.vx v8, v9, zero\n\t" // {0, 0, 4, 4}
"th.vslideup.vi v0, v2, 1\n\t" // {aux[0], aux[1], aux[0], aux[1]}
"li %[tmp], 4\n\t"
"th.vsetvli zero, %[tmp], e32, m1\n\t"
"th.vid.v v9\n\t"
"th.vmv.x.s %[tmp], v1\n\t"
"th.vsll.vi v9, v9, 1\n\t" // {0, 2, 4, 6}
"th.vmv.v.x v1, %[tmp]\n\t" // {aux[2], aux[2], aux[2], aux[2]}
"th.vsrl.vv v4, v1, v9\n\t"
"th.vsrl.vv v2, v0, v8\n\t"
"th.vand.vx v5, v4, %[kmask1]\n\t"
"th.vand.vx v3, v2, %[kmask2]\n\t"
"th.vsll.vi v6, v5, 4\n\t"
"th.vor.vv v7, v6, v3\n\t"
"li %[tmp], 16\n\t"
"th.vsetvli zero, %[tmp], e8, m1\n\t"
"th.vsub.vx v0, v7, %[c]\n\t"
"th.vsb.v v0, (%[scale])"
: [tmp] "=&r" (tmp)
: [sh] "r" (0x0000000400000004), [s6b] "r" (x[i].scales), [c] "r" (32)
, [scale] "r" (scale), [kmask1] "r" (kmask1), [kmask2] "r" (kmask2)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
uint8_t m = 1;
int isum = 0;
for (int j = 0; j < QK_K; j += 128) {
__asm__ __volatile__(
// fixme: use v0p7 mask layout directly
"th.vsetvli zero, %[vl32], e8, m2\n\t"
"th.vlb.v v8, (%[q3])\n\t"
"th.vsrl.vi v10, v8, 2\n\t"
"th.vsrl.vi v12, v8, 4\n\t"
"th.vsrl.vi v14, v8, 6\n\t"
"th.vand.vi v8, v8, 3\n\t"
"th.vand.vi v10, v10, 3\n\t"
"th.vand.vi v12, v12, 3\n\t"
"th.vlb.v v2, (%[qh])\n\t"
"th.vand.vx v4, v2, %[m]\n\t"
"slli %[m], %[m], 1\n\t"
"th.vmseq.vx v0, v4, zero\n\t"
"th.vadd.vi v8, v8, -4, v0.t\n\t"
"th.vand.vx v4, v2, %[m]\n\t"
"slli %[m], %[m], 1\n\t"
"th.vmseq.vx v0, v4, zero\n\t"
"th.vadd.vi v10, v10, -4, v0.t\n\t"
"th.vand.vx v4, v2, %[m]\n\t"
"slli %[m], %[m], 1\n\t"
"th.vmseq.vx v0, v4, zero\n\t"
"th.vadd.vi v12, v12, -4, v0.t\n\t"
"th.vand.vx v4, v2, %[m]\n\t"
"slli %[m], %[m], 1\n\t"
"th.vmseq.vx v0, v4, zero\n\t"
"th.vadd.vi v14, v14, -4, v0.t\n\t"
"th.vsetvli zero, %[vl128], e8, m8\n\t"
"th.vlb.v v0, (%[q8])\n\t"
"th.vsetvli zero, %[vl64], e8, m4\n\t"
"th.vwmul.vv v16, v0, v8\n\t"
"th.vwmul.vv v24, v4, v12\n\t"
"li %[tmp], 16\n\t"
"th.vsetvli zero, %[tmp], e16, m2\n\t"
"th.vmv.v.x v0, zero\n\t"
"th.vwredsum.vs v10, v16, v0\n\t"
"th.vwredsum.vs v9, v18, v0\n\t"
"th.vwredsum.vs v8, v20, v0\n\t"
"th.vwredsum.vs v7, v22, v0\n\t"
"th.vwredsum.vs v11, v24, v0\n\t"
"th.vwredsum.vs v12, v26, v0\n\t"
"th.vwredsum.vs v13, v28, v0\n\t"
"th.vwredsum.vs v14, v30, v0\n\t"
"li %[tmp], 4\n\t"
"th.vsetvli zero, %[tmp], e32, m1\n\t"
"th.vslideup.vi v10, v9, 1\n\t"
"th.vslideup.vi v8, v7, 1\n\t"
"th.vslideup.vi v11, v12, 1\n\t"
"th.vslideup.vi v13, v14, 1\n\t"
"th.vslideup.vi v10, v8, 2\n\t"
"th.vslideup.vi v11, v13, 2\n\t"
"li %[tmp], 8\n\t"
"th.vsetvli zero, %[tmp], e32, m2\n\t"
"th.vlb.v v12, (%[scale])\n\t"
"th.vmul.vv v10, v10, v12\n\t"
"th.vredsum.vs v0, v10, v0\n\t"
"th.vmv.x.s %[tmp], v0\n\t"
"add %[isum], %[isum], %[tmp]"
: [tmp] "=&r" (tmp), [m] "+&r" (m), [isum] "+&r" (isum)
: [vl128] "r" (128), [vl64] "r" (64), [vl32] "r" (32)
, [q3] "r" (q3), [qh] "r" (qh), [scale] "r" (scale), [q8] "r" (q8)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
q3 += 32; q8 += 128; scale += 8;
}
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
sumf += d * isum;
}
*s = sumf;
#elif defined __riscv_v
uint32_t utmp[4];
float sumf = 0;
uint32_t aux[3];
const int vector_length = __riscv_vlenb() * 8;
switch (vector_length) {
case 256:
for (int i = 0; i < nb; ++i) {
@ -6331,7 +6555,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
"vslideup.vi v13, v14, 1\n\t"
"vslideup.vi v10, v8, 2\n\t"
"vslideup.vi v11, v13, 2\n\t"
"vsetivli zero, 8, e32, m2\n\t"\
"vsetivli zero, 8, e32, m2\n\t"
"vle8.v v15, (%[scale])\n\t"
"vsext.vf4 v12, v15\n\t"
"vmul.vv v10, v10, v12\n\t"
@ -6771,7 +6995,11 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
assert(n % QK_K == 0);
#ifdef __ARM_FEATURE_MATMUL_INT8
assert((nrc == 2) || (nrc == 1));
#else
assert(nrc == 1);
#endif
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
@ -6788,6 +7016,146 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
uint32_t utmp[4];
#if defined(__ARM_FEATURE_MATMUL_INT8)
if (nrc == 2) {
const block_q4_K * GGML_RESTRICT x0 = x;
const block_q4_K * GGML_RESTRICT x1 = (const block_q4_K *) ((const uint8_t *)vx + bx);
const block_q8_K * GGML_RESTRICT y0 = y;
const block_q8_K * GGML_RESTRICT y1 = (const block_q8_K *) ((const uint8_t *)vy + by);
const uint8x16_t m4b = vdupq_n_u8(0x0f);
float32x4_t vfsum = vdupq_n_f32(0.0f);
for (int i = 0; i < nb; ++i, ++x0, ++x1, ++y0, ++y1) {
const uint8_t * GGML_RESTRICT qx0 = x0->qs;
const uint8_t * GGML_RESTRICT qx1 = x1->qs;
const int8_t * GGML_RESTRICT qy0 = y0->qs;
const int8_t * GGML_RESTRICT qy1 = y1->qs;
// decode scales and mins
int8_t x0_scales[8], x1_scales[8];
int16x8_t x0_mins, x1_mins;
{
uint32_t scales_mins[3];
memcpy(scales_mins, x0->scales, 12);
const uint32_t mins_0_3 = scales_mins[1] & kmask1;
const uint32_t mins_4_7 = ((scales_mins[2] >> 4) & kmask2) | (((scales_mins[1] >> 6) & kmask3) << 4);
const uint32x2_t mins = {mins_0_3, mins_4_7};
x0_mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins)));
uint32_t scales[2];
scales[0] = scales_mins[0] & kmask1; // scales 0~3
scales[1] = (scales_mins[2] & kmask2) | (((scales_mins[0] >> 6) & kmask3) << 4); // scales 4~7
memcpy(x0_scales, scales, 8);
}
{
uint32_t scales_mins[3];
memcpy(scales_mins, x1->scales, 12);
const uint32_t mins_0_3 = scales_mins[1] & kmask1;
const uint32_t mins_4_7 = ((scales_mins[2] >> 4) & kmask2) | (((scales_mins[1] >> 6) & kmask3) << 4);
const uint32x2_t mins = {mins_0_3, mins_4_7};
x1_mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins)));
uint32_t scales[2];
scales[0] = scales_mins[0] & kmask1; // scales 0~3
scales[1] = (scales_mins[2] & kmask2) | (((scales_mins[0] >> 6) & kmask3) << 4); // scales 4~7
memcpy(x1_scales, scales, 8);
}
int32x4_t visum = {0};
// process 64 data points per iteration, totally 256 data points
for (int j = 0; j < QK_K / 64; ++j, qx0 += 32, qx1 += 32, qy0 += 64, qy1 += 64) {
const int8x16x4_t vy0 = vld1q_s8_x4(qy0);
const int8x16x4_t vy1 = vld1q_s8_x4(qy1);
int8x16_t vx0[4], vx1[4];
{
const uint8x16x2_t vv = vld1q_u8_x2(qx0);
vx0[0] = vreinterpretq_s8_u8(vandq_u8(vv.val[0], m4b));
vx0[1] = vreinterpretq_s8_u8(vandq_u8(vv.val[1], m4b));
vx0[2] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[0], 4));
vx0[3] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[1], 4));
}
{
const uint8x16x2_t vv = vld1q_u8_x2(qx1);
vx1[0] = vreinterpretq_s8_u8(vandq_u8(vv.val[0], m4b));
vx1[1] = vreinterpretq_s8_u8(vandq_u8(vv.val[1], m4b));
vx1[2] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[0], 4));
vx1[3] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[1], 4));
}
// process 32 data points (share same block scale) per iteration
for (int k = 0; k < 2; ++k) {
const int blk = j * 2 + k;
const int32x4_t block_scale = {
x0_scales[blk],
x0_scales[blk],
x1_scales[blk],
x1_scales[blk],
};
int32x4_t vr = {0};
for (int l = 0; l < 2; ++l) {
const int idx = k * 2 + l;
const int64x2_t vx0_s64 = vreinterpretq_s64_s8(vx0[idx]);
const int64x2_t vx1_s64 = vreinterpretq_s64_s8(vx1[idx]);
const int64x2_t vy0_s64 = vreinterpretq_s64_s8(vy0.val[idx]);
const int64x2_t vy1_s64 = vreinterpretq_s64_s8(vy1.val[idx]);
const int8x16_t vx_l = vreinterpretq_s8_s64(vzip1q_s64(vx0_s64, vx1_s64));
const int8x16_t vx_h = vreinterpretq_s8_s64(vzip2q_s64(vx0_s64, vx1_s64));
const int8x16_t vy_l = vreinterpretq_s8_s64(vzip1q_s64(vy0_s64, vy1_s64));
const int8x16_t vy_h = vreinterpretq_s8_s64(vzip2q_s64(vy0_s64, vy1_s64));
vr = vmmlaq_s32(vr, vx_l, vy_l);
vr = vmmlaq_s32(vr, vx_h, vy_h);
}
// apply block scale, will NOT overflow
// block_scale * sum_256(int4*int8) <= 2^(8+8+4+8) = 28 bits
visum = vmlaq_s32(visum, vr, block_scale);
}
}
// adjust bias, apply superblock scale
{
int32_t bias[4];
// no obvious uplift from sve sdot-16, just use neon mul add
const int16x8_t y0_sums = vpaddq_s16(vld1q_s16(y0->bsums), vld1q_s16(y0->bsums+8));
const int16x8_t y1_sums = vpaddq_s16(vld1q_s16(y1->bsums), vld1q_s16(y1->bsums+8));
bias[0] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y0_sums), vget_low_s16(x0_mins)),
vmull_s16(vget_high_s16(y0_sums), vget_high_s16(x0_mins))));
bias[1] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y1_sums), vget_low_s16(x0_mins)),
vmull_s16(vget_high_s16(y1_sums), vget_high_s16(x0_mins))));
bias[2] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y0_sums), vget_low_s16(x1_mins)),
vmull_s16(vget_high_s16(y0_sums), vget_high_s16(x1_mins))));
bias[3] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y1_sums), vget_low_s16(x1_mins)),
vmull_s16(vget_high_s16(y1_sums), vget_high_s16(x1_mins))));
const float32x4_t dmins = {
GGML_FP16_TO_FP32(x0->dmin) * y0->d,
GGML_FP16_TO_FP32(x0->dmin) * y1->d,
GGML_FP16_TO_FP32(x1->dmin) * y0->d,
GGML_FP16_TO_FP32(x1->dmin) * y1->d,
};
vfsum = vmlsq_f32(vfsum, vcvtq_f32_s32(vld1q_s32(bias)), dmins);
const float32x4_t superblock_scale = {
GGML_FP16_TO_FP32(x0->d) * y0->d,
GGML_FP16_TO_FP32(x0->d) * y1->d,
GGML_FP16_TO_FP32(x1->d) * y0->d,
GGML_FP16_TO_FP32(x1->d) * y1->d,
};
vfsum = vmlaq_f32(vfsum, vcvtq_f32_s32(visum), superblock_scale);
}
}
// vfsum = ABCD -> ACBD
// AC -> s, BD -> (s+bs)
vfsum = vzip1q_f32(vfsum, vextq_f32(vfsum, vfsum, 2));
vst1_f32(s, vget_low_f32 (vfsum));
vst1_f32(s + bs, vget_high_f32(vfsum));
return;
}
#endif
#ifdef __ARM_FEATURE_SVE
float sumf = 0;
for (int i = 0; i < nb; ++i) {
@ -7180,14 +7548,130 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
#elif defined __riscv_v_intrinsic
#elif defined __riscv_xtheadvector
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
const int vector_length = __riscv_vlenb() * 8;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
int tmp, tmp2, sumi;
__asm__ __volatile__(
"li %[t1], 12\n\t"
"th.vsetvli zero, %[t1], e8, m1\n\t"
"th.vlb.v v1, (%[s6b])\n\t" // {aux[0], aux[1], aux[2]}
"li %[t1], 4\n\t"
"th.vsetvli zero, %[t1], e32, m1\n\t"
"th.vslidedown.vi v2, v1, 2\n\t"
"th.vmv.v.v v3, v2\n\t"
"th.vslideup.vi v2, v3, 1\n\t" // {aux[2], aux[2]}
"li %[t1], 2\n\t"
"th.vsetvli zero, %[t1], e32, m1\n\t"
"th.vmv.v.i v4, 4\n\t"
"th.vand.vx v8, v1, %[kmask1]\n\t"
"th.vslide1up.vx v5, v4, zero\n\t" // {0, 4}
"th.vsrl.vi v6, v1, 6\n\t"
"th.vsrl.vv v7, v2, v5\n\t"
"th.vand.vx v0, v6, %[kmask3]\n\t"
"th.vand.vx v2, v7, %[kmask2]\n\t"
"th.vsll.vi v6, v0, 4\n\t"
"li %[t2], 8\n\t"
"addi %[t1], %[utmp], 4\n\t"
"th.vor.vv v1, v6, v2\n\t"
"th.vssw.v v8, (%[utmp]), %[t2]\n\t"
"th.vssw.v v1, (%[t1]), %[t2]\n\t"
"th.vsetvli zero, zero, e32, m2\n\t" // vl == 8
"th.vlw.v v2, (%[bsums])\n\t"
"th.vsetvli zero, %[t2], e16, m1\n\t"
"th.vnsrl.vi v0, v2, 0\n\t"
"th.vnsrl.vi v1, v2, 16\n\t"
"th.vadd.vv v2, v0, v1\n\t"
"th.vlbu.v v4, (%[mins])\n\t"
"th.vwmul.vv v6, v4, v2\n\t"
"th.vmv.v.x v0, zero\n\t"
"th.vsetvli zero, %[t2], e32, m2\n\t"
"th.vredsum.vs v0, v6, v0\n\t"
"th.vmv.x.s %[sumi], v0"
: [t1] "=&r" (tmp), [t2] "=&r" (tmp2), [sumi] "=&r" (sumi)
: [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp)
, [s6b] "r" (x[i].scales), [kmask1] "r" (kmask1)
, [kmask2] "r" (kmask2), [kmask3] "r" (kmask3)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
sumf -= dmin * sumi;
const uint8_t * restrict q4 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
sumi = 0;
const uint8_t * scale = scales;
for (int j = 0; j < QK_K/128; ++j) {
int vl128 = 128, vl64 = 64, vl32 = 32;
__asm__ __volatile__(
"th.vsetvli zero, %[vl128], e8, m8\n\t"
"th.vlb.v v8, (%[q8])\n\t"
"th.vsetvli zero, %[vl64], e8, m4\n\t"
"th.vlb.v v0, (%[q4])\n\t"
"th.vsrl.vi v4, v0, 4\n\t"
"th.vand.vi v0, v0, 0xF\n\t"
"th.vsetvli zero, %[vl32], e8, m2\n\t"
"th.vwmul.vv v28, v6, v14\n\t"
"th.vwmul.vv v20, v4, v10\n\t"
"th.vwmul.vv v24, v2, v12\n\t"
"th.vwmul.vv v16, v0, v8\n\t"
"li %[tmp], 4\n\t"
"th.vsetvli zero, %[tmp], e32, m1\n\t"
"th.vlbu.v v1, (%[scale])\n\t"
"th.vmv.v.x v0, zero\n\t"
"th.vsetvli zero, %[vl32], e16, m4\n\t"
"th.vwredsum.vs v6, v24, v0\n\t"
"th.vwredsum.vs v7, v28, v0\n\t"
"th.vwredsum.vs v4, v16, v0\n\t"
"th.vwredsum.vs v5, v20, v0\n\t"
"th.vsetvli zero, %[tmp], e32, m1\n\t"
"th.vslideup.vi v6, v7, 1\n\t"
"th.vslideup.vi v4, v5, 1\n\t"
"th.vslideup.vi v4, v6, 2\n\t"
"th.vmul.vv v8, v4, v1\n\t"
"th.vredsum.vs v0, v8, v0\n\t"
"th.vmv.x.s %[tmp], v0\n\t"
"add %[sumi], %[sumi], %[tmp]"
: [tmp] "=&r" (tmp), [sumi] "+&r" (sumi)
: [vl128] "r" (vl128), [vl64] "r" (vl64), [vl32] "r" (vl32)
, [q4] "r" (q4), [q8] "r" (q8), [scale] "r" (scale)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
q4 += 64; q8 += 128; scale += 4;
}
sumf += d * sumi;
}
*s = sumf;
#elif defined __riscv_v
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
float sumf = 0;
const int vector_length = __riscv_vlenb() * 8;
switch (vector_length) {
case 256:
for (int i = 0; i < nb; ++i) {
@ -8074,7 +8558,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
#elif defined __riscv_v_intrinsic
#elif defined __riscv_v
const uint8_t * scales = (const uint8_t*)&utmp[0];
const uint8_t * mins = (const uint8_t*)&utmp[2];
@ -9232,11 +9716,92 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
}
*s = sumf;
#elif defined __riscv_v_intrinsic
#elif defined __riscv_xtheadvector
const int vector_length = __riscv_vlenb() * 8;
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
const uint8_t * restrict q6 = x[i].ql;
const uint8_t * restrict qh = x[i].qh;
const int8_t * restrict q8 = y[i].qs;
const int8_t * restrict scale = x[i].scales;
int sum_t = 0;
int t0;
for (int j = 0; j < QK_K/128; ++j) {
__asm__ __volatile__(
"th.vsetvli zero, %[vl32], e8, m2\n\t" // vl == 32
"th.vlb.v v4, (%[qh])\n\t"
"th.vsll.vi v0, v4, 4\n\t"
"th.vsll.vi v2, v4, 2\n\t"
"th.vsrl.vi v6, v4, 2\n\t"
"th.vsetvli zero, %[vl64], e8, m4\n\t" // vl == 64
"th.vlb.v v8, (%[q6])\n\t"
"th.vsrl.vi v12, v8, 4\n\t"
"th.vand.vi v8, v8, 0xF\n\t"
"th.vsetvli zero, %[vl128], e8, m8\n\t" // vl == 128
"th.vand.vx v0, v0, %[mask]\n\t"
"th.vor.vv v8, v8, v0\n\t"
"th.vlb.v v0, (%[q8])\n\t"
"th.vsub.vx v8, v8, %[vl32]\n\t"
"th.vsetvli zero, %[vl64], e8, m4\n\t" // vl == 64
"th.vwmul.vv v16, v0, v8\n\t"
"th.vwmul.vv v24, v4, v12\n\t"
"li %[t0], 16\n\t"
"th.vsetvli zero, %[t0], e16, m2\n\t" // vl == 16
"th.vmv.v.x v0, zero\n\t"
"th.vwredsum.vs v10, v16, v0\n\t"
"th.vwredsum.vs v9, v18, v0\n\t"
"th.vwredsum.vs v8, v20, v0\n\t"
"th.vwredsum.vs v7, v22, v0\n\t"
"th.vwredsum.vs v11, v24, v0\n\t"
"th.vwredsum.vs v12, v26, v0\n\t"
"th.vwredsum.vs v13, v28, v0\n\t"
"th.vwredsum.vs v14, v30, v0\n\t"
"li %[t0], 4\n\t"
"th.vsetvli zero, %[t0], e32, m1\n\t" // vl == 4
"th.vslideup.vi v10, v9, 1\n\t"
"th.vslideup.vi v8, v7, 1\n\t"
"th.vslideup.vi v11, v12, 1\n\t"
"th.vslideup.vi v13, v14, 1\n\t"
"th.vslideup.vi v10, v8, 2\n\t"
"th.vslideup.vi v11, v13, 2\n\t"
"li %[t0], 8\n\t"
"th.vsetvli zero, %[t0], e32, m2\n\t" // vl == 8
"th.vlb.v v4, (%[scale])\n\t"
"th.vmul.vv v2, v4, v10\n\t"
"th.vredsum.vs v0, v2, v0\n\t"
"th.vmv.x.s %[t0], v0\n\t"
"add %[sumi], %[sumi], %[t0]"
: [sumi] "+&r" (sum_t), [t0] "=&r" (t0)
: [qh] "r" (qh), [q6] "r" (q6), [q8] "r" (q8), [scale] "r" (scale)
, [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128)
, [mask] "r" (0x30)
: "memory"
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
, "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23"
, "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
);
q6 += 64; qh += 32; q8 += 128; scale += 8;
}
sumf += d * sum_t;
}
*s = sumf;
#elif defined __riscv_v
float sumf = 0;
const int vector_length = __riscv_vlenb() * 8;
switch (vector_length) {
case 256:
for (int i = 0; i < nb; ++i) {

View File

@ -270,7 +270,11 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
.from_float = quantize_row_q4_K,
.vec_dot = ggml_vec_dot_q4_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
#if defined (__ARM_FEATURE_MATMUL_INT8)
.nrows = 2,
#else
.nrows = 1,
#endif
},
[GGML_TYPE_Q5_K] = {
.from_float = quantize_row_q5_K,
@ -2414,12 +2418,32 @@ static bool ggml_thread_apply_priority(int32_t prio) {
// This is up to the applications.
DWORD p = THREAD_PRIORITY_NORMAL;
switch (prio) {
case GGML_SCHED_PRIO_LOW: p = THREAD_PRIORITY_BELOW_NORMAL; break;
case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
}
if (prio != GGML_SCHED_PRIO_LOW) {
// Tell Windows that this thread should not be throttled (needs its own CPU core).
// Newer Windows 11 versions aggresively park (offline) CPU cores and often place
// all our threads onto the first 4 cores which results in terrible performance with
// n_threads > 4
#if _WIN32_WINNT >= 0x0602
THREAD_POWER_THROTTLING_STATE t;
ZeroMemory(&t, sizeof(t));
t.Version = THREAD_POWER_THROTTLING_CURRENT_VERSION;
t.ControlMask = THREAD_POWER_THROTTLING_EXECUTION_SPEED;
t.StateMask = 0;
if (!SetThreadInformation(GetCurrentThread(), ThreadPowerThrottling, &t, sizeof(t))) {
GGML_LOG_DEBUG("failed to disable thread power throttling %d : (%d)\n", prio, (int) GetLastError());
return false;
}
#endif
}
if (prio == GGML_SCHED_PRIO_NORMAL) {
// Keep inherited policy/priority
return true;
@ -2447,6 +2471,8 @@ static bool ggml_thread_apply_priority(int32_t prio) {
struct sched_param p;
int32_t policy = SCHED_OTHER;
switch (prio) {
// TODO: there seems to be no way to set lower prio on Apple platforms
case GGML_SCHED_PRIO_LOW: policy = SCHED_OTHER; p.sched_priority = 0; break;
case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
@ -2503,6 +2529,7 @@ static bool ggml_thread_apply_priority(int32_t prio) {
struct sched_param p;
int32_t policy = SCHED_OTHER;
switch (prio) {
case GGML_SCHED_PRIO_LOW: policy = SCHED_BATCH; p.sched_priority = 0; break;
case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;

View File

@ -7633,39 +7633,83 @@ static void ggml_compute_forward_ssm_scan_f32(
const int ir1 = MIN(ir0 + dr, nr);
const int ir = ir1 - ir0;
for (int i3 = 0; i3 < n_s; ++i3) {
for (int i2 = 0; i2 < n_t; ++i2) {
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
#ifdef __ARM_FEATURE_SVE
for (int i3 = 0; i3 < n_s; ++i3) {
for (int i2 = 0; i2 < n_t; ++i2) {
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
// use the output as the source for the next token-wise iterations
if (i2 > 0) { s0 = s; }
// use the output as the source for the next token-wise iterations
if (i2 > 0) { s0 = s; }
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
float x_dt = x[i1] * dt_soft_plus;
float sumf = 0.0f;
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
int i = i0 + i1*nc;
// state = prev_state * dA + dB * x
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
// y = rowwise_dotprod(state, C)
sumf += state * C[i0];
s[i] = state;
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
float x_dt = x[i1] * dt_soft_plus;
svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
for (int64_t k = 0; k < nc; k += svcntw()) {
svfloat32_t vA = GGML_F32_VEC_LOAD(&A[i1*nc + k]);
svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k]);
svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k]);
svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[i1*nc + k]);
svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
t1 = exp_ps_sve(svptrue_b32(), t1);
svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
vs0 = GGML_F32_VEC_FMA(vs0, t1, t2);
r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
GGML_F32_VEC_STORE(&s[i1*nc + k], vs0);
}
y[i1] = GGML_F32xt_REDUCE_ONE(r1_vector);
}
y[i1] = sumf;
}
}
}
#else
for (int i3 = 0; i3 < n_s; ++i3) {
for (int i2 = 0; i2 < n_t; ++i2) {
const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
// use the output as the source for the next token-wise iterations
if (i2 > 0) { s0 = s; }
// d_inner
for (int i1 = 0; i1 < ir; ++i1) {
// ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
float x_dt = x[i1] * dt_soft_plus;
float sumf = 0.0f;
// d_state
for (int i0 = 0; i0 < nc; ++i0) {
int i = i0 + i1*nc;
// state = prev_state * dA + dB * x
float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
// y = rowwise_dotprod(state, C)
sumf += state * C[i0];
s[i] = state;
}
y[i1] = sumf;
}
}
}
#endif
}
void ggml_compute_forward_ssm_scan(
@ -8070,6 +8114,14 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
#define GGML_F32X_MUL GGML_F32x16_MUL
#define GGML_F32X_FMA GGML_F32x16_FMA
#define WKV_VECTOR_SIZE 16
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
#define GGML_F32X GGML_F32xt
#define GGML_F32X_SET1 GGML_F32xt_SET1
#define GGML_F32X_LOAD GGML_F32xt_LOAD
#define GGML_F32X_STORE GGML_F32xt_STORE
#define GGML_F32X_MUL GGML_F32xt_MUL
#define GGML_F32X_FMA GGML_F32xt_FMA
#define WKV_VECTOR_SIZE 8
#elif defined(__ARM_NEON) && defined(__aarch64__)
#define GGML_F32X GGML_F32x4
#define GGML_F32X_SET1 GGML_F32x4_SET1
@ -8081,7 +8133,13 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
#endif
#ifdef WKV_VECTOR_SIZE
const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
int wkv_vector_size;
#if defined(__ARM_FEATURE_SVE)
wkv_vector_size = svcntw();
#else
wkv_vector_size = WKV_VECTOR_SIZE;
#endif
const int64_t vec_count = head_size / wkv_vector_size;
for (int64_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
@ -8111,7 +8169,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
for (int64_t j = 0; j < vec_count; j++) {
size_t base_j = j * WKV_VECTOR_SIZE;
size_t base_j = j * wkv_vector_size;
size_t t_h_j_offset = t_h_offset + base_j;
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
@ -8136,7 +8194,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32(
}
// Handle remaining elements, this will not be used.
for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
@ -8272,6 +8330,14 @@ static void ggml_compute_forward_gla_f32(
#define GGML_F32X_MUL GGML_F32x16_MUL
#define GGML_F32X_FMA GGML_F32x16_FMA
#define GLA_VECTOR_SIZE 16
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
#define GGML_F32X GGML_F32xt
#define GGML_F32X_SET1 GGML_F32xt_SET1
#define GGML_F32X_LOAD GGML_F32xt_LOAD
#define GGML_F32X_STORE GGML_F32xt_STORE
#define GGML_F32X_MUL GGML_F32xt_MUL
#define GGML_F32X_FMA GGML_F32xt_FMA
#define GLA_VECTOR_SIZE 8
#elif defined(__ARM_NEON) && defined(__aarch64__)
#define GGML_F32X GGML_F32x4
#define GGML_F32X_SET1 GGML_F32x4_SET1
@ -8283,7 +8349,13 @@ static void ggml_compute_forward_gla_f32(
#endif
#ifdef GLA_VECTOR_SIZE
const int64_t vec_count = head_size / GLA_VECTOR_SIZE;
int gla_vector_size;
#if defined(__ARM_FEATURE_SVE)
gla_vector_size = svcntw();
#else
gla_vector_size = GLA_VECTOR_SIZE;
#endif
const int64_t vec_count = head_size / gla_vector_size;
for (int64_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
@ -8310,7 +8382,7 @@ static void ggml_compute_forward_gla_f32(
GGML_F32X g_vec = GGML_F32X_SET1(g_val);
for (int64_t j = 0; j < vec_count; j++) {
size_t base_j = j * GLA_VECTOR_SIZE;
size_t base_j = j * gla_vector_size;
size_t t_h_j_offset = t_h_offset + base_j;
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
@ -8334,7 +8406,7 @@ static void ggml_compute_forward_gla_f32(
}
// Handle remaining elements, this will not be used.
for (int64_t j = vec_count * GLA_VECTOR_SIZE; j < head_size; j++) {
for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
@ -8443,83 +8515,126 @@ static void ggml_compute_forward_rwkv_wkv7_f32(
int64_t h_stride_2d = head_size * head_size;
#if defined(GGML_SIMD)
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
#if defined(__ARM_FEATURE_SVE)
// scalar Route to scalar implementation //TODO: Write SVE code
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t ii = 0; ii < head_size; ii++) {
int64_t t_h_i_offset = t_h_offset + ii;
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
for (int64_t i = 0; i < head_size; i++) {
int64_t t_h_i_offset = t_h_offset + i;
int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
float v_val = v[t_h_i_offset];
float sa = 0;
{
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
}
float sa = 0, result = 0;
for (int64_t j = 0; j < head_size; j++) {
sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
}
GGML_F32_VEC_REDUCE(sa, sum);
}
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
for (int64_t j = 0; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
int64_t j = 0;
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
for (; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
// kv + s * decay + sa * b
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
result += state_cur[h_2d_i_j_offset] * r_val;
}
}
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
// There shouldn't be left-overs though.
for (; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v[t_h_i_offset] * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
dst_data[t_h_i_offset] = result;
}
}
}
}
#else
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;
int64_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
for (int64_t h = h_start; h < h_end; h++) {
int64_t h_offset = h * h_stride;
int64_t t_h_offset = t_offset + h_offset;
int64_t h_2d_offset = h * h_stride_2d;
for (int64_t ii = 0; ii < head_size; ii++) {
int64_t t_h_i_offset = t_h_offset + ii;
int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
float sa = 0;
{
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
}
}
GGML_F32_VEC_REDUCE(sa, sum);
}
GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
int64_t j = 0;
GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
for (; j < head_size; j += GGML_F32_STEP) {
for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
// kv + s * decay + sa * b
state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
}
}
GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
// There shouldn't be left-overs though.
for (; j < head_size; j++) {
int64_t t_h_j_offset = t_h_offset + j;
int64_t h_2d_i_j_offset = h_2d_i_offset + j;
float r_val = r[t_h_j_offset];
float w_val = w[t_h_j_offset];
float k_val = k[t_h_j_offset];
float b_val = b[t_h_j_offset];
float kv_val = v[t_h_i_offset] * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
}
}
}
}
#endif
#else
for (int64_t t = 0; t < T; t++) {
int64_t t_offset = t * t_stride;

View File

@ -17,7 +17,123 @@
// number of elements to fit in a single register
//
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_FMA)
#define GGML_SIMD
// F32 SVE
#define GGML_F32_EPR 8
#define DEFAULT_PG svptrue_b32()
#define GGML_F32xt svfloat32_t
#define GGML_F32xt_ZERO svdup_n_f32(0.0f)
#define GGML_F32xt_SET1(x) svdup_n_f32(x)
#define GGML_F32xt_LOAD_IMPL(pg, a, ...) svld1_f32(pg, a)
#define GGML_F32xt_LOAD(...) GGML_F32xt_LOAD_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_STORE_IMPL(pg,a,b) svst1_f32(pg, a, b)
#define GGML_F32xt_STORE(...) GGML_F32xt_STORE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_FMA_IMPL(pg, a, b, c) svmad_f32_m(pg, a, b, c)
#define GGML_F32xt_FMA(...) GGML_F32xt_FMA_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_ADD_IMPL(pg, a, b) svadd_f32_m(pg, a, b)
#define GGML_F32xt_ADD(...) GGML_F32xt_ADD_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_MUL_IMPL(pg, a, b) svmul_f32_m(pg, a, b)
#define GGML_F32xt_MUL(...) GGML_F32xt_MUL_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_REDUCE_ONE_IMPL(pg, a) svaddv(pg, a)
#define GGML_F32xt_REDUCE_ONE(...) GGML_F32xt_REDUCE_ONE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32xt_REDUCE_IMPL(pg, res, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8) \
{ \
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum2); \
sum3 = svadd_f32_m(DEFAULT_PG, sum3, sum4); \
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum6); \
sum7 = svadd_f32_m(DEFAULT_PG, sum7, sum8); \
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum3); \
sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum7); \
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum5); \
(res) = (ggml_float) GGML_F32xt_REDUCE_ONE(sum1); \
}
#define GGML_F32xt_REDUCE(...) GGML_F32xt_REDUCE_IMPL(DEFAULT_PG, __VA_ARGS__)
#define GGML_F32_VEC GGML_F32xt
#define GGML_F32_VEC_ZERO GGML_F32xt_ZERO
#define GGML_F32_VEC_SET1 GGML_F32xt_SET1
#define GGML_F32_VEC_LOAD GGML_F32xt_LOAD
#define GGML_F32_VEC_STORE GGML_F32xt_STORE
#define GGML_F32_VEC_FMA GGML_F32xt_FMA
#define GGML_F32_VEC_ADD GGML_F32xt_ADD
#define GGML_F32_VEC_MUL GGML_F32xt_MUL
#define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE
// F16 NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
#define GGML_F16x8 float16x8_t
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
#define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
#define GGML_F16x8_STORE vst1q_f16
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
#define GGML_F16x8_ADD vaddq_f16
#define GGML_F16x8_MUL vmulq_f16
#define GGML_F16x8_REDUCE(res, x) \
do { \
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
(res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
} while (0)
#define GGML_F16_VEC GGML_F16x8
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((__fp16 *)(p), (r)[i])
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
#else
// if FP16 vector arithmetic is not supported, we use FP32 instead
// and take advantage of the vcvt_ functions to convert to/from FP16
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
#define GGML_F32Cx4 float32x4_t
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32Cx4_ADD vaddq_f32
#define GGML_F32Cx4_MUL vmulq_f32
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((__fp16 *)(p), r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#endif
#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
#define GGML_SIMD

View File

@ -17,29 +17,98 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
#if defined(GGML_SIMD)
float sumf = 0.0f;
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
const int np = (n & ~(ggml_f32_step - 1));
svfloat32_t sum1 = svdup_n_f32(0.0f);
svfloat32_t sum2 = svdup_n_f32(0.0f);
svfloat32_t sum3 = svdup_n_f32(0.0f);
svfloat32_t sum4 = svdup_n_f32(0.0f);
svfloat32_t sum5 = svdup_n_f32(0.0f);
svfloat32_t sum6 = svdup_n_f32(0.0f);
svfloat32_t sum7 = svdup_n_f32(0.0f);
svfloat32_t sum8 = svdup_n_f32(0.0f);
svfloat32_t ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8;
svfloat32_t ay1,ay2,ay3,ay4,ay5,ay6,ay7,ay8;
for (int i = 0; i < np; i += ggml_f32_step) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
sum2 = GGML_F32_VEC_FMA(ax2, ay2, sum2);
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
sum3 = GGML_F32_VEC_FMA(ax3, ay3, sum3);
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
sum4 = GGML_F32_VEC_FMA(ax4, ay4, sum4);
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
sum5 = GGML_F32_VEC_FMA(ax5, ay5, sum5);
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
sum6 = GGML_F32_VEC_FMA(ax6, ay6, sum6);
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
sum7 = GGML_F32_VEC_FMA(ax7, ay7, sum7);
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
sum8 = GGML_F32_VEC_FMA(ax8, ay8, sum8);
}
}
// leftovers
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
const int np2 = (n & ~(ggml_f32_epr - 1));
for (int i = np; i < np2; i += ggml_f32_epr) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
}
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
if (np2 < n) {
svbool_t pg = svwhilelt_b32(np2, n);
ax1 = svld1_f32(pg, x + np2);
ay1 = svld1_f32(pg, y + np2);
sum1 = svmad_f32_m(pg, ax1, ay1, sum1);
}
// reduce sum1,sum2 to sum1
GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
#else
const int np = (n & ~(GGML_F32_STEP - 1));
// reduce sum0..sum3 to sum0
GGML_F32_VEC_REDUCE(sumf, sum);
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
// leftovers
for (int i = np; i < n; ++i) {
sumf += x[i]*y[i];
}
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
}
}
// reduce sum0..sum3 to sum0
GGML_F32_VEC_REDUCE(sumf, sum);
// leftovers
for (int i = np; i < n; ++i) {
sumf += x[i]*y[i];
}
#endif
#else
// scalar
ggml_float sumf = 0.0;

View File

@ -5,6 +5,7 @@
#include "ggml-impl.h"
#include "simd-mappings.h"
#include "ggml.h"
#include "ggml-cpu.h"
#if defined(GGML_USE_ACCELERATE)
#include <Accelerate/Accelerate.h>
@ -148,27 +149,108 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const float * GGML_RESTRICT x, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
#if defined(__ARM_FEATURE_SVE)
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
const int np = (n & ~(ggml_f32_step - 1));
svfloat32_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
svfloat32_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
for (int i = 0; i < np; i += ggml_f32_step) {
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
GGML_F32_VEC_STORE(y + i, ay1);
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_FMA(ax2, vx, ay2);
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
ay3 = GGML_F32_VEC_FMA(ax3, vx, ay3);
GGML_F32_VEC_STORE(y + i + 2*ggml_f32_epr, ay3);
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
ay4 = GGML_F32_VEC_FMA(ax4, vx, ay4);
GGML_F32_VEC_STORE(y + i + 3*ggml_f32_epr, ay4);
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
ay5 = GGML_F32_VEC_FMA(ax5, vx, ay5);
GGML_F32_VEC_STORE(y + i + 4*ggml_f32_epr, ay5);
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
ay6 = GGML_F32_VEC_FMA(ax6, vx, ay6);
GGML_F32_VEC_STORE(y + i + 5*ggml_f32_epr, ay6);
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
ay7 = GGML_F32_VEC_FMA(ax7, vx, ay7);
GGML_F32_VEC_STORE(y + i + 6*ggml_f32_epr, ay7);
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
ay8 = GGML_F32_VEC_FMA(ax8, vx, ay8);
GGML_F32_VEC_STORE(y + i + 7*ggml_f32_epr, ay8);
}
}
// leftovers
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
const int np2 = (n & ~(ggml_f32_epr - 1));
for (int i = np; i < np2; i += ggml_f32_epr) {
ax1 = GGML_F32_VEC_LOAD(x + i);
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1);
// leftovers
for (int i = np; i < n; ++i) {
y[i] += x[i]*v;
}
GGML_F32_VEC_STORE(y + i, ay1);
}
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
if (np2 < n) {
svbool_t pg =svwhilelt_b32(np2, n);
ax1 = svld1_f32(pg, x + np2);
ay1 = svld1_f32(pg, y + np2);
ay1 = svmad_f32_m(pg, ax1, vx, ay1);
svst1_f32(pg, y + np2, ay1);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] += x[i]*v;
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {
@ -220,36 +302,45 @@ inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int
}
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
}
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
#if defined(__ARM_FEATURE_SVE)
// scalar Route to scalar implementation //TODO: Write SVE code
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = 0; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
}
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
// leftovers
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = np; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
}
}
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
}
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = np; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
}
}
#endif
#else
// scalar
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
@ -265,25 +356,53 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
#if defined(GGML_USE_ACCELERATE)
vDSP_vsmul(y, 1, &v, y, 1, n);
#elif defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
#if defined(__ARM_FEATURE_SVE)
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
const int ggml_f32_step = 2 * ggml_f32_epr;
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
const int np = (n & ~(ggml_f32_step - 1));
svfloat32_t ay1;
svfloat32_t ay2;
for (int i = 0; i < np; i += ggml_f32_step) {
ay1 = GGML_F32_VEC_LOAD(y + i);
ay1 = GGML_F32_VEC_MUL(ay1, vx);
GGML_F32_VEC_STORE(y + i, ay1);
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
ay2 = GGML_F32_VEC_MUL(ay2, vx);
GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2);
}
}
// leftovers
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
if (np < n) {
svbool_t pg = svwhilelt_b32(np, n);
ay1 = svld1_f32(pg, y + np);
ay1 = svmul_f32_m(pg, ay1, vx);
svst1_f32(pg, y + np, ay1);
}
#else
const int np = (n & ~(GGML_F32_STEP - 1));
// leftovers
for (int i = np; i < n; ++i) {
y[i] *= v;
}
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] *= v;
}
#endif
#else
// scalar
for (int i = 0; i < n; ++i) {
@ -528,6 +647,42 @@ inline static ggml_fp16_t ggml_silu_f16(ggml_fp16_t x) {
#error "ref: https://github.com/ggml-org/llama.cpp/pull/7154#issuecomment-2143844461"
#endif
/* Below function was borrowed from the GitHub repository:
https://github.com/openvinotoolkit/openvino/blob/master/src/plugins/intel_cpu/src/nodes/kernels/scaled_attn/common.hpp */
#if defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
inline static svfloat32_t exp_ps_sve(svbool_t pg, svfloat32_t src) {
// Constants
const svfloat32_t log2_e = svdup_n_f32(1.4426950409f);
const svfloat32_t ln2 = svdup_n_f32(0.6931473921f);
const svfloat32_t half_ln2_sq = svdup_n_f32(0.2413862043f);
const svuint32_t not_mask17 = svdup_n_u32(~((1u << 17) - 1));
const svfloat32_t one = svdup_n_f32(1.0f);
const svfloat32_t inactive1 = svdup_n_f32(0.0f);
const svint32_t inactive2 = svdup_n_s32(0);
// Algorithm starts here
svfloat32_t t0 = svmul_f32_m(pg, src, log2_e); // y = x * log2(e)
svfloat32_t t1 = svrintm_f32_m(inactive1, pg, t0); // rount to int (float)
svint32_t t2 = svcvt_s32_f32_m(inactive2, pg, t1); // n
t1 = svsub_f32_m(pg, t0, t1); // a = y - floor(y)
t1 = svadd_f32_m(pg, t1, one); // b = a + 1
svuint32_t t3 = svlsr_n_u32_m(pg, svreinterpret_u32_f32(t1), 17); // v = b >> 17 (u32)
svfloat32_t t4 = svexpa_f32(t3); // c = fexpa(v)
t4 = svscale_f32_m(pg, t4, t2); // fexpa(v) * 2^(n)
// and_(t2.d, t1.d, not_mask17.d)
svfloat32_t t5 = svreinterpret_f32_u32(svand_u32_m(pg, svreinterpret_u32_f32(t1), not_mask17));
t5 = svsub_f32_m(pg, t1, t5); // z
t0 = svmla_f32_m(pg, ln2, t5, half_ln2_sq); // ln2 + half_ln2_sq * z
t0 = svmla_f32_m(pg, one, t5, t0); // 1 + (ln2 * z) + (half_ln2_sq * z * z)
t0 = svmul_f32_m(pg, t0, t4); // Final result
return t0;
}
#endif
#if defined(__ARM_NEON) && defined(__aarch64__)
// adapted from arm limited optimized routine

View File

@ -635,6 +635,7 @@ struct ggml_cuda_device_info {
int nsm; // number of streaming multiprocessors
size_t smpb; // max. shared memory per block
size_t smpbo; // max. shared memory per block (with opt-in)
bool integrated; // Device is integrated as opposed to discrete
bool vmm; // virtual memory support
size_t vmm_granularity; // granularity of virtual memory
size_t total_vram;

View File

@ -623,8 +623,8 @@ static __global__ void flash_attn_combine_results(
__builtin_assume(tid < D);
extern __shared__ float2 meta[];
if (tid < 2*parallel_blocks) {
((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.z*(2*parallel_blocks) + tid];
for (int i = tid; i < 2*parallel_blocks; i += D) {
((float *) meta)[i] = ((const float *)VKQ_meta) [blockIdx.z*(2*parallel_blocks) + i];
}
__syncthreads();

View File

@ -652,9 +652,12 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
float KQ_max_scale[cols_per_thread];
#pragma unroll
for (int col = 0; col < cols_per_thread; ++col) {
KQ_max_scale[col] = expf(KQ_max[col] - KQ_max_new[col]);
const float KQ_max_diff = KQ_max[col] - KQ_max_new[col];
KQ_max_scale[col] = expf(KQ_max_diff);
KQ_max[col] = KQ_max_new[col];
*((uint32_t *) &KQ_max_scale[col]) *= KQ_max_diff >= SOFTMAX_FTZ_THRESHOLD;
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
KQ_rowsum[col] = KQ_max_scale[col]*KQ_rowsum[col] + KQ_rowsum_add[col];
}
@ -1246,7 +1249,7 @@ static __global__ void flash_attn_ext_f16(
NO_DEVICE_CODE;
return;
}
#endif __CUDA_ARCH__ == GGML_CUDA_CC_TURING
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_TURING
static_assert(!mla || DKQ >= DV, "MLA needs DKQ >= DV");

View File

@ -243,10 +243,10 @@ static ggml_cuda_device_info ggml_cuda_init() {
info.default_tensor_split[id] = total_vram;
total_vram += prop.totalGlobalMem;
info.devices[id].nsm = prop.multiProcessorCount;
info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].warp_size = prop.warpSize;
info.devices[id].integrated = prop.integrated;
info.devices[id].nsm = prop.multiProcessorCount;
info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].warp_size = prop.warpSize;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
info.devices[id].smpbo = prop.sharedMemPerBlock;
@ -1065,6 +1065,10 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
GGML_UNUSED(buft);
}
static bool ggml_backend_buft_is_cuda_host(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
}
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
CUDA_CHECK(cudaFreeHost(buffer->context));
}
@ -1140,7 +1144,6 @@ typedef void (*ggml_cuda_op_mul_mat_t)(
static cudaError_t ggml_cuda_cpy_tensor_2d(
void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
const char * src_ptr = (const char *) src->data;
char * dst_ptr = (char *) dst;
@ -1423,8 +1426,6 @@ static void ggml_cuda_op_mul_mat(
const int64_t nb2 = dst->nb[2];
const int64_t nb3 = dst->nb[3];
GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
@ -1746,7 +1747,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft));
GGML_ASSERT(src0->type == GGML_TYPE_F16);
// Byte offsets and tensor dimensions are currently used in an inconsistent way for dst.
@ -2641,6 +2642,8 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
// flag used to determine whether it is an integrated_gpu
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
while (!graph_evaluated_or_captured) {
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
@ -2659,7 +2662,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
if (node->src[j] != nullptr) {
assert(node->src[j]->buffer);
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) ||
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft));
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft) || (integrated && ggml_backend_buft_is_cuda_host(node->src[j]->buffer->buft)));
}
}
#endif
@ -2994,9 +2997,12 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
{
struct ggml_tensor * a = op->src[0];
struct ggml_tensor * b = op->src[1];
// for small weight matrices the active device can end up without any rows, don't use row split in those cases
// this avoids some edge cases (and the performance would not be good anyways)
if (a->buffer && ggml_backend_buft_is_cuda_split(a->buffer->buft)) {
if (a->ne[2] > 1 || a->ne[3] > 1) {
return false;
}
// for small weight matrices the active device can end up without any rows, don't use row split in those cases
// this avoids some edge cases (and the performance would not be good anyways)
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) a->buffer->buft->context;
int64_t row_low;
int64_t row_high;
@ -3263,7 +3269,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
}
static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return (ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev;
ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;
const bool integrated = ggml_cuda_info().devices[dev_ctx->device].integrated;
return (((ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev) || (integrated && ggml_backend_buft_is_cuda_host(buft)));
}
static int64_t get_op_batch_size(const ggml_tensor * op) {

View File

@ -32,6 +32,8 @@
extern "C" {
#endif
void ggml_print_backtrace(void);
#ifndef MIN
# define MIN(a, b) ((a) < (b) ? (a) : (b))
#endif
@ -386,7 +388,7 @@ GGML_API void ggml_aligned_free(void * ptr, size_t size);
return r;
}
#elif defined(__riscv) && defined(GGML_RV_ZFH)
#elif defined(__riscv) && defined(__riscv_zfhmin)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
float f;

View File

@ -4766,6 +4766,8 @@ static bool ggml_metal_encode_node(
GGML_ASSERT(nqptg % 8 == 0);
GGML_ASSERT(ncpsg % 32 == 0);
const int is_q = ggml_is_quantized(src1->type) ? 1 : 0;
// 2*(2*ncpsg + nqptg)*(nsg)
// ncpsg soft_max values + ncpsg mask values + a diagonal scaling matrix (in float)
//
@ -4773,7 +4775,7 @@ static bool ggml_metal_encode_node(
// the shared memory needed for the simdgroups to load the KV cache
// each thread loads (dequantizes) 16 head elements, there are 32 threads in th SG
//
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(ne00 + 2*(2*ncpsg + nqptg)*(nsg)) + 16*32*(nsg))*(sizeof(float)/2), 16))
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(2*ne00 + 2*(2*ncpsg + nqptg)*(nsg)) + is_q*(16*32*(nsg)))*(sizeof(float)/2), 16))
int64_t nsgmax = 2;
@ -4810,9 +4812,9 @@ static bool ggml_metal_encode_node(
// and store the soft_max values and the mask
//
// ne00*(nsg)
// each simdgroup has a full f16 head vector in shared mem to accumulate results
// each simdgroup has a full f32 head vector in shared mem to accumulate results
//
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + ne20*(nsg))*(sizeof(float)/2), 16))
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + 2*ne20*(nsg))*(sizeof(float)/2), 16))
int64_t nsgmax = 2;
while (true) {

View File

@ -3328,14 +3328,14 @@ kernel void kernel_flash_attn_ext(
constexpr short NW = N_SIMDWIDTH;
constexpr short SH = (2*C + Q); // shared memory per simdgroup (s_t == float)
const short TS = nsg*SH; // shared memory size per query in (s_t == float)
const short T = DK + 2*TS; // shared memory size per query in (half)
const short TS = nsg*SH; // shared memory size per query in (s_t == float)
const short T = 2*DK + 2*TS; // shared memory size per query in (half)
threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t
threadgroup o_t * so = (threadgroup o_t *) (shmem_f16 + 0*DK); // reuse query data for accumulation
threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 0*DK); // same as above but in o4_t
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + 2*sgitg*SH + Q*DK); // scratch buffer for attention, mask and diagonal matrix
threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t
threadgroup o_t * so = (threadgroup o_t *) (shmem_f16 + 0*DK); // reuse query data for accumulation
threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 0*DK); // same as above but in o4_t
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + 2*sgitg*SH + 2*Q*DK); // scratch buffer for attention, mask and diagonal matrix
threadgroup k_t * sk = (threadgroup k_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // scratch buffer to load K in shared memory
threadgroup k4x4_t * sk4x4 = (threadgroup k4x4_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // same as above but in k4x4_t
@ -3354,7 +3354,7 @@ kernel void kernel_flash_attn_ext(
if (iq1 + j < args.ne01) {
sq4[j*DK4 + i] = (q4_t) q4[i];
} else {
sq4[j*DK4 + i] = (q4_t) 0.0f;
sq4[j*DK4 + i] = 0;
}
}
}
@ -3634,9 +3634,6 @@ kernel void kernel_flash_attn_ext(
// reduce the warps sequentially
for (ushort sg = 1; sg < nsg; ++sg) {
float S = { 0.0f };
float M = { -__FLT_MAX__/2 };
threadgroup_barrier(mem_flags::mem_threadgroup);
// each simdgroup stores its output to shared memory, reusing sq
@ -3657,12 +3654,12 @@ kernel void kernel_flash_attn_ext(
const float M0 = ss[j*TS + 1];
const float M1 = ss[j*TS + sg*SH + 1];
M = max(M0, M1);
const float M = max(M0, M1);
const float ms0 = exp(M0 - M);
const float ms1 = exp(M1 - M);
S = S0*ms0 + S1*ms1;
const float S = S0*ms0 + S1*ms1;
if (tiisg == 0) {
ss[j*TS + 0] = S;
@ -3701,16 +3698,18 @@ kernel void kernel_flash_attn_ext(
}
}
device float4 * dst4 = (device float4 *) dst;
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup s_t * sf = (threadgroup s_t *) (shmem_f16 + 2*Q*DK);
// final rescale with 1/S and store to global memory
if (sgitg == 0) {
for (short j = 0; j < Q && iq1 + j < args.ne01; ++j) {
const float S = ss[j*TS + 0];
for (short j = sgitg; j < Q && iq1 + j < args.ne01; j += nsg) {
const float S = 1.0f/sf[j*TS + 0];
for (short i = tiisg; i < DV4; i += NW) {
dst4[((uint64_t)iq3*args.ne2*args.ne1 + iq2 + (uint64_t)(iq1 + j)*args.ne1)*DV4 + i] = (float4) so4[j*DV4 + i]/S;
}
device float4 * dst4 = (device float4 *) dst + ((uint64_t)iq3*args.ne2*args.ne1 + iq2 + (uint64_t)(iq1 + j)*args.ne1)*DV4;
for (short i = tiisg; i < DV4; i += NW) {
dst4[i] = (float4) so4[j*DV4 + i]*S;
}
}
}
@ -3719,12 +3718,22 @@ kernel void kernel_flash_attn_ext(
// template to be able to explore different combinations
//
#define FA_TYPES \
half, half4, simdgroup_half8x8, \
half, half4x4, simdgroup_half8x8, \
half, half4x4, simdgroup_half8x8, \
float, simdgroup_float8x8, \
float, simdgroup_float8x8, \
half, half4, simdgroup_half8x8
float, float4, simdgroup_float8x8, \
half, half4x4, simdgroup_half8x8, \
half, half4x4, simdgroup_half8x8, \
float, simdgroup_float8x8, \
float, simdgroup_float8x8, \
float, float4, simdgroup_float8x8
//half, half4, simdgroup_half8x8
#define FA_TYPES_BF \
bfloat, bfloat4, simdgroup_bfloat8x8, \
bfloat, bfloat4x4, simdgroup_bfloat8x8, \
bfloat, bfloat4x4, simdgroup_bfloat8x8, \
float, simdgroup_float8x8, \
float, simdgroup_float8x8, \
float, float4, simdgroup_float8x8
//half, half4, simdgroup_half8x8
typedef decltype(kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 64, 64>) flash_attn_ext_t;
@ -3739,15 +3748,15 @@ template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_f16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 576, 512>;
#if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_flash_attn_ext_bf16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 64, 64>;
template [[host_name("kernel_flash_attn_ext_bf16_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 80, 80>;
template [[host_name("kernel_flash_attn_ext_bf16_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 96, 96>;
template [[host_name("kernel_flash_attn_ext_bf16_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 112, 112>;
template [[host_name("kernel_flash_attn_ext_bf16_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 128, 128>;
template [[host_name("kernel_flash_attn_ext_bf16_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 192>;
template [[host_name("kernel_flash_attn_ext_bf16_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 128>;
template [[host_name("kernel_flash_attn_ext_bf16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 256, 256>;
template [[host_name("kernel_flash_attn_ext_bf16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 576, 512>;
template [[host_name("kernel_flash_attn_ext_bf16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 64, 64>;
template [[host_name("kernel_flash_attn_ext_bf16_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 80, 80>;
template [[host_name("kernel_flash_attn_ext_bf16_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 96, 96>;
template [[host_name("kernel_flash_attn_ext_bf16_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 112, 112>;
template [[host_name("kernel_flash_attn_ext_bf16_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 128, 128>;
template [[host_name("kernel_flash_attn_ext_bf16_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 192>;
template [[host_name("kernel_flash_attn_ext_bf16_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 192, 128>;
template [[host_name("kernel_flash_attn_ext_bf16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 256, 256>;
template [[host_name("kernel_flash_attn_ext_bf16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES_BF, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 576, 512>;
#endif
template [[host_name("kernel_flash_attn_ext_q4_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 64, 64>;
@ -3801,6 +3810,7 @@ template [[host_name("kernel_flash_attn_ext_q8_0_h256")]] kernel flash_at
template [[host_name("kernel_flash_attn_ext_q8_0_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 576, 512>;
#undef FA_TYPES
#undef FA_TYPES_BF
template<
typename q4_t, // query types in shared memory
@ -3847,12 +3857,12 @@ kernel void kernel_flash_attn_ext_vec(
const short T = DK + nsg*SH; // shared memory size per query in (half)
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*DK); // scratch buffer for attention
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*DK); // same as above but in s4_t
threadgroup float * sm = (threadgroup float *) (shmem_f16 + sgitg*SH + 2*C + Q*DK); // scratch buffer for mask
threadgroup o4_t * sr4 = (threadgroup o4_t *) (shmem_f16 + sgitg*DV + Q*T); // scratch buffer for the results
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*DK); // scratch buffer for attention
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*DK); // same as above but in s4_t
threadgroup float * sm = (threadgroup float *) (shmem_f16 + sgitg*SH + 2*C + Q*DK); // scratch buffer for mask
threadgroup o4_t * sr4 = (threadgroup o4_t *) (shmem_f16 + 2*sgitg*DV + Q*T); // scratch buffer for the results
// store the result for all queries in local memory (the O matrix from the paper)
o4_t lo[DV4/NL];
@ -4157,7 +4167,7 @@ kernel void kernel_flash_attn_ext_vec(
half4, \
float, \
float, float4, \
half4
float4
typedef decltype(kernel_flash_attn_ext_vec<FA_TYPES, half4, 1, dequantize_f16_t4, half4, 1, dequantize_f16_t4, 128, 128, 4>) flash_attn_ext_vec_t;

View File

@ -55,14 +55,17 @@ endfunction()
set(GGML_OPENCL_KERNELS
add
argsort
clamp
cpy
cvt
diag_mask_inf
div
gelu
gemv_noshuffle_general
gemv_noshuffle
get_rows
group_norm
im2col_f32
im2col_f16
mul_mat_Ab_Bi_8x4
@ -83,12 +86,21 @@ set(GGML_OPENCL_KERNELS
rms_norm
rope
scale
sigmoid
silu
softmax_4_f32
softmax_4_f16
softmax_f32
softmax_f16
sub
sum_rows
transpose
concat
tsembd
upscale
tanh
pad
repeat
)
foreach (K ${GGML_OPENCL_KERNELS})

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,86 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#define SWAP(x, y, T) { T tmp = (x); (x) = (y); (y) = tmp; }
enum ggml_sort_order {
GGML_SORT_ORDER_ASC,
GGML_SORT_ORDER_DESC,
};
kernel void kernel_argsort_f32_i32(
global float * src0,
ulong offset0,
global int * dst,
ulong offsetd,
const int ne00,
const int ne00_pad,
const int order,
local int * dst_row
) {
// bitonic sort
int col = get_local_id(0);
int row = get_group_id(1);
if (col >= ne00_pad) {
return;
}
src0 = (global char *)((global char *)src0 + offset0);
dst = (global float *)((global char *)dst + offsetd);
global float * x_row = src0 + row * ne00;
// initialize indices
dst_row[col] = col;
barrier(CLK_LOCAL_MEM_FENCE);
for (int k = 2; k <= ne00_pad; k *= 2) {
for (int j = k / 2; j > 0; j /= 2) {
int ixj = col ^ j;
if (ixj > col) {
if ((col & k) == 0) {
if (dst_row[col] >= ne00 ||
(dst_row[ixj] < ne00 && (order == GGML_SORT_ORDER_ASC ?
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
) {
SWAP(dst_row[col], dst_row[ixj], int);
}
} else {
if (dst_row[ixj] >= ne00 ||
(dst_row[col] < ne00 && (order == GGML_SORT_ORDER_ASC ?
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
) {
SWAP(dst_row[col], dst_row[ixj], int);
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
// copy the result to dst without the padding
if (col < ne00) {
dst[row * ne00 + col] = dst_row[col];
}
}

View File

@ -0,0 +1,109 @@
kernel void kernel_concat_f32_contiguous(
global const char * p_src0, ulong off_src0,
global const char * p_src1, ulong off_src1,
global char * p_dst, ulong off_dst,
int d_ne00, int d_ne01, int d_ne02, // src0->ne[0..2] for the slice
int d_ne10, int d_ne11, int d_ne12, // src1->ne[0..2] for the slice (d_ne1X must match d_ne0X on non-concat axes)
int d_ne0, int d_ne1, int d_ne2, // dst->ne[0..2] for the slice
int dim
) {
global const float * src0 = (global const float*)((global char*)p_src0 + off_src0);
global const float * src1 = (global const float*)((global char*)p_src1 + off_src1);
global float * dst = (global float*)((global char*)p_dst + off_dst);
int i0 = get_global_id(0); // Index along dst's 0th dimension
int i1 = get_global_id(1); // Index along dst's 1st dimension
int i2 = get_global_id(2); // Index along dst's 2nd dimension
if (i0 >= d_ne0 || i1 >= d_ne1 || i2 >= d_ne2) {
return;
}
ulong dst_idx = (ulong)i2 * d_ne0 * d_ne1 + (ulong)i1 * d_ne0 + i0;
ulong src_idx;
if (dim == 0) {
if (i0 < d_ne00) { // Data from src0
src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0;
dst[dst_idx] = src0[src_idx];
} else { // Data from src1
src_idx = (ulong)i2 * d_ne10 * d_ne11 + (ulong)i1 * d_ne10 + (i0 - d_ne00);
dst[dst_idx] = src1[src_idx];
}
} else if (dim == 1) {
if (i1 < d_ne01) { // Data from src0
src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0;
dst[dst_idx] = src0[src_idx];
} else { // Data from src1
src_idx = (ulong)i2 * d_ne10 * d_ne11 + (ulong)(i1 - d_ne01) * d_ne10 + i0;
dst[dst_idx] = src1[src_idx];
}
} else if (dim == 2) {
if (i2 < d_ne02) { // Data from src0
src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0;
dst[dst_idx] = src0[src_idx];
} else { // Data from src1
src_idx = (ulong)(i2 - d_ne02) * d_ne10 * d_ne11 + (ulong)i1 * d_ne10 + i0;
dst[dst_idx] = src1[src_idx];
}
}
}
kernel void kernel_concat_f32_non_contiguous(
global const char * p_src0, ulong off_src0,
global const char * p_src1, ulong off_src1,
global char * p_dst, ulong off_dst,
long ne00, long ne01, long ne02, long ne03,
ulong nb00, ulong nb01, ulong nb02, ulong nb03,
ulong nb10, ulong nb11, ulong nb12, ulong nb13, // Strides for src1
long d_ne0, long d_ne1, long d_ne2, long d_ne3,
ulong d_nb0, ulong d_nb1, ulong d_nb2, ulong d_nb3,
int dim
) {
global const char * src0_base = p_src0 + off_src0;
global const char * src1_base = p_src1 + off_src1;
global char * dst_base = p_dst + off_dst;
long current_i1 = get_global_id(0); // Index for dst_dim_1
long current_i2 = get_global_id(1); // Index for dst_dim_2
long current_i3 = get_global_id(2); // Index for dst_dim_3
if (current_i1 >= d_ne1 || current_i2 >= d_ne2 || current_i3 >= d_ne3) {
return;
}
global const float * x_val_ptr;
global float * y_val_ptr;
for (long current_i0 = 0; current_i0 < d_ne0; ++current_i0) {
bool use_src0;
long s_i0 = current_i0, s_i1 = current_i1, s_i2 = current_i2, s_i3 = current_i3;
if (dim == 0) {
use_src0 = (current_i0 < ne00);
if (!use_src0) { s_i0 = current_i0 - ne00; }
} else if (dim == 1) {
use_src0 = (current_i1 < ne01);
if (!use_src0) { s_i1 = current_i1 - ne01; }
} else if (dim == 2) {
use_src0 = (current_i2 < ne02);
if (!use_src0) { s_i2 = current_i2 - ne02; }
} else { // dim == 3
use_src0 = (current_i3 < ne03);
if (!use_src0) { s_i3 = current_i3 - ne03; }
}
if (use_src0) {
x_val_ptr = (global const float *)(src0_base + (ulong)s_i3*nb03 + (ulong)s_i2*nb02 + (ulong)s_i1*nb01 + (ulong)s_i0*nb00);
} else {
x_val_ptr = (global const float *)(src1_base + (ulong)s_i3*nb13 + (ulong)s_i2*nb12 + (ulong)s_i1*nb11 + (ulong)s_i0*nb10);
}
y_val_ptr = (global float *)(dst_base + (ulong)current_i3*d_nb3 + (ulong)current_i2*d_nb2 + (ulong)current_i1*d_nb1 + (ulong)current_i0*d_nb0);
*y_val_ptr = *x_val_ptr;
}
}

View File

@ -0,0 +1,72 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
//------------------------------------------------------------------------------
// div
//------------------------------------------------------------------------------
kernel void kernel_div(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13,
int ne0,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
dst = dst + offsetd;
int i03 = get_group_id(2);
int i02 = get_group_id(1);
int i01 = get_group_id(0);
int i13 = i03 % ne13;
int i12 = i02 % ne12;
int i11 = i01 % ne11;
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
const int i10 = i0 % ne10;
*((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) / *((global float *)(src1_ptr + i10*nb10));
}
}
// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_div_row(
global float4 * src0,
ulong offset0,
global float4 * src1,
ulong offset1,
global float4 * dst,
ulong offsetd,
int ne
) {
src0 = (global float4*)((global char*)src0 + offset0);
src1 = (global float4*)((global char*)src1 + offset1);
dst = (global float4*)((global char*)dst + offsetd);
// This performs better than using %.
uint gid = get_global_id(0);
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
dst[gid] = src0[gid] / src1[idx1];
}

View File

@ -0,0 +1,72 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
// Workgroup must be a subgroup
#ifdef INTEL_GPU
REQD_SUBGROUP_SIZE_32
#elif defined (ADRENO_GPU)
REQD_SUBGROUP_SIZE_64
#endif
kernel void kernel_group_norm(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd,
int ne,
int group_size,
float eps
) {
src0 = (global float *)((global char *)src0 + offset0);
dst = (global float *)((global char *)dst + offsetd);
int start = get_group_id(0) * group_size;
int end = start + group_size;
start += get_local_id(0);
if (end >= ne) {
end = ne;
}
float tmp = 0.0f;
for (int j = start; j < end; j += get_local_size(0)) {
tmp += src0[j];
}
tmp = sub_group_reduce_add(tmp);
const float mean = tmp / group_size;
tmp = 0.0f;
for (int j = start; j < end; j += get_local_size(0)) {
float xi = src0[j] - mean;
dst[j] = xi;
tmp += xi * xi;
}
tmp = sub_group_reduce_add(tmp);
const float variance = tmp / group_size;
const float scale = 1.0f/sqrt(variance + eps);
for (int j = start; j < end; j += get_local_size(0)) {
dst[j] *= scale;
}
}

View File

@ -0,0 +1,30 @@
kernel void kernel_pad(
global const void * src0_ptr,
ulong src0_offset,
global void * dst_ptr,
ulong dst_offset,
int s_ne0, int s_ne1, int s_ne2,
int d_ne0, int d_ne1, int d_ne2
) {
global const float * src0 = (global const float *)((global const char *)src0_ptr + src0_offset);
global float * dst = (global float *)((global char *)dst_ptr + dst_offset);
int nidx = get_global_id(0);
int idx_d1 = get_group_id(1);
int idx_d2 = get_group_id(2);
if (nidx >= d_ne0) {
return;
}
int dst_el_offset = nidx + idx_d1 * d_ne0 + idx_d2 * d_ne0 * d_ne1;
bool in_src_bounds = (nidx < s_ne0) && (idx_d1 < s_ne1) && (idx_d2 < s_ne2);
if (in_src_bounds) {
int src_el_offset = nidx + idx_d1 * s_ne0 + idx_d2 * s_ne0 * s_ne1;
dst[dst_el_offset] = src0[src_el_offset];
} else {
dst[dst_el_offset] = 0.0f;
}
}

View File

@ -0,0 +1,39 @@
kernel void kernel_repeat(
global const char * src0_data_in,
global char * dst_data_in,
ulong src0_offset,
ulong dst_offset,
int src0_ne0, int src0_ne1, int src0_ne2, int src0_ne3,
ulong src0_nb0, ulong src0_nb1, ulong src0_nb2, ulong src0_nb3,
int dst_ne0, int dst_ne1, int dst_ne2, int dst_ne3,
ulong dst_nb0, ulong dst_nb1, ulong dst_nb2, ulong dst_nb3
) {
global const char * src0_data = src0_data_in + src0_offset;
global char * dst_data = dst_data_in + dst_offset;
const int d3 = get_global_id(2);
const int d2 = get_global_id(1);
const int d1 = get_global_id(0);
if (d3 >= dst_ne3 || d2 >= dst_ne2 || d1 >= dst_ne1) {
return;
}
const int s3 = d3 % src0_ne3;
const int s2 = d2 % src0_ne2;
const int s1 = d1 % src0_ne1;
const global char * p_src0_slice = src0_data + (ulong)s3*src0_nb3 + (ulong)s2*src0_nb2 + (ulong)s1*src0_nb1;
global char * p_dst_slice = dst_data + (ulong)d3*dst_nb3 + (ulong)d2*dst_nb2 + (ulong)d1*dst_nb1;
for (int d0 = 0; d0 < dst_ne0; ++d0) {
// Determine source index for dimension 0 based on tiling/broadcasting.
const int s0 = d0 % src0_ne0;
const global char * restrict current_src_el_ptr = p_src0_slice + (ulong)s0*src0_nb0;
global char * restrict current_dst_el_ptr = p_dst_slice + (ulong)d0*dst_nb0;
for (int k = 0; k < src0_nb0; ++k) {
current_dst_el_ptr[k] = current_src_el_ptr[k];
}
}
}

View File

@ -0,0 +1,29 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
//------------------------------------------------------------------------------
// sigmoid
//------------------------------------------------------------------------------
kernel void kernel_sigmoid_f32(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd
) {
src0 = (global float*)((global char*)src0 + offset0);
dst = (global float*)((global char*)dst + offsetd);
dst[get_global_id(0)] = 1.0f / (1.0f + exp(-src0[get_global_id(0)]));
}
kernel void kernel_sigmoid_f16(
global half * src0,
ulong offset0,
global half * dst,
ulong offsetd
) {
src0 = (global half*)((global char*)src0 + offset0);
dst = (global half*)((global char*)dst + offsetd);
dst[get_global_id(0)] = 1.0f / (1.0f + exp(-src0[get_global_id(0)]));
}

View File

@ -0,0 +1,72 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
//------------------------------------------------------------------------------
// div
//------------------------------------------------------------------------------
kernel void kernel_sub(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13,
int ne0,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
dst = dst + offsetd;
int i03 = get_group_id(2);
int i02 = get_group_id(1);
int i01 = get_group_id(0);
int i13 = i03 % ne13;
int i12 = i02 % ne12;
int i11 = i01 % ne11;
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
const int i10 = i0 % ne10;
*((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) - *((global float *)(src1_ptr + i10*nb10));
}
}
// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_sub_row(
global float4 * src0,
ulong offset0,
global float4 * src1,
ulong offset1,
global float4 * dst,
ulong offsetd,
int ne
) {
src0 = (global float4*)((global char*)src0 + offset0);
src1 = (global float4*)((global char*)src1 + offset1);
dst = (global float4*)((global char*)dst + offsetd);
// This performs better than using %.
uint gid = get_global_id(0);
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
dst[gid] = src0[gid] - src1[idx1];
}

View File

@ -0,0 +1,39 @@
kernel void kernel_sum_rows_f32(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb01,
ulong nb02,
ulong nb03,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = (global float *)((global char *)src0 + offset0);
dst = (global float *)((global char *)dst + offsetd);
int i3 = get_global_id(2);
int i2 = get_global_id(1);
int i1 = get_global_id(0);
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
global float * src_row = (global float *) ((global char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
global float * dst_row = (global float *) ((global char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
float row_sum = 0;
for (int i0 = 0; i0 < ne00; i0++) {
row_sum += src_row[i0];
}
dst_row[0] = row_sum;
}

View File

@ -0,0 +1,63 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
kernel void kernel_tanh_f32_nd(
global void * p_src0_base, ulong off_src0_abs,
global void * p_dst_base, ulong off_dst_abs,
int ne00, int ne01, int ne02, int ne03,
ulong nb00, ulong nb01, ulong nb02, ulong nb03,
int ne10, int ne11, int ne12, int ne13,
ulong nb10, ulong nb11, ulong nb12, ulong nb13
) {
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const float *src_val_ptr = (global const float *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global float *dst_val_ptr = (global float *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
*dst_val_ptr = tanh(*src_val_ptr);
}
}
}
kernel void kernel_tanh_f16_nd(
global void * p_src0_base, ulong off_src0_abs,
global void * p_dst_base, ulong off_dst_abs,
int ne00, int ne01, int ne02, int ne03,
ulong nb00, ulong nb01, ulong nb02, ulong nb03,
int ne10, int ne11, int ne12, int ne13,
ulong nb10, ulong nb11, ulong nb12, ulong nb13
) {
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const half *src_val_ptr = (global const half *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global half *dst_val_ptr = (global half *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
*dst_val_ptr = tanh(*src_val_ptr);
}
}
}

View File

@ -0,0 +1,48 @@
kernel void kernel_timestep_embedding(
global const void * p_timesteps,
ulong off_timesteps,
global void * p_dst,
ulong off_dst,
int dst_nb1_bytes,
int logical_dim,
int max_period
) {
int local_i;
int local_j;
int local_half_dim;
float local_timestep_val;
float local_freq;
float local_arg;
global float * local_embed_data_ptr;
global const float * local_timesteps_input_ptr;
global float * local_dst_output_base_ptr;
local_timesteps_input_ptr = (global const float *)((global char *)p_timesteps + off_timesteps);
local_dst_output_base_ptr = (global float *)((global char *)p_dst + off_dst);
local_i = get_global_id(1);
local_j = get_global_id(0);
local_half_dim = logical_dim / 2;
local_embed_data_ptr = (global float *)((global char *)local_dst_output_base_ptr + local_i * dst_nb1_bytes);
if (logical_dim % 2 != 0 && local_j == ((logical_dim + 1) / 2)) {
local_embed_data_ptr[logical_dim] = 0.0f;
}
if (local_j >= local_half_dim) {
return;
}
local_timestep_val = local_timesteps_input_ptr[local_i];
if (local_half_dim == 0) {
local_freq = 1.0f;
} else {
local_freq = exp(-log((float)max_period) * (float)local_j / (float)local_half_dim);
}
local_arg = local_timestep_val * local_freq;
local_embed_data_ptr[local_j] = cos(local_arg);
local_embed_data_ptr[local_j + local_half_dim] = sin(local_arg);
}

View File

@ -0,0 +1,121 @@
kernel void kernel_upscale(
global const void * p_src0,
ulong off_src0,
global void * p_dst,
ulong off_dst,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne10,
int ne11,
int ne12,
int ne13,
float sf0,
float sf1,
float sf2,
float sf3
) {
global const char * src_base = (global const char *)p_src0 + off_src0;
global float * dst_base = (global float *)((global char *)p_dst + off_dst);
int index = get_global_id(0);
int dst_total_elements = ne10 * ne11 * ne12 * ne13;
if (index >= dst_total_elements) {
return;
}
int i10 = index % ne10;
int i11 = (index / ne10) % ne11;
int i12 = (index / (ne10 * ne11)) % ne12;
int i13 = index / (ne10 * ne11 * ne12);
int i00 = (int)(i10 / sf0);
int i01 = (int)(i11 / sf1);
int i02 = (int)(i12 / sf2);
int i03 = (int)(i13 / sf3);
ulong offset_src_element = (ulong)i03 * nb03 + (ulong)i02 * nb02 + (ulong)i01 * nb01 + (ulong)i00 * nb00;
global const float * src_element_ptr = (global const float *)(src_base + offset_src_element);
dst_base[index] = *src_element_ptr;
}
kernel void kernel_upscale_bilinear(
global const void * p_src0,
ulong off_src0,
global void * p_dst,
ulong off_dst,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne00_src,
int ne01_src,
int ne10_dst,
int ne11_dst,
int ne12_dst,
int ne13_dst,
float sf0,
float sf1,
float sf2,
float sf3
) {
global const char * src_base = (global const char *)p_src0 + off_src0;
global float * dst_base = (global float *)((global char *)p_dst + off_dst);
int index = get_global_id(0);
int dst_total_elements = ne10_dst * ne11_dst * ne12_dst * ne13_dst;
if (index >= dst_total_elements) {
return;
}
int i10_dst = index % ne10_dst;
int i11_dst = (index / ne10_dst) % ne11_dst;
int i12_dst = (index / (ne10_dst * ne11_dst)) % ne12_dst;
int i13_dst = index / (ne10_dst * ne11_dst * ne12_dst);
int i02_src = (int)(i12_dst / sf2);
int i03_src = (int)(i13_dst / sf3);
const float pixel_offset = 0.5f;
float y_src_f = ((float)i11_dst + pixel_offset) / sf1 - pixel_offset;
long y0_src = (long)floor(y_src_f);
long y1_src = y0_src + 1;
y0_src = max(0L, min(y0_src, (long)ne01_src - 1));
y1_src = max(0L, min(y1_src, (long)ne01_src - 1));
float dy = y_src_f - (float)y0_src;
dy = max(0.0f, min(dy, 1.0f));
float x_src_f = ((float)i10_dst + pixel_offset) / sf0 - pixel_offset;
long x0_src = (long)floor(x_src_f);
long x1_src = x0_src + 1;
x0_src = max(0L, min(x0_src, (long)ne00_src - 1));
x1_src = max(0L, min(x1_src, (long)ne00_src - 1));
float dx = x_src_f - (float)x0_src;
dx = max(0.0f, min(dx, 1.0f));
global const float * p_a = (global const float *)(src_base + (ulong)x0_src * nb00 + (ulong)y0_src * nb01 + (ulong)i02_src * nb02 + (ulong)i03_src * nb03);
global const float * p_b = (global const float *)(src_base + (ulong)x1_src * nb00 + (ulong)y0_src * nb01 + (ulong)i02_src * nb02 + (ulong)i03_src * nb03);
global const float * p_c = (global const float *)(src_base + (ulong)x0_src * nb00 + (ulong)y1_src * nb01 + (ulong)i02_src * nb02 + (ulong)i03_src * nb03);
global const float * p_d = (global const float *)(src_base + (ulong)x1_src * nb00 + (ulong)y1_src * nb01 + (ulong)i02_src * nb02 + (ulong)i03_src * nb03);
const float val_a = *p_a;
const float val_b = *p_b;
const float val_c = *p_c;
const float val_d = *p_d;
float result = val_a * (1.0f - dx) * (1.0f - dy) +
val_b * dx * (1.0f - dy) +
val_c * (1.0f - dx) * dy +
val_d * dx * dy;
dst_base[index] = result;
}

View File

@ -13,7 +13,7 @@ elseif(SUPPORTS_SYCL)
If you expected the oneAPI Release compiler, please install oneAPI & source it, like:
source /opt/intel/oneapi/setvars.sh")
else()
message(FATAL_ERROR, "C++ compiler lacks SYCL support.")
message(FATAL_ERROR "C++ compiler lacks SYCL support.")
endif()
message(STATUS "SYCL found")
#todo: AOT
@ -170,7 +170,7 @@ else()
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_NVIDIA)
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
if (NOT GGML_SYCL_DEVICE_ARCH)
message(ERROR "Can't enable SYCL hip backend, GGML_SYCL_DEVICE_ARCH has not been set.")
message(FATAL_ERROR "Can't enable SYCL hip backend, GGML_SYCL_DEVICE_ARCH has not been set.")
endif()
target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath_blas_rocblas)
target_compile_options(ggml-sycl PRIVATE "-fsycl-targets=amdgcn-amd-amdhsa")

View File

@ -1,8 +1,12 @@
#include "cpy.hpp"
#include <float.h>
#include <string>
#include "dequantize.hpp"
#include "ggml-sycl/common.hpp"
#include "ggml-sycl/presets.hpp"
#include "ggml.h"
static __dpct_inline__ int best_index_int8(int n, const int8_t * val, float x) {
if (x <= val[0]) {
@ -116,6 +120,15 @@ static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
}
}
/* quantized type same copy */
template<typename T>
static void cpy_blck_q_q(const char * cxi, char * cdsti) {
const T * xi = (const T *) cxi;
T * dsti = (T *) cdsti;
*dsti = *xi;
}
static void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) {
float * cdstf = (float *) (cdsti);
@ -311,6 +324,34 @@ template <dequantize_kernel_t dequant, int qk> static void cpy_blck_q_f32(const
}
}
template <typename T, int qk>
static void cpy_q_q(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02,
const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11,
const int ne12, const int nb10, const int nb11, const int nb12, const int nb13,
const sycl::nd_item<3> & item_ct1) {
const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2)) * qk;
if (i >= ne) {
return;
}
const int i03 = i / (ne00 * ne01 * ne02);
const int i02 = (i - i03 * ne00 * ne01 * ne02) / (ne00 * ne01);
const int i01 = (i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00) / ne00;
const int i00 = i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00 - i01 * ne00;
const int x_offset = (i00 / qk) * nb00 + i01 * nb01 + i02 * nb02 + i03 * nb03;
const int i13 = i / (ne10 * ne11 * ne12);
const int i12 = (i - i13 * ne10 * ne11 * ne12) / (ne10 * ne11);
const int i11 = (i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11) / ne10;
const int i10 = i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11 - i11 * ne10;
const int dst_offset = (i10 / qk) * nb10 + i11 * nb11 + i12 * nb12 + i13 * nb13;
cpy_blck_q_q<T>(cx + x_offset, cdst + dst_offset);
}
template <cpy_kernel_t cpy_blck, int qk>
static void cpy_f32_q(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02,
const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11,
@ -322,6 +363,7 @@ static void cpy_f32_q(const char * cx, char * cdst, const int ne, const int ne00
return;
}
const int i03 = i / (ne00 * ne01 * ne02);
const int i02 = (i - i03 * ne00 * ne01 * ne02) / (ne00 * ne01);
const int i01 = (i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00) / ne00;
@ -615,6 +657,70 @@ static void ggml_cpy_i32_i32_sycl(const char * cx, char * cdst, const int ne, co
}
}
static void ggml_cpy_q8_0_q8_0(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
const int num_blocks = ceil_div(ne, SYCL_CPY_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) {
cpy_q_q<block_q8_0, QK8_0>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1);
});
}
static void ggml_cpy_q5_0_q5_0(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
const int num_blocks = ceil_div(ne, SYCL_CPY_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) {
cpy_q_q<block_q5_0, QK5_0>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1);
});
}
static void ggml_cpy_q5_1_q5_1(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
const int num_blocks = ceil_div(ne, SYCL_CPY_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) {
cpy_q_q<block_q5_1, QK5_1>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1);
});
}
static void ggml_cpy_q4_0_q4_0(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
const int num_blocks = ceil_div(ne, SYCL_CPY_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) {
cpy_q_q<block_q4_0, QK4_0>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1);
});
}
static void ggml_cpy_q4_1_q4_1(const char * cx, char * cdst, const int ne, const int ne00, const int ne01,
const int ne02, const int nb00, const int nb01, const int nb02, const int nb03,
const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13, queue_ptr stream) {
const int num_blocks = ceil_div(ne, SYCL_CPY_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) {
cpy_q_q<block_q4_1, QK4_1>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1);
});
}
void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1) try {
// Unlike other operators ggml_sycl_cpy takes 2 distinct tensors instead of a dst ggml_tensor and rely on its src field
scope_op_debug_print scope_dbg_print(__func__, src1, /*num_src=*/0,
@ -632,8 +738,10 @@ void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, co
char * src0_ddc = (char *) src0->data;
char * src1_ddc = (char *) src1->data;
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
if ((src0->type == src1->type) && (ggml_is_contiguous(src0) && ggml_is_contiguous(src1))) {
GGML_SYCL_DEBUG("%s: memcpy path\n", __func__);
main_stream->memcpy(src1_ddc, src0_ddc, ggml_nbytes(src0));
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f32_f32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10,
nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
@ -684,6 +792,16 @@ void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, co
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
ggml_cpy_f32_iq4_nl_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12,
nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_Q8_0) {
ggml_cpy_q8_0_q8_0(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_Q5_0) {
ggml_cpy_q5_0_q5_0(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_Q5_1) {
ggml_cpy_q5_1_q5_1(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_Q4_0) {
ggml_cpy_q4_0_q4_0(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_Q4_1) {
ggml_cpy_q4_1_q4_1(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else {
GGML_LOG_ERROR("%s: unsupported type combination (%s to %s)\n", __func__, ggml_type_name(src0->type),
ggml_type_name(src1->type));

View File

@ -84,6 +84,15 @@ static void gelu_quick(const T *x, T *dst, int k,
dst[i] = x[i] * (static_cast<T>(1.0f) / (static_cast<T>(1.0f) + sycl::native::exp(GELU_QUICK_COEF * x[i])));
}
template<typename T>
static void gelu_erf(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) {
const T SQRT_2_INV = static_cast<T>(0.70710678118654752440084436210484f);
for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) {
auto x_i = x[i];
dst[i] = static_cast<T>(0.5f) * x_i * (static_cast<T>(1.0f) + sycl::erf(x_i * SQRT_2_INV));
}
}
template<typename T>
static void tanh(const T *x, T *dst, int k,
const sycl::nd_item<3> &item_ct1) {
@ -400,6 +409,20 @@ static void gelu_quick_sycl(const T *x, T *dst, const int k,
});
}
template<typename T>
static void gelu_erf_sycl(const T *x, T *dst, const int k,
queue_ptr stream) {
const int num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
gelu_erf(x, dst, k, item_ct1);
});
}
template<typename T>
static void tanh_sycl(const T *x, T *dst, const int k,
queue_ptr stream) {
@ -816,6 +839,38 @@ inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor
}
}
inline void ggml_sycl_op_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
#if defined (GGML_SYCL_F16)
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
#else
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
#endif
GGML_ASSERT(dst->src[0]->type == dst->type);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
switch (dst->type) {
#if defined (GGML_SYCL_F16)
case GGML_TYPE_F16:
{
auto data_pts = cast_data<sycl::half>(dst);
gelu_erf_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
break;
}
#endif
case GGML_TYPE_F32:
{
auto data_pts = cast_data<float>(dst);
gelu_erf_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
break;
}
default:
GGML_ABORT("GGML tensor type not supported!\n");
}
}
inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
#if defined (GGML_SYCL_F16)
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
@ -1425,6 +1480,11 @@ void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_op_gelu_quick(ctx, dst);
}
void ggml_sycl_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_gelu_erf(ctx, dst);
}
void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_tanh(ctx, dst);

View File

@ -38,6 +38,8 @@ void ggml_sycl_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
void ggml_sycl_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst);

View File

@ -1434,6 +1434,59 @@ static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy,
reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
}
template <int ElementsPerWI>
static __dpct_inline__ void quantize_and_reorder_q8_1(const float * __restrict__ x, void * reordered_q8_tensor,
const int kx, const int kx_padded, const sycl::nd_item<1> & it) {
/*
Quantizes and reorders the resultant q8 tensor in a per row fashion
Each sub-group calculates one quant block. i.e. QK8_1 quant values and the d and sum values
*/
auto subgroup_id = it.get_group(0);
auto wi_id = it.get_local_id(0);
const int num_blocks_per_row = kx / QK8_1;
auto row = subgroup_id / num_blocks_per_row;
auto col = subgroup_id % num_blocks_per_row;
auto row_offset = row * (kx_padded / QK8_1) * sizeof(block_q8_1);
auto col_offset = QK8_1 * col + wi_id * ElementsPerWI;
auto quant_ptr = (int8_t *) ((char *) reordered_q8_tensor + row_offset + col_offset);
auto ds_ptr = (sycl::half2 *) ((char *) reordered_q8_tensor + row_offset + kx + col * sizeof(sycl::half2));
sycl::vec<float, ElementsPerWI> wi_f32_vals;
sycl::vec<int8_t, ElementsPerWI> quantized_values;
auto float_ptr_offset = subgroup_id * QK8_1 + ElementsPerWI * wi_id;
wi_f32_vals = *reinterpret_cast<const sycl::vec<float, ElementsPerWI> *>(x + float_ptr_offset);
float sum = 0.0f;
float amax = 0.0f;
#pragma unroll(ElementsPerWI)
for (int i = 0; i < ElementsPerWI; i++) {
sum += wi_f32_vals[i];
amax = sycl::fmax(amax, sycl::fabs(wi_f32_vals[i]));
quantized_values[i] = 0;
}
sum = sycl::reduce_over_group(it.get_group(), sum, sycl::plus<float>());
amax = sycl::reduce_over_group(it.get_group(), amax, sycl::maximum<float>());
float d = amax == 0 ? 1 : amax / 127;
#pragma unroll(ElementsPerWI)
for (int i = 0; i < ElementsPerWI; i++) {
quantized_values[i] = sycl::round(wi_f32_vals[i] / d);
}
d = amax == 0 ? 0 : d;
*reinterpret_cast<sycl::vec<int8_t, ElementsPerWI> *>(quant_ptr) = quantized_values;
if (wi_id == 0) {
*ds_ptr = sycl::half2(sycl::half(d), sycl::half(sum));
}
}
static void mul_mat_p021_f16_f32(
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
@ -1718,23 +1771,30 @@ static void pool2d_nchw_kernel(
o_ptr[cur_oh * ow + cur_ow] = res;
}
static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
const int ky, const int kx_padded,
queue_ptr stream) {
const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
const sycl::range<3> num_blocks(1, ky, block_num_x);
int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE;
static_assert(QK8_1 % WARP_SIZE == 0);
const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE);
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
static void quantize_row_q8_1_sycl(const float * x, void * vy, const int kx, const int ky, const int kx_padded,
bool reorder_q8_tensor, queue_ptr stream) {
if (reorder_q8_tensor) {
auto local_range = std::size_t(WARP_SIZE);
auto num_quant_blocks = ky * (kx / QK8_1);
auto global_range = num_quant_blocks * local_range;
stream->parallel_for(sycl::nd_range<1>({ global_range }, { local_range }),
[=](sycl::nd_item<1> it) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
quantize_and_reorder_q8_1<QK8_1 / WARP_SIZE>(x, vy, kx, kx_padded, it);
});
} else {
const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
const sycl::range<3> num_blocks(1, ky, block_num_x);
int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE;
static_assert(QK8_1 % WARP_SIZE == 0);
const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE);
{
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
stream->parallel_for(
sycl::nd_range<3>(num_blocks * block_size, block_size),
[=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
quantize_q8_1<QUANT_BLOCK_TILE>(x, vy, kx, kx_padded, item_ct1);
});
stream->parallel_for(sycl::nd_range<3>(num_blocks * block_size, block_size),
[=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
quantize_q8_1<QUANT_BLOCK_TILE>(x, vy, kx, kx_padded, item_ct1);
});
}
}
}
@ -2446,9 +2506,10 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
dev[i].src1_ddq = dev[i].src1_ddq_alloc.alloc(ctx.pool(i), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
if (src1_on_device && src1_is_contiguous) {
bool reorder_q8_tensor = src0->extra && ((ggml_tensor_extra_gpu *)src0->extra)->optimized_feature.reorder;
scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst,
/*num_src=*/2, " : converting src1 to Q8_1");
quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, reorder_q8_tensor, stream);
/*
DPCT1010:90: SYCL uses exceptions to report errors and does not
use the error codes. The call was replaced with 0. You need to
@ -2554,7 +2615,7 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
if (convert_src1_to_q8_1 && !src1_is_contiguous) {
scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst,
/*num_src=*/2, " : converting src1 to Q8_1");
quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, false, stream);
/*
DPCT1010:92: SYCL uses exceptions to report errors and does
not use the error codes. The call was replaced with 0. You
@ -3543,6 +3604,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_UNARY_OP_GELU_QUICK:
ggml_sycl_gelu_quick(ctx, dst);
break;
case GGML_UNARY_OP_GELU_ERF:
ggml_sycl_gelu_erf(ctx, dst);
break;
case GGML_UNARY_OP_TANH:
ggml_sycl_tanh(ctx, dst);
break;
@ -4096,6 +4160,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_SGN:
@ -4161,6 +4226,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
{
ggml_type src0_type = op->src[0]->type;
ggml_type src1_type = op->src[1]->type;
if (src0_type == src1_type && (ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) && src0_type != GGML_TYPE_BF16) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
return true;
}
@ -4206,6 +4274,21 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
return true;
}
if(src0_type == GGML_TYPE_Q8_0 && src1_type == GGML_TYPE_Q8_0) {
return true;
}
if(src0_type == GGML_TYPE_Q5_0 && src1_type == GGML_TYPE_Q5_0) {
return true;
}
if(src0_type == GGML_TYPE_Q5_1 && src1_type == GGML_TYPE_Q5_1) {
return true;
}
if(src0_type == GGML_TYPE_Q4_0 && src1_type == GGML_TYPE_Q4_0) {
return true;
}
if(src0_type == GGML_TYPE_Q4_1 && src1_type == GGML_TYPE_Q4_1) {
return true;
}
return false;
}
case GGML_OP_CONCAT:
@ -4253,14 +4336,6 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_SOFT_MAX:
return true;
case GGML_OP_ROPE:
{
const int mode = ((const int32_t *) op->op_params)[2];
// mode is not used as a bitmask in practice, the various rope type modes are independent implementations
if (mode == GGML_ROPE_TYPE_MROPE) {
return false;
}
return true;
}
case GGML_OP_IM2COL:
return true;
case GGML_OP_UPSCALE:

View File

@ -29,8 +29,6 @@ static void mul_mat_vec_q_reorder(const void * __restrict__ vx, const void * __r
static_assert(blocks_per_subgroup > 0);
static_assert(block_elements_per_subgroup > 0);
const block_q8_1 * y = (const block_q8_1 *) vy;
float partial_sum = 0.0f;
for (int i = sg.get_local_linear_id() / block_elements_per_subgroup; i < blocks_per_row; i += blocks_per_subgroup) {
const int ibx = row * blocks_per_row + i; // x block index
@ -40,13 +38,15 @@ static void mul_mat_vec_q_reorder(const void * __restrict__ vx, const void * __r
// Y block index that aligns with ibx
const int iby = i * block_type::block_to_q8_1_ratio();
const int8_t* q8_1_quant_ptr = (const int8_t*)vy + iby * QK8_1;
const sycl::half2* q8_1_ds_ptr = (const sycl::half2*)((const char*)vy + ncols + iby * sizeof(sycl::half2));
#pragma unroll
for (int elem = 0; elem < block_elements_per_subgroup; elem += WARP_SIZE) {
// x block quant index when casting the quants to int
const int iqs = elem + block_traits::vdr_mmvq * (sg.get_local_linear_id() % block_elements_per_subgroup);
partial_sum += reorder_vec_dot_q_sycl()(vx, bx_offset, d_offset, &y[iby], iqs, nblocks);
partial_sum += reorder_vec_dot_q_sycl()(vx, bx_offset, d_offset, q8_1_quant_ptr, q8_1_ds_ptr, iqs, nblocks);
}
}

View File

@ -49,10 +49,7 @@ static void rope_norm(const T * x, T * dst, const int ne0, const int ne1, const
if (i0 >= n_dims) {
const int i = row * ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
*reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i);
return;
}
@ -93,10 +90,7 @@ static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const
if (i0 >= n_dims) {
const int i = row * ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
*reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i);
return;
}
@ -122,6 +116,63 @@ static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const
dst[i + n_dims / 2] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T, bool has_ff>
static void rope_multi(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float theta_scale, const float * freq_factors, const mrope_sections sections,
const sycl::nd_item<3> & item_ct1) {
// get index pos
const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);
if (i0 >= n_dims) {
const int i = row_dst*ne0 + i0;
*reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i);
return;
}
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = (row_dst * ne0) + (i0 / 2);
const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);
const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3];
const int sec_w = sections.v[1] + sections.v[0];
const int sector = (i0 / 2) % sect_dims;
float theta_base = 0.0;
if (sector < sections.v[0]) {
theta_base = pos[channel_x]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sections.v[0] && sector < sec_w) {
theta_base = pos[channel_x + ne2 * 1]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 2]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 3]*sycl::pow(theta_scale, i0/2.0f);
}
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[ix + 0];
const float x1 = x[ix + n_dims/2];
// store results in dst
dst[idst + 0] = x0 * cos_theta - x1 * sin_theta;
dst[idst + n_dims/2] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T, bool has_ff>
static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
@ -171,7 +222,7 @@ static void rope_norm_sycl(const T * x, T * dst, const int ne0, const int ne1, c
const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
@ -208,7 +259,7 @@ static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, c
const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
@ -228,6 +279,40 @@ static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, c
}
}
template <typename T>
static void rope_multi_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int nr, const int32_t * pos,
const float freq_scale, const float freq_base, const float ext_factor,
const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
const mrope_sections sections, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> grid_dims(1, n_blocks_y, nr);
const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
// Add FP16 capability check if T could be sycl::half
if constexpr (std::is_same_v<T, sycl::half>) {
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
}
// launch kernel
if (freq_factors == nullptr) {
stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_multi<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
} else {
stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_multi<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
}
}
// rope vision
template <typename T>
static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
@ -237,7 +322,7 @@ static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1,
const mrope_sections sections, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int n_blocks_y = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> grid_dims(1, n_blocks_y, nr);
const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
@ -298,8 +383,17 @@ inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst)
memcpy(&sections.v, (int32_t *) dst->op_params + 11, sizeof(int)*4);
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope) {
GGML_ASSERT(sections.v[0] > 0 || sections.v[1] > 0 || sections.v[2] > 0);
}
if (is_vision) {
GGML_ASSERT(n_dims == ne00/2);
}
const int32_t * pos = (const int32_t *) dst->src[1]->data;
const float * freq_factors = nullptr;
@ -326,6 +420,19 @@ inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst)
} else {
GGML_ABORT("fatal error");
}
} else if (is_mrope && !is_vision) {
GGML_SYCL_DEBUG("%s: mrope path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F16) {
rope_multi_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01,
s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, sections, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F32) {
rope_multi_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims,
nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections,
main_stream);
} else {
GGML_ABORT("Fatal error: Tensor type unsupported!");
}
} else if (is_vision) {
GGML_SYCL_DEBUG("%s: vision path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F16) {

View File

@ -285,21 +285,21 @@ template <> struct reorder_vec_dot_q_sycl<GGML_TYPE_Q4_0> {
}
__dpct_inline__ float operator()(const void * __restrict__ vbq, const int ibx_offset, const int d_offset,
const block_q8_1 * __restrict__ bq8_1, const int & iqs, int /* nblocks */) {
const int8_t* q8_1_quant_ptr, const sycl::half2* q8_1_ds, const int & iqs, int /* nblocks */) {
const uint8_t * bq4_0 = static_cast<const uint8_t *>(vbq) + ibx_offset;
const ggml_half d = *(reinterpret_cast<const ggml_half *>(static_cast<const uint8_t *>(vbq) + d_offset));
int v[q4_0_traits::vdr_mmvq];
int u[2 * q4_0_traits::vdr_mmvq];
#pragma unroll
#pragma unroll
for (size_t i = 0; i < q4_0_traits::vdr_mmvq; ++i) {
v[i] = get_int_from_uint8(bq4_0, iqs + i);
u[2 * i + 0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
u[2 * i + 1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + q4_0_traits::qi);
u[2 * i + 0] = get_int_from_int8_aligned(q8_1_quant_ptr, iqs + i);
u[2 * i + 1] = get_int_from_int8_aligned(q8_1_quant_ptr, iqs + i + q4_0_traits::qi);
}
return vec_dot_q4_0_q8_1_impl(v, u, d, bq8_1->ds);
return vec_dot_q4_0_q8_1_impl(v, u, d, *q8_1_ds);
};
};
@ -347,7 +347,7 @@ template <> struct reorder_vec_dot_q_sycl<GGML_TYPE_Q4_K> {
using q4_k_traits = typename q4_k_block::traits;
float operator()(const void * __restrict__ vbq, const int ibx_offset, const int d_offset,
const block_q8_1 * __restrict__ bq8_1, const int & iqs, int nblocks) {
const int8_t* q8_1_quant_ptr, const sycl::half2* q8_1_ds, const int & iqs, int nblocks) {
const int ib = ibx_offset / (QK_K / 2);
const uint8_t * base = static_cast<const uint8_t *>(vbq);
@ -360,7 +360,38 @@ template <> struct reorder_vec_dot_q_sycl<GGML_TYPE_Q4_K> {
const int * q4 = (const int *) (qs + 16 * bq8_offset + 4 * ((iqs / 2) % 4));
const uint16_t * scales = (const uint16_t *) scs;
return vec_dot_q4_K_q8_1_common(q4, scales, *dms, bq8_1, iqs);
int v[2];
int u[2 * QR4_K];
float d8[QR4_K];
v[0] = q4[0];
v[1] = q4[4];
uint16_t aux[2];
const int j = (QR4_K * ((iqs / 2) / (QI8_1 / 2))) / 2;
if (j < 2) {
aux[0] = scales[j + 0] & 0x3f3f;
aux[1] = scales[j + 2] & 0x3f3f;
} else {
aux[0] = ((scales[j + 2] >> 0) & 0x0f0f) | ((scales[j - 2] & 0xc0c0) >> 2);
aux[1] = ((scales[j + 2] >> 4) & 0x0f0f) | ((scales[j - 0] & 0xc0c0) >> 2);
}
const uint8_t * sc = (const uint8_t *) aux;
const uint8_t * m = sc + 2;
for (int i = 0; i < QR4_K; ++i) {
const int8_t* quant_base_ptr = q8_1_quant_ptr + (bq8_offset + i) * QK8_1;
sycl::half2 ds_values = *(q8_1_ds + bq8_offset + i);
d8[i] = ds_values[0];
const int * q8 = (const int *) quant_base_ptr + ((iqs / 2) % 4);
u[2 * i + 0] = q8[0];
u[2 * i + 1] = q8[4];
}
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, *dms, d8);
}
};

View File

@ -109,10 +109,6 @@ if (Vulkan_FOUND)
add_compile_definitions(GGML_VULKAN_SHADER_DEBUG_INFO)
endif()
if (GGML_VULKAN_PERF)
add_compile_definitions(GGML_VULKAN_PERF)
endif()
if (GGML_VULKAN_VALIDATE)
add_compile_definitions(GGML_VULKAN_VALIDATE)
endif()

View File

@ -1,6 +1,6 @@
#include "ggml-vulkan.h"
#include <vulkan/vulkan_core.h>
#if defined(GGML_VULKAN_RUN_TESTS) || defined(GGML_VULKAN_PERF) || defined(GGML_VULKAN_CHECK_RESULTS)
#if defined(GGML_VULKAN_RUN_TESTS) || defined(GGML_VULKAN_CHECK_RESULTS)
#include <chrono>
#include "ggml-cpu.h"
#endif
@ -184,9 +184,7 @@ static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = {
#ifdef GGML_VULKAN_MEMORY_DEBUG
class vk_memory_logger;
#endif
#ifdef GGML_VULKAN_PERF
class vk_perf_logger;
#endif
static void ggml_vk_destroy_buffer(vk_buffer& buf);
static constexpr uint32_t mul_mat_vec_max_cols = 8;
@ -198,6 +196,7 @@ enum vk_device_architecture {
AMD_RDNA1,
AMD_RDNA2,
AMD_RDNA3,
INTEL_XE2,
};
static vk_device_architecture get_device_architecture(const vk::PhysicalDevice& device) {
@ -248,6 +247,34 @@ static vk_device_architecture get_device_architecture(const vk::PhysicalDevice&
}
return vk_device_architecture::AMD_RDNA2;
}
} else if (props.vendorID == VK_VENDOR_ID_INTEL) {
const std::vector<vk::ExtensionProperties> ext_props = device.enumerateDeviceExtensionProperties();
bool subgroup_size_control = false;
for (const auto& properties : ext_props) {
if (strcmp("VK_EXT_subgroup_size_control", properties.extensionName) == 0) {
subgroup_size_control = true;
}
}
if (!subgroup_size_control) {
return vk_device_architecture::OTHER;
}
vk::PhysicalDeviceProperties2 props2;
vk::PhysicalDeviceSubgroupSizeControlPropertiesEXT subgroup_size_control_props;
props2.pNext = &subgroup_size_control_props;
device.getProperties2(&props2);
if (subgroup_size_control_props.minSubgroupSize == 16) {
// Xe2 architecture uses SIMD16 while previous Xe and Gen architecture uses SIMD8.
// Minimum subgroup size matches the SIMD width so we distinguish architecture by checking this value.
// https://www.intel.com/content/www/us/en/content-details/824434/2024-intel-tech-tour-xe2-and-lunar-lake-s-gpu.html
// https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2025-0/intel-xe-gpu-architecture.html
return vk_device_architecture::INTEL_XE2;
}
}
return vk_device_architecture::OTHER;
}
@ -398,6 +425,7 @@ struct vk_device_struct {
vk_pipeline pipeline_count_equal_i32;
vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16;
vk_pipeline pipeline_timestep_embedding_f32;
vk_pipeline pipeline_conv_transpose_1d_f32;
vk_pipeline pipeline_pool2d_f32;
vk_pipeline pipeline_rwkv_wkv6_f32;
vk_pipeline pipeline_rwkv_wkv7_f32;
@ -442,9 +470,11 @@ struct vk_device_struct {
#ifdef GGML_VULKAN_MEMORY_DEBUG
std::unique_ptr<vk_memory_logger> memory_logger;
#endif
#ifdef GGML_VULKAN_PERF
// for GGML_VK_PERF_LOGGER
std::unique_ptr<vk_perf_logger> perf_logger;
#endif
vk::QueryPool query_pool;
int32_t num_queries;
~vk_device_struct() {
VK_LOG_DEBUG("destroy device " << name);
@ -706,6 +736,21 @@ struct vk_op_timestep_embedding_push_constants {
uint32_t max_period;
};
struct vk_op_conv_transpose_1d_push_constants {
uint32_t Cout;
uint32_t Cin;
uint32_t K;
uint32_t L;
uint32_t KL;
uint32_t nb01;
uint32_t nb02;
uint32_t nb11;
uint32_t nb1;
int32_t s0;
};
struct vk_op_pool2d_push_constants {
uint32_t IW; uint32_t IH;
uint32_t OW; uint32_t OH;
@ -828,8 +873,6 @@ private:
#define VK_LOG_MEMORY(msg) ((void) 0)
#endif // GGML_VULKAN_MEMORY_DEBUG
#if defined(GGML_VULKAN_PERF)
class vk_perf_logger {
public:
void print_timings() {
@ -839,7 +882,7 @@ public:
for (const auto& time : t.second) {
total += time;
}
std::cerr << t.first << ": " << t.second.size() << " x " << (total / t.second.size() / 1000.0) << " ms" << std::endl;
std::cerr << t.first << ": " << t.second.size() << " x " << (total / t.second.size() / 1000.0) << " us" << std::endl;
}
timings.clear();
@ -868,7 +911,6 @@ public:
private:
std::map<std::string, std::vector<uint64_t>> timings;
};
#endif // GGML_VULKAN_PERF
struct ggml_backend_vk_context {
std::string name;
@ -958,6 +1000,8 @@ struct vk_instance_t {
static bool vk_instance_initialized = false;
static vk_instance_t vk_instance;
static bool vk_perf_logger_enabled = false;
#ifdef GGML_VULKAN_CHECK_RESULTS
static size_t vk_skip_checks;
static size_t vk_output_tensor;
@ -1653,7 +1697,7 @@ static std::array<uint32_t, 2> fa_rows_cols(FaCodePath path, uint32_t D, uint32_
return {64, 32};
}
return {64, 64};
};
}
static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vector<uint32_t>& warptile, bool mul_mat_id, ggml_type src0_type) {
@ -2727,6 +2771,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_conv_transpose_1d_f32, "conv_transpose_1d_f32", conv_transpose_1d_f32_len, conv_transpose_1d_f32_data, "main", 3, sizeof(vk_op_conv_transpose_1d_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_pool2d_f32, "pool2d_f32", pool2d_f32_len, pool2d_f32_data, "main", 2, sizeof(vk_op_pool2d_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv6_f32, "rwkv_wkv6_f32", rwkv_wkv6_f32_len, rwkv_wkv6_f32_data, "main", 7, sizeof(vk_op_rwkv_wkv6_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
@ -2757,9 +2803,9 @@ static vk_device ggml_vk_get_device(size_t idx) {
#ifdef GGML_VULKAN_MEMORY_DEBUG
device->memory_logger = std::unique_ptr<vk_memory_logger>(new vk_memory_logger());
#endif
#ifdef GGML_VULKAN_PERF
device->perf_logger = std::unique_ptr<vk_perf_logger>(new vk_perf_logger());
#endif
if (vk_perf_logger_enabled) {
device->perf_logger = std::unique_ptr<vk_perf_logger>(new vk_perf_logger());
}
size_t dev_num = vk_instance.device_indices[idx];
@ -3547,6 +3593,8 @@ static void ggml_vk_instance_init() {
vk_instance.instance = vk::createInstance(instance_create_info);
vk_instance_initialized = true;
vk_perf_logger_enabled = getenv("GGML_VK_PERF_LOGGER") != nullptr;
size_t num_available_devices = vk_instance.instance.enumeratePhysicalDevices().size();
// Emulate behavior of CUDA_VISIBLE_DEVICES for Vulkan
@ -4060,7 +4108,33 @@ static vk_submission ggml_vk_begin_submission(vk_device& device, vk_queue& q, bo
return s;
}
static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context& subctx, vk_pipeline& pipeline, std::initializer_list<vk::DescriptorBufferInfo> const& descriptor_buffer_infos, size_t push_constant_size, const void* push_constants, std::array<uint32_t, 3> elements) {
template <typename T> size_t push_constant_size(const T &t) {
static_assert(std::is_class<T>::value, "T must be a struct/class");
GGML_UNUSED(t);
return sizeof(T);
}
template <typename T> size_t push_constant_size(const std::vector<T> &t) {
GGML_UNUSED(t);
return sizeof(T) * t.size();
}
template <typename T, uint32_t N> size_t push_constant_size(const std::array<T, N> &t) {
GGML_UNUSED(t);
return sizeof(T) * N;
}
template <typename T> const T *push_constant_data(const T &t) {
static_assert(std::is_class<T>::value, "T must be a struct/class");
return &t;
}
template <typename T> const T *push_constant_data(const std::vector<T> &t) {
return t.data();
}
template <typename T, uint32_t N> const T *push_constant_data(const std::array<T, N> &t) {
return t.data();
}
template <typename T>
static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context& subctx, vk_pipeline& pipeline, std::initializer_list<vk::DescriptorBufferInfo> const& descriptor_buffer_infos, const T &push_constants, std::array<uint32_t, 3> elements) {
const uint32_t wg0 = CEIL_DIV(elements[0], pipeline->wg_denoms[0]);
const uint32_t wg1 = CEIL_DIV(elements[1], pipeline->wg_denoms[1]);
const uint32_t wg2 = CEIL_DIV(elements[2], pipeline->wg_denoms[2]);
@ -4076,7 +4150,7 @@ static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context&
vk::WriteDescriptorSet write_descriptor_set{ descriptor_set, 0, 0, pipeline->parameter_count, vk::DescriptorType::eStorageBuffer, nullptr, descriptor_buffer_infos.begin() };
ctx->device->device.updateDescriptorSets({ write_descriptor_set }, {});
subctx->s->buffer.pushConstants(pipeline->layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size, push_constants);
subctx->s->buffer.pushConstants(pipeline->layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size(push_constants), push_constant_data(push_constants));
subctx->s->buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline->pipeline);
subctx->s->buffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute,
pipeline->layout,
@ -4539,7 +4613,7 @@ static void ggml_vk_matmul(
ggml_vk_sync_buffers(subctx);
if (split_k == 1) {
const vk_mat_mat_push_constants pc = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, k, ne02, ne12, broadcast2, broadcast3, padded_n };
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d }, sizeof(vk_mat_mat_push_constants), &pc, { m, n, batch });
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d }, pc, { m, n, batch });
return;
}
@ -4547,10 +4621,10 @@ static void ggml_vk_matmul(
const vk_mat_mat_push_constants pc1 = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, CEIL_DIV(k, split_k), ne02, ne12, broadcast2, broadcast3, padded_n };
// Make sure enough workgroups get assigned for split k to work
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, split_k_buffer }, sizeof(vk_mat_mat_push_constants), &pc1, { (CEIL_DIV(m, pipeline->wg_denoms[0]) * pipeline->wg_denoms[0]) * split_k, n, batch });
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, split_k_buffer }, pc1, { (CEIL_DIV(m, pipeline->wg_denoms[0]) * pipeline->wg_denoms[0]) * split_k, n, batch });
ggml_vk_sync_buffers(subctx);
const std::array<uint32_t, 2> pc2 = { (uint32_t)(m * n * batch), split_k };
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_matmul_split_k_reduce, { split_k_buffer, d }, pc2.size() * sizeof(uint32_t), pc2.data(), { m * n * batch, 1, 1 });
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_matmul_split_k_reduce, { split_k_buffer, d }, pc2, { m * n * batch, 1, 1 });
}
static vk_pipeline ggml_vk_guess_matmul_id_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, uint32_t m, uint32_t n, bool aligned, ggml_type src0_type) {
@ -4598,7 +4672,7 @@ static void ggml_vk_matmul_id(
ggml_vk_sync_buffers(subctx);
const vk_mat_mat_id_push_constants pc = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d,
nei0, nei1, nbi1, ne11, padded_n };
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d, ids }, sizeof(vk_mat_mat_id_push_constants), &pc, { m, nei1, n_as });
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d, ids }, pc, { m, nei1, n_as });
}
static bool ggml_vk_dim01_contiguous(const ggml_tensor * tensor) {
@ -4719,7 +4793,7 @@ static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context&
};
init_pushconst_fastdiv(pc);
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(vk_op_unary_push_constants), &pc, elements);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, pc, elements);
}
static vk_pipeline ggml_vk_get_quantize_pipeline(ggml_backend_vk_context * ctx, ggml_type type) {
@ -4738,7 +4812,7 @@ static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& sub
vk_pipeline pipeline = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1);
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(uint32_t), &ne, { ne, 1, 1 });
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, std::array<uint32_t, 1>{ne}, { ne, 1, 1 });
}
static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
@ -4938,7 +5012,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
} else if (qx_needs_dequant) {
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc, { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
}
if (y_non_contig) {
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
@ -5154,7 +5228,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
{ vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23} },
sizeof(vk_mat_vec_push_constants), &pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z });
pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z });
}
static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
@ -5242,7 +5316,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
}
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32[gqa_ratio - 1], { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, workgroups_z });
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32[gqa_ratio - 1], { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, pc, { 1, (uint32_t)ne01, workgroups_z });
}
static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
@ -5325,7 +5399,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
const std::array<uint32_t, 9> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, channel_stride_y, (uint32_t)(ne12 / ne02), (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32,
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
}
static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
@ -5541,7 +5615,7 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0,
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc, { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
}
if (y_non_contig) {
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
@ -5761,7 +5835,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
{ vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 },
vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23}, vk_subbuffer{ d_ids, ids_buf_offset, ids_sz } },
sizeof(vk_mat_vec_id_push_constants), &pc, { groups_x, (uint32_t)nei0, groups_z });
pc, { groups_x, (uint32_t)nei0, groups_z });
}
static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool dryrun = false) {
@ -6111,7 +6185,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
// there's no more than one tile of rows (i.e. workgroups_x would have been
// one). We reuse workgroups_x to mean the number of splits, so we need to
// cancel out the divide by wg_denoms[0].
sizeof(vk_flash_attn_push_constants), &pc, { workgroups_x * pipeline->wg_denoms[0], workgroups_y, workgroups_z });
pc, { workgroups_x * pipeline->wg_denoms[0], workgroups_y, workgroups_z });
ggml_vk_sync_buffers(subctx);
const std::array<uint32_t, 3> pc2 = { D, (uint32_t)ne1, split_k };
@ -6120,7 +6194,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
vk_subbuffer{ctx->prealloc_split_k, 0, VK_WHOLE_SIZE},
vk_subbuffer{d_D, d_buf_offset, VK_WHOLE_SIZE},
},
pc2.size() * uint32_t{sizeof(uint32_t)}, pc2.data(), { (uint32_t)ne1, 1, 1 });
pc2, { (uint32_t)ne1, 1, 1 });
} else {
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
{
@ -6130,7 +6204,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
vk_subbuffer{d_M, m_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_D, d_buf_offset, VK_WHOLE_SIZE},
},
sizeof(vk_flash_attn_push_constants), &pc, { workgroups_x, workgroups_y, workgroups_z });
pc, { workgroups_x, workgroups_y, workgroups_z });
}
}
@ -6391,6 +6465,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_timestep_embedding_f32;
}
return nullptr;
case GGML_OP_CONV_TRANSPOSE_1D:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_conv_transpose_1d_f32;
}
return nullptr;
case GGML_OP_POOL_2D:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_pool2d_f32;
@ -6725,6 +6804,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
uint32_t half_ceil = (dim + 1) / 2;
elements = { half_ceil, (uint32_t)src0->ne[0], 1 };
} break;
case GGML_OP_CONV_TRANSPOSE_1D:
{
elements = {uint32_t(src0->ne[1]), 1, 1}; // parallelize in {Cout, 1, 1}
} break;
case GGML_OP_POOL_2D:
{
const uint32_t N = dst->ne[3];
@ -6799,7 +6882,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
}
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, subbuf_y, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, subbuf_y, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements);
} else if (op == GGML_OP_ROPE || op == GGML_OP_ROPE_BACK) {
// Empty src2 is possible in rope, but the shader needs a buffer
vk_subbuffer subbuf_z;
@ -6810,26 +6893,26 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
}
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, subbuf_z, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, subbuf_z, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements);
} else if (op == GGML_OP_IM2COL) {
// im2col uses only src1 and dst buffers
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements);
} else if (op == GGML_OP_COUNT_EQUAL) {
ggml_vk_sync_buffers(subctx);
// count_equal assumes that destination buffer is initialized with zeroes
ggml_vk_buffer_memset_async(subctx, d_D, d_buf_offset, 0, d_sz);
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements);
} else if (use_src2) {
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_Z, z_buf_offset, z_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_Z, z_buf_offset, z_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements);
} else if (use_src1) {
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements);
} else {
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements);
}
}
@ -6998,7 +7081,7 @@ static void ggml_vk_op_f32_wkv(ggml_backend_vk_context * ctx, vk_context& subctx
vk_subbuffer{ d_srcs[4], src_offsets[4], src_sizes[4] },
vk_subbuffer{ d_srcs[5], src_offsets[5], src_sizes[5] },
vk_subbuffer{ d_D, dst_offset, dst_size }
}, sizeof(vk_op_rwkv_wkv6_push_constants), &pc, elements);
}, pc, elements);
} else if (version == 7) {
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, {
vk_subbuffer{ d_srcs[0], src_offsets[0], src_sizes[0] },
@ -7009,7 +7092,7 @@ static void ggml_vk_op_f32_wkv(ggml_backend_vk_context * ctx, vk_context& subctx
vk_subbuffer{ d_srcs[5], src_offsets[5], src_sizes[5] },
vk_subbuffer{ d_srcs[6], src_offsets[6], src_sizes[6] },
vk_subbuffer{ d_D, dst_offset, dst_size }
}, sizeof(vk_op_rwkv_wkv7_push_constants), &pc, elements);
}, pc, elements);
} else {
// shouldn't happen
GGML_ASSERT(false);
@ -7146,7 +7229,7 @@ static void ggml_vk_op_f32_opt_step_adamw(ggml_backend_vk_context * ctx, vk_cont
vk_subbuffer{ d_GM, gm_offset, gm_size },
vk_subbuffer{ d_GV, gv_offset, gv_size },
vk_subbuffer{ d_P, p_offset, p_size },
}, sizeof(vk_op_push_constants), &pc, elements);
}, pc, elements);
}
static void ggml_vk_opt_step_adamw(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) {
@ -7528,6 +7611,37 @@ static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context
}, dryrun);
}
static void ggml_vk_conv_transpose_1d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
// src0: (K, Cout, Cin, 1) -- kernel
// src1: (L, Cin, 1, 1) -- input
// dst: (*, Cout, 1, 1)
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
const int32_t s0 = dst->op_params[0];
vk_op_conv_transpose_1d_push_constants p{};
p.Cout = static_cast<uint32_t>(ne01);
p.Cin = static_cast<uint32_t>(ne02);
p.K = static_cast<uint32_t>(ne00);
p.L = static_cast<uint32_t>(ne10);
p.KL = static_cast<uint32_t>(ne0);
p.nb01 = static_cast<uint32_t>(nb01 / nb00);
p.nb02 = static_cast<uint32_t>(nb02 / nb00);
p.nb11 = static_cast<uint32_t>(nb11 / nb10);
p.nb1 = static_cast<uint32_t>(nb1 / nb0);
p.s0 = static_cast<uint32_t>(s0);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_TRANSPOSE_1D, std::move(p), dryrun);
}
static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
uint32_t op = static_cast<uint32_t>(dst->op_params[0]);
const int32_t k1 = dst->op_params[1];
@ -8004,7 +8118,7 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_
vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
ggml_vk_ctx_begin(ctx->device, subctx);
const std::vector<uint32_t> pc = { 1, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne };
ggml_vk_dispatch_pipeline(ctx, subctx, p, { vk_subbuffer{ qx_buf, 0, qx_sz }, vk_subbuffer{ x_buf, 0, x_sz_f16 } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)ne, 1, 1});
ggml_vk_dispatch_pipeline(ctx, subctx, p, { vk_subbuffer{ qx_buf, 0, qx_sz }, vk_subbuffer{ x_buf, 0, x_sz_f16 } }, pc, { (uint32_t)ne, 1, 1});
ggml_vk_ctx_end(subctx);
auto begin = std::chrono::high_resolution_clock::now();
@ -8599,6 +8713,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_POOL_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_RWKV_WKV6:
@ -8663,6 +8778,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_POOL_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_LEAKY_RELU:
@ -8834,6 +8950,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_TIMESTEP_EMBEDDING:
ggml_vk_timestep_embedding(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_CONV_TRANSPOSE_1D:
ggml_vk_conv_transpose_1d(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_POOL_2D:
ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun);
@ -8885,7 +9005,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
ctx->tensor_ctxs[node_idx] = compute_ctx;
#if defined(GGML_VULKAN_CHECK_RESULTS) || defined(GGML_VULKAN_PERF)
#if defined(GGML_VULKAN_CHECK_RESULTS)
// Force context reset on each node so that each tensor ends up in its own context
// and can be run and compared to its CPU equivalent separately
last_node = true;
@ -8962,6 +9082,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_POOL_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_RWKV_WKV6:
@ -9505,6 +9626,29 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
bool first_node_in_batch = true; // true if next node will be first node in a batch
int submit_node_idx = 0; // index to first node in a batch
vk_context compute_ctx;
if (vk_perf_logger_enabled) {
// allocate/resize the query pool
if (ctx->device->num_queries < cgraph->n_nodes + 1) {
if (ctx->device->query_pool) {
ctx->device->device.destroyQueryPool(ctx->device->query_pool);
}
vk::QueryPoolCreateInfo query_create_info;
query_create_info.queryType = vk::QueryType::eTimestamp;
query_create_info.queryCount = cgraph->n_nodes + 100;
ctx->device->query_pool = ctx->device->device.createQueryPool(query_create_info);
ctx->device->num_queries = query_create_info.queryCount;
}
ctx->device->device.resetQueryPool(ctx->device->query_pool, 0, cgraph->n_nodes+1);
GGML_ASSERT(ctx->compute_ctx.expired());
compute_ctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
ctx->compute_ctx = compute_ctx;
ggml_vk_ctx_begin(ctx->device, compute_ctx);
compute_ctx->s->buffer.writeTimestamp(vk::PipelineStageFlagBits::eAllCommands, ctx->device->query_pool, 0);
}
// Submit after enough work has accumulated, to overlap CPU cmdbuffer generation with GPU execution.
// Estimate the amount of matmul work by looking at the weight matrix size, and submit every 100MB
// (and scaled down based on model size, so smaller models submit earlier).
@ -9532,6 +9676,17 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
bool enqueued = ggml_vk_build_graph(ctx, cgraph->nodes[i], i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i == last_node, almost_ready, submit);
if (vk_perf_logger_enabled) {
if (ctx->compute_ctx.expired()) {
compute_ctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
ctx->compute_ctx = compute_ctx;
ggml_vk_ctx_begin(ctx->device, compute_ctx);
} else {
compute_ctx = ctx->compute_ctx.lock();
}
compute_ctx->s->buffer.writeTimestamp(vk::PipelineStageFlagBits::eAllCommands, ctx->device->query_pool, i+1);
}
if (enqueued) {
++submitted_nodes;
@ -9553,9 +9708,27 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
}
}
#ifdef GGML_VULKAN_PERF
ctx->device->perf_logger->print_timings();
#endif
if (vk_perf_logger_enabled) {
// End the command buffer and submit/wait
GGML_ASSERT(!ctx->compute_ctx.expired());
compute_ctx = ctx->compute_ctx.lock();
ggml_vk_ctx_end(compute_ctx);
ggml_vk_submit(compute_ctx, ctx->device->fence);
VK_CHECK(ctx->device->device.waitForFences({ ctx->device->fence }, true, UINT64_MAX), "GGML_VULKAN_PERF waitForFences");
ctx->device->device.resetFences({ ctx->device->fence });
// Get the results and pass them to the logger
std::vector<uint64_t> timestamps(cgraph->n_nodes + 1);
VK_CHECK(ctx->device->device.getQueryPoolResults(ctx->device->query_pool, 0, cgraph->n_nodes + 1, (cgraph->n_nodes + 1)*sizeof(uint64_t), timestamps.data(), sizeof(uint64_t), vk::QueryResultFlagBits::e64 | vk::QueryResultFlagBits::eWait), "get timestamp results");
for (int i = 0; i < cgraph->n_nodes; i++) {
if (!ggml_vk_is_empty(cgraph->nodes[i])) {
ctx->device->perf_logger->log_timing(cgraph->nodes[i], uint64_t((timestamps[i+1] - timestamps[i]) * ctx->device->properties.limits.timestampPeriod));
}
}
ctx->device->perf_logger->print_timings();
}
ggml_vk_graph_cleanup(ctx);
@ -9971,6 +10144,8 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_LEAKY_RELU:
case GGML_OP_OPT_STEP_ADAMW:
return true;
case GGML_OP_CONV_TRANSPOSE_1D:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
default:
return false;
}
@ -10117,8 +10292,9 @@ static bool ggml_vk_instance_portability_enumeration_ext_available(const std::ve
static bool ggml_vk_khr_cooperative_matrix_support(const vk::PhysicalDeviceProperties& props, const vk::PhysicalDeviceDriverProperties& driver_props, vk_device_architecture arch) {
switch (props.vendorID) {
case VK_VENDOR_ID_INTEL:
// Intel drivers don't support coopmat properly yet
return false;
// Only allowing Xe2 GPU at the moment since Xe2 GPU can gain significant performance boost,
// while some older hardware (ex. Arc A770) has performance regressions
return arch == vk_device_architecture::INTEL_XE2;
case VK_VENDOR_ID_AMD:
if (driver_props.driverID == vk::DriverId::eAmdProprietary || driver_props.driverID == vk::DriverId::eAmdOpenSource) {
// Workaround for AMD proprietary driver reporting support on all GPUs
@ -10462,6 +10638,11 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
const int32_t dim = tensor->op_params[0];
const int32_t max_period = tensor->op_params[1];
tensor_clone = ggml_timestep_embedding(ggml_ctx, src_clone[0], dim, max_period);
} else if (tensor->op == GGML_OP_CONV_TRANSPOSE_1D){
const int32_t s0 = tensor->op_params[0];
const int32_t p0 = tensor->op_params[1];
const int32_t d0 = tensor->op_params[2];
tensor_clone = ggml_conv_transpose_1d(ggml_ctx, src_clone[0], src_clone[1], s0, p0, d0);
} else if (tensor->op == GGML_OP_POOL_2D) {
enum ggml_op_pool op = static_cast<ggml_op_pool>(tensor->op_params[0]);
const int32_t k0 = tensor->op_params[1];

View File

@ -0,0 +1,98 @@
#version 450
#include "types.comp"
layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; // src0 - kernel: [K, Cout, Cin]
layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; // src1 - input: [L, Cin]
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; // dst - result [KL, Cout]
layout(local_size_x = 128 , local_size_y = 1, local_size_z = 1) in;
layout (push_constant) uniform parameter {
uint32_t Cout;
uint32_t Cin;
uint32_t K;
uint32_t L;
uint32_t KL;
uint32_t nb01;
uint32_t nb02;
uint32_t nb11;
uint32_t nb1;
int32_t s0;
} p;
uint32_t Cout_idx = gl_WorkGroupID.x;
const uint32_t bs = gl_WorkGroupSize.x;
uint32_t tid = gl_LocalInvocationID.x;
// Code is more straightforward if we assume it is bs*s0+K instead of (bs-1)*s0+K.
uint32_t tmp_len = bs*p.s0+p.K;
shared D_TYPE tmp[4096];
uint splitWork(uint workSize){
return (bs + workSize -1) / bs;
}
void main(){
for(uint32_t i = 0; i < splitWork(tmp_len); i++){
uint32_t idx = i*bs+tid;
if(idx < tmp_len){
tmp[idx] = 0.0;
}
}
uint32_t L_blocks = splitWork(p.L);
for(uint32_t L_block_id = 0; L_block_id < L_blocks; L_block_id++){
if(L_block_id > 0){
barrier();
// Shift values in tmp to the current processing window
for(int i = 0; i < splitWork(tmp_len); i++){
uint32_t idx = i*bs+tid;
if(idx >= bs*p.s0 && idx < tmp_len){
tmp[idx-bs*p.s0] = tmp[idx];
tmp[idx] = 0.0;
}else if(idx >= p.K && idx < bs*p.s0){
tmp[idx] = 0.0;
}
}
}
barrier();
// Save contributions of the block to tmp
uint32_t L_idx = L_block_id*bs + tid;
for(uint32_t K_idx = 0; K_idx < p.K; K_idx++){
D_TYPE dp = 0.0;
for(uint32_t Cin_idx = 0; Cin_idx < p.Cin; Cin_idx++){
A_TYPE elemKrn = data_a[K_idx + Cout_idx * p.nb01 + Cin_idx * p.nb02];
if(L_idx < p.L){
B_TYPE elemInp = data_b[L_idx + Cin_idx*p.nb11];
dp = fma(elemKrn, elemInp, dp);
}
}
tmp[tid*p.s0 + K_idx] += dp;
barrier();
}
// Save the computed values except the last block that can have different size
uint32_t KLb_idx = L_block_id*bs*p.s0;
if(L_block_id < L_blocks-1){
for(uint32_t s0_idx = 0; s0_idx < p.s0; s0_idx++){
uint32_t sh_idx = p.s0*tid+s0_idx;
uint32_t KL_idx = KLb_idx+sh_idx;
if(KL_idx < p.KL){
data_d[KL_idx + Cout_idx*p.nb1] = tmp[sh_idx];
}
}
}
}
for(uint32_t i = 0; i < splitWork(tmp_len); i++){
uint32_t idx = i*bs+tid;
uint32_t KL_idx = (L_blocks-1)*bs*p.s0+idx;
if(KL_idx < p.KL){
data_d[KL_idx + Cout_idx*p.nb1] = tmp[idx];
}
}
}

View File

@ -622,6 +622,8 @@ void process_shaders() {
string_to_spv("timestep_embedding_f32", "timestep_embedding.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("conv_transpose_1d_f32", "conv_transpose_1d.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("pool2d_f32", "pool2d.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("rwkv_wkv6_f32", "wkv6.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));

View File

@ -133,7 +133,7 @@ static void ggml_print_backtrace_symbols(void) {
}
#endif
static void ggml_print_backtrace(void) {
void ggml_print_backtrace(void) {
const char * GGML_NO_BACKTRACE = getenv("GGML_NO_BACKTRACE");
if (GGML_NO_BACKTRACE) {
return;
@ -160,6 +160,10 @@ static void ggml_print_backtrace(void) {
const int parent_pid = getpid();
const int child_pid = fork();
if (child_pid < 0) { // error
#if defined(__linux__)
close(lock[1]);
close(lock[0]);
#endif
return;
} else if (child_pid == 0) { // child
char attach[32];
@ -167,6 +171,7 @@ static void ggml_print_backtrace(void) {
#if defined(__linux__)
close(lock[1]);
(void) !read(lock[0], lock, 1);
close(lock[0]);
#endif
// try gdb
execlp("gdb", "gdb", "--batch",
@ -195,7 +200,7 @@ static void ggml_print_backtrace(void) {
}
}
#else
static void ggml_print_backtrace(void) {
void ggml_print_backtrace(void) {
// platform not supported
}
#endif
@ -216,6 +221,8 @@ void ggml_abort(const char * file, int line, const char * fmt, ...) {
abort();
}
// ggml_print_backtrace is registered with std::set_terminate by ggml.cpp
//
// logging
//
@ -2312,6 +2319,26 @@ struct ggml_tensor * ggml_repeat(
return result;
}
struct ggml_tensor * ggml_repeat_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
const bool can_repeat = ggml_is_empty(a) || (
(ne0 % a->ne[0] == 0) &&
(ne1 % a->ne[1] == 0) &&
(ne2 % a->ne[2] == 0) &&
(ne3 % a->ne[3] == 0)
);
GGML_ASSERT(can_repeat);
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
result->op = GGML_OP_REPEAT;
result->src[0] = a;
return result;
}
// ggml_repeat_back
struct ggml_tensor * ggml_repeat_back(

26
ggml/src/ggml.cpp Normal file
View File

@ -0,0 +1,26 @@
#include "ggml-impl.h"
#include <cstdlib>
#include <exception>
static std::terminate_handler previous_terminate_handler;
GGML_NORETURN static void ggml_uncaught_exception() {
ggml_print_backtrace();
if (previous_terminate_handler) {
previous_terminate_handler();
}
abort(); // unreachable unless previous_terminate_handler was nullptr
}
static bool ggml_uncaught_exception_init = []{
const char * GGML_NO_BACKTRACE = getenv("GGML_NO_BACKTRACE");
if (GGML_NO_BACKTRACE) {
return false;
}
const auto prev{std::get_terminate()};
GGML_ASSERT(prev != ggml_uncaught_exception);
previous_terminate_handler = prev;
std::set_terminate(ggml_uncaught_exception);
return true;
}();

View File

@ -347,11 +347,28 @@ struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_par
int64_t n_tensors = 0;
if (ok && gr.read(ctx->version)) {
if (ctx->version == 1) {
if (ok && ctx->version == 0) {
GGML_LOG_ERROR("%s: bad GGUF version: %" PRIu32 "\n", __func__, ctx->version);
ok = false;
}
/*
* bit layout is different when reading non-native endian models.
* assuming that the GGUF version is 3, the non-native endian model
* would read it as 0x30000000. we can use the AND operation against
* the last 4 hexadecimal digits to check if the model is the same
* endianness as the host system.
*/
if (ok && (ctx->version & 0x0000FFFF) == 0x00000000) {
GGML_LOG_ERROR("%s: failed to load model: this GGUF file version %" PRIu32 " is extremely large, is there a mismatch between the host and model endianness?\n", __func__, ctx->version);
ok = false;
}
if (ok && ctx->version == 1) {
GGML_LOG_ERROR("%s: GGUFv1 is no longer supported, please use a more up-to-date version\n", __func__);
ok = false;
}
if (ctx->version > GGUF_VERSION) {
if (ok && ctx->version > GGUF_VERSION) {
GGML_LOG_ERROR("%s: this GGUF file is version %" PRIu32 " but this software only supports up to version %d\n",
__func__, ctx->version, GGUF_VERSION);
ok = false;

View File

@ -177,6 +177,9 @@ class Keys:
EMBEDDING_LENGTH = "{arch}.convnext.embedding_length"
BLOCK_COUNT = "{arch}.convnext.block_count"
class Classifier:
OUTPUT_LABELS = "{arch}.classifier.output_labels"
class Tokenizer:
MODEL = "tokenizer.ggml.model"
PRE = "tokenizer.ggml.pre"
@ -1033,6 +1036,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.POS_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_OUT_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
@ -2260,6 +2264,7 @@ class VisionProjectorType:
ULTRAVOX = "ultravox"
INTERNVL = "internvl"
QWEN2A = "qwen2a" # audio
QWEN25O = "qwen2.5o" # omni
# Items here are (block size, type size)

View File

@ -49,6 +49,7 @@ class TensorInfo:
class GGUFValue:
value: Any
type: GGUFValueType
sub_type: GGUFValueType | None = None
class WriterState(Enum):
@ -238,7 +239,7 @@ class GGUFWriter:
for key, val in kv_data.items():
kv_bytes += self._pack_val(key, GGUFValueType.STRING, add_vtype=False)
kv_bytes += self._pack_val(val.value, val.type, add_vtype=True)
kv_bytes += self._pack_val(val.value, val.type, add_vtype=True, sub_type=val.sub_type)
fout.write(kv_bytes)
@ -268,11 +269,11 @@ class GGUFWriter:
fout.flush()
self.state = WriterState.TI_DATA
def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None:
def add_key_value(self, key: str, val: Any, vtype: GGUFValueType, sub_type: GGUFValueType | None = None) -> None:
if any(key in kv_data for kv_data in self.kv_data):
raise ValueError(f'Duplicated key name {key!r}')
self.kv_data[0][key] = GGUFValue(value=val, type=vtype)
self.kv_data[0][key] = GGUFValue(value=val, type=vtype, sub_type=sub_type)
def add_uint8(self, key: str, val: int) -> None:
self.add_key_value(key,val, GGUFValueType.UINT8)
@ -934,6 +935,9 @@ class GGUFWriter:
def add_eom_token_id(self, id: int) -> None:
self.add_uint32(Keys.Tokenizer.EOM_ID, id)
def add_classifier_output_labels(self, labels: Sequence[str]) -> None:
self.add_array(Keys.Classifier.OUTPUT_LABELS.format(arch=self.arch), labels)
# for vision models
def add_clip_has_vision_encoder(self, value: bool) -> None:
@ -1022,7 +1026,7 @@ class GGUFWriter:
pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>'
return struct.pack(f'{pack_prefix}{fmt}', value)
def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool) -> bytes:
def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool, sub_type: GGUFValueType | None = None) -> bytes:
kv_data = bytearray()
if add_vtype:
@ -1043,7 +1047,9 @@ class GGUFWriter:
if len(val) == 0:
raise ValueError("Invalid GGUF metadata array. Empty array")
if isinstance(val, bytes):
if sub_type is not None:
ltype = sub_type
elif isinstance(val, bytes):
ltype = GGUFValueType.UINT8
else:
ltype = GGUFValueType.get_type(val[0])

View File

@ -1521,19 +1521,21 @@ class GGUFEditorWindow(QMainWindow):
continue
# Apply changes if any
sub_type = None
if field.name in self.metadata_changes:
value_type, value = self.metadata_changes[field.name]
if value_type == GGUFValueType.ARRAY:
# Handle array values
element_type, array_values = value
writer.add_array(field.name, array_values)
else:
writer.add_key_value(field.name, value, value_type)
sub_type, value = value
else:
# Copy original value
value = field.contents()
if value is not None and field.types:
writer.add_key_value(field.name, value, field.types[0])
value_type = field.types[0]
if value_type == GGUFValueType.ARRAY:
sub_type = field.types[-1]
if value is not None:
writer.add_key_value(field.name, value, value_type, sub_type=sub_type)
# Add new metadata
for key, (value_type, value) in self.metadata_changes.items():
@ -1541,7 +1543,12 @@ class GGUFEditorWindow(QMainWindow):
if self.reader.get_field(key) is not None:
continue
writer.add_key_value(key, value, value_type)
sub_type = None
if value_type == GGUFValueType.ARRAY:
# Handle array values
sub_type, value = value
writer.add_key_value(key, value, value_type, sub_type=sub_type)
# Add tensors (including data)
for tensor in self.reader.tensors:

View File

@ -24,6 +24,7 @@ class MetadataDetails(NamedTuple):
type: gguf.GGUFValueType
value: Any
description: str = ''
sub_type: gguf.GGUFValueType | None = None
def get_field_data(reader: gguf.GGUFReader, key: str) -> Any:
@ -57,7 +58,9 @@ def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new
logger.debug(f'Removing {field.name}')
continue
old_val = MetadataDetails(field.types[0], field.contents())
val_type = field.types[0]
sub_type = field.types[-1] if val_type == gguf.GGUFValueType.ARRAY else None
old_val = MetadataDetails(val_type, field.contents(), sub_type=sub_type)
val = new_metadata.get(field.name, old_val)
if field.name in new_metadata:
@ -67,7 +70,7 @@ def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new
logger.debug(f'Copying {field.name}')
if val.value is not None:
writer.add_key_value(field.name, val.value, val.type)
writer.add_key_value(field.name, val.value, val.type, sub_type=sub_type if val.sub_type is None else val.sub_type)
if gguf.Keys.Tokenizer.CHAT_TEMPLATE in new_metadata:
logger.debug('Adding chat template(s)')

View File

@ -157,6 +157,7 @@ class TensorNameMap:
"h.{bid}.attn.c_attn", # gpt2
"transformer.h.{bid}.mixer.Wqkv", # phi2
"encoder.layers.{bid}.attn.Wqkv", # nomic-bert
"encoder.layers.{bid}.mixer.Wqkv", # jina
"model.layers.{bid}.self_attn.qkv_proj", # phi3
"encoder.layers.{bid}.self_attention.query_key_value", # chatglm
"transformer.layers.{bid}.attn.qkv_proj", # openelm
@ -168,6 +169,7 @@ class TensorNameMap:
"model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
"layers.{bid}.attention.wq", # llama-pth
"encoder.layer.{bid}.attention.self.query", # bert
"transformer.layer.{bid}.attention.q_lin", # distillbert
"transformer.h.{bid}.attn.q_proj", # gpt-j
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
"model.layers.{bid}.attention.wq", # internlm2
@ -182,6 +184,7 @@ class TensorNameMap:
"model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
"layers.{bid}.attention.wk", # llama-pth
"encoder.layer.{bid}.attention.self.key", # bert
"transformer.layer.{bid}.attention.k_lin", # distillbert
"transformer.h.{bid}.attn.k_proj", # gpt-j
"transformer.h.{bid}.attn.k", # refact
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
@ -196,6 +199,7 @@ class TensorNameMap:
"model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
"layers.{bid}.attention.wv", # llama-pth
"encoder.layer.{bid}.attention.self.value", # bert
"transformer.layer.{bid}.attention.v_lin", # distillbert
"transformer.h.{bid}.attn.v_proj", # gpt-j
"transformer.h.{bid}.attn.v", # refact
"model.layers.layers.{bid}.self_attn.v_proj", # plamo
@ -216,6 +220,7 @@ class TensorNameMap:
"model.layers.{bid}.self_attn.linear_attn", # deci
"layers.{bid}.attention.wo", # llama-pth
"encoder.layer.{bid}.attention.output.dense", # bert
"transformer.layer.{bid}.attention.out_lin", # distillbert
"transformer.h.{bid}.attn.out_proj", # gpt-j
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
"model.layers.{bid}.self_attn.dense", # persimmon
@ -224,6 +229,7 @@ class TensorNameMap:
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
"model.layers.{bid}.attention.wo", # internlm2
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
"encoder.layers.{bid}.mixer.out_proj", # jina
"transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
"encoder.layers.{bid}.self_attention.dense", # chatglm
@ -235,6 +241,7 @@ class TensorNameMap:
# Attention output norm
MODEL_TENSOR.ATTN_OUT_NORM: (
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
"transformer.layer.{bid}.sa_layer_norm", # distillbert
"encoder.layers.{bid}.norm1", # nomic-bert
"transformer.decoder_layer.{bid}.rms_norm_1", # Grok
"transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
@ -311,6 +318,7 @@ class TensorNameMap:
"model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
"layers.{bid}.feed_forward.w3", # llama-pth
"encoder.layer.{bid}.intermediate.dense", # bert
"transformer.layer.{bid}.ffn.lin1", # distillbert
"transformer.h.{bid}.mlp.fc_in", # gpt-j
"transformer.h.{bid}.mlp.linear_3", # refact
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
@ -394,6 +402,7 @@ class TensorNameMap:
"model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
"layers.{bid}.feed_forward.w2", # llama-pth
"encoder.layer.{bid}.output.dense", # bert
"transformer.layer.{bid}.ffn.lin2", # distillbert
"transformer.h.{bid}.mlp.fc_out", # gpt-j
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
"model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
@ -455,6 +464,7 @@ class TensorNameMap:
MODEL_TENSOR.LAYER_OUT_NORM: (
"encoder.layer.{bid}.output.LayerNorm", # bert
"transformer.layer.{bid}.output_layer_norm", # distillbert
"encoder.layers.{bid}.norm2", # nomic-bert
"transformer.decoder_layer.{bid}.rms_norm_3", # Grok
"encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
@ -825,6 +835,7 @@ class TensorNameMap:
MODEL_TENSOR.CLS: (
"classifier", # jina
"classifier.dense", # roberta
"pre_classifier", # distillbert
),
MODEL_TENSOR.CLS_OUT: (
@ -902,7 +913,6 @@ class TensorNameMap:
MODEL_TENSOR.V_MMPROJ_FC: (
"model.connector.modality_projection.proj", # SmolVLM
"multi_modal_projector.linear_1", # llama 4
),
MODEL_TENSOR.V_MMPROJ_MLP: (
@ -1125,6 +1135,7 @@ class TensorNameMap:
MODEL_TENSOR.A_POST_NORM: (
"audio_tower.layer_norm", # ultravox
"audio_tower.ln_post", # qwen2omni
),
MODEL_TENSOR.A_ENC_ATTN_Q: (
@ -1161,12 +1172,16 @@ class TensorNameMap:
"audio_tower.layers.{bid}.fc2", # ultravox
),
# note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
# this prefix is added in the conversion code in modify_tensors()
MODEL_TENSOR.A_MMPROJ: (
"audio.multi_modal_projector.linear_{bid}", # ultravox
),
MODEL_TENSOR.A_MMPROJ_FC: (
"audio.multi_modal_projector.linear", # qwen2audio
"audio_tower.proj", # qwen2omni
),
MODEL_TENSOR.A_MM_NORM_PRE: (

Some files were not shown because too many files have changed in this diff Show More