diff --git a/.editorconfig b/.editorconfig index 316448c7e9..c90b171f55 100644 --- a/.editorconfig +++ b/.editorconfig @@ -49,6 +49,6 @@ charset = unset trim_trailing_whitespace = unset insert_final_newline = unset -[tools/mtmd/miniaudio.h] +[vendor/miniaudio/miniaudio.h] trim_trailing_whitespace = unset insert_final_newline = unset diff --git a/.github/labeler.yml b/.github/labeler.yml index 278032ef2e..3c2f67707b 100644 --- a/.github/labeler.yml +++ b/.github/labeler.yml @@ -86,3 +86,10 @@ nix: embedding: - changed-files: - any-glob-to-any-file: examples/embedding/ + +Ascend NPU: + - changed-files: + - any-glob-to-any-file: + - ggml/include/ggml-cann.h + - ggml/src/ggml-cann/** + - docs/backend/CANN.md diff --git a/.github/workflows/build-linux-cross.yml b/.github/workflows/build-linux-cross.yml index dbd31e589b..7cfc82ba4e 100644 --- a/.github/workflows/build-linux-cross.yml +++ b/.github/workflows/build-linux-cross.yml @@ -26,12 +26,12 @@ jobs: sudo apt-get install -y --no-install-recommends \ build-essential \ gcc-14-riscv64-linux-gnu \ - g++-14-riscv64-linux-gnu \ - libcurl4-openssl-dev:riscv64 + g++-14-riscv64-linux-gnu - name: Build run: | - cmake -B build -DCMAKE_BUILD_TYPE=Release \ + cmake -B build -DLLAMA_CURL=OFF \ + -DCMAKE_BUILD_TYPE=Release \ -DGGML_OPENMP=OFF \ -DLLAMA_BUILD_EXAMPLES=ON \ -DLLAMA_BUILD_TOOLS=ON \ @@ -72,12 +72,12 @@ jobs: glslc \ gcc-14-riscv64-linux-gnu \ g++-14-riscv64-linux-gnu \ - libvulkan-dev:riscv64 \ - libcurl4-openssl-dev:riscv64 + libvulkan-dev:riscv64 - name: Build run: | - cmake -B build -DCMAKE_BUILD_TYPE=Release \ + cmake -B build -DLLAMA_CURL=OFF \ + -DCMAKE_BUILD_TYPE=Release \ -DGGML_VULKAN=ON \ -DGGML_OPENMP=OFF \ -DLLAMA_BUILD_EXAMPLES=ON \ @@ -118,12 +118,12 @@ jobs: build-essential \ glslc \ crossbuild-essential-arm64 \ - libvulkan-dev:arm64 \ - libcurl4-openssl-dev:arm64 + libvulkan-dev:arm64 - name: Build run: | - cmake -B build -DCMAKE_BUILD_TYPE=Release \ + cmake -B build -DLLAMA_CURL=OFF \ + -DCMAKE_BUILD_TYPE=Release \ -DGGML_VULKAN=ON \ -DGGML_OPENMP=OFF \ -DLLAMA_BUILD_EXAMPLES=ON \ @@ -163,12 +163,12 @@ jobs: sudo apt-get install -y --no-install-recommends \ build-essential \ gcc-14-powerpc64le-linux-gnu \ - g++-14-powerpc64le-linux-gnu \ - libcurl4-openssl-dev:ppc64el + g++-14-powerpc64le-linux-gnu - name: Build run: | - cmake -B build -DCMAKE_BUILD_TYPE=Release \ + cmake -B build -DLLAMA_CURL=OFF \ + -DCMAKE_BUILD_TYPE=Release \ -DGGML_OPENMP=OFF \ -DLLAMA_BUILD_EXAMPLES=ON \ -DLLAMA_BUILD_TOOLS=ON \ @@ -209,12 +209,12 @@ jobs: glslc \ gcc-14-powerpc64le-linux-gnu \ g++-14-powerpc64le-linux-gnu \ - libvulkan-dev:ppc64el \ - libcurl4-openssl-dev:ppc64el + libvulkan-dev:ppc64el - name: Build run: | - cmake -B build -DCMAKE_BUILD_TYPE=Release \ + cmake -B build -DLLAMA_CURL=OFF \ + -DCMAKE_BUILD_TYPE=Release \ -DGGML_VULKAN=ON \ -DGGML_OPENMP=OFF \ -DLLAMA_BUILD_EXAMPLES=ON \ @@ -231,3 +231,116 @@ jobs: -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH cmake --build build --config Release -j $(nproc) + + debian-13-loongarch64-cpu-cross: + runs-on: ubuntu-24.04 + container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671 + + steps: + - uses: actions/checkout@v4 + - name: Setup LoongArch + run: | + rm -f /etc/apt/sources.list.d/* + cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list + deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main + EOF + ( echo 'quiet "true";'; \ + echo 'APT::Get::Assume-Yes "true";'; \ + echo 'APT::Install-Recommends "false";'; \ + echo 'Acquire::Check-Valid-Until "false";'; \ + echo 'Acquire::Retries "5";'; \ + ) > /etc/apt/apt.conf.d/99snapshot-repos + + apt-get update + apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip + dpkg --add-architecture loong64 + + # Add arch-specific repositories for non-amd64 architectures + cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list + deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main + EOF + + apt-get update || true ;# Prevent failure due to missing URLs. + + apt-get install -y --no-install-recommends \ + build-essential \ + gcc-14-loongarch64-linux-gnu \ + g++-14-loongarch64-linux-gnu + + - name: Build + run: | + cmake -B build -DLLAMA_CURL=OFF \ + -DCMAKE_BUILD_TYPE=Release \ + -DGGML_OPENMP=OFF \ + -DLLAMA_BUILD_EXAMPLES=ON \ + -DLLAMA_BUILD_TOOLS=ON \ + -DLLAMA_BUILD_TESTS=OFF \ + -DCMAKE_SYSTEM_NAME=Linux \ + -DCMAKE_SYSTEM_PROCESSOR=loongarch64 \ + -DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \ + -DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \ + -DCMAKE_POSITION_INDEPENDENT_CODE=ON \ + -DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \ + -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \ + -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \ + -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH + + cmake --build build --config Release -j $(nproc) + + debian-13-loongarch64-vulkan-cross: + runs-on: ubuntu-24.04 + container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671 + + steps: + - uses: actions/checkout@v4 + - name: Setup LoongArch + run: | + rm -f /etc/apt/sources.list.d/* + cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list + deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main + EOF + ( echo 'quiet "true";'; \ + echo 'APT::Get::Assume-Yes "true";'; \ + echo 'APT::Install-Recommends "false";'; \ + echo 'Acquire::Check-Valid-Until "false";'; \ + echo 'Acquire::Retries "5";'; \ + ) > /etc/apt/apt.conf.d/99snapshot-repos + + apt-get update + apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip + dpkg --add-architecture loong64 + + # Add arch-specific repositories for non-amd64 architectures + cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list + deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main + EOF + + apt-get update || true ;# Prevent failure due to missing URLs. + + apt-get install -y --no-install-recommends \ + build-essential \ + glslc \ + gcc-14-loongarch64-linux-gnu \ + g++-14-loongarch64-linux-gnu \ + libvulkan-dev:loong64 + + - name: Build + run: | + cmake -B build -DLLAMA_CURL=OFF \ + -DCMAKE_BUILD_TYPE=Release \ + -DGGML_VULKAN=ON \ + -DGGML_OPENMP=OFF \ + -DLLAMA_BUILD_EXAMPLES=ON \ + -DLLAMA_BUILD_TOOLS=ON \ + -DLLAMA_BUILD_TESTS=OFF \ + -DCMAKE_SYSTEM_NAME=Linux \ + -DCMAKE_SYSTEM_PROCESSOR=loongarch64 \ + -DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \ + -DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \ + -DCMAKE_POSITION_INDEPENDENT_CODE=ON \ + -DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \ + -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \ + -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \ + -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH + + cmake --build build --config Release -j $(nproc) diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index ee76d1799e..867a589ce1 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -839,12 +839,12 @@ jobs: -DGGML_CUDA=ON cmake --build build - windows-2019-cmake-cuda: - runs-on: windows-2019 + windows-2022-cmake-cuda: + runs-on: windows-2022 strategy: matrix: - cuda: ['12.4', '11.7'] + cuda: ['12.4'] steps: - name: Clone @@ -878,7 +878,7 @@ jobs: env: CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }} run: | - call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat" + call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64 cmake -S . -B build -G "Ninja Multi-Config" ^ -DLLAMA_BUILD_SERVER=ON ^ -DGGML_NATIVE=OFF ^ diff --git a/.github/workflows/release.yml b/.github/workflows/release.yml index 65ed244657..9874736cbd 100644 --- a/.github/workflows/release.yml +++ b/.github/workflows/release.yml @@ -131,8 +131,9 @@ jobs: include: - build: 'x64' os: ubuntu-22.04 - - build: 'arm64' - os: ubuntu-22.04-arm + # GGML_BACKEND_DL and GGML_CPU_ALL_VARIANTS are not currently supported on arm + # - build: 'arm64' + # os: ubuntu-22.04-arm runs-on: ${{ matrix.os }} @@ -159,6 +160,9 @@ jobs: id: cmake_build run: | cmake -B build \ + -DGGML_BACKEND_DL=ON \ + -DGGML_NATIVE=OFF \ + -DGGML_CPU_ALL_VARIANTS=ON \ -DLLAMA_FATAL_WARNINGS=ON \ ${{ env.CMAKE_ARGS }} cmake --build build --config Release -j $(nproc) @@ -207,6 +211,9 @@ jobs: id: cmake_build run: | cmake -B build \ + -DGGML_BACKEND_DL=ON \ + -DGGML_NATIVE=OFF \ + -DGGML_CPU_ALL_VARIANTS=ON \ -DGGML_VULKAN=ON \ ${{ env.CMAKE_ARGS }} cmake --build build --config Release -j $(nproc) @@ -373,11 +380,11 @@ jobs: name: llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip windows-cuda: - runs-on: windows-2019 + runs-on: windows-2022 strategy: matrix: - cuda: ['12.4', '11.7'] + cuda: ['12.4'] steps: - name: Clone @@ -405,7 +412,7 @@ jobs: id: cmake_build shell: cmd run: | - call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat" + call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64 cmake -S . -B build -G "Ninja Multi-Config" ^ -DGGML_BACKEND_DL=ON ^ -DGGML_NATIVE=OFF ^ diff --git a/.github/workflows/server.yml b/.github/workflows/server.yml index 4baf6f6c75..f6da488576 100644 --- a/.github/workflows/server.yml +++ b/.github/workflows/server.yml @@ -180,7 +180,7 @@ jobs: server-windows: - runs-on: windows-2019 + runs-on: windows-2022 steps: - name: Clone diff --git a/CMakeLists.txt b/CMakeLists.txt index e20e966e1b..41027bb898 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -160,6 +160,11 @@ if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML) # ... otherwise assume ggml is added by a parent CMakeLists.txt endif() +if (MINGW) + # Target Windows 8 for PrefetchVirtualMemory + add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER}) +endif() + # # build the library # diff --git a/README.md b/README.md index 540c29a4f1..385ac04d84 100644 --- a/README.md +++ b/README.md @@ -3,6 +3,7 @@ ![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png) [![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT) +[![Release](https://img.shields.io/github/v/release/ggml-org/llama.cpp)](https://github.com/ggml-org/llama.cpp/releases) [![Server](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml/badge.svg)](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml) [Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml) @@ -28,6 +29,30 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) ---- +## Quick start + +Getting started with llama.cpp is straightforward. Here are several ways to install it on your machine: + +- Install `llama.cpp` using [brew, nix or winget](docs/install.md) +- Run with Docker - see our [Docker documentation](docs/docker.md) +- Download pre-built binaries from the [releases page](https://github.com/ggml-org/llama.cpp/releases) +- Build from source by cloning this repository - check out [our build guide](docs/build.md) + +Once installed, you'll need a model to work with. Head to the [Obtaining and quantizing models](#obtaining-and-quantizing-models) section to learn more. + +Example command: + +```sh +# Use a local model file +llama-cli -m my_model.gguf + +# Or download and run a model directly from Hugging Face +llama-cli -hf ggml-org/gemma-3-1b-it-GGUF + +# Launch OpenAI-compatible API server +llama-server -hf ggml-org/gemma-3-1b-it-GGUF +``` + ## Description The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide @@ -130,6 +155,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
Bindings +- Python: [ddh0/easy-llama](https://github.com/ddh0/easy-llama) - Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python) - Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) - Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp) @@ -229,6 +255,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
+ ## Supported backends | Backend | Target devices | @@ -245,16 +272,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo | [OpenCL](docs/backend/OPENCL.md) | Adreno GPU | | [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All | -## Building the project - -The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h). -The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. Possible methods for obtaining the binaries: - -- Clone this repository and build locally, see [how to build](docs/build.md) -- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md) -- Use a Docker image, see [documentation for Docker](docs/docker.md) -- Download pre-built binaries from [releases](https://github.com/ggml-org/llama.cpp/releases) - ## Obtaining and quantizing models The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](https://huggingface.co/models?library=gguf&sort=trending) compatible with `llama.cpp`: @@ -262,7 +279,11 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt - [Trending](https://huggingface.co/models?library=gguf&sort=trending) - [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf) -You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf /[:quant]`. +You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf /[:quant]`. For example: + +```sh +llama-cli -hf ggml-org/gemma-3-1b-it-GGUF +``` By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable `MODEL_ENDPOINT`. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. `MODEL_ENDPOINT=https://www.modelscope.cn/`. diff --git a/ci/run.sh b/ci/run.sh index b49a3a5f82..2968a7dd48 100755 --- a/ci/run.sh +++ b/ci/run.sh @@ -46,7 +46,20 @@ if [ ! -z ${GG_BUILD_METAL} ]; then fi if [ ! -z ${GG_BUILD_CUDA} ]; then - CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native" + CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON" + + if command -v nvidia-smi >/dev/null 2>&1; then + CUDA_ARCH=$(nvidia-smi --query-gpu=compute_cap --format=csv,noheader,nounits 2>/dev/null | head -1 | tr -d '.') + if [[ -n "$CUDA_ARCH" && "$CUDA_ARCH" =~ ^[0-9]+$ ]]; then + CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=${CUDA_ARCH}" + else + echo "Warning: Using fallback CUDA architectures" + CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=61;70;75;80;86;89" + fi + else + echo "Error: nvidia-smi not found, cannot build with CUDA" + exit 1 + fi fi if [ ! -z ${GG_BUILD_SYCL} ]; then diff --git a/common/CMakeLists.txt b/common/CMakeLists.txt index dac4cc770e..564af1448f 100644 --- a/common/CMakeLists.txt +++ b/common/CMakeLists.txt @@ -58,23 +58,20 @@ add_library(${TARGET} STATIC arg.cpp arg.h base64.hpp - chat.cpp - chat.h chat-parser.cpp chat-parser.h + chat.cpp + chat.h common.cpp common.h console.cpp console.h - json-schema-to-grammar.cpp - json.hpp - json-partial.h json-partial.cpp + json-partial.h + json-schema-to-grammar.cpp llguidance.cpp log.cpp log.h - minja/chat-template.hpp - minja/minja.hpp ngram-cache.cpp ngram-cache.h regex-partial.cpp @@ -147,7 +144,7 @@ if (LLAMA_LLGUIDANCE) set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance ${LLGUIDANCE_PLATFORM_LIBS}) endif () -target_include_directories(${TARGET} PUBLIC .) +target_include_directories(${TARGET} PUBLIC . ../vendor) target_compile_features (${TARGET} PUBLIC cxx_std_17) target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads) diff --git a/common/arg.cpp b/common/arg.cpp index 69a58364f9..0d0daa3610 100644 --- a/common/arg.cpp +++ b/common/arg.cpp @@ -1,10 +1,11 @@ -#include "gguf.h" // for reading GGUF splits #include "arg.h" +#include "chat.h" #include "common.h" +#include "gguf.h" // for reading GGUF splits +#include "json-schema-to-grammar.h" #include "log.h" #include "sampling.h" -#include "chat.h" // fix problem with std::min and std::max #if defined(_WIN32) @@ -15,6 +16,9 @@ #include #endif +#define JSON_ASSERT GGML_ASSERT +#include + #include #include #include @@ -34,8 +38,6 @@ #include #endif -#include "json-schema-to-grammar.h" - using json = nlohmann::ordered_json; std::initializer_list mmproj_examples = { @@ -1346,9 +1348,9 @@ common_params_context common_params_parser_init(common_params & params, llama_ex )); add_opt(common_arg( {"--prio"}, "N", - string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority), + string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority), [](common_params & params, int prio) { - if (prio < 0 || prio > 3) { + if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) { throw std::invalid_argument("invalid value"); } params.cpuparams.priority = (enum ggml_sched_priority) prio; @@ -2867,6 +2869,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex "(default: deepseek)", [](common_params & params, const std::string & value) { /**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; } + else if (value == "deepseek-legacy") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY; } else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; } else { throw std::invalid_argument("invalid value"); } } diff --git a/common/chat-parser.cpp b/common/chat-parser.cpp index c314b8b519..65b664cb37 100644 --- a/common/chat-parser.cpp +++ b/common/chat-parser.cpp @@ -154,9 +154,10 @@ bool common_chat_msg_parser::try_parse_reasoning(const std::string & start_think if (!rest.empty()) { handle_reasoning(rest, /* closed */ !is_partial()); } - if (!syntax_.thinking_forced_open) { - throw common_chat_msg_partial_exception(end_think); - } + // Allow unclosed thinking tags, for now (https://github.com/ggml-org/llama.cpp/issues/13812, https://github.com/ggml-org/llama.cpp/issues/13877) + // if (!syntax_.thinking_forced_open) { + // throw common_chat_msg_partial_exception(end_think); + // } return true; } } diff --git a/common/chat-parser.h b/common/chat-parser.h index 5d53f2df1d..7ee355056b 100644 --- a/common/chat-parser.h +++ b/common/chat-parser.h @@ -2,9 +2,10 @@ #include "chat.h" #include "json-partial.h" -#include "json.hpp" #include "regex-partial.h" +#include + #include #include #include diff --git a/common/chat.cpp b/common/chat.cpp index 7584639b07..1d6974a8c5 100644 --- a/common/chat.cpp +++ b/common/chat.cpp @@ -1,13 +1,14 @@ #include "chat.h" #include "chat-parser.h" #include "common.h" +#include "json-partial.h" #include "json-schema-to-grammar.h" #include "log.h" -#include "json-partial.h" -#include "minja/chat-template.hpp" -#include "minja/minja.hpp" #include "regex-partial.h" +#include +#include + #include #include #include @@ -16,7 +17,6 @@ #include #include - static std::string format_time(const std::chrono::system_clock::time_point & now, const std::string & format) { auto time = std::chrono::system_clock::to_time_t(now); auto local_time = *std::localtime(&time); @@ -82,10 +82,10 @@ json common_chat_msg::to_json_oaicompat() const std::vector common_chat_msg_diff::compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg) { std::vector diffs; - // if (previous_msg.reasoning_content != current.reasoning_content) { - // auto & diff = diffs.emplace_back(); - // diff.reasoning_content_delta = string_diff(previous_msg.reasoning_content, current.reasoning_content); - // } + if (previous_msg.reasoning_content != new_msg.reasoning_content) { + auto & diff = diffs.emplace_back(); + diff.reasoning_content_delta = string_diff(previous_msg.reasoning_content, new_msg.reasoning_content); + } if (previous_msg.content != new_msg.content) { auto & diff = diffs.emplace_back(); diff.content_delta = string_diff(previous_msg.content, new_msg.content); @@ -385,9 +385,9 @@ json common_chat_tools_to_json_oaicompat(const std::vector & t template <> json common_chat_msg_diff_to_json_oaicompat(const common_chat_msg_diff & diff) { json delta = json::object(); - // if (!diff.reasoning_content_delta.empty()) { - // delta["reasoning_content"] = msg.reasoning_content; - // } + if (!diff.reasoning_content_delta.empty()) { + delta["reasoning_content"] = diff.reasoning_content_delta; + } if (!diff.content_delta.empty()) { delta["content"] = diff.content_delta; } @@ -598,6 +598,7 @@ const char * common_reasoning_format_name(common_reasoning_format format) { switch (format) { case COMMON_REASONING_FORMAT_NONE: return "none"; case COMMON_REASONING_FORMAT_DEEPSEEK: return "deepseek"; + case COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY: return "deepseek-legacy"; default: throw std::runtime_error("Unknown reasoning format"); } diff --git a/common/chat.h b/common/chat.h index f6b1d0ffcc..9f59e6b087 100644 --- a/common/chat.h +++ b/common/chat.h @@ -70,7 +70,7 @@ struct common_chat_msg { }; struct common_chat_msg_diff { - // std::string reasoning_content_delta; + std::string reasoning_content_delta; std::string content_delta; size_t tool_call_index = std::string::npos; common_chat_tool_call tool_call_delta; diff --git a/common/common.cpp b/common/common.cpp index 2afa9b2d64..218f1e1dc0 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -203,6 +203,7 @@ bool set_process_priority(enum ggml_sched_priority prio) { DWORD p = NORMAL_PRIORITY_CLASS; switch (prio) { + case GGML_SCHED_PRIO_LOW: p = BELOW_NORMAL_PRIORITY_CLASS; break; case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break; case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break; case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break; @@ -228,6 +229,7 @@ bool set_process_priority(enum ggml_sched_priority prio) { int p = 0; switch (prio) { + case GGML_SCHED_PRIO_LOW: p = 5; break; case GGML_SCHED_PRIO_NORMAL: p = 0; break; case GGML_SCHED_PRIO_MEDIUM: p = -5; break; case GGML_SCHED_PRIO_HIGH: p = -10; break; @@ -903,13 +905,16 @@ struct common_init_result common_init_from_params(common_params & params) { ok = false; } - if (llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) { - LOG_WRN("%s: warning: vocab does not have an EOS token, reranking will not work\n", __func__); - ok = false; - } + bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL; + bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL; - if (llama_vocab_sep(vocab) == LLAMA_TOKEN_NULL) { - LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__); + if (!has_eos && !has_sep) { + LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__); + ok = false; + } else if (!has_eos) { + LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__); + } else if (!has_sep) { + LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__); ok = false; } @@ -929,7 +934,7 @@ struct common_init_result common_init_from_params(common_params & params) { return iparams; } - if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) { + if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) { LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__); params.ctx_shift = false; } @@ -1036,7 +1041,7 @@ struct common_init_result common_init_from_params(common_params & params) { if (llama_model_has_decoder(model)) { llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch))); } - llama_kv_self_clear(lctx); + llama_memory_clear(llama_get_memory(lctx), true); llama_synchronize(lctx); llama_perf_context_reset(lctx); llama_set_warmup(lctx, false); diff --git a/common/common.h b/common/common.h index cee1e3039c..f26724b6e1 100644 --- a/common/common.h +++ b/common/common.h @@ -215,7 +215,8 @@ struct common_params_vocoder { enum common_reasoning_format { COMMON_REASONING_FORMAT_NONE, - COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content` + COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in tags in stream mode + COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas. }; struct common_params { diff --git a/common/json-partial.cpp b/common/json-partial.cpp index 7591a8e4cf..d9d9169989 100644 --- a/common/json-partial.cpp +++ b/common/json-partial.cpp @@ -1,9 +1,10 @@ -#include -#include "ggml.h" -#include "log.h" -#include +#include "json-partial.h" -#include +#include "log.h" + +#include + +#include using json = nlohmann::ordered_json; diff --git a/common/json-partial.h b/common/json-partial.h index 854db6a3ae..f63356dc48 100644 --- a/common/json-partial.h +++ b/common/json-partial.h @@ -1,5 +1,6 @@ #pragma once -#include + +#include // Healing marker (empty if the JSON was fully parsed / wasn't healed). struct common_healing_marker { diff --git a/common/json-schema-to-grammar.cpp b/common/json-schema-to-grammar.cpp index 5b3059c2f7..d38a74f95c 100644 --- a/common/json-schema-to-grammar.cpp +++ b/common/json-schema-to-grammar.cpp @@ -1,8 +1,9 @@ #include "json-schema-to-grammar.h" #include "common.h" +#include + #include -#include #include #include #include diff --git a/common/json-schema-to-grammar.h b/common/json-schema-to-grammar.h index 4613f5d9f9..362991b542 100644 --- a/common/json-schema-to-grammar.h +++ b/common/json-schema-to-grammar.h @@ -1,9 +1,9 @@ #pragma once -#include "ggml.h" -// Change JSON_ASSERT from assert() to GGML_ASSERT: -#define JSON_ASSERT GGML_ASSERT -#include "json.hpp" +#include + +#include +#include std::string json_schema_to_grammar(const nlohmann::ordered_json & schema, bool force_gbnf = false); diff --git a/common/speculative.cpp b/common/speculative.cpp index ccad70fa9e..843bd1ddbd 100644 --- a/common/speculative.cpp +++ b/common/speculative.cpp @@ -144,6 +144,8 @@ llama_tokens common_speculative_gen_draft( auto & smpl = spec->smpl; auto & prompt = spec->prompt; + auto * mem = llama_get_memory(ctx); + int reuse_i = 0; int reuse_n = 0; @@ -173,7 +175,7 @@ llama_tokens common_speculative_gen_draft( result.reserve(params.n_draft); if (reuse_n == 0) { - llama_kv_self_clear(ctx); + llama_memory_clear(mem, false); prompt.clear(); } else { @@ -192,14 +194,14 @@ llama_tokens common_speculative_gen_draft( } if (reuse_i > 0) { - llama_kv_self_seq_rm (ctx, 0, 0, reuse_i); - llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i); + llama_memory_seq_rm (mem, 0, 0, reuse_i); + llama_memory_seq_add(mem, 0, reuse_i, -1, -reuse_i); prompt.erase(prompt.begin(), prompt.begin() + reuse_i); } if (reuse_n < (int) prompt.size()) { - llama_kv_self_seq_rm (ctx, 0, reuse_n, -1); + llama_memory_seq_rm (mem, 0, reuse_n, -1); prompt.erase(prompt.begin() + reuse_n, prompt.end()); } diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 91af508a2f..7b9893c8a3 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -423,16 +423,19 @@ class ModelBase: try: # for security reason, we don't allow loading remote code by default # if a model need remote code, we will fallback to config.json - return AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict() + config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict() except Exception as e: logger.warning(f"Failed to load model config from {dir_model}: {e}") logger.warning("Trying to load config.json instead") with open(dir_model / "config.json", "r", encoding="utf-8") as f: config = json.load(f) - if "llm_config" in config: - # rename for InternVL - config["text_config"] = config["llm_config"] - return config + if "llm_config" in config: + # rename for InternVL + config["text_config"] = config["llm_config"] + if "thinker_config" in config: + # rename for Qwen2.5-Omni + config["text_config"] = config["thinker_config"]["text_config"] + return config @classmethod def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]: @@ -520,15 +523,15 @@ class TextModel(ModelBase): self.gguf_writer.add_context_length(n_ctx) logger.info(f"gguf: context length = {n_ctx}") - if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None: + if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None: self.gguf_writer.add_embedding_length(n_embd) logger.info(f"gguf: embedding length = {n_embd}") - if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None: + if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None: self.gguf_writer.add_feed_forward_length(n_ff) logger.info(f"gguf: feed forward length = {n_ff}") - if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None: + if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None: self.gguf_writer.add_head_count(n_head) logger.info(f"gguf: head count = {n_head}") @@ -671,12 +674,12 @@ class TextModel(ModelBase): if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed": # ref: https://huggingface.co/tiiuae/falcon-7b res = "falcon" - if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e": - # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base - res = "falcon3" if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f": # ref: https://huggingface.co/BAAI/bge-small-en-v1.5 res = "bert-bge" + if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e": + # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base + res = "falcon3" if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7": # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5 res = "bert-bge-large" @@ -728,9 +731,6 @@ class TextModel(ModelBase): if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a": # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code res = "jina-v2-code" - if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516": - # ref: https://huggingface.co/THUDM/glm-4-9b-chat - res = "chatglm-bpe" if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee": # ref: https://huggingface.co/LumiOpen/Viking-7B res = "viking" @@ -761,9 +761,6 @@ class TextModel(ModelBase): if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450": # ref: https://huggingface.co/facebook/chameleon-7b res = "chameleon" - if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35": - # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0 - res = "minerva-7b" if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65": # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base res = "roberta-bpe" @@ -794,15 +791,24 @@ class TextModel(ModelBase): if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406": # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct res = "llama4" - if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2": - # ref: https://huggingface.co/THUDM/glm-4-9b-hf - res = "glm4" if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3": # ref: https://huggingface.co/mistral-community/pixtral-12b res = "pixtral" if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec": # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base res = "seed-coder" + if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b": + # ref: https://huggingface.co/THUDM/glm-4-9b-chat + res = "chatglm-bpe" + if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516": + # ref: https://huggingface.co/THUDM/glm-4-9b-chat + res = "chatglm-bpe" + if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2": + # ref: https://huggingface.co/THUDM/glm-4-9b-hf + res = "glm4" + if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35": + # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0 + res = "minerva-7b" if res is None: logger.warning("\n") @@ -1041,6 +1047,10 @@ class TextModel(ModelBase): special_vocab.chat_template = "rwkv-world" # hack: Add '\n\n' as the EOT token to make it chat normally special_vocab._set_special_token("eot", 261) + # hack: Override these as they have already been set (incorrectly) + special_vocab.special_token_ids["bos"] = 0 + special_vocab.special_token_ids["eos"] = 0 + special_vocab.add_to_gguf(self.gguf_writer) def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int): @@ -1121,18 +1131,21 @@ class MmprojModel(ModelBase): preprocessor_config: dict[str, Any] global_config: dict[str, Any] + n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"] + has_vision_encoder: bool = True # by default has_audio_encoder: bool = False + # for models having multiple encoders, we need to separate their hparams + hparams_vision: dict[str, Any] | None = None + hparams_audio: dict[str, Any] | None = None + def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self.model_arch != gguf.MODEL_ARCH.MMPROJ: raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ") - if self.has_vision_encoder and self.has_audio_encoder: - raise NotImplementedError("both vision + audio not supported yet") - # get n_embd of the text model if "text_config" not in self.hparams: self.hparams["text_config"] = {} @@ -1143,22 +1156,32 @@ class MmprojModel(ModelBase): assert self.n_embd_text > 0, "n_embd not found in hparams" # move vision config to the top level, while preserving the original hparams in global_config - self.global_config = self.hparams + import copy + self.global_config = copy.deepcopy(self.hparams) + self.hparams_vision = self.get_vision_config() + self.hparams_audio = self.get_audio_config() - if "vision_config" in self.hparams: - self.hparams = self.hparams["vision_config"] - elif "audio_config" in self.hparams: - self.hparams = self.hparams["audio_config"] - else: + if self.hparams_vision is None and self.hparams_audio is None: raise ValueError("vision_config / audio_config not found in hparams") - self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]) + # for compat with vision-only models + self.hparams = self.hparams_vision or self.hparams_audio or self.hparams + + # TODO @ngxson : this is a hack to support both vision and audio encoders + have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder + self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True) self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count) # load preprocessor config with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f: self.preprocessor_config = json.load(f) + def get_vision_config(self) -> dict[str, Any] | None: + return self.global_config.get("vision_config") + + def get_audio_config(self) -> dict[str, Any] | None: + return self.global_config.get("audio_config") + def set_type(self): self.gguf_writer.add_type(gguf.GGUFType.MMPROJ) @@ -1170,33 +1193,49 @@ class MmprojModel(ModelBase): self.gguf_writer.add_vision_projection_dim(self.n_embd_text) # vision config - self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"])) - self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"])) - self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"])) - self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"])) - self.gguf_writer.add_vision_block_count(self.block_count) - self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"])) + self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"])) + self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"])) + self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"])) + self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"])) + self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys)) + self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"])) # preprocessor config self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"]) self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"]) - elif self.has_audio_encoder: + if self.has_audio_encoder: self.gguf_writer.add_clip_has_audio_encoder(True) self.gguf_writer.add_audio_projection_dim(self.n_embd_text) # audio config - self.gguf_writer.add_audio_embedding_length(self.find_hparam(["hidden_size"])) - self.gguf_writer.add_audio_feed_forward_length(self.find_hparam(["intermediate_size"])) - self.gguf_writer.add_audio_block_count(self.block_count) - self.gguf_writer.add_audio_head_count(self.find_hparam(["num_attention_heads"])) + self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"])) + self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"])) + self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys)) + self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"])) - else: + if not self.has_vision_encoder and not self.has_audio_encoder: raise ValueError("MmprojModel must have either vision or audio encoder") def write_vocab(self): raise ValueError("MmprojModel does not support vocab writing") + def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any: + assert self.hparams_vision is not None + return self._find_param(self.hparams_vision, keys, optional) + + def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any: + assert self.hparams_audio is not None + return self._find_param(self.hparams_audio, keys, optional) + + def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any: + key = next((k for k in keys if k in obj), None) + if key is not None: + return obj[key] + if optional: + return None + raise KeyError(f"could not find any of: {keys}") + @ModelBase.register("GPTNeoXForCausalLM") class GPTNeoXModel(TextModel): @@ -1809,7 +1848,8 @@ class StableLMModel(TextModel): "MistralForCausalLM", "MixtralForCausalLM", "VLlama3ForCausalLM", - "LlavaForConditionalGeneration") + "LlavaForConditionalGeneration", + "LlamaModel") class LlamaModel(TextModel): model_arch = gguf.MODEL_ARCH.LLAMA undo_permute = True @@ -1889,6 +1929,8 @@ class LlamaModel(TextModel): if is_vision_tensor: return [] # skip vision tensors + elif self.hf_arch == "LlamaModel": + name = "model." + name elif name.startswith("model.text_model"): name = name.replace("text_model.", "") # for SmolVLM elif name.startswith("language_model."): @@ -2137,6 +2179,9 @@ class Llama4VisionModel(MmprojModel): # process vision tensors if "positional_embedding_vlm" in name and ".weight" not in name: name += ".weight" + if "multi_modal_projector.linear_1" in name: + # despite the name with number postfix, this is a single fully connected layer + return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC], data_torch)] return [(self.map_tensor_name(name), data_torch)] return [] @@ -2674,7 +2719,12 @@ class Qwen2Model(TextModel): yield from super().modify_tensors(data_torch, name, bid) -@ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration") +@ModelBase.register( + "Qwen2VLModel", + "Qwen2VLForConditionalGeneration", + "Qwen2_5_VLForConditionalGeneration", + "Qwen2_5OmniModel", +) class Qwen2VLModel(TextModel): model_arch = gguf.MODEL_ARCH.QWEN2VL @@ -2692,8 +2742,11 @@ class Qwen2VLModel(TextModel): def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: del bid # unused - if name.startswith("visual."): - # skip visual tensors + if name.startswith("thinker."): + name = name.replace("thinker.", "") + if name.startswith("visual") or name.startswith("audio") or \ + name.startswith("talker") or name.startswith("token2wav"): + # skip multimodal tensors return [] return [(self.map_tensor_name(name), data_torch)] @@ -2702,21 +2755,27 @@ class Qwen2VLModel(TextModel): class Qwen2VLVisionModel(MmprojModel): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) - self.hparams["image_size"] = self.hparams.get("image_size", 560) + assert self.hparams_vision is not None + self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560) # rename config.json values - self.hparams["num_attention_heads"] = self.hparams.get("num_heads") - self.hparams["num_hidden_layers"] = self.hparams.get("depth") - if "embed_dim" in self.hparams: # qwen2vl - self.hparams["intermediate_size"] = self.hparams.get("hidden_size") - self.hparams["hidden_size"] = self.hparams.get("embed_dim") + self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads") + self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth") + if "embed_dim" in self.hparams_vision: # qwen2vl + self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size") + self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim") def set_gguf_parameters(self): super().set_gguf_parameters() - hparams = self.hparams - if self.global_config['model_type'] == 'qwen2_vl': + assert self.hparams_vision is not None + hparams = self.hparams_vision + model_type = self.global_config['model_type'] + if model_type == 'qwen2_vl': self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL) - elif self.global_config['model_type'] == 'qwen2_5_vl': - self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL) + elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni': + if model_type == 'qwen2_5_omni': + self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O) + else: + self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL) self.gguf_writer.add_vision_use_silu(True) # find n_wa_pattern (window attention pattern) fullatt_block_indexes = hparams.get("fullatt_block_indexes") @@ -2774,6 +2833,66 @@ class Qwen2VLVisionModel(MmprojModel): return [] # skip other tensors +@ModelBase.register("Qwen2_5OmniModel") +class Qwen25OmniModel(Qwen2VLVisionModel): + has_vision_encoder = True + has_audio_encoder = True + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + assert self.hparams_audio is not None + self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"] + self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"] + self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"] + + def set_gguf_parameters(self): + super().set_gguf_parameters() + assert self.hparams_audio is not None + self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"]) + self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5)) + + def get_vision_config(self) -> dict[str, Any] | None: + return self.global_config["thinker_config"].get("vision_config") + + def get_audio_config(self) -> dict[str, Any] | None: + return self.global_config["thinker_config"].get("audio_config") + + def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]: + # SinusoidsPositionEmbedding + assert self.hparams_audio is not None + max_timescale = 10000 + length = 1500 + channels = self.hparams_audio["hidden_size"] + log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1) + inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float()) + scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :] + pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32) + yield ("audio_tower.embed_positions.weight", pos_embd) + + def tensor_force_quant(self, name, new_name, bid, n_dims): + del bid, new_name, n_dims # unused + if ".conv" in name and ".weight" in name: + return gguf.GGMLQuantizationType.F16 + return False + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + if name.startswith("thinker."): + name = name.replace("thinker.", "") + + if name.startswith("audio_tower"): + # process audio tensors + if "conv1.bias" in name or "conv2.bias" in name: + # transpose conv1 and conv2 bias + data_torch = data_torch.unsqueeze(-1) + if "audio_bos_eos_token" in name: + # this tensor is left unused in transformers code + # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809 + return [] + return [(self.map_tensor_name(name), data_torch)] + + return super().modify_tensors(data_torch, name, bid) + + @ModelBase.register("InternVisionModel") class InternVisionModel(MmprojModel): def set_gguf_parameters(self): @@ -3570,7 +3689,7 @@ class InternLM3Model(TextModel): return [(self.map_tensor_name(name), data_torch)] -@ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel") +@ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification") class BertModel(TextModel): model_arch = gguf.MODEL_ARCH.BERT @@ -3578,11 +3697,20 @@ class BertModel(TextModel): super().__init__(*args, **kwargs) self.vocab_size = None + if cls_out_labels := self.hparams.get("id2label"): + if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0": + # Remove dummy labels added by AutoConfig + cls_out_labels = None + self.cls_out_labels = cls_out_labels + def set_gguf_parameters(self): super().set_gguf_parameters() self.gguf_writer.add_causal_attention(False) self._try_set_pooling_type() + if self.cls_out_labels: + self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())]) + def set_vocab(self): tokens, toktypes, tokpre = self.get_vocab_base() self.vocab_size = len(tokens) @@ -3633,6 +3761,14 @@ class BertModel(TextModel): if name.startswith("cls.seq_relationship"): return [] + if self.cls_out_labels: + # For BertForSequenceClassification (direct projection layer) + if name == "classifier.weight": + name = "classifier.out_proj.weight" + + if name == "classifier.bias": + name = "classifier.out_proj.bias" + return [(self.map_tensor_name(name), data_torch)] def _xlmroberta_tokenizer_init(self) -> None: @@ -3652,62 +3788,111 @@ class BertModel(TextModel): from sentencepiece import sentencepiece_model_pb2 as model tokenizer_path = self.dir_model / 'sentencepiece.bpe.model' + + tokenizer_json = {} + tokenizer_config_json = {} if not tokenizer_path.is_file(): - raise FileNotFoundError(f"File not found: {tokenizer_path}") + tokenizer_path = self.dir_model / 'tokenizer.json' + tokenizer_config_path = self.dir_model / 'tokenizer_config.json' - sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue] - sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) - assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM + if not tokenizer_path.is_file(): + raise FileNotFoundError(f"File not found: {tokenizer_path}") - add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix - remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces - precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap + from base64 import b64decode + from transformers import AutoTokenizer + tokenizer = AutoTokenizer.from_pretrained(self.dir_model) - tokenizer = SentencePieceProcessor() - tokenizer.LoadFromFile(str(tokenizer_path)) + with open(tokenizer_path, "r", encoding="utf-8") as fp: + tokenizer_json = json.load(fp) - vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) + if tokenizer_config_path.is_file(): + with open(tokenizer_config_path, "r", encoding="utf-8") as fp: + tokenizer_config_json = json.load(fp) + + add_prefix = tokenizer.add_prefix_space + remove_whitespaces = tokenizer.clean_up_tokenization_spaces + precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"]) + + vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size) + else: + sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue] + sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) + assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM + + add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix + remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces + precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap + + tokenizer = SentencePieceProcessor() + tokenizer.LoadFromFile(str(tokenizer_path)) + + vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size()) tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] scores: list[float] = [-10000.0] * vocab_size toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size - for token_id in range(tokenizer.vocab_size()): - piece = tokenizer.IdToPiece(token_id) - text = piece.encode("utf-8") - score = tokenizer.GetScore(token_id) + if isinstance(tokenizer, SentencePieceProcessor): + for token_id in range(tokenizer.vocab_size()): + piece = tokenizer.IdToPiece(token_id) + text = piece.encode("utf-8") + score = tokenizer.GetScore(token_id) - toktype = SentencePieceTokenTypes.NORMAL - if tokenizer.IsUnknown(token_id): - toktype = SentencePieceTokenTypes.UNKNOWN - elif tokenizer.IsControl(token_id): - toktype = SentencePieceTokenTypes.CONTROL - elif tokenizer.IsUnused(token_id): - toktype = SentencePieceTokenTypes.UNUSED - elif tokenizer.IsByte(token_id): - toktype = SentencePieceTokenTypes.BYTE + toktype = SentencePieceTokenTypes.NORMAL + if tokenizer.IsUnknown(token_id): + toktype = SentencePieceTokenTypes.UNKNOWN + elif tokenizer.IsControl(token_id): + toktype = SentencePieceTokenTypes.CONTROL + elif tokenizer.IsUnused(token_id): + toktype = SentencePieceTokenTypes.UNUSED + elif tokenizer.IsByte(token_id): + toktype = SentencePieceTokenTypes.BYTE - tokens[token_id] = text - scores[token_id] = score - toktypes[token_id] = toktype + tokens[token_id] = text + scores[token_id] = score + toktypes[token_id] = toktype + else: + added_vocab = tokenizer.get_added_vocab() + unk_token = tokenizer_config_json.get("unk_token") + unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3)) - if vocab_size > len(tokens): - pad_count = vocab_size - len(tokens) - logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") - for i in range(1, pad_count + 1): - tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) - scores.append(-1000.0) - toktypes.append(SentencePieceTokenTypes.UNUSED) + for token_id in range(tokenizer.vocab_size): + piece = tokenizer._convert_id_to_token(token_id) + if (piece := tokenizer._convert_id_to_token(token_id)) is not None: + text = piece.encode("utf-8") + score = tokenizer_json["model"]["vocab"][token_id][1] - # realign tokens (see HF tokenizer code) - tokens = [b'', b'', b'', b''] + tokens[3:-1] - scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1] - toktypes = [ - SentencePieceTokenTypes.CONTROL, - SentencePieceTokenTypes.CONTROL, - SentencePieceTokenTypes.CONTROL, - SentencePieceTokenTypes.UNKNOWN, - ] + toktypes[3:-1] + toktype = SentencePieceTokenTypes.NORMAL + if token_id == unk_token_id: + toktype = SentencePieceTokenTypes.UNKNOWN + elif token_id in tokenizer.all_special_ids: + toktype = SentencePieceTokenTypes.CONTROL + elif token_id in added_vocab.values(): + toktype = SentencePieceTokenTypes.USER_DEFINED + # No reliable way to detect this, but jina doesn't have any + # elif tokenizer.IsByte(token_id): + # toktype = SentencePieceTokenTypes.BYTE + + tokens[token_id] = text + scores[token_id] = score + toktypes[token_id] = toktype + + if isinstance(tokenizer, SentencePieceProcessor): + # realign tokens (see HF tokenizer code) + tokens = [b'', b'', b'', b''] + tokens[3:-1] + scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1] + toktypes = [ + SentencePieceTokenTypes.CONTROL, + SentencePieceTokenTypes.CONTROL, + SentencePieceTokenTypes.CONTROL, + SentencePieceTokenTypes.UNKNOWN, + ] + toktypes[3:-1] + + if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE: + # Add mask token missing from sentencepiece.bpe.model + tokens[250001] = b'' + scores[250001] = 0.0 + toktypes[250001] = SentencePieceTokenTypes.CONTROL self.gguf_writer.add_tokenizer_model("t5") self.gguf_writer.add_tokenizer_pre("default") @@ -3727,7 +3912,27 @@ class BertModel(TextModel): self.gguf_writer.add_add_eos_token(True) -@ModelBase.register("RobertaModel") +@ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification") +class DistilBertModel(BertModel): + model_arch = gguf.MODEL_ARCH.BERT + + def set_gguf_parameters(self): + self.gguf_writer.add_layer_norm_eps(1e-12) + logger.info("gguf: layer norm epsilon = 1e-12") + super().set_gguf_parameters() + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + if name.startswith("distilbert."): + name = name[11:] + + # These layers act as MLM head, so we don't need them + if name.startswith("vocab_"): + return [] + + return super().modify_tensors(data_torch, name, bid) + + +@ModelBase.register("RobertaModel", "RobertaForSequenceClassification") class RobertaModel(BertModel): model_arch = gguf.MODEL_ARCH.BERT diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py index 5993a4c983..2f733f0973 100755 --- a/convert_hf_to_gguf_update.py +++ b/convert_hf_to_gguf_update.py @@ -1,28 +1,6 @@ #!/usr/bin/env python3 # -*- coding: utf-8 -*- -# This script downloads the tokenizer models of the specified models from Huggingface and -# generates the get_vocab_base_pre() function for convert_hf_to_gguf.py -# -# This is necessary in order to analyze the type of pre-tokenizer used by the model and -# provide the necessary information to llama.cpp via the GGUF header in order to implement -# the same pre-tokenizer. -# -# ref: https://github.com/ggml-org/llama.cpp/pull/6920 -# -# Instructions: -# -# - Add a new model to the "models" list -# - Run the script with your huggingface token: -# -# python3 convert_hf_to_gguf_update.py -# -# - The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated -# - Update llama.cpp with the new pre-tokenizer if necessary -# -# TODO: generate tokenizer tests for llama.cpp -# - import logging import os import pathlib @@ -32,6 +10,7 @@ import requests import sys import json import shutil +import argparse from hashlib import sha256 from enum import IntEnum, auto @@ -41,6 +20,11 @@ logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger("convert_hf_to_gguf_update") sess = requests.Session() +convert_py_pth = pathlib.Path("convert_hf_to_gguf.py") +convert_py = convert_py_pth.read_text(encoding="utf-8") +hf_token_pth = pathlib.Path.home() / ".cache" / "huggingface" / "token" +hf_token = hf_token_pth.read_text(encoding="utf-8").strip() if hf_token_pth.exists() else None + class TOKENIZER_TYPE(IntEnum): SPM = auto() @@ -49,20 +33,49 @@ class TOKENIZER_TYPE(IntEnum): UGM = auto() +DOC_STRING = """ +This script downloads the tokenizer models of the specified models from Huggingface and +generates the get_vocab_base_pre() function for convert_hf_to_gguf.py + +/!\\ It is intended to be used by contributors and is not meant to be run by end users + +This is necessary in order to analyze the type of pre-tokenizer used by the model and +provide the necessary information to llama.cpp via the GGUF header in order to implement +the same pre-tokenizer. + +ref: https://github.com/ggml-org/llama.cpp/pull/6920 + +Instructions: + +- Add a new model to the "models" list +- Run the script with your huggingface token + By default, token will be read from ~/.cache/huggingface/token +- The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated +- Update llama.cpp with the new pre-tokenizer if necessary +""" +# TODO: generate tokenizer tests for llama.cpp + +parser = argparse.ArgumentParser(description=DOC_STRING, formatter_class=argparse.RawTextHelpFormatter) +parser.add_argument( + "--full", action="store_true", + help="download full list of models - make sure you have access to all of them", +) +parser.add_argument( + "hf_token", + help="optional HF token", + nargs="?", +) +args = parser.parse_args() +hf_token = args.hf_token if args.hf_token is not None else hf_token + +if hf_token is None: + logger.error("HF token is required. Please provide it as an argument or set it in ~/.cache/huggingface/token") + sys.exit(1) + # TODO: this string has to exercise as much pre-tokenizer functionality as possible # will be updated with time - contributions welcome CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' -if len(sys.argv) == 2: - token = sys.argv[1] - if not token.startswith("hf_"): - logger.info("Huggingface token seems invalid") - logger.info("Usage: python convert_hf_to_gguf_update.py ") - sys.exit(1) -else: - logger.info("Usage: python convert_hf_to_gguf_update.py ") - sys.exit(1) - # TODO: add models here, base models preferred models = [ {"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", }, @@ -103,7 +116,6 @@ models = [ {"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", }, {"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", }, {"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", }, - {"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", }, {"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"}, {"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"}, {"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"}, @@ -114,11 +126,19 @@ models = [ {"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", }, {"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", }, {"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", }, - {"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", }, {"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", }, {"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", }, ] +# some models are known to be broken upstream, so we will skip them as exceptions +pre_computed_hashes = [ + # chatglm-bpe has 2 hashes, why? + {"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b"}, + {"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"}, + {"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"}, + {"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"}, +] + def download_file_with_auth(url, token, save_path): headers = {"Authorization": f"Bearer {token}"} @@ -169,9 +189,29 @@ def download_model(model): if os.path.isfile(save_path): logger.info(f"{name}: File {save_path} already exists - skipping") continue - download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path) + download_file_with_auth(f"{repo}/resolve/main/{file}", hf_token, save_path) +# get list of existing models and chkhsh from the convert_hf_to_gguf.py file +# returns mapping res --> chkhsh +def get_existing_models(convert_py): + pattern = r'if chkhsh == "([a-f0-9]{64})":\s*\n\s*.*\s*res = "([^"]+)"' + matches = re.findall(pattern, convert_py) + output = {} + for chkhsh, res in matches: + output[res] = chkhsh + return output + + +existing_models = {} +all_models = models.copy() +if not args.full: + # Filter out models that already exist in convert_hf_to_gguf.py + existing_models = get_existing_models(convert_py) + all_models = models.copy() + models = [model for model in all_models if model["name"] not in existing_models] + +logging.info(f"Downloading {len(models)} models...") for model in models: try: download_model(model) @@ -182,9 +222,10 @@ for model in models: # generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function: src_ifs = "" -for model in models: +for model in [*all_models, *pre_computed_hashes]: name = model["name"] tokt = model["tokt"] + chkhsh = model.get("chkhsh") if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM: continue @@ -195,35 +236,44 @@ for model in models: continue # create the tokenizer - try: - if name == "t5": - tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False) - else: - tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") - except OSError as e: - logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}") - continue # Skip to the next model if the tokenizer can't be loaded + if chkhsh is not None: + # if the model has a pre-computed hash, use it + logger.info(f"Using pre-computed hash for model {name}: {chkhsh}") + elif name in existing_models: + # if the model already exists in convert_hf_to_gguf.py, skip compute hash + chkhsh = existing_models[name] + else: + # otherwise, compute the hash of the tokenizer + try: + logger.info(f"Loading tokenizer from {f'models/tokenizers/{name}'}...") + if name == "t5": + tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False) + else: + tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") + except OSError as e: + logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}") + continue # Skip to the next model if the tokenizer can't be loaded - chktok = tokenizer.encode(CHK_TXT) - chkhsh = sha256(str(chktok).encode()).hexdigest() + chktok = tokenizer.encode(CHK_TXT) + chkhsh = sha256(str(chktok).encode()).hexdigest() - logger.info(f"model: {name}") - logger.info(f"tokt: {tokt}") - logger.info(f"repo: {model['repo']}") - logger.info(f"chktok: {chktok}") - logger.info(f"chkhsh: {chkhsh}") + logger.info(f"model: {name}") + logger.info(f"tokt: {tokt}") + logger.info(f"repo: {model['repo']}") + logger.info(f"chktok: {chktok}") + logger.info(f"chkhsh: {chkhsh}") - # print the "pre_tokenizer" content from the tokenizer.json - with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f: - cfg = json.load(f) - normalizer = cfg["normalizer"] - logger.info("normalizer: " + json.dumps(normalizer, indent=4)) - pre_tokenizer = cfg["pre_tokenizer"] - logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4)) - if "ignore_merges" in cfg["model"]: - logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4)) + # print the "pre_tokenizer" content from the tokenizer.json + with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f: + cfg = json.load(f) + normalizer = cfg["normalizer"] + logger.info("normalizer: " + json.dumps(normalizer, indent=4)) + pre_tokenizer = cfg["pre_tokenizer"] + logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4)) + if "ignore_merges" in cfg["model"]: + logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4)) - logger.info("") + logger.info("") src_ifs += f" if chkhsh == \"{chkhsh}\":\n" src_ifs += f" # ref: {model['repo']}\n" @@ -271,8 +321,6 @@ src_func = f""" return res """ -convert_py_pth = pathlib.Path("convert_hf_to_gguf.py") -convert_py = convert_py_pth.read_text(encoding="utf-8") convert_py = re.sub( r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)", lambda m: m.group(1) + src_func + m.group(3), @@ -288,7 +336,7 @@ logger.info("+++ convert_hf_to_gguf.py was updated") tests = [ "ied 4 ½ months", - "Führer", + "Äpfel", "", " ", " ", @@ -367,6 +415,10 @@ for model in models: logger.error(f"Failed to load tokenizer for model {name}. Error: {e}") continue # Skip this model and continue with the next one in the loop + if not os.path.exists(f"models/ggml-vocab-{name}.gguf"): + logger.info(f"Skip vocab files for model {name}, no GGUF file found") + continue + with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f: for text in tests: f.write(f"{text}") diff --git a/docs/build.md b/docs/build.md index c9027c0b58..680b0d8398 100644 --- a/docs/build.md +++ b/docs/build.md @@ -1,5 +1,9 @@ # Build llama.cpp locally +The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h). + +The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. + **To get the Code:** ```bash @@ -63,6 +67,7 @@ cmake --build build --config Release cmake --preset x64-windows-llvm-release cmake --build build-x64-windows-llvm-release ``` +- Curl usage is enabled by default and can be turned off with `-DLLAMA_CURL=OFF`. Otherwise you need to install development libraries for libcurl. ## BLAS Build diff --git a/docs/function-calling.md b/docs/function-calling.md index 4a72e843ea..fd3db9bd16 100644 --- a/docs/function-calling.md +++ b/docs/function-calling.md @@ -2,7 +2,6 @@ [chat.h](../common/chat.h) (https://github.com/ggml-org/llama.cpp/pull/9639) adds support for [OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) and is used in: - `llama-server` when started w/ `--jinja` flag -- `llama-cli` (WIP: https://github.com/ggml-org/llama.cpp/pull/11556) ## Universal support w/ Native & Generic handlers diff --git a/docs/install.md b/docs/install.md index 4971c18281..7200bf9b7b 100644 --- a/docs/install.md +++ b/docs/install.md @@ -1,28 +1,42 @@ # Install pre-built version of llama.cpp -## Homebrew +| Install via | Windows | Mac | Linux | +|-------------|---------|-----|-------| +| Winget | ✅ | | | +| Homebrew | | ✅ | ✅ | +| MacPorts | | ✅ | | +| Nix | | ✅ | ✅ | -On Mac and Linux, the homebrew package manager can be used via +## Winget (Windows) + +```sh +winget install llama.cpp +``` + +The package is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/issues/8188 + +## Homebrew (Mac and Linux) ```sh brew install llama.cpp ``` + The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668 -## MacPorts +## MacPorts (Mac) ```sh sudo port install llama.cpp ``` -see also: https://ports.macports.org/port/llama.cpp/details/ -## Nix +See also: https://ports.macports.org/port/llama.cpp/details/ -On Mac and Linux, the Nix package manager can be used via +## Nix (Mac and Linux) ```sh nix profile install nixpkgs#llama-cpp ``` + For flake enabled installs. Or @@ -34,13 +48,3 @@ nix-env --file '' --install --attr llama-cpp For non-flake enabled installs. This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164). - -## Flox - -On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via - -```sh -flox install llama-cpp -``` - -Flox follows the nixpkgs build of llama.cpp. diff --git a/docs/multimodal.md b/docs/multimodal.md index 3a0994a279..e849c2a0b8 100644 --- a/docs/multimodal.md +++ b/docs/multimodal.md @@ -98,3 +98,12 @@ NOTE: some models may require large context window, for example: `-c 8192` # note: no pre-quantized GGUF this model, as they have very poor result # ref: https://github.com/ggml-org/llama.cpp/pull/13760 ``` + +**Mixed modalities**: + +```sh +# Qwen2.5 Omni +# Capabilities: audio input, vision input +(tool_name) -hf ggml-org/Qwen2.5-Omni-3B-GGUF +(tool_name) -hf ggml-org/Qwen2.5-Omni-7B-GGUF +``` diff --git a/examples/batched.swift/Sources/main.swift b/examples/batched.swift/Sources/main.swift index 514989e340..fd90bbec5f 100644 --- a/examples/batched.swift/Sources/main.swift +++ b/examples/batched.swift/Sources/main.swift @@ -116,7 +116,7 @@ if llama_decode(context, batch) != 0 { } for i in 1 ..< n_parallel { - llama_kv_self_seq_cp(context, 0, Int32(i), 0, batch.n_tokens) + llama_memory_seq_cp(llama_get_memory(context), 0, Int32(i), 0, batch.n_tokens) } if n_parallel > 1 { diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 71f700877a..681929d27d 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -37,7 +37,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); // clear previous kv_cache values (irrelevant for embeddings) - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), true); // run model LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq); @@ -236,9 +236,24 @@ int main(int argc, char ** argv) { LOG("\n"); } } else if (pooling_type == LLAMA_POOLING_TYPE_RANK) { + const uint32_t n_cls_out = llama_model_n_cls_out(model); + std::vector cls_out_labels; + + for (uint32_t i = 0; i < n_cls_out; i++) { + const char * label = llama_model_cls_label(model, i); + const std::string label_i(label == nullptr ? "" : label); + cls_out_labels.emplace_back(label_i.empty() ? std::to_string(i) : label_i); + } + for (int j = 0; j < n_embd_count; j++) { - // NOTE: if you change this log - update the tests in ci/run.sh - LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]); + for (uint32_t i = 0; i < n_cls_out; i++) { + // NOTE: if you change this log - update the tests in ci/run.sh + if (n_cls_out == 1) { + LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]); + } else { + LOG("rerank score %d: %8.3f [%s]\n", j, emb[j * n_embd + i], cls_out_labels[i].c_str()); + } + } } } else { // print the first part of the embeddings or for a single prompt, the full embedding diff --git a/examples/gritlm/gritlm.cpp b/examples/gritlm/gritlm.cpp index 539bc4d602..041da61c74 100644 --- a/examples/gritlm/gritlm.cpp +++ b/examples/gritlm/gritlm.cpp @@ -45,7 +45,7 @@ static std::vector> encode(llama_context * ctx, const std::ve } // clear previous kv_cache values (irrelevant for embeddings) - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), true); llama_set_embeddings(ctx, true); llama_set_causal_attn(ctx, false); @@ -102,7 +102,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std llama_token eos_token = llama_vocab_eos(vocab); - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), true); llama_set_embeddings(ctx, false); llama_set_causal_attn(ctx, true); diff --git a/examples/llama.android/llama/src/main/cpp/llama-android.cpp b/examples/llama.android/llama/src/main/cpp/llama-android.cpp index 9654cd53cf..711ddc5d19 100644 --- a/examples/llama.android/llama/src/main/cpp/llama-android.cpp +++ b/examples/llama.android/llama/src/main/cpp/llama-android.cpp @@ -194,7 +194,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model( } batch->logits[batch->n_tokens - 1] = true; - llama_kv_self_clear(context); + llama_memory_clear(llama_get_memory(context), false); const auto t_pp_start = ggml_time_us(); if (llama_decode(context, *batch) != 0) { @@ -206,7 +206,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model( LOGi("Benchmark text generation (tg)"); - llama_kv_self_clear(context); + llama_memory_clear(llama_get_memory(context), false); const auto t_tg_start = ggml_time_us(); for (i = 0; i < tg; i++) { @@ -223,7 +223,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model( const auto t_tg_end = ggml_time_us(); - llama_kv_self_clear(context); + llama_memory_clear(llama_get_memory(context), false); const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0; const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0; @@ -448,5 +448,5 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop( extern "C" JNIEXPORT void JNICALL Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) { - llama_kv_self_clear(reinterpret_cast(context)); + llama_memory_clear(llama_get_memory(reinterpret_cast(context)), true); } diff --git a/examples/llama.swiftui/llama.cpp.swift/LibLlama.swift b/examples/llama.swiftui/llama.cpp.swift/LibLlama.swift index f6e31abc93..dc2bafc88b 100644 --- a/examples/llama.swiftui/llama.cpp.swift/LibLlama.swift +++ b/examples/llama.swiftui/llama.cpp.swift/LibLlama.swift @@ -210,7 +210,7 @@ actor LlamaContext { } batch.logits[Int(batch.n_tokens) - 1] = 1 // true - llama_kv_self_clear(context) + llama_memory_clear(llama_get_memory(context), false) let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000; @@ -223,7 +223,7 @@ actor LlamaContext { // bench text generation - llama_kv_self_clear(context) + llama_memory_clear(llama_get_memory(context), false) let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000; @@ -242,7 +242,7 @@ actor LlamaContext { let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000; - llama_kv_self_clear(context) + llama_memory_clear(llama_get_memory(context), false) let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0 let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0 @@ -292,7 +292,7 @@ actor LlamaContext { func clear() { tokens_list.removeAll() temporary_invalid_cchars.removeAll() - llama_kv_self_clear(context) + llama_memory_clear(llama_get_memory(context), true) } private func tokenize(text: String, add_bos: Bool) -> [llama_token] { diff --git a/examples/lookahead/lookahead.cpp b/examples/lookahead/lookahead.cpp index 5f8620973f..1e26d8221b 100644 --- a/examples/lookahead/lookahead.cpp +++ b/examples/lookahead/lookahead.cpp @@ -60,6 +60,8 @@ int main(int argc, char ** argv) { llama_model * model = llama_init.model.get(); llama_context * ctx = llama_init.context.get(); + auto * mem = llama_get_memory(ctx); + const llama_vocab * vocab = llama_model_get_vocab(model); // Tokenize the prompt @@ -94,7 +96,7 @@ int main(int argc, char ** argv) { llama_decode(ctx, llama_batch_get_one(&inp.back(), 1)); for (int s = 1; s < W + G + 1; ++s) { - llama_kv_self_seq_cp(ctx, 0, s, -1, -1); + llama_memory_seq_cp(mem, 0, s, -1, -1); } const auto t_enc_end = ggml_time_us(); @@ -427,17 +429,17 @@ int main(int argc, char ** argv) { // KV cache management // if no verification token matched, we simply remove all cells from this batch -> no fragmentation - llama_kv_self_seq_rm(ctx, -1, n_past, -1); + llama_memory_seq_rm(mem, -1, n_past, -1); if (seq_id_best != 0) { // if a verification token matched, we keep the best sequence and remove the rest // this leads to some KV cache fragmentation - llama_kv_self_seq_keep(ctx, seq_id_best); - llama_kv_self_seq_cp (ctx, seq_id_best, 0, -1, -1); - llama_kv_self_seq_rm (ctx, seq_id_best, -1, -1); + llama_memory_seq_keep(mem, seq_id_best); + llama_memory_seq_cp (mem, seq_id_best, 0, -1, -1); + llama_memory_seq_rm (mem, seq_id_best, -1, -1); for (int s = 1; s < W + G + 1; ++s) { - llama_kv_self_seq_cp(ctx, 0, s, -1, -1); + llama_memory_seq_cp(mem, 0, s, -1, -1); } } } diff --git a/examples/lookup/lookup.cpp b/examples/lookup/lookup.cpp index 2ee502939d..2bfa26b55f 100644 --- a/examples/lookup/lookup.cpp +++ b/examples/lookup/lookup.cpp @@ -181,7 +181,7 @@ int main(int argc, char ** argv){ // KV cache management // clean the cache of draft tokens that weren't accepted - llama_kv_self_seq_rm(ctx, 0, n_past, -1); + llama_memory_seq_rm(llama_get_memory(ctx), 0, n_past, -1); common_batch_clear(batch_tgt); common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true); diff --git a/examples/parallel/README.md b/examples/parallel/README.md index ece3a66416..2468a30d22 100644 --- a/examples/parallel/README.md +++ b/examples/parallel/README.md @@ -4,7 +4,7 @@ Simplified simulation of serving incoming requests in parallel ## Example -Generate 128 client requests (`-ns 128`), simulating 8 concurrent clients (`-np 8`). The system prompt is shared (`-pps`), meaning that it is computed once at the start. The client requests consist of 10 junk questions (`-j 10`) followed by the actual question. +Generate 128 client requests (`-ns 128`), simulating 8 concurrent clients (`-np 8`). The system prompt is shared (`-pps`), meaning that it is computed once at the start. The client requests consist of up to 10 junk questions (`--junk 10`) followed by the actual question. ```bash llama-parallel -m model.gguf -np 8 -ns 128 --top-k 1 -pps --junk 10 -c 16384 diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index acb1301a2b..d53e089a4c 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -158,7 +158,7 @@ int main(int argc, char ** argv) { common_params params; params.n_predict = 128; - params.n_junk = 0; + params.n_junk = 1; if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) { return 1; @@ -182,7 +182,7 @@ int main(int argc, char ** argv) { const bool is_sp_shared = params.is_pp_shared; // extra text to insert in each client's prompt in order to make it larger - const int32_t n_junk = params.n_junk; + const int32_t n_junk = std::max(1, params.n_junk); // init llama.cpp llama_backend_init(); @@ -194,6 +194,8 @@ int main(int argc, char ** argv) { llama_model * model = llama_init.model.get(); llama_context * ctx = llama_init.context.get(); + auto * mem = llama_get_memory(ctx); + const llama_vocab * vocab = llama_model_get_vocab(model); // load the prompts from an external file if there are any @@ -259,7 +261,7 @@ int main(int argc, char ** argv) { // assign the system KV cache to all parallel sequences for (int32_t i = 1; i <= n_clients; ++i) { - llama_kv_self_seq_cp(ctx, 0, i, -1, -1); + llama_memory_seq_cp(mem, 0, i, -1, -1); } LOG_INF("\n"); @@ -286,9 +288,9 @@ int main(int argc, char ** argv) { if (batch.n_tokens == 0) { // all sequences have ended - clear the entire KV cache for (int i = 1; i <= n_clients; ++i) { - llama_kv_self_seq_rm(ctx, i, -1, -1); + llama_memory_seq_rm(mem, i, -1, -1); // but keep the system prompt - llama_kv_self_seq_cp(ctx, 0, i, -1, -1); + llama_memory_seq_cp(mem, 0, i, -1, -1); } LOG_INF("%s: clearing the KV cache\n", __func__); @@ -315,7 +317,10 @@ int main(int argc, char ** argv) { } else { client.prompt += k_system; } - for (int i = 0; i < n_junk; ++i) { + + const int n_junk_cur = rand() % n_junk; + + for (int i = 0; i < n_junk_cur; ++i) { const int r = rand() % k_questions.size(); client.prompt += "User:\n" + k_questions[r] + "\nAssistant:\n " + k_answers[r] + "\n"; } @@ -340,7 +345,7 @@ int main(int argc, char ** argv) { client.n_decoded = 0; client.i_batch = batch.n_tokens - 1; - LOG_INF("\033[31mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id); + LOG_INF("\033[31mClient %3d, seq %4d, junk = %4d, started decoding ...\033[0m\n", client.id, client.seq_id, n_junk_cur); g_seq_id += 1; @@ -359,7 +364,9 @@ int main(int argc, char ** argv) { // process in chunks of params.n_batch int32_t n_batch = params.n_batch; - for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { + int32_t i_next = 0; + + for (int32_t i = 0; i < batch.n_tokens; i = i_next) { // experiment: process in powers of 2 //if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) { // n_batch /= 2; @@ -367,7 +374,7 @@ int main(int argc, char ** argv) { // continue; //} - const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); + const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i); llama_batch batch_view = { n_tokens, @@ -387,19 +394,24 @@ int main(int argc, char ** argv) { return 1; } - LOG_ERR("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2); + LOG_WRN("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2); n_cache_miss += 1; // retry with half the batch size to try to find a free slot in the KV cache n_batch /= 2; - i -= n_batch; continue; } LOG_DBG("%s : decoded batch of %d tokens\n", __func__, n_tokens); + // move the head of the batch forward with the number of tokens we just processed + i_next = i + n_tokens; + + // on successful decode, restore the original batch size + n_batch = params.n_batch; + for (auto & client : clients) { if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) { continue; @@ -437,8 +449,8 @@ int main(int argc, char ** argv) { } // delete only the generated part of the sequence, i.e. keep the system prompt in the cache - llama_kv_self_seq_rm(ctx, client.id + 1, -1, -1); - llama_kv_self_seq_cp(ctx, 0, client.id + 1, -1, -1); + llama_memory_seq_rm(mem, client.id + 1, -1, -1); + llama_memory_seq_cp(mem, 0, client.id + 1, -1, -1); const auto t_main_end = ggml_time_us(); diff --git a/examples/passkey/passkey.cpp b/examples/passkey/passkey.cpp index 347ea4a698..8a4faa383b 100644 --- a/examples/passkey/passkey.cpp +++ b/examples/passkey/passkey.cpp @@ -126,6 +126,8 @@ int main(int argc, char ** argv) { int n_past = 0; + auto * mem = llama_get_memory(ctx); + // fill the KV cache for (int i = 0; i < n_ctx; i += n_batch) { if (i > 0 && n_grp > 1) { @@ -133,11 +135,10 @@ int main(int argc, char ** argv) { const int ib = i/n_batch - 1; const int bd = n_batch_grp*(n_grp - 1); - llama_kv_self_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd); - llama_kv_self_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp); - llama_kv_self_update (ctx); + llama_memory_seq_add(mem, 0, n_past - n_batch, n_past, ib*bd); + llama_memory_seq_div(mem, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp); - n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1; + n_past = llama_memory_seq_pos_max(mem, 0) + 1; } common_batch_clear(batch); @@ -167,12 +168,10 @@ int main(int argc, char ** argv) { LOG_INF("%s: shifting KV cache with %d\n", __func__, n_discard); - llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard); - llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard); - //llama_kv_self_defrag (ctx); - llama_kv_self_update (ctx); + llama_memory_seq_rm (mem, 0, n_keep , n_keep + n_discard); + llama_memory_seq_add(mem, 0, n_keep + n_discard, n_ctx, -n_discard); - n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1; + n_past = llama_memory_seq_pos_max(mem, 0) + 1; common_batch_clear(batch); @@ -198,12 +197,10 @@ int main(int argc, char ** argv) { if (n_discard > 0) { LOG_INF("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard); - llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard); - llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard); - //llama_kv_self_defrag (ctx); - llama_kv_self_update (ctx); + llama_memory_seq_rm (mem, 0, n_keep , n_keep + n_discard); + llama_memory_seq_add(mem, 0, n_keep + n_discard, n_ctx, -n_discard); - n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1; + n_past = llama_memory_seq_pos_max(mem, 0) + 1; } } diff --git a/examples/retrieval/retrieval.cpp b/examples/retrieval/retrieval.cpp index 754da1411b..042e12c2bf 100644 --- a/examples/retrieval/retrieval.cpp +++ b/examples/retrieval/retrieval.cpp @@ -83,7 +83,7 @@ static void batch_add_seq(llama_batch & batch, const std::vector & toke static void batch_process(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) { // clear previous kv_cache values (irrelevant for embeddings) - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), false); // run model LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq); diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp index 760ebbbf08..db79588f1a 100644 --- a/examples/save-load-state/save-load-state.cpp +++ b/examples/save-load-state/save-load-state.cpp @@ -196,7 +196,7 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy); // erase whole kv - llama_kv_self_clear(ctx3); + llama_memory_clear(llama_get_memory(ctx3), true); fprintf(stderr, "%s : kv cache cleared\n", __func__); // restore kv into seq 1 diff --git a/examples/simple-chat/simple-chat.cpp b/examples/simple-chat/simple-chat.cpp index 6608d4bea0..2aee0a919e 100644 --- a/examples/simple-chat/simple-chat.cpp +++ b/examples/simple-chat/simple-chat.cpp @@ -98,7 +98,7 @@ int main(int argc, char ** argv) { auto generate = [&](const std::string & prompt) { std::string response; - const bool is_first = llama_kv_self_seq_pos_max(ctx, 0) == 0; + const bool is_first = llama_memory_seq_pos_max(llama_get_memory(ctx), 0) == 0; // tokenize the prompt const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true); @@ -113,7 +113,7 @@ int main(int argc, char ** argv) { while (true) { // check if we have enough space in the context to evaluate this batch int n_ctx = llama_n_ctx(ctx); - int n_ctx_used = llama_kv_self_seq_pos_max(ctx, 0); + int n_ctx_used = llama_memory_seq_pos_max(llama_get_memory(ctx), 0); if (n_ctx_used + batch.n_tokens > n_ctx) { printf("\033[0m\n"); fprintf(stderr, "context size exceeded\n"); diff --git a/examples/speculative-simple/speculative-simple.cpp b/examples/speculative-simple/speculative-simple.cpp index 0783ed4a4c..99196c9d04 100644 --- a/examples/speculative-simple/speculative-simple.cpp +++ b/examples/speculative-simple/speculative-simple.cpp @@ -217,7 +217,7 @@ int main(int argc, char ** argv) { { LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past); - llama_kv_self_seq_rm(ctx_tgt, 0, n_past, -1); + llama_memory_seq_rm(llama_get_memory(ctx_tgt), 0, n_past, -1); } if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) { diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index 561c308830..0adffdb006 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -142,6 +142,8 @@ int main(int argc, char ** argv) { } } + auto * mem_tgt = llama_get_memory(ctx_tgt); + auto * mem_dft = llama_get_memory(ctx_dft); // Tokenize the prompt std::vector inp; @@ -420,14 +422,14 @@ int main(int argc, char ** argv) { { LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft); - llama_kv_self_seq_keep(ctx_dft, s_keep); - llama_kv_self_seq_cp (ctx_dft, s_keep, 0, -1, -1); - llama_kv_self_seq_keep(ctx_dft, 0); + llama_memory_seq_keep(mem_dft, s_keep); + llama_memory_seq_cp (mem_dft, s_keep, 0, -1, -1); + llama_memory_seq_keep(mem_dft, 0); - llama_kv_self_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1); - llama_kv_self_seq_keep(ctx_tgt, s_keep); - llama_kv_self_seq_cp (ctx_tgt, s_keep, 0, -1, -1); - llama_kv_self_seq_keep(ctx_tgt, 0); + llama_memory_seq_rm (mem_tgt, s_keep, n_past_tgt, -1); + llama_memory_seq_keep(mem_tgt, s_keep); + llama_memory_seq_cp (mem_tgt, s_keep, 0, -1, -1); + llama_memory_seq_keep(mem_tgt, 0); } for (int s = 0; s < n_seq_dft; ++s) { @@ -444,7 +446,7 @@ int main(int argc, char ** argv) { common_batch_clear(batch_dft); common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true); - llama_kv_self_seq_rm(ctx_dft, 0, n_past_dft, -1); + llama_memory_seq_rm(mem_dft, 0, n_past_dft, -1); // LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str()); llama_decode(ctx_dft, batch_dft); @@ -503,8 +505,8 @@ int main(int argc, char ** argv) { if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_draft_split) { LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur); - llama_kv_self_seq_rm(ctx_dft, n_seq_cur, -1, -1); - llama_kv_self_seq_cp(ctx_dft, s, n_seq_cur, -1, -1); + llama_memory_seq_rm(mem_dft, n_seq_cur, -1, -1); + llama_memory_seq_cp(mem_dft, s, n_seq_cur, -1, -1); // all previous tokens from this branch are now also part of the new branch for (int t = 0; t < batch_tgt.n_tokens; ++t) { @@ -585,9 +587,9 @@ int main(int argc, char ** argv) { // evaluate the target model on the drafted tokens { - llama_kv_self_seq_keep(ctx_tgt, 0); + llama_memory_seq_keep(mem_tgt, 0); for (int s = 1; s < n_seq_dft; ++s) { - llama_kv_self_seq_cp(ctx_tgt, 0, s, -1, -1); + llama_memory_seq_cp(mem_tgt, 0, s, -1, -1); } // LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str()); diff --git a/ggml/CMakeLists.txt b/ggml/CMakeLists.txt index f72d7aff3d..9b935e1b75 100644 --- a/ggml/CMakeLists.txt +++ b/ggml/CMakeLists.txt @@ -129,6 +129,7 @@ option(GGML_LASX "ggml: enable lasx" ON) option(GGML_LSX "ggml: enable lsx" ON) option(GGML_RVV "ggml: enable rvv" ON) option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF) +option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF) option(GGML_VXE "ggml: enable vxe" ON) option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF) @@ -136,7 +137,7 @@ set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM") set(GGML_CPU_POWERPC_CPUTYPE "" CACHE STRING "ggml: CPU type for PowerPC") -if (WIN32) +if (MINGW) set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows version") endif() @@ -176,7 +177,6 @@ option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF) option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF) option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF) -option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF) option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF) option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF) option(GGML_KOMPUTE "ggml: use Kompute" OFF) diff --git a/ggml/cmake/common.cmake b/ggml/cmake/common.cmake index 1976d0ae9b..bb1ec9b37a 100644 --- a/ggml/cmake/common.cmake +++ b/ggml/cmake/common.cmake @@ -24,3 +24,28 @@ function(ggml_get_flags CCID CCVER) set(GF_C_FLAGS ${C_FLAGS} PARENT_SCOPE) set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE) endfunction() + +function(ggml_get_system_arch) + if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR + CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR + (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND + CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$")) + set(GGML_SYSTEM_ARCH "ARM" PARENT_SCOPE) + elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR + CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR + (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND + CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$")) + set(GGML_SYSTEM_ARCH "x86" PARENT_SCOPE) + elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR + "${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ") + set(GGML_SYSTEM_ARCH "PowerPC" PARENT_SCOPE) + elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64") + set(GGML_SYSTEM_ARCH "loongarch64" PARENT_SCOPE) + elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64") + set(GGML_SYSTEM_ARCH "riscv64" PARENT_SCOPE) + elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x") + set(GGML_SYSTEM_ARCH "s390x" PARENT_SCOPE) + else() + set(GGML_SYSTEM_ARCH "UNKNOWN" PARENT_SCOPE) + endif() +endfunction() diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index bff7dea3a5..1a57f1cd75 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -935,6 +935,15 @@ extern "C" { struct ggml_tensor * a, struct ggml_tensor * b); + // repeat a to the specified shape + GGML_API struct ggml_tensor * ggml_repeat_4d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3); + // sums repetitions in a into shape of b GGML_API struct ggml_tensor * ggml_repeat_back( struct ggml_context * ctx, @@ -2086,9 +2095,6 @@ extern "C" { GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node); GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node); - GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname); - GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval); - // print info and performance information for the graph GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph); @@ -2172,6 +2178,7 @@ extern "C" { // scheduling priorities enum ggml_sched_priority { + GGML_SCHED_PRIO_LOW = -1, GGML_SCHED_PRIO_NORMAL, GGML_SCHED_PRIO_MEDIUM, GGML_SCHED_PRIO_HIGH, diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index 540d8c46f8..9e071fe09e 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -109,6 +109,8 @@ if (MSVC) else () set(CMAKE_GENERATOR_PLATFORM_LWR "") endif () +ggml_get_system_arch() +message(STATUS "GGML_SYSTEM_ARCH: ${GGML_SYSTEM_ARCH}") if (NOT MSVC) if (GGML_STATIC) @@ -123,7 +125,6 @@ if (NOT MSVC) endif() if (MINGW) - # Target Windows 8 for PrefetchVirtualMemory add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER}) endif() @@ -194,6 +195,7 @@ add_library(ggml-base ../include/ggml-opt.h ../include/gguf.h ggml.c + ggml.cpp ggml-alloc.c ggml-backend.cpp ggml-opt.cpp @@ -224,6 +226,7 @@ function(ggml_add_backend_library backend) set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}) target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL) add_dependencies(ggml ${backend}) + install(TARGETS ${backend} LIBRARY DESTINATION ${CMAKE_INSTALL_BINDIR}) else() add_library(${backend} ${ARGN}) target_link_libraries(ggml PUBLIC ${backend}) @@ -287,16 +290,20 @@ if (GGML_CPU_ALL_VARIANTS) if (NOT GGML_BACKEND_DL) message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL") endif() - ggml_add_cpu_backend_variant(x64) - ggml_add_cpu_backend_variant(sse42 SSE42) - ggml_add_cpu_backend_variant(sandybridge SSE42 AVX) - ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA) - ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512) - ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI) - ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI) - if (NOT MSVC) - # MSVC doesn't support AMX - ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8) + if (GGML_SYSTEM_ARCH STREQUAL "x86") + ggml_add_cpu_backend_variant(x64) + ggml_add_cpu_backend_variant(sse42 SSE42) + ggml_add_cpu_backend_variant(sandybridge SSE42 AVX) + ggml_add_cpu_backend_variant(haswell SSE42 AVX F16C AVX2 BMI2 FMA) + ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512) + ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI) + ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI) + if (NOT MSVC) + # MSVC doesn't support AMX + ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8) + endif() + else() + message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported on ${GGML_SYSTEM_ARCH}") endif() elseif (GGML_CPU) ggml_add_cpu_backend_variant_impl("") diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp index b30b4cb386..b1050ad59c 100644 --- a/ggml/src/ggml-backend.cpp +++ b/ggml/src/ggml-backend.cpp @@ -1340,7 +1340,10 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) { // allocate graph if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) { // the re-allocation may cause the split inputs to be moved to a different address - ggml_backend_sched_synchronize(sched); + // synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy + for (int i = 0; i < sched->n_backends; i++) { + ggml_backend_synchronize(sched->backends[i]); + } #ifndef NDEBUG GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed); #endif @@ -1564,7 +1567,6 @@ bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgra ggml_backend_sched_split_graph(sched, graph); - if (!ggml_backend_sched_alloc_splits(sched)) { return false; } @@ -1598,6 +1600,12 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) { for (int i = 0; i < sched->n_backends; i++) { ggml_backend_synchronize(sched->backends[i]); } + if (!sched->is_alloc) { + // if the graph is not already allocated, always use copy 0 after a synchronization + // this ensures that during generation the same copy is used every time, + // which avoids changes in the graph that could cause CUDA or other graphs to be disabled + sched->cur_copy = 0; + } } void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) { diff --git a/ggml/src/ggml-blas/CMakeLists.txt b/ggml/src/ggml-blas/CMakeLists.txt index 0bf3c05d93..76064c3fd1 100644 --- a/ggml/src/ggml-blas/CMakeLists.txt +++ b/ggml/src/ggml-blas/CMakeLists.txt @@ -81,7 +81,7 @@ if (BLAS_FOUND) target_link_libraries (ggml-blas PRIVATE ${BLAS_LIBRARIES}) target_include_directories(ggml-blas PRIVATE ${BLAS_INCLUDE_DIRS}) else() - message(ERROR "BLAS not found, please refer to " - "https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors" - " to set correct GGML_BLAS_VENDOR") + message(FATAL_ERROR "BLAS not found, please refer to " + "https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors" + " to set correct GGML_BLAS_VENDOR") endif() diff --git a/ggml/src/ggml-cann/CMakeLists.txt b/ggml/src/ggml-cann/CMakeLists.txt index 0d8e483b29..7742b39153 100755 --- a/ggml/src/ggml-cann/CMakeLists.txt +++ b/ggml/src/ggml-cann/CMakeLists.txt @@ -30,6 +30,7 @@ string(TOLOWER ${SOC_TYPE} SOC_VERSION) # SOC_VERSION need lower string(REGEX MATCH "[0-9]+[a-zA-Z]" SOC_TYPE_MAJOR_SN "${SOC_VERSION}") set(SOC_TYPE_COMPILE_OPTION "ASCEND_${SOC_TYPE_MAJOR_SN}") string(TOUPPER ${SOC_TYPE_COMPILE_OPTION} SOC_TYPE_COMPILE_OPTION) +message(STATUS "CANN: SOC_VERSION = ${SOC_VERSION}") if (CANN_INSTALL_DIR) # Only Support Linux. diff --git a/ggml/src/ggml-cpu/CMakeLists.txt b/ggml/src/ggml-cpu/CMakeLists.txt index 1d4259dae5..33f66af8d0 100644 --- a/ggml/src/ggml-cpu/CMakeLists.txt +++ b/ggml/src/ggml-cpu/CMakeLists.txt @@ -82,13 +82,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name) target_link_libraries(${GGML_CPU_NAME} PUBLIC memkind) endif() - if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR - CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR - (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND - CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$")) - + if (GGML_SYSTEM_ARCH STREQUAL "ARM") message(STATUS "ARM detected") - if (MSVC AND NOT CMAKE_C_COMPILER_ID STREQUAL "Clang") message(FATAL_ERROR "MSVC is not supported for ARM, use clang") else() @@ -170,12 +165,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name) endforeach() endif() endif() - elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR - (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND - CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$")) - + elseif (GGML_SYSTEM_ARCH STREQUAL "x86") message(STATUS "x86 detected") - if (MSVC) # instruction set detection for MSVC only if (GGML_NATIVE) @@ -299,7 +290,26 @@ function(ggml_add_cpu_backend_variant_impl tag_name) endif() endif() endif() - elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR "${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ") + + if (GGML_BACKEND_DL) + if (GGML_NATIVE) + # the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE + message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS") + endif() + + # The feature detection code is compiled as a separate target so that + # it can be built without the architecture flags + # Since multiple variants of the CPU backend may be included in the same + # build, using set_source_files_properties() to set the arch flags is not possible + set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats) + add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp) + target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include) + target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS}) + target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED) + set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON) + target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME}) + endif() + elseif (GGML_SYSTEM_ARCH STREQUAL "PowerPC") message(STATUS "PowerPC detected") if (GGML_NATIVE) if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64") @@ -308,7 +318,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name) execute_process(COMMAND bash -c "prtconf |grep 'Implementation' | head -n 1" OUTPUT_VARIABLE POWER10_M) endif() - string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M}") + string(TOUPPER "${POWER10_M}" POWER10_M_UPPER) + string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M_UPPER}") string(REGEX REPLACE "POWER *([0-9]+)" "\\1" EXTRACTED_NUMBER "${MATCHED_STRING}") if (EXTRACTED_NUMBER GREATER_EQUAL 10) @@ -325,9 +336,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name) list(APPEND ARCH_FLAGS -mcpu=${GGML_CPU_POWERPC_CPUTYPE}) endif() endif() - elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64") + elseif (GGML_SYSTEM_ARCH STREQUAL "loongarch64") message(STATUS "loongarch64 detected") - list(APPEND ARCH_FLAGS -march=loongarch64) if (GGML_LASX) list(APPEND ARCH_FLAGS -mlasx) @@ -335,16 +345,18 @@ function(ggml_add_cpu_backend_variant_impl tag_name) if (GGML_LSX) list(APPEND ARCH_FLAGS -mlsx) endif() - elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64") - message(STATUS "RISC-V detected") + elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64") + message(STATUS "riscv64 detected") if (GGML_RVV) - if (GGML_RV_ZFH) - list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -DGGML_RV_ZFH -mabi=lp64d) + if (GGML_XTHEADVECTOR) + list(APPEND ARCH_FLAGS -march=rv64gc_xtheadvector -mabi=lp64d) + elseif (GGML_RV_ZFH) + list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -mabi=lp64d) else() list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d) endif() endif() - elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x") + elseif (GGML_SYSTEM_ARCH STREQUAL "s390x") message(STATUS "s390x detected") file(READ "/proc/cpuinfo" CPUINFO_CONTENTS) string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS}) @@ -477,25 +489,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name) target_compile_options(${GGML_CPU_NAME} PRIVATE ${ARCH_FLAGS}) target_compile_definitions(${GGML_CPU_NAME} PRIVATE ${ARCH_DEFINITIONS}) - if (GGML_BACKEND_DL) - if (GGML_NATIVE) - # the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE - message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS") - endif() - - # The feature detection code is compiled as a separate target so that - # it can be built without the architecture flags - # Since multiple variants of the CPU backend may be included in the same - # build, using set_source_files_properties() to set the arch flags is not possible - set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats) - add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp) - target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include) - target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS}) - target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED) - set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON) - target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME}) - endif() - if (EMSCRIPTEN) set_target_properties(${GGML_CPU_NAME} PROPERTIES COMPILE_FLAGS "-msimd128") endif() diff --git a/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp b/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp index 8ff6d64a4d..0a3ff867cf 100644 --- a/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +++ b/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp @@ -1191,7 +1191,7 @@ static void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, c } } return; -#elif defined(__riscv_v_intrinsic) +#elif defined __riscv_v if (__riscv_vlenb() >= QK4_0) { const size_t vl = QK4_0; @@ -3783,7 +3783,7 @@ static void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, c } return; } -#elif defined(__riscv_v_intrinsic) +#elif defined __riscv_v if (__riscv_vlenb() >= QK4_0) { const size_t vl = QK4_0; diff --git a/ggml/src/ggml-cpu/ggml-cpu-impl.h b/ggml/src/ggml-cpu/ggml-cpu-impl.h index e4af07635c..b3f1b5ca79 100644 --- a/ggml/src/ggml-cpu/ggml-cpu-impl.h +++ b/ggml/src/ggml-cpu/ggml-cpu-impl.h @@ -320,21 +320,17 @@ inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) #ifdef __wasm_simd128__ #include -#else +#endif + #ifdef __POWER9_VECTOR__ #include -#else +#endif + #if defined(_MSC_VER) || defined(__MINGW32__) #include -#else -#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__) -#if !defined(__riscv) +#elif defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__) #include #endif -#endif -#endif -#endif -#endif #ifdef __riscv_v_intrinsic #include diff --git a/ggml/src/ggml-cpu/ggml-cpu-quants.c b/ggml/src/ggml-cpu/ggml-cpu-quants.c index a89ce9bb1e..40bded4767 100644 --- a/ggml/src/ggml-cpu/ggml-cpu-quants.c +++ b/ggml/src/ggml-cpu/ggml-cpu-quants.c @@ -883,7 +883,7 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); #endif } -#elif defined(__riscv_v_intrinsic) +#elif defined(__riscv_v) size_t vl = QK8_0; @@ -1221,7 +1221,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); #endif } -#elif defined(__riscv_v_intrinsic) +#elif defined(__riscv_v) size_t vl = QK8_1; @@ -2384,7 +2384,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi } sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3); -#elif defined(__riscv_v_intrinsic) +#elif defined(__riscv_v) size_t vl = qk / 2; for (; ib < nb; ++ib) { @@ -2774,7 +2774,7 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi } sumf = hsum_float_8(acc) + summs; -#elif defined(__riscv_v_intrinsic) +#elif defined(__riscv_v) size_t vl = qk / 2; for (; ib < nb; ++ib) { @@ -3121,7 +3121,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi } sumf = hsum_float_8(acc); -#elif defined(__riscv_v_intrinsic) +#elif defined(__riscv_v) size_t vl; size_t vlenb = __riscv_vlenb(); @@ -3460,7 +3460,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi } sumf = hsum_float_8(acc) + summs; -#elif defined(__riscv_v_intrinsic) +#elif defined(__riscv_v) size_t vl; size_t vlenb = __riscv_vlenb(); @@ -3897,7 +3897,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi } sumf = hsum_float_8(accum); -#elif defined(__riscv_v_intrinsic) +#elif defined(__riscv_v) size_t vl = qk; for (; ib < nb; ++ib) { @@ -5100,14 +5100,111 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi *s = sumf; -#elif defined __riscv_v_intrinsic +#elif defined __riscv_xtheadvector + + float sumf = 0; + uint8_t atmp[16]; + + for (int i = 0; i < nb; ++i) { + const uint8_t * q2 = x[i].qs; + const int8_t * q8 = y[i].qs; + const uint8_t * sc = x[i].scales; + const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + uint8_t *patmp = atmp; + int vsums; + int tmp; + __asm__ __volatile__( + "th.vsetvli zero, %[vl16], e8, m1\n\t" + "th.vmv.v.x v8, zero\n\t" + "th.vlb.v v1, (%[sc])\n\t" + "th.vand.vi v0, v1, 0xF\n\t" + "th.vsrl.vi v1, v1, 4\n\t" + "th.vsb.v v0, (%[scale])\n\t" + "th.vwaddu.vx v16, v1, zero\n\t" + "th.vsetvli zero, %[vl16], e16, m2\n\t" + "th.vlh.v v2, (%[bsums])\n\t" + "th.vwmul.vv v4, v16, v2\n\t" + "th.vsetvli zero, %[vl16], e32, m4\n\t" + "th.vredsum.vs v8, v4, v8\n\t" + "th.vmv.x.s %[vsums], v8" + : [tmp] "=&r" (tmp), [vsums] "=&r" (vsums) + : [sc] "r" (sc), [scale] "r" (atmp), [bsums] "r" (y[i].bsums) + , [vl16] "r" (16) + : "memory" + , "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" + , "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" + , "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23" + , "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" + ); + sumf += dmin * vsums; + int isum = 0; + + for (int j = 0; j < QK_K/128; ++j) { + __asm__ __volatile__( + "th.vsetvli zero, %[vl32], e8, m2\n\t" + "th.vlb.v v0, (%[q2])\n\t" + "th.vsrl.vi v2, v0, 2\n\t" + "th.vsrl.vi v4, v0, 4\n\t" + "th.vsrl.vi v6, v0, 6\n\t" + "th.vand.vi v0, v0, 0x3\n\t" + "th.vand.vi v2, v2, 0x3\n\t" + "th.vand.vi v4, v4, 0x3\n\t" + "th.vsetvli zero, %[vl128], e8, m8\n\t" + "th.vlb.v v8, (%[q8])\n\t" + "th.vsetvli zero, %[vl64], e8, m4\n\t" + "th.vwmul.vv v16, v0, v8\n\t" + "th.vwmul.vv v24, v4, v12\n\t" + "th.vsetvli zero, %[vl16], e16, m2\n\t" + "th.vmv.v.x v0, zero\n\t" + "th.vwredsum.vs v10, v16, v0\n\t" + "th.vwredsum.vs v9, v18, v0\n\t" + "th.vwredsum.vs v8, v20, v0\n\t" + "th.vwredsum.vs v7, v22, v0\n\t" + "th.vwredsum.vs v11, v24, v0\n\t" + "th.vwredsum.vs v12, v26, v0\n\t" + "th.vwredsum.vs v13, v28, v0\n\t" + "th.vwredsum.vs v14, v30, v0\n\t" + "li %[tmp], 4\n\t" + "th.vsetvli zero, %[tmp], e32, m1\n\t" + "th.vslideup.vi v10, v9, 1\n\t" + "th.vslideup.vi v8, v7, 1\n\t" + "th.vslideup.vi v11, v12, 1\n\t" + "th.vslideup.vi v13, v14, 1\n\t" + "th.vslideup.vi v10, v8, 2\n\t" + "th.vslideup.vi v11, v13, 2\n\t" + "li %[tmp], 8\n\t" + "th.vsetvli zero, %[tmp], e32, m2\n\t" + "th.vlbu.v v12, (%[scale])\n\t" + "th.vmul.vv v10, v10, v12\n\t" + "th.vredsum.vs v0, v10, v0\n\t" + "th.vmv.x.s %[tmp], v0\n\t" + "add %[isum], %[isum], %[tmp]" + : [tmp] "=&r" (tmp), [isum] "+&r" (isum) + : [q2] "r" (q2), [scale] "r" (patmp), [q8] "r" (q8) + , [vl16] "r" (16), [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128) + : "memory" + , "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" + , "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" + , "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23" + , "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" + ); + q2 += 32; q8 += 128; patmp += 8; + } + + sumf += dall * isum; + } + + *s = sumf; + +#elif defined __riscv_v + + float sumf = 0; + uint8_t atmp[16]; const int vector_length = __riscv_vlenb() * 8; - float sumf = 0; - uint8_t temp_01[32] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; - uint8_t atmp[16]; switch (vector_length) { case 256: @@ -6137,14 +6234,141 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi *s = sumf; -#elif defined __riscv_v_intrinsic +#elif defined __riscv_xtheadvector - uint32_t aux[3]; uint32_t utmp[4]; - - const int vector_length = __riscv_vlenb() * 8; float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict qh = x[i].hmask; + const int8_t * restrict q8 = y[i].qs; + + int8_t * scale = (int8_t *)utmp; + int tmp; + __asm__ __volatile__( + "li %[tmp], 12\n\t" + "th.vsetvli zero, %[tmp], e8, m1\n\t" + "th.vlb.v v0, (%[s6b])\n\t" + "th.vmv.v.v v2, v0\n\t" + "li %[tmp], 2\n\t" + "th.vsetvli zero, %[tmp], e64, m1\n\t" + "th.vmv.v.x v9, %[sh]\n\t"\ + "th.vslidedown.vi v1, v0, 1\n\t" + "th.vslide1up.vx v8, v9, zero\n\t" // {0, 0, 4, 4} + "th.vslideup.vi v0, v2, 1\n\t" // {aux[0], aux[1], aux[0], aux[1]} + "li %[tmp], 4\n\t" + "th.vsetvli zero, %[tmp], e32, m1\n\t" + "th.vid.v v9\n\t" + "th.vmv.x.s %[tmp], v1\n\t" + "th.vsll.vi v9, v9, 1\n\t" // {0, 2, 4, 6} + "th.vmv.v.x v1, %[tmp]\n\t" // {aux[2], aux[2], aux[2], aux[2]} + "th.vsrl.vv v4, v1, v9\n\t" + "th.vsrl.vv v2, v0, v8\n\t" + "th.vand.vx v5, v4, %[kmask1]\n\t" + "th.vand.vx v3, v2, %[kmask2]\n\t" + "th.vsll.vi v6, v5, 4\n\t" + "th.vor.vv v7, v6, v3\n\t" + "li %[tmp], 16\n\t" + "th.vsetvli zero, %[tmp], e8, m1\n\t" + "th.vsub.vx v0, v7, %[c]\n\t" + "th.vsb.v v0, (%[scale])" + : [tmp] "=&r" (tmp) + : [sh] "r" (0x0000000400000004), [s6b] "r" (x[i].scales), [c] "r" (32) + , [scale] "r" (scale), [kmask1] "r" (kmask1), [kmask2] "r" (kmask2) + : "memory" + , "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" + , "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" + , "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23" + , "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" + ); + + uint8_t m = 1; + int isum = 0; + for (int j = 0; j < QK_K; j += 128) { + __asm__ __volatile__( + // fixme: use v0p7 mask layout directly + "th.vsetvli zero, %[vl32], e8, m2\n\t" + "th.vlb.v v8, (%[q3])\n\t" + "th.vsrl.vi v10, v8, 2\n\t" + "th.vsrl.vi v12, v8, 4\n\t" + "th.vsrl.vi v14, v8, 6\n\t" + "th.vand.vi v8, v8, 3\n\t" + "th.vand.vi v10, v10, 3\n\t" + "th.vand.vi v12, v12, 3\n\t" + "th.vlb.v v2, (%[qh])\n\t" + "th.vand.vx v4, v2, %[m]\n\t" + "slli %[m], %[m], 1\n\t" + "th.vmseq.vx v0, v4, zero\n\t" + "th.vadd.vi v8, v8, -4, v0.t\n\t" + "th.vand.vx v4, v2, %[m]\n\t" + "slli %[m], %[m], 1\n\t" + "th.vmseq.vx v0, v4, zero\n\t" + "th.vadd.vi v10, v10, -4, v0.t\n\t" + "th.vand.vx v4, v2, %[m]\n\t" + "slli %[m], %[m], 1\n\t" + "th.vmseq.vx v0, v4, zero\n\t" + "th.vadd.vi v12, v12, -4, v0.t\n\t" + "th.vand.vx v4, v2, %[m]\n\t" + "slli %[m], %[m], 1\n\t" + "th.vmseq.vx v0, v4, zero\n\t" + "th.vadd.vi v14, v14, -4, v0.t\n\t" + "th.vsetvli zero, %[vl128], e8, m8\n\t" + "th.vlb.v v0, (%[q8])\n\t" + "th.vsetvli zero, %[vl64], e8, m4\n\t" + "th.vwmul.vv v16, v0, v8\n\t" + "th.vwmul.vv v24, v4, v12\n\t" + "li %[tmp], 16\n\t" + "th.vsetvli zero, %[tmp], e16, m2\n\t" + "th.vmv.v.x v0, zero\n\t" + "th.vwredsum.vs v10, v16, v0\n\t" + "th.vwredsum.vs v9, v18, v0\n\t" + "th.vwredsum.vs v8, v20, v0\n\t" + "th.vwredsum.vs v7, v22, v0\n\t" + "th.vwredsum.vs v11, v24, v0\n\t" + "th.vwredsum.vs v12, v26, v0\n\t" + "th.vwredsum.vs v13, v28, v0\n\t" + "th.vwredsum.vs v14, v30, v0\n\t" + "li %[tmp], 4\n\t" + "th.vsetvli zero, %[tmp], e32, m1\n\t" + "th.vslideup.vi v10, v9, 1\n\t" + "th.vslideup.vi v8, v7, 1\n\t" + "th.vslideup.vi v11, v12, 1\n\t" + "th.vslideup.vi v13, v14, 1\n\t" + "th.vslideup.vi v10, v8, 2\n\t" + "th.vslideup.vi v11, v13, 2\n\t" + "li %[tmp], 8\n\t" + "th.vsetvli zero, %[tmp], e32, m2\n\t" + "th.vlb.v v12, (%[scale])\n\t" + "th.vmul.vv v10, v10, v12\n\t" + "th.vredsum.vs v0, v10, v0\n\t" + "th.vmv.x.s %[tmp], v0\n\t" + "add %[isum], %[isum], %[tmp]" + : [tmp] "=&r" (tmp), [m] "+&r" (m), [isum] "+&r" (isum) + : [vl128] "r" (128), [vl64] "r" (64), [vl32] "r" (32) + , [q3] "r" (q3), [qh] "r" (qh), [scale] "r" (scale), [q8] "r" (q8) + : "memory" + , "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" + , "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" + , "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23" + , "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" + ); + q3 += 32; q8 += 128; scale += 8; + } + + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + sumf += d * isum; + } + + *s = sumf; + +#elif defined __riscv_v + + uint32_t utmp[4]; + float sumf = 0; + uint32_t aux[3]; + const int vector_length = __riscv_vlenb() * 8; + switch (vector_length) { case 256: for (int i = 0; i < nb; ++i) { @@ -6331,7 +6555,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi "vslideup.vi v13, v14, 1\n\t" "vslideup.vi v10, v8, 2\n\t" "vslideup.vi v11, v13, 2\n\t" - "vsetivli zero, 8, e32, m2\n\t"\ + "vsetivli zero, 8, e32, m2\n\t" "vle8.v v15, (%[scale])\n\t" "vsext.vf4 v12, v15\n\t" "vmul.vv v10, v10, v12\n\t" @@ -6771,7 +6995,11 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) { assert(n % QK_K == 0); +#ifdef __ARM_FEATURE_MATMUL_INT8 + assert((nrc == 2) || (nrc == 1)); +#else assert(nrc == 1); +#endif UNUSED(nrc); UNUSED(bx); UNUSED(by); @@ -6788,6 +7016,146 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi uint32_t utmp[4]; +#if defined(__ARM_FEATURE_MATMUL_INT8) + if (nrc == 2) { + const block_q4_K * GGML_RESTRICT x0 = x; + const block_q4_K * GGML_RESTRICT x1 = (const block_q4_K *) ((const uint8_t *)vx + bx); + const block_q8_K * GGML_RESTRICT y0 = y; + const block_q8_K * GGML_RESTRICT y1 = (const block_q8_K *) ((const uint8_t *)vy + by); + + const uint8x16_t m4b = vdupq_n_u8(0x0f); + + float32x4_t vfsum = vdupq_n_f32(0.0f); + + for (int i = 0; i < nb; ++i, ++x0, ++x1, ++y0, ++y1) { + const uint8_t * GGML_RESTRICT qx0 = x0->qs; + const uint8_t * GGML_RESTRICT qx1 = x1->qs; + const int8_t * GGML_RESTRICT qy0 = y0->qs; + const int8_t * GGML_RESTRICT qy1 = y1->qs; + + // decode scales and mins + int8_t x0_scales[8], x1_scales[8]; + int16x8_t x0_mins, x1_mins; + { + uint32_t scales_mins[3]; + memcpy(scales_mins, x0->scales, 12); + const uint32_t mins_0_3 = scales_mins[1] & kmask1; + const uint32_t mins_4_7 = ((scales_mins[2] >> 4) & kmask2) | (((scales_mins[1] >> 6) & kmask3) << 4); + const uint32x2_t mins = {mins_0_3, mins_4_7}; + x0_mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins))); + uint32_t scales[2]; + scales[0] = scales_mins[0] & kmask1; // scales 0~3 + scales[1] = (scales_mins[2] & kmask2) | (((scales_mins[0] >> 6) & kmask3) << 4); // scales 4~7 + memcpy(x0_scales, scales, 8); + } + { + uint32_t scales_mins[3]; + memcpy(scales_mins, x1->scales, 12); + const uint32_t mins_0_3 = scales_mins[1] & kmask1; + const uint32_t mins_4_7 = ((scales_mins[2] >> 4) & kmask2) | (((scales_mins[1] >> 6) & kmask3) << 4); + const uint32x2_t mins = {mins_0_3, mins_4_7}; + x1_mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins))); + uint32_t scales[2]; + scales[0] = scales_mins[0] & kmask1; // scales 0~3 + scales[1] = (scales_mins[2] & kmask2) | (((scales_mins[0] >> 6) & kmask3) << 4); // scales 4~7 + memcpy(x1_scales, scales, 8); + } + + int32x4_t visum = {0}; + + // process 64 data points per iteration, totally 256 data points + for (int j = 0; j < QK_K / 64; ++j, qx0 += 32, qx1 += 32, qy0 += 64, qy1 += 64) { + const int8x16x4_t vy0 = vld1q_s8_x4(qy0); + const int8x16x4_t vy1 = vld1q_s8_x4(qy1); + + int8x16_t vx0[4], vx1[4]; + { + const uint8x16x2_t vv = vld1q_u8_x2(qx0); + vx0[0] = vreinterpretq_s8_u8(vandq_u8(vv.val[0], m4b)); + vx0[1] = vreinterpretq_s8_u8(vandq_u8(vv.val[1], m4b)); + vx0[2] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[0], 4)); + vx0[3] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[1], 4)); + } + { + const uint8x16x2_t vv = vld1q_u8_x2(qx1); + vx1[0] = vreinterpretq_s8_u8(vandq_u8(vv.val[0], m4b)); + vx1[1] = vreinterpretq_s8_u8(vandq_u8(vv.val[1], m4b)); + vx1[2] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[0], 4)); + vx1[3] = vreinterpretq_s8_u8(vshrq_n_u8(vv.val[1], 4)); + } + + // process 32 data points (share same block scale) per iteration + for (int k = 0; k < 2; ++k) { + const int blk = j * 2 + k; + const int32x4_t block_scale = { + x0_scales[blk], + x0_scales[blk], + x1_scales[blk], + x1_scales[blk], + }; + + int32x4_t vr = {0}; + for (int l = 0; l < 2; ++l) { + const int idx = k * 2 + l; + const int64x2_t vx0_s64 = vreinterpretq_s64_s8(vx0[idx]); + const int64x2_t vx1_s64 = vreinterpretq_s64_s8(vx1[idx]); + const int64x2_t vy0_s64 = vreinterpretq_s64_s8(vy0.val[idx]); + const int64x2_t vy1_s64 = vreinterpretq_s64_s8(vy1.val[idx]); + const int8x16_t vx_l = vreinterpretq_s8_s64(vzip1q_s64(vx0_s64, vx1_s64)); + const int8x16_t vx_h = vreinterpretq_s8_s64(vzip2q_s64(vx0_s64, vx1_s64)); + const int8x16_t vy_l = vreinterpretq_s8_s64(vzip1q_s64(vy0_s64, vy1_s64)); + const int8x16_t vy_h = vreinterpretq_s8_s64(vzip2q_s64(vy0_s64, vy1_s64)); + vr = vmmlaq_s32(vr, vx_l, vy_l); + vr = vmmlaq_s32(vr, vx_h, vy_h); + } + // apply block scale, will NOT overflow + // block_scale * sum_256(int4*int8) <= 2^(8+8+4+8) = 28 bits + visum = vmlaq_s32(visum, vr, block_scale); + } + } + + // adjust bias, apply superblock scale + { + int32_t bias[4]; + // no obvious uplift from sve sdot-16, just use neon mul add + const int16x8_t y0_sums = vpaddq_s16(vld1q_s16(y0->bsums), vld1q_s16(y0->bsums+8)); + const int16x8_t y1_sums = vpaddq_s16(vld1q_s16(y1->bsums), vld1q_s16(y1->bsums+8)); + bias[0] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y0_sums), vget_low_s16(x0_mins)), + vmull_s16(vget_high_s16(y0_sums), vget_high_s16(x0_mins)))); + bias[1] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y1_sums), vget_low_s16(x0_mins)), + vmull_s16(vget_high_s16(y1_sums), vget_high_s16(x0_mins)))); + bias[2] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y0_sums), vget_low_s16(x1_mins)), + vmull_s16(vget_high_s16(y0_sums), vget_high_s16(x1_mins)))); + bias[3] = vaddvq_s32(vaddq_s32(vmull_s16(vget_low_s16(y1_sums), vget_low_s16(x1_mins)), + vmull_s16(vget_high_s16(y1_sums), vget_high_s16(x1_mins)))); + const float32x4_t dmins = { + GGML_FP16_TO_FP32(x0->dmin) * y0->d, + GGML_FP16_TO_FP32(x0->dmin) * y1->d, + GGML_FP16_TO_FP32(x1->dmin) * y0->d, + GGML_FP16_TO_FP32(x1->dmin) * y1->d, + }; + vfsum = vmlsq_f32(vfsum, vcvtq_f32_s32(vld1q_s32(bias)), dmins); + + const float32x4_t superblock_scale = { + GGML_FP16_TO_FP32(x0->d) * y0->d, + GGML_FP16_TO_FP32(x0->d) * y1->d, + GGML_FP16_TO_FP32(x1->d) * y0->d, + GGML_FP16_TO_FP32(x1->d) * y1->d, + }; + vfsum = vmlaq_f32(vfsum, vcvtq_f32_s32(visum), superblock_scale); + } + } + + // vfsum = ABCD -> ACBD + // AC -> s, BD -> (s+bs) + vfsum = vzip1q_f32(vfsum, vextq_f32(vfsum, vfsum, 2)); + vst1_f32(s, vget_low_f32 (vfsum)); + vst1_f32(s + bs, vget_high_f32(vfsum)); + + return; + } +#endif + #ifdef __ARM_FEATURE_SVE float sumf = 0; for (int i = 0; i < nb; ++i) { @@ -7180,14 +7548,130 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m); -#elif defined __riscv_v_intrinsic +#elif defined __riscv_xtheadvector const uint8_t * scales = (const uint8_t*)&utmp[0]; const uint8_t * mins = (const uint8_t*)&utmp[2]; - const int vector_length = __riscv_vlenb() * 8; float sumf = 0; + for (int i = 0; i < nb; ++i) { + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + int tmp, tmp2, sumi; + __asm__ __volatile__( + "li %[t1], 12\n\t" + "th.vsetvli zero, %[t1], e8, m1\n\t" + "th.vlb.v v1, (%[s6b])\n\t" // {aux[0], aux[1], aux[2]} + "li %[t1], 4\n\t" + "th.vsetvli zero, %[t1], e32, m1\n\t" + "th.vslidedown.vi v2, v1, 2\n\t" + "th.vmv.v.v v3, v2\n\t" + "th.vslideup.vi v2, v3, 1\n\t" // {aux[2], aux[2]} + "li %[t1], 2\n\t" + "th.vsetvli zero, %[t1], e32, m1\n\t" + "th.vmv.v.i v4, 4\n\t" + "th.vand.vx v8, v1, %[kmask1]\n\t" + "th.vslide1up.vx v5, v4, zero\n\t" // {0, 4} + "th.vsrl.vi v6, v1, 6\n\t" + "th.vsrl.vv v7, v2, v5\n\t" + "th.vand.vx v0, v6, %[kmask3]\n\t" + "th.vand.vx v2, v7, %[kmask2]\n\t" + "th.vsll.vi v6, v0, 4\n\t" + "li %[t2], 8\n\t" + "addi %[t1], %[utmp], 4\n\t" + "th.vor.vv v1, v6, v2\n\t" + "th.vssw.v v8, (%[utmp]), %[t2]\n\t" + "th.vssw.v v1, (%[t1]), %[t2]\n\t" + "th.vsetvli zero, zero, e32, m2\n\t" // vl == 8 + "th.vlw.v v2, (%[bsums])\n\t" + "th.vsetvli zero, %[t2], e16, m1\n\t" + "th.vnsrl.vi v0, v2, 0\n\t" + "th.vnsrl.vi v1, v2, 16\n\t" + "th.vadd.vv v2, v0, v1\n\t" + "th.vlbu.v v4, (%[mins])\n\t" + "th.vwmul.vv v6, v4, v2\n\t" + "th.vmv.v.x v0, zero\n\t" + "th.vsetvli zero, %[t2], e32, m2\n\t" + "th.vredsum.vs v0, v6, v0\n\t" + "th.vmv.x.s %[sumi], v0" + : [t1] "=&r" (tmp), [t2] "=&r" (tmp2), [sumi] "=&r" (sumi) + : [bsums] "r" (y[i].bsums), [mins] "r" (mins), [utmp] "r" (utmp) + , [s6b] "r" (x[i].scales), [kmask1] "r" (kmask1) + , [kmask2] "r" (kmask2), [kmask3] "r" (kmask3) + : "memory" + , "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" + , "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" + , "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23" + , "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" + ); + sumf -= dmin * sumi; + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + sumi = 0; + const uint8_t * scale = scales; + + for (int j = 0; j < QK_K/128; ++j) { + int vl128 = 128, vl64 = 64, vl32 = 32; + __asm__ __volatile__( + "th.vsetvli zero, %[vl128], e8, m8\n\t" + "th.vlb.v v8, (%[q8])\n\t" + "th.vsetvli zero, %[vl64], e8, m4\n\t" + "th.vlb.v v0, (%[q4])\n\t" + "th.vsrl.vi v4, v0, 4\n\t" + "th.vand.vi v0, v0, 0xF\n\t" + "th.vsetvli zero, %[vl32], e8, m2\n\t" + "th.vwmul.vv v28, v6, v14\n\t" + "th.vwmul.vv v20, v4, v10\n\t" + "th.vwmul.vv v24, v2, v12\n\t" + "th.vwmul.vv v16, v0, v8\n\t" + "li %[tmp], 4\n\t" + "th.vsetvli zero, %[tmp], e32, m1\n\t" + "th.vlbu.v v1, (%[scale])\n\t" + "th.vmv.v.x v0, zero\n\t" + "th.vsetvli zero, %[vl32], e16, m4\n\t" + "th.vwredsum.vs v6, v24, v0\n\t" + "th.vwredsum.vs v7, v28, v0\n\t" + "th.vwredsum.vs v4, v16, v0\n\t" + "th.vwredsum.vs v5, v20, v0\n\t" + "th.vsetvli zero, %[tmp], e32, m1\n\t" + "th.vslideup.vi v6, v7, 1\n\t" + "th.vslideup.vi v4, v5, 1\n\t" + "th.vslideup.vi v4, v6, 2\n\t" + "th.vmul.vv v8, v4, v1\n\t" + "th.vredsum.vs v0, v8, v0\n\t" + "th.vmv.x.s %[tmp], v0\n\t" + "add %[sumi], %[sumi], %[tmp]" + : [tmp] "=&r" (tmp), [sumi] "+&r" (sumi) + : [vl128] "r" (vl128), [vl64] "r" (vl64), [vl32] "r" (vl32) + , [q4] "r" (q4), [q8] "r" (q8), [scale] "r" (scale) + : "memory" + , "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" + , "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" + , "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23" + , "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" + ); + + q4 += 64; q8 += 128; scale += 4; + } + + sumf += d * sumi; + + } + + *s = sumf; + +#elif defined __riscv_v + + const uint8_t * scales = (const uint8_t*)&utmp[0]; + const uint8_t * mins = (const uint8_t*)&utmp[2]; + + float sumf = 0; + const int vector_length = __riscv_vlenb() * 8; + switch (vector_length) { case 256: for (int i = 0; i < nb; ++i) { @@ -8074,7 +8558,7 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi *s = sumf; -#elif defined __riscv_v_intrinsic +#elif defined __riscv_v const uint8_t * scales = (const uint8_t*)&utmp[0]; const uint8_t * mins = (const uint8_t*)&utmp[2]; @@ -9232,11 +9716,92 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi } *s = sumf; -#elif defined __riscv_v_intrinsic +#elif defined __riscv_xtheadvector - const int vector_length = __riscv_vlenb() * 8; float sumf = 0; + for (int i = 0; i < nb; ++i) { + + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + + const uint8_t * restrict q6 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const int8_t * restrict scale = x[i].scales; + + int sum_t = 0; + int t0; + + for (int j = 0; j < QK_K/128; ++j) { + __asm__ __volatile__( + "th.vsetvli zero, %[vl32], e8, m2\n\t" // vl == 32 + "th.vlb.v v4, (%[qh])\n\t" + "th.vsll.vi v0, v4, 4\n\t" + "th.vsll.vi v2, v4, 2\n\t" + "th.vsrl.vi v6, v4, 2\n\t" + "th.vsetvli zero, %[vl64], e8, m4\n\t" // vl == 64 + "th.vlb.v v8, (%[q6])\n\t" + "th.vsrl.vi v12, v8, 4\n\t" + "th.vand.vi v8, v8, 0xF\n\t" + "th.vsetvli zero, %[vl128], e8, m8\n\t" // vl == 128 + "th.vand.vx v0, v0, %[mask]\n\t" + "th.vor.vv v8, v8, v0\n\t" + "th.vlb.v v0, (%[q8])\n\t" + "th.vsub.vx v8, v8, %[vl32]\n\t" + "th.vsetvli zero, %[vl64], e8, m4\n\t" // vl == 64 + "th.vwmul.vv v16, v0, v8\n\t" + "th.vwmul.vv v24, v4, v12\n\t" + "li %[t0], 16\n\t" + "th.vsetvli zero, %[t0], e16, m2\n\t" // vl == 16 + "th.vmv.v.x v0, zero\n\t" + "th.vwredsum.vs v10, v16, v0\n\t" + "th.vwredsum.vs v9, v18, v0\n\t" + "th.vwredsum.vs v8, v20, v0\n\t" + "th.vwredsum.vs v7, v22, v0\n\t" + "th.vwredsum.vs v11, v24, v0\n\t" + "th.vwredsum.vs v12, v26, v0\n\t" + "th.vwredsum.vs v13, v28, v0\n\t" + "th.vwredsum.vs v14, v30, v0\n\t" + "li %[t0], 4\n\t" + "th.vsetvli zero, %[t0], e32, m1\n\t" // vl == 4 + "th.vslideup.vi v10, v9, 1\n\t" + "th.vslideup.vi v8, v7, 1\n\t" + "th.vslideup.vi v11, v12, 1\n\t" + "th.vslideup.vi v13, v14, 1\n\t" + "th.vslideup.vi v10, v8, 2\n\t" + "th.vslideup.vi v11, v13, 2\n\t" + "li %[t0], 8\n\t" + "th.vsetvli zero, %[t0], e32, m2\n\t" // vl == 8 + "th.vlb.v v4, (%[scale])\n\t" + "th.vmul.vv v2, v4, v10\n\t" + "th.vredsum.vs v0, v2, v0\n\t" + "th.vmv.x.s %[t0], v0\n\t" + "add %[sumi], %[sumi], %[t0]" + : [sumi] "+&r" (sum_t), [t0] "=&r" (t0) + : [qh] "r" (qh), [q6] "r" (q6), [q8] "r" (q8), [scale] "r" (scale) + , [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128) + , [mask] "r" (0x30) + : "memory" + , "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7" + , "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" + , "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23" + , "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" + ); + q6 += 64; qh += 32; q8 += 128; scale += 8; + } + + sumf += d * sum_t; + + } + + *s = sumf; + +#elif defined __riscv_v + + float sumf = 0; + const int vector_length = __riscv_vlenb() * 8; + switch (vector_length) { case 256: for (int i = 0; i < nb; ++i) { diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c index aa51dc21a5..c7426df2b8 100644 --- a/ggml/src/ggml-cpu/ggml-cpu.c +++ b/ggml/src/ggml-cpu/ggml-cpu.c @@ -270,7 +270,11 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = { .from_float = quantize_row_q4_K, .vec_dot = ggml_vec_dot_q4_K_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, +#if defined (__ARM_FEATURE_MATMUL_INT8) + .nrows = 2, +#else .nrows = 1, +#endif }, [GGML_TYPE_Q5_K] = { .from_float = quantize_row_q5_K, @@ -2414,12 +2418,32 @@ static bool ggml_thread_apply_priority(int32_t prio) { // This is up to the applications. DWORD p = THREAD_PRIORITY_NORMAL; switch (prio) { + case GGML_SCHED_PRIO_LOW: p = THREAD_PRIORITY_BELOW_NORMAL; break; case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break; case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break; case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break; case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break; } + if (prio != GGML_SCHED_PRIO_LOW) { + // Tell Windows that this thread should not be throttled (needs its own CPU core). + // Newer Windows 11 versions aggresively park (offline) CPU cores and often place + // all our threads onto the first 4 cores which results in terrible performance with + // n_threads > 4 + #if _WIN32_WINNT >= 0x0602 + THREAD_POWER_THROTTLING_STATE t; + ZeroMemory(&t, sizeof(t)); + t.Version = THREAD_POWER_THROTTLING_CURRENT_VERSION; + t.ControlMask = THREAD_POWER_THROTTLING_EXECUTION_SPEED; + t.StateMask = 0; + + if (!SetThreadInformation(GetCurrentThread(), ThreadPowerThrottling, &t, sizeof(t))) { + GGML_LOG_DEBUG("failed to disable thread power throttling %d : (%d)\n", prio, (int) GetLastError()); + return false; + } + #endif + } + if (prio == GGML_SCHED_PRIO_NORMAL) { // Keep inherited policy/priority return true; @@ -2447,6 +2471,8 @@ static bool ggml_thread_apply_priority(int32_t prio) { struct sched_param p; int32_t policy = SCHED_OTHER; switch (prio) { + // TODO: there seems to be no way to set lower prio on Apple platforms + case GGML_SCHED_PRIO_LOW: policy = SCHED_OTHER; p.sched_priority = 0; break; case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break; case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break; case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break; @@ -2503,6 +2529,7 @@ static bool ggml_thread_apply_priority(int32_t prio) { struct sched_param p; int32_t policy = SCHED_OTHER; switch (prio) { + case GGML_SCHED_PRIO_LOW: policy = SCHED_BATCH; p.sched_priority = 0; break; case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break; case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break; case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break; diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp index 26501b7118..08facb6d03 100644 --- a/ggml/src/ggml-cpu/ops.cpp +++ b/ggml/src/ggml-cpu/ops.cpp @@ -7633,39 +7633,83 @@ static void ggml_compute_forward_ssm_scan_f32( const int ir1 = MIN(ir0 + dr, nr); const int ir = ir1 - ir0; - for (int i3 = 0; i3 < n_s; ++i3) { - for (int i2 = 0; i2 < n_t; ++i2) { - const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s} - const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s} - const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s} - const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner} - const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s} - const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s} - float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s} - float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s} + #ifdef __ARM_FEATURE_SVE + for (int i3 = 0; i3 < n_s; ++i3) { + for (int i2 = 0; i2 < n_t; ++i2) { + const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s} + const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s} + const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s} + const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner} + const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s} + const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s} + float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s} + float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s} - // use the output as the source for the next token-wise iterations - if (i2 > 0) { s0 = s; } + // use the output as the source for the next token-wise iterations + if (i2 > 0) { s0 = s; } - // d_inner - for (int i1 = 0; i1 < ir; ++i1) { - // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78 - float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1]; - float x_dt = x[i1] * dt_soft_plus; - float sumf = 0.0f; - // d_state - for (int i0 = 0; i0 < nc; ++i0) { - int i = i0 + i1*nc; - // state = prev_state * dA + dB * x - float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt); - // y = rowwise_dotprod(state, C) - sumf += state * C[i0]; - s[i] = state; + // d_inner + for (int i1 = 0; i1 < ir; ++i1) { + float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1]; + float x_dt = x[i1] * dt_soft_plus; + svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt); + svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus); + svfloat32_t r1_vector = GGML_F32_VEC_ZERO; + + for (int64_t k = 0; k < nc; k += svcntw()) { + svfloat32_t vA = GGML_F32_VEC_LOAD(&A[i1*nc + k]); + svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k]); + svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k]); + svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[i1*nc + k]); + + svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA); + t1 = exp_ps_sve(svptrue_b32(), t1); + svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB); + + vs0 = GGML_F32_VEC_FMA(vs0, t1, t2); + r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector); + + GGML_F32_VEC_STORE(&s[i1*nc + k], vs0); + } + y[i1] = GGML_F32xt_REDUCE_ONE(r1_vector); } - y[i1] = sumf; } } - } + #else + for (int i3 = 0; i3 < n_s; ++i3) { + for (int i2 = 0; i2 < n_t; ++i2) { + const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s} + const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s} + const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s} + const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner} + const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s} + const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s} + float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s} + float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s} + + // use the output as the source for the next token-wise iterations + if (i2 > 0) { s0 = s; } + + // d_inner + for (int i1 = 0; i1 < ir; ++i1) { + // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78 + float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1]; + float x_dt = x[i1] * dt_soft_plus; + float sumf = 0.0f; + // d_state + for (int i0 = 0; i0 < nc; ++i0) { + int i = i0 + i1*nc; + // state = prev_state * dA + dB * x + float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt); + // y = rowwise_dotprod(state, C) + sumf += state * C[i0]; + s[i] = state; + } + y[i1] = sumf; + } + } + } + #endif } void ggml_compute_forward_ssm_scan( @@ -8070,6 +8114,14 @@ static void ggml_compute_forward_rwkv_wkv6_f32( #define GGML_F32X_MUL GGML_F32x16_MUL #define GGML_F32X_FMA GGML_F32x16_FMA #define WKV_VECTOR_SIZE 16 + #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__) + #define GGML_F32X GGML_F32xt + #define GGML_F32X_SET1 GGML_F32xt_SET1 + #define GGML_F32X_LOAD GGML_F32xt_LOAD + #define GGML_F32X_STORE GGML_F32xt_STORE + #define GGML_F32X_MUL GGML_F32xt_MUL + #define GGML_F32X_FMA GGML_F32xt_FMA + #define WKV_VECTOR_SIZE 8 #elif defined(__ARM_NEON) && defined(__aarch64__) #define GGML_F32X GGML_F32x4 #define GGML_F32X_SET1 GGML_F32x4_SET1 @@ -8081,7 +8133,13 @@ static void ggml_compute_forward_rwkv_wkv6_f32( #endif #ifdef WKV_VECTOR_SIZE - const int64_t vec_count = head_size / WKV_VECTOR_SIZE; + int wkv_vector_size; + #if defined(__ARM_FEATURE_SVE) + wkv_vector_size = svcntw(); + #else + wkv_vector_size = WKV_VECTOR_SIZE; + #endif + const int64_t vec_count = head_size / wkv_vector_size; for (int64_t t = 0; t < T; t++) { size_t t_offset = t * t_stride; @@ -8111,7 +8169,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32( GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val); for (int64_t j = 0; j < vec_count; j++) { - size_t base_j = j * WKV_VECTOR_SIZE; + size_t base_j = j * wkv_vector_size; size_t t_h_j_offset = t_h_offset + base_j; size_t h_2d_i_j_offset = h_2d_i_offset + base_j; @@ -8136,7 +8194,7 @@ static void ggml_compute_forward_rwkv_wkv6_f32( } // Handle remaining elements, this will not be used. - for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) { + for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) { size_t t_h_j_offset = t_h_offset + j; size_t h_2d_i_j_offset = h_2d_i_offset + j; float v_val = v[t_h_j_offset]; @@ -8272,6 +8330,14 @@ static void ggml_compute_forward_gla_f32( #define GGML_F32X_MUL GGML_F32x16_MUL #define GGML_F32X_FMA GGML_F32x16_FMA #define GLA_VECTOR_SIZE 16 + #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__) + #define GGML_F32X GGML_F32xt + #define GGML_F32X_SET1 GGML_F32xt_SET1 + #define GGML_F32X_LOAD GGML_F32xt_LOAD + #define GGML_F32X_STORE GGML_F32xt_STORE + #define GGML_F32X_MUL GGML_F32xt_MUL + #define GGML_F32X_FMA GGML_F32xt_FMA + #define GLA_VECTOR_SIZE 8 #elif defined(__ARM_NEON) && defined(__aarch64__) #define GGML_F32X GGML_F32x4 #define GGML_F32X_SET1 GGML_F32x4_SET1 @@ -8283,7 +8349,13 @@ static void ggml_compute_forward_gla_f32( #endif #ifdef GLA_VECTOR_SIZE - const int64_t vec_count = head_size / GLA_VECTOR_SIZE; + int gla_vector_size; + #if defined(__ARM_FEATURE_SVE) + gla_vector_size = svcntw(); + #else + gla_vector_size = GLA_VECTOR_SIZE; + #endif + const int64_t vec_count = head_size / gla_vector_size; for (int64_t t = 0; t < T; t++) { size_t t_offset = t * t_stride; @@ -8310,7 +8382,7 @@ static void ggml_compute_forward_gla_f32( GGML_F32X g_vec = GGML_F32X_SET1(g_val); for (int64_t j = 0; j < vec_count; j++) { - size_t base_j = j * GLA_VECTOR_SIZE; + size_t base_j = j * gla_vector_size; size_t t_h_j_offset = t_h_offset + base_j; size_t h_2d_i_j_offset = h_2d_i_offset + base_j; @@ -8334,7 +8406,7 @@ static void ggml_compute_forward_gla_f32( } // Handle remaining elements, this will not be used. - for (int64_t j = vec_count * GLA_VECTOR_SIZE; j < head_size; j++) { + for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) { size_t t_h_j_offset = t_h_offset + j; size_t h_2d_i_j_offset = h_2d_i_offset + j; float v_val = v[t_h_j_offset]; @@ -8443,83 +8515,126 @@ static void ggml_compute_forward_rwkv_wkv7_f32( int64_t h_stride_2d = head_size * head_size; #if defined(GGML_SIMD) - for (int64_t t = 0; t < T; t++) { - int64_t t_offset = t * t_stride; - int64_t state_offset = head_size * C * (t / (T / n_seqs)); - float * state_cur = state + state_offset; - float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset; + #if defined(__ARM_FEATURE_SVE) + // scalar Route to scalar implementation //TODO: Write SVE code + for (int64_t t = 0; t < T; t++) { + int64_t t_offset = t * t_stride; + int64_t state_offset = head_size * C * (t / (T / n_seqs)); + float * state_cur = state + state_offset; + float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset; - for (int64_t h = h_start; h < h_end; h++) { - int64_t h_offset = h * h_stride; - int64_t t_h_offset = t_offset + h_offset; - int64_t h_2d_offset = h * h_stride_2d; + for (int64_t h = h_start; h < h_end; h++) { + int64_t h_offset = h * h_stride; + int64_t t_h_offset = t_offset + h_offset; + int64_t h_2d_offset = h * h_stride_2d; - for (int64_t ii = 0; ii < head_size; ii++) { - int64_t t_h_i_offset = t_h_offset + ii; - int64_t h_2d_i_offset = h_2d_offset + ii * h_stride; + for (int64_t i = 0; i < head_size; i++) { + int64_t t_h_i_offset = t_h_offset + i; + int64_t h_2d_i_offset = h_2d_offset + i * h_stride; - GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]); + float v_val = v[t_h_i_offset]; - float sa = 0; - { - GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; - GGML_F32_VEC ax[GGML_F32_ARR]; - GGML_F32_VEC ay[GGML_F32_ARR]; - for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) { - for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) { - ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]); - ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]); - sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]); - } + float sa = 0, result = 0; + for (int64_t j = 0; j < head_size; j++) { + sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j]; } - GGML_F32_VEC_REDUCE(sa, sum); - } - GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa); + for (int64_t j = 0; j < head_size; j++) { + int64_t t_h_j_offset = t_h_offset + j; + int64_t h_2d_i_j_offset = h_2d_i_offset + j; - int64_t j = 0; - GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; - for (; j < head_size; j += GGML_F32_STEP) { - for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) { - int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR; - int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR; - - GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]); - GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]); - GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]); - GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]); - - k_vec = GGML_F32_VEC_MUL(v_vec, k_vec); - - GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]); - // kv + s * decay + sa * b - state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec); - state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec); - GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec); - - result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec); + float r_val = r[t_h_j_offset]; + float w_val = w[t_h_j_offset]; + float k_val = k[t_h_j_offset]; + float b_val = b[t_h_j_offset]; + float kv_val = v_val * k_val; + float prev_state_val = state_prev[h_2d_i_j_offset]; + state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val; + result += state_cur[h_2d_i_j_offset] * r_val; } - } - GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec); - - // There shouldn't be left-overs though. - for (; j < head_size; j++) { - int64_t t_h_j_offset = t_h_offset + j; - int64_t h_2d_i_j_offset = h_2d_i_offset + j; - - float r_val = r[t_h_j_offset]; - float w_val = w[t_h_j_offset]; - float k_val = k[t_h_j_offset]; - float b_val = b[t_h_j_offset]; - float kv_val = v[t_h_i_offset] * k_val; - - float prev_state_val = state_prev[h_2d_i_j_offset]; - state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val; - dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val; + dst_data[t_h_i_offset] = result; } } } - } + #else + for (int64_t t = 0; t < T; t++) { + int64_t t_offset = t * t_stride; + int64_t state_offset = head_size * C * (t / (T / n_seqs)); + float * state_cur = state + state_offset; + float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset; + + for (int64_t h = h_start; h < h_end; h++) { + int64_t h_offset = h * h_stride; + int64_t t_h_offset = t_offset + h_offset; + int64_t h_2d_offset = h * h_stride_2d; + + for (int64_t ii = 0; ii < head_size; ii++) { + int64_t t_h_i_offset = t_h_offset + ii; + int64_t h_2d_i_offset = h_2d_offset + ii * h_stride; + + GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]); + + float sa = 0; + { + GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; + GGML_F32_VEC ax[GGML_F32_ARR]; + GGML_F32_VEC ay[GGML_F32_ARR]; + for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) { + for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) { + ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]); + ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]); + sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]); + } + } + GGML_F32_VEC_REDUCE(sa, sum); + } + + GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa); + + int64_t j = 0; + GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; + for (; j < head_size; j += GGML_F32_STEP) { + for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) { + int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR; + int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR; + + GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]); + GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]); + GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]); + GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]); + + k_vec = GGML_F32_VEC_MUL(v_vec, k_vec); + + GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]); + // kv + s * decay + sa * b + state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec); + state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec); + GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec); + + result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec); + } + } + GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec); + + // There shouldn't be left-overs though. + for (; j < head_size; j++) { + int64_t t_h_j_offset = t_h_offset + j; + int64_t h_2d_i_j_offset = h_2d_i_offset + j; + + float r_val = r[t_h_j_offset]; + float w_val = w[t_h_j_offset]; + float k_val = k[t_h_j_offset]; + float b_val = b[t_h_j_offset]; + float kv_val = v[t_h_i_offset] * k_val; + + float prev_state_val = state_prev[h_2d_i_j_offset]; + state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val; + dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val; + } + } + } + } + #endif #else for (int64_t t = 0; t < T; t++) { int64_t t_offset = t * t_stride; diff --git a/ggml/src/ggml-cpu/simd-mappings.h b/ggml/src/ggml-cpu/simd-mappings.h index 45c31cf1fa..2e3669c018 100644 --- a/ggml/src/ggml-cpu/simd-mappings.h +++ b/ggml/src/ggml-cpu/simd-mappings.h @@ -17,7 +17,123 @@ // number of elements to fit in a single register // -#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA) +#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_FMA) + +#define GGML_SIMD + +// F32 SVE +#define GGML_F32_EPR 8 +#define DEFAULT_PG svptrue_b32() + +#define GGML_F32xt svfloat32_t +#define GGML_F32xt_ZERO svdup_n_f32(0.0f) +#define GGML_F32xt_SET1(x) svdup_n_f32(x) +#define GGML_F32xt_LOAD_IMPL(pg, a, ...) svld1_f32(pg, a) +#define GGML_F32xt_LOAD(...) GGML_F32xt_LOAD_IMPL(DEFAULT_PG, __VA_ARGS__) +#define GGML_F32xt_STORE_IMPL(pg,a,b) svst1_f32(pg, a, b) +#define GGML_F32xt_STORE(...) GGML_F32xt_STORE_IMPL(DEFAULT_PG, __VA_ARGS__) +#define GGML_F32xt_FMA_IMPL(pg, a, b, c) svmad_f32_m(pg, a, b, c) +#define GGML_F32xt_FMA(...) GGML_F32xt_FMA_IMPL(DEFAULT_PG, __VA_ARGS__) +#define GGML_F32xt_ADD_IMPL(pg, a, b) svadd_f32_m(pg, a, b) +#define GGML_F32xt_ADD(...) GGML_F32xt_ADD_IMPL(DEFAULT_PG, __VA_ARGS__) +#define GGML_F32xt_MUL_IMPL(pg, a, b) svmul_f32_m(pg, a, b) +#define GGML_F32xt_MUL(...) GGML_F32xt_MUL_IMPL(DEFAULT_PG, __VA_ARGS__) +#define GGML_F32xt_REDUCE_ONE_IMPL(pg, a) svaddv(pg, a) +#define GGML_F32xt_REDUCE_ONE(...) GGML_F32xt_REDUCE_ONE_IMPL(DEFAULT_PG, __VA_ARGS__) +#define GGML_F32xt_REDUCE_IMPL(pg, res, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8) \ +{ \ + sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum2); \ + sum3 = svadd_f32_m(DEFAULT_PG, sum3, sum4); \ + sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum6); \ + sum7 = svadd_f32_m(DEFAULT_PG, sum7, sum8); \ + sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum3); \ + sum5 = svadd_f32_m(DEFAULT_PG, sum5, sum7); \ + sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum5); \ + (res) = (ggml_float) GGML_F32xt_REDUCE_ONE(sum1); \ +} +#define GGML_F32xt_REDUCE(...) GGML_F32xt_REDUCE_IMPL(DEFAULT_PG, __VA_ARGS__) + +#define GGML_F32_VEC GGML_F32xt +#define GGML_F32_VEC_ZERO GGML_F32xt_ZERO +#define GGML_F32_VEC_SET1 GGML_F32xt_SET1 +#define GGML_F32_VEC_LOAD GGML_F32xt_LOAD +#define GGML_F32_VEC_STORE GGML_F32xt_STORE +#define GGML_F32_VEC_FMA GGML_F32xt_FMA +#define GGML_F32_VEC_ADD GGML_F32xt_ADD +#define GGML_F32_VEC_MUL GGML_F32xt_MUL +#define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE + +// F16 NEON + +#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) + #define GGML_F16_STEP 32 + #define GGML_F16_EPR 8 + + #define GGML_F16x8 float16x8_t + #define GGML_F16x8_ZERO vdupq_n_f16(0.0f) + #define GGML_F16x8_SET1(x) vdupq_n_f16(x) + #define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x)) + #define GGML_F16x8_STORE vst1q_f16 + #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c) + #define GGML_F16x8_ADD vaddq_f16 + #define GGML_F16x8_MUL vmulq_f16 + #define GGML_F16x8_REDUCE(res, x) \ + do { \ + int offset = GGML_F16_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \ + } \ + const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \ + const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \ + (res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \ + } while (0) + + #define GGML_F16_VEC GGML_F16x8 + #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO + #define GGML_F16_VEC_SET1 GGML_F16x8_SET1 + #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p) + #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((__fp16 *)(p), (r)[i]) + #define GGML_F16_VEC_FMA GGML_F16x8_FMA + #define GGML_F16_VEC_ADD GGML_F16x8_ADD + #define GGML_F16_VEC_MUL GGML_F16x8_MUL + #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE +#else + // if FP16 vector arithmetic is not supported, we use FP32 instead + // and take advantage of the vcvt_ functions to convert to/from FP16 + + #define GGML_F16_STEP 16 + #define GGML_F16_EPR 4 + + #define GGML_F32Cx4 float32x4_t + #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f) + #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x) + #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x))) + #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y)) + #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c) + #define GGML_F32Cx4_ADD vaddq_f32 + #define GGML_F32Cx4_MUL vmulq_f32 + #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE + + #define GGML_F16_VEC GGML_F32Cx4 + #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO + #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1 + #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p) + #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((__fp16 *)(p), r[i]) + #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA + #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD + #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL + #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE +#endif + +#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA) #define GGML_SIMD diff --git a/ggml/src/ggml-cpu/vec.cpp b/ggml/src/ggml-cpu/vec.cpp index 02d4061822..f7614568ea 100644 --- a/ggml/src/ggml-cpu/vec.cpp +++ b/ggml/src/ggml-cpu/vec.cpp @@ -17,29 +17,98 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G #if defined(GGML_SIMD) float sumf = 0.0f; - const int np = (n & ~(GGML_F32_STEP - 1)); - GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; + #if defined(__ARM_FEATURE_SVE) + const int sve_register_length = ggml_cpu_get_sve_cnt() * 8; + const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16 + const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers - GGML_F32_VEC ax[GGML_F32_ARR]; - GGML_F32_VEC ay[GGML_F32_ARR]; + const int np = (n & ~(ggml_f32_step - 1)); + svfloat32_t sum1 = svdup_n_f32(0.0f); + svfloat32_t sum2 = svdup_n_f32(0.0f); + svfloat32_t sum3 = svdup_n_f32(0.0f); + svfloat32_t sum4 = svdup_n_f32(0.0f); + svfloat32_t sum5 = svdup_n_f32(0.0f); + svfloat32_t sum6 = svdup_n_f32(0.0f); + svfloat32_t sum7 = svdup_n_f32(0.0f); + svfloat32_t sum8 = svdup_n_f32(0.0f); + svfloat32_t ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8; + svfloat32_t ay1,ay2,ay3,ay4,ay5,ay6,ay7,ay8; + for (int i = 0; i < np; i += ggml_f32_step) { + ax1 = GGML_F32_VEC_LOAD(x + i); + ay1 = GGML_F32_VEC_LOAD(y + i); + sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1); - for (int i = 0; i < np; i += GGML_F32_STEP) { - for (int j = 0; j < GGML_F32_ARR; j++) { - ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR); - ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr); + ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr); + sum2 = GGML_F32_VEC_FMA(ax2, ay2, sum2); - sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]); + ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr); + ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr); + sum3 = GGML_F32_VEC_FMA(ax3, ay3, sum3); + + ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr); + ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr); + sum4 = GGML_F32_VEC_FMA(ax4, ay4, sum4); + + ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr); + ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr); + sum5 = GGML_F32_VEC_FMA(ax5, ay5, sum5); + + ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr); + ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr); + sum6 = GGML_F32_VEC_FMA(ax6, ay6, sum6); + + ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr); + ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr); + sum7 = GGML_F32_VEC_FMA(ax7, ay7, sum7); + + ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr); + ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr); + sum8 = GGML_F32_VEC_FMA(ax8, ay8, sum8); } - } + // leftovers + // Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop + const int np2 = (n & ~(ggml_f32_epr - 1)); + for (int i = np; i < np2; i += ggml_f32_epr) { + ax1 = GGML_F32_VEC_LOAD(x + i); + ay1 = GGML_F32_VEC_LOAD(y + i); + sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1); + } + // maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only + if (np2 < n) { + svbool_t pg = svwhilelt_b32(np2, n); + ax1 = svld1_f32(pg, x + np2); + ay1 = svld1_f32(pg, y + np2); + sum1 = svmad_f32_m(pg, ax1, ay1, sum1); + } + // reduce sum1,sum2 to sum1 + GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8); + #else + const int np = (n & ~(GGML_F32_STEP - 1)); - // reduce sum0..sum3 to sum0 - GGML_F32_VEC_REDUCE(sumf, sum); + GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; - // leftovers - for (int i = np; i < n; ++i) { - sumf += x[i]*y[i]; - } + GGML_F32_VEC ax[GGML_F32_ARR]; + GGML_F32_VEC ay[GGML_F32_ARR]; + + for (int i = 0; i < np; i += GGML_F32_STEP) { + for (int j = 0; j < GGML_F32_ARR; j++) { + ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + + sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]); + } + } + + // reduce sum0..sum3 to sum0 + GGML_F32_VEC_REDUCE(sumf, sum); + + // leftovers + for (int i = np; i < n; ++i) { + sumf += x[i]*y[i]; + } + #endif #else // scalar ggml_float sumf = 0.0; diff --git a/ggml/src/ggml-cpu/vec.h b/ggml/src/ggml-cpu/vec.h index c77349ebe4..09dbade217 100644 --- a/ggml/src/ggml-cpu/vec.h +++ b/ggml/src/ggml-cpu/vec.h @@ -5,6 +5,7 @@ #include "ggml-impl.h" #include "simd-mappings.h" #include "ggml.h" +#include "ggml-cpu.h" #if defined(GGML_USE_ACCELERATE) #include @@ -148,27 +149,108 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const float * GGML_RESTRICT x, const float v) { #if defined(GGML_SIMD) - const int np = (n & ~(GGML_F32_STEP - 1)); + #if defined(__ARM_FEATURE_SVE) - GGML_F32_VEC vx = GGML_F32_VEC_SET1(v); + const int sve_register_length = ggml_cpu_get_sve_cnt() * 8; + const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16 + const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers + GGML_F32_VEC vx = GGML_F32_VEC_SET1(v); - GGML_F32_VEC ax[GGML_F32_ARR]; - GGML_F32_VEC ay[GGML_F32_ARR]; + const int np = (n & ~(ggml_f32_step - 1)); + svfloat32_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8; + svfloat32_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8; + for (int i = 0; i < np; i += ggml_f32_step) { - for (int i = 0; i < np; i += GGML_F32_STEP) { - for (int j = 0; j < GGML_F32_ARR; j++) { - ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR); - ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); - ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx); + ax1 = GGML_F32_VEC_LOAD(x + i); + ay1 = GGML_F32_VEC_LOAD(y + i); + ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1); - GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); + GGML_F32_VEC_STORE(y + i, ay1); + + ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr); + ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr); + ay2 = GGML_F32_VEC_FMA(ax2, vx, ay2); + + GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2); + + ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr); + ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr); + ay3 = GGML_F32_VEC_FMA(ax3, vx, ay3); + + GGML_F32_VEC_STORE(y + i + 2*ggml_f32_epr, ay3); + + ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr); + ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr); + ay4 = GGML_F32_VEC_FMA(ax4, vx, ay4); + + GGML_F32_VEC_STORE(y + i + 3*ggml_f32_epr, ay4); + + ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr); + ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr); + ay5 = GGML_F32_VEC_FMA(ax5, vx, ay5); + + GGML_F32_VEC_STORE(y + i + 4*ggml_f32_epr, ay5); + + ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr); + ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr); + ay6 = GGML_F32_VEC_FMA(ax6, vx, ay6); + + GGML_F32_VEC_STORE(y + i + 5*ggml_f32_epr, ay6); + + ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr); + ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr); + ay7 = GGML_F32_VEC_FMA(ax7, vx, ay7); + + GGML_F32_VEC_STORE(y + i + 6*ggml_f32_epr, ay7); + + ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr); + ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr); + ay8 = GGML_F32_VEC_FMA(ax8, vx, ay8); + + GGML_F32_VEC_STORE(y + i + 7*ggml_f32_epr, ay8); } - } + // leftovers + // Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop + const int np2 = (n & ~(ggml_f32_epr - 1)); + for (int i = np; i < np2; i += ggml_f32_epr) { + ax1 = GGML_F32_VEC_LOAD(x + i); + ay1 = GGML_F32_VEC_LOAD(y + i); + ay1 = GGML_F32_VEC_FMA(ax1, vx, ay1); - // leftovers - for (int i = np; i < n; ++i) { - y[i] += x[i]*v; - } + GGML_F32_VEC_STORE(y + i, ay1); + } + // maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only + if (np2 < n) { + svbool_t pg =svwhilelt_b32(np2, n); + ax1 = svld1_f32(pg, x + np2); + ay1 = svld1_f32(pg, y + np2); + ay1 = svmad_f32_m(pg, ax1, vx, ay1); + + svst1_f32(pg, y + np2, ay1); + } + #else + const int np = (n & ~(GGML_F32_STEP - 1)); + + GGML_F32_VEC vx = GGML_F32_VEC_SET1(v); + + GGML_F32_VEC ax[GGML_F32_ARR]; + GGML_F32_VEC ay[GGML_F32_ARR]; + + for (int i = 0; i < np; i += GGML_F32_STEP) { + for (int j = 0; j < GGML_F32_ARR; j++) { + ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx); + + GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); + } + } + + // leftovers + for (int i = np; i < n; ++i) { + y[i] += x[i]*v; + } + #endif #else // scalar for (int i = 0; i < n; ++i) { @@ -220,36 +302,45 @@ inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int } #if defined(GGML_SIMD) - const int np = (n & ~(GGML_F32_STEP - 1)); - - GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL]; - - for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { - vx[k] = GGML_F32_VEC_SET1(v[k][0]); - } - - GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR]; - GGML_F32_VEC ay[GGML_F32_ARR]; - - for (int i = 0; i < np; i += GGML_F32_STEP) { - for (int j = 0; j < GGML_F32_ARR; j++) { - ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); - - for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { - ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR); - ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]); + #if defined(__ARM_FEATURE_SVE) + // scalar Route to scalar implementation //TODO: Write SVE code + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + for (int i = 0; i < n; ++i) { + y[i] += x[k][i]*v[k][0]; } - - GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); } - } + #else + const int np = (n & ~(GGML_F32_STEP - 1)); - // leftovers - for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { - for (int i = np; i < n; ++i) { - y[i] += x[k][i]*v[k][0]; + GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL]; + + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + vx[k] = GGML_F32_VEC_SET1(v[k][0]); } - } + + GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR]; + GGML_F32_VEC ay[GGML_F32_ARR]; + + for (int i = 0; i < np; i += GGML_F32_STEP) { + for (int j = 0; j < GGML_F32_ARR; j++) { + ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]); + } + + GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); + } + } + + // leftovers + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + for (int i = np; i < n; ++i) { + y[i] += x[k][i]*v[k][0]; + } + } + #endif #else // scalar for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { @@ -265,25 +356,53 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { #if defined(GGML_USE_ACCELERATE) vDSP_vsmul(y, 1, &v, y, 1, n); #elif defined(GGML_SIMD) - const int np = (n & ~(GGML_F32_STEP - 1)); + #if defined(__ARM_FEATURE_SVE) + const int sve_register_length = ggml_cpu_get_sve_cnt() * 8; + const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16 + const int ggml_f32_step = 2 * ggml_f32_epr; - GGML_F32_VEC vx = GGML_F32_VEC_SET1(v); + GGML_F32_VEC vx = GGML_F32_VEC_SET1(v); + const int np = (n & ~(ggml_f32_step - 1)); + svfloat32_t ay1; + svfloat32_t ay2; + for (int i = 0; i < np; i += ggml_f32_step) { + ay1 = GGML_F32_VEC_LOAD(y + i); + ay1 = GGML_F32_VEC_MUL(ay1, vx); + GGML_F32_VEC_STORE(y + i, ay1); - GGML_F32_VEC ay[GGML_F32_ARR]; - - for (int i = 0; i < np; i += GGML_F32_STEP) { - for (int j = 0; j < GGML_F32_ARR; j++) { - ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); - ay[j] = GGML_F32_VEC_MUL(ay[j], vx); - - GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); + ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr); + ay2 = GGML_F32_VEC_MUL(ay2, vx); + GGML_F32_VEC_STORE(y + i + 1*ggml_f32_epr, ay2); } - } + // leftovers + // maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only + if (np < n) { + svbool_t pg = svwhilelt_b32(np, n); + ay1 = svld1_f32(pg, y + np); + ay1 = svmul_f32_m(pg, ay1, vx); + svst1_f32(pg, y + np, ay1); + } + #else + const int np = (n & ~(GGML_F32_STEP - 1)); - // leftovers - for (int i = np; i < n; ++i) { - y[i] *= v; - } + GGML_F32_VEC vx = GGML_F32_VEC_SET1(v); + + GGML_F32_VEC ay[GGML_F32_ARR]; + + for (int i = 0; i < np; i += GGML_F32_STEP) { + for (int j = 0; j < GGML_F32_ARR; j++) { + ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_MUL(ay[j], vx); + + GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); + } + } + + // leftovers + for (int i = np; i < n; ++i) { + y[i] *= v; + } + #endif #else // scalar for (int i = 0; i < n; ++i) { @@ -528,6 +647,42 @@ inline static ggml_fp16_t ggml_silu_f16(ggml_fp16_t x) { #error "ref: https://github.com/ggml-org/llama.cpp/pull/7154#issuecomment-2143844461" #endif +/* Below function was borrowed from the GitHub repository: +https://github.com/openvinotoolkit/openvino/blob/master/src/plugins/intel_cpu/src/nodes/kernels/scaled_attn/common.hpp */ +#if defined(__ARM_FEATURE_SVE) && defined(__aarch64__) + inline static svfloat32_t exp_ps_sve(svbool_t pg, svfloat32_t src) { + // Constants + const svfloat32_t log2_e = svdup_n_f32(1.4426950409f); + const svfloat32_t ln2 = svdup_n_f32(0.6931473921f); + const svfloat32_t half_ln2_sq = svdup_n_f32(0.2413862043f); + const svuint32_t not_mask17 = svdup_n_u32(~((1u << 17) - 1)); + const svfloat32_t one = svdup_n_f32(1.0f); + const svfloat32_t inactive1 = svdup_n_f32(0.0f); + const svint32_t inactive2 = svdup_n_s32(0); + + // Algorithm starts here + svfloat32_t t0 = svmul_f32_m(pg, src, log2_e); // y = x * log2(e) + svfloat32_t t1 = svrintm_f32_m(inactive1, pg, t0); // rount to int (float) + svint32_t t2 = svcvt_s32_f32_m(inactive2, pg, t1); // n + + t1 = svsub_f32_m(pg, t0, t1); // a = y - floor(y) + t1 = svadd_f32_m(pg, t1, one); // b = a + 1 + + svuint32_t t3 = svlsr_n_u32_m(pg, svreinterpret_u32_f32(t1), 17); // v = b >> 17 (u32) + svfloat32_t t4 = svexpa_f32(t3); // c = fexpa(v) + t4 = svscale_f32_m(pg, t4, t2); // fexpa(v) * 2^(n) + + // and_(t2.d, t1.d, not_mask17.d) + svfloat32_t t5 = svreinterpret_f32_u32(svand_u32_m(pg, svreinterpret_u32_f32(t1), not_mask17)); + t5 = svsub_f32_m(pg, t1, t5); // z + t0 = svmla_f32_m(pg, ln2, t5, half_ln2_sq); // ln2 + half_ln2_sq * z + t0 = svmla_f32_m(pg, one, t5, t0); // 1 + (ln2 * z) + (half_ln2_sq * z * z) + t0 = svmul_f32_m(pg, t0, t4); // Final result + + return t0; + } +#endif + #if defined(__ARM_NEON) && defined(__aarch64__) // adapted from arm limited optimized routine diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh index df450b1878..e1ce1d4cd1 100644 --- a/ggml/src/ggml-cuda/common.cuh +++ b/ggml/src/ggml-cuda/common.cuh @@ -635,6 +635,7 @@ struct ggml_cuda_device_info { int nsm; // number of streaming multiprocessors size_t smpb; // max. shared memory per block size_t smpbo; // max. shared memory per block (with opt-in) + bool integrated; // Device is integrated as opposed to discrete bool vmm; // virtual memory support size_t vmm_granularity; // granularity of virtual memory size_t total_vram; diff --git a/ggml/src/ggml-cuda/fattn-common.cuh b/ggml/src/ggml-cuda/fattn-common.cuh index a4fbd82363..cfab2b5eba 100644 --- a/ggml/src/ggml-cuda/fattn-common.cuh +++ b/ggml/src/ggml-cuda/fattn-common.cuh @@ -623,8 +623,8 @@ static __global__ void flash_attn_combine_results( __builtin_assume(tid < D); extern __shared__ float2 meta[]; - if (tid < 2*parallel_blocks) { - ((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.z*(2*parallel_blocks) + tid]; + for (int i = tid; i < 2*parallel_blocks; i += D) { + ((float *) meta)[i] = ((const float *)VKQ_meta) [blockIdx.z*(2*parallel_blocks) + i]; } __syncthreads(); diff --git a/ggml/src/ggml-cuda/fattn-mma-f16.cuh b/ggml/src/ggml-cuda/fattn-mma-f16.cuh index 7120053b6e..e230f6d494 100644 --- a/ggml/src/ggml-cuda/fattn-mma-f16.cuh +++ b/ggml/src/ggml-cuda/fattn-mma-f16.cuh @@ -652,9 +652,12 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( float KQ_max_scale[cols_per_thread]; #pragma unroll for (int col = 0; col < cols_per_thread; ++col) { - KQ_max_scale[col] = expf(KQ_max[col] - KQ_max_new[col]); + const float KQ_max_diff = KQ_max[col] - KQ_max_new[col]; + KQ_max_scale[col] = expf(KQ_max_diff); KQ_max[col] = KQ_max_new[col]; + *((uint32_t *) &KQ_max_scale[col]) *= KQ_max_diff >= SOFTMAX_FTZ_THRESHOLD; + // Scale previous KQ_rowsum to account for a potential increase in KQ_max: KQ_rowsum[col] = KQ_max_scale[col]*KQ_rowsum[col] + KQ_rowsum_add[col]; } @@ -1246,7 +1249,7 @@ static __global__ void flash_attn_ext_f16( NO_DEVICE_CODE; return; } -#endif __CUDA_ARCH__ == GGML_CUDA_CC_TURING +#endif // __CUDA_ARCH__ == GGML_CUDA_CC_TURING static_assert(!mla || DKQ >= DV, "MLA needs DKQ >= DV"); diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index c442a64924..3d2a0a36dd 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -243,10 +243,10 @@ static ggml_cuda_device_info ggml_cuda_init() { info.default_tensor_split[id] = total_vram; total_vram += prop.totalGlobalMem; - - info.devices[id].nsm = prop.multiProcessorCount; - info.devices[id].smpb = prop.sharedMemPerBlock; - info.devices[id].warp_size = prop.warpSize; + info.devices[id].integrated = prop.integrated; + info.devices[id].nsm = prop.multiProcessorCount; + info.devices[id].smpb = prop.sharedMemPerBlock; + info.devices[id].warp_size = prop.warpSize; #if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) info.devices[id].smpbo = prop.sharedMemPerBlock; @@ -1065,6 +1065,10 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_ GGML_UNUSED(buft); } +static bool ggml_backend_buft_is_cuda_host(ggml_backend_buffer_type_t buft) { + return buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name; +} + static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { CUDA_CHECK(cudaFreeHost(buffer->context)); } @@ -1140,7 +1144,6 @@ typedef void (*ggml_cuda_op_mul_mat_t)( static cudaError_t ggml_cuda_cpy_tensor_2d( void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) { - GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer)); const char * src_ptr = (const char *) src->data; char * dst_ptr = (char *) dst; @@ -1423,8 +1426,6 @@ static void ggml_cuda_op_mul_mat( const int64_t nb2 = dst->nb[2]; const int64_t nb3 = dst->nb[3]; - GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer)); - GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer)); ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context; ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context; @@ -1746,7 +1747,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co GGML_ASSERT(!ggml_is_transposed(src0)); GGML_ASSERT(!ggml_is_transposed(src1)); - GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer)); + GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft)); GGML_ASSERT(src0->type == GGML_TYPE_F16); // Byte offsets and tensor dimensions are currently used in an inconsistent way for dst. @@ -2641,6 +2642,8 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) { static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) { + // flag used to determine whether it is an integrated_gpu + const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated; while (!graph_evaluated_or_captured) { // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph. @@ -2659,7 +2662,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx if (node->src[j] != nullptr) { assert(node->src[j]->buffer); assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || - ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft)); + ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft) || (integrated && ggml_backend_buft_is_cuda_host(node->src[j]->buffer->buft))); } } #endif @@ -2994,9 +2997,12 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g { struct ggml_tensor * a = op->src[0]; struct ggml_tensor * b = op->src[1]; - // for small weight matrices the active device can end up without any rows, don't use row split in those cases - // this avoids some edge cases (and the performance would not be good anyways) if (a->buffer && ggml_backend_buft_is_cuda_split(a->buffer->buft)) { + if (a->ne[2] > 1 || a->ne[3] > 1) { + return false; + } + // for small weight matrices the active device can end up without any rows, don't use row split in those cases + // this avoids some edge cases (and the performance would not be good anyways) ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) a->buffer->buft->context; int64_t row_low; int64_t row_high; @@ -3263,7 +3269,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g } static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { - return (ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev; + ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context; + const bool integrated = ggml_cuda_info().devices[dev_ctx->device].integrated; + return (((ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev) || (integrated && ggml_backend_buft_is_cuda_host(buft))); } static int64_t get_op_batch_size(const ggml_tensor * op) { diff --git a/ggml/src/ggml-impl.h b/ggml/src/ggml-impl.h index a19cfb14e0..6dc5ce0d92 100644 --- a/ggml/src/ggml-impl.h +++ b/ggml/src/ggml-impl.h @@ -32,6 +32,8 @@ extern "C" { #endif +void ggml_print_backtrace(void); + #ifndef MIN # define MIN(a, b) ((a) < (b) ? (a) : (b)) #endif @@ -386,7 +388,7 @@ GGML_API void ggml_aligned_free(void * ptr, size_t size); return r; } -#elif defined(__riscv) && defined(GGML_RV_ZFH) +#elif defined(__riscv) && defined(__riscv_zfhmin) static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { float f; diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m index f78e7eee55..bc93bc633a 100644 --- a/ggml/src/ggml-metal/ggml-metal.m +++ b/ggml/src/ggml-metal/ggml-metal.m @@ -4766,6 +4766,8 @@ static bool ggml_metal_encode_node( GGML_ASSERT(nqptg % 8 == 0); GGML_ASSERT(ncpsg % 32 == 0); + const int is_q = ggml_is_quantized(src1->type) ? 1 : 0; + // 2*(2*ncpsg + nqptg)*(nsg) // ncpsg soft_max values + ncpsg mask values + a diagonal scaling matrix (in float) // @@ -4773,7 +4775,7 @@ static bool ggml_metal_encode_node( // the shared memory needed for the simdgroups to load the KV cache // each thread loads (dequantizes) 16 head elements, there are 32 threads in th SG // -#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(ne00 + 2*(2*ncpsg + nqptg)*(nsg)) + 16*32*(nsg))*(sizeof(float)/2), 16)) +#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(2*ne00 + 2*(2*ncpsg + nqptg)*(nsg)) + is_q*(16*32*(nsg)))*(sizeof(float)/2), 16)) int64_t nsgmax = 2; @@ -4810,9 +4812,9 @@ static bool ggml_metal_encode_node( // and store the soft_max values and the mask // // ne00*(nsg) - // each simdgroup has a full f16 head vector in shared mem to accumulate results + // each simdgroup has a full f32 head vector in shared mem to accumulate results // -#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + ne20*(nsg))*(sizeof(float)/2), 16)) +#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + 2*ne20*(nsg))*(sizeof(float)/2), 16)) int64_t nsgmax = 2; while (true) { diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal index 59899550ed..58763e39e8 100644 --- a/ggml/src/ggml-metal/ggml-metal.metal +++ b/ggml/src/ggml-metal/ggml-metal.metal @@ -3328,14 +3328,14 @@ kernel void kernel_flash_attn_ext( constexpr short NW = N_SIMDWIDTH; constexpr short SH = (2*C + Q); // shared memory per simdgroup (s_t == float) - const short TS = nsg*SH; // shared memory size per query in (s_t == float) - const short T = DK + 2*TS; // shared memory size per query in (half) + const short TS = nsg*SH; // shared memory size per query in (s_t == float) + const short T = 2*DK + 2*TS; // shared memory size per query in (half) - threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data - threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t - threadgroup o_t * so = (threadgroup o_t *) (shmem_f16 + 0*DK); // reuse query data for accumulation - threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 0*DK); // same as above but in o4_t - threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + 2*sgitg*SH + Q*DK); // scratch buffer for attention, mask and diagonal matrix + threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data + threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t + threadgroup o_t * so = (threadgroup o_t *) (shmem_f16 + 0*DK); // reuse query data for accumulation + threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 0*DK); // same as above but in o4_t + threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + 2*sgitg*SH + 2*Q*DK); // scratch buffer for attention, mask and diagonal matrix threadgroup k_t * sk = (threadgroup k_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // scratch buffer to load K in shared memory threadgroup k4x4_t * sk4x4 = (threadgroup k4x4_t *) (shmem_f16 + sgitg*(4*16*KV) + Q*T); // same as above but in k4x4_t @@ -3354,7 +3354,7 @@ kernel void kernel_flash_attn_ext( if (iq1 + j < args.ne01) { sq4[j*DK4 + i] = (q4_t) q4[i]; } else { - sq4[j*DK4 + i] = (q4_t) 0.0f; + sq4[j*DK4 + i] = 0; } } } @@ -3634,9 +3634,6 @@ kernel void kernel_flash_attn_ext( // reduce the warps sequentially for (ushort sg = 1; sg < nsg; ++sg) { - float S = { 0.0f }; - float M = { -__FLT_MAX__/2 }; - threadgroup_barrier(mem_flags::mem_threadgroup); // each simdgroup stores its output to shared memory, reusing sq @@ -3657,12 +3654,12 @@ kernel void kernel_flash_attn_ext( const float M0 = ss[j*TS + 1]; const float M1 = ss[j*TS + sg*SH + 1]; - M = max(M0, M1); + const float M = max(M0, M1); const float ms0 = exp(M0 - M); const float ms1 = exp(M1 - M); - S = S0*ms0 + S1*ms1; + const float S = S0*ms0 + S1*ms1; if (tiisg == 0) { ss[j*TS + 0] = S; @@ -3701,16 +3698,18 @@ kernel void kernel_flash_attn_ext( } } - device float4 * dst4 = (device float4 *) dst; + threadgroup_barrier(mem_flags::mem_threadgroup); + + threadgroup s_t * sf = (threadgroup s_t *) (shmem_f16 + 2*Q*DK); // final rescale with 1/S and store to global memory - if (sgitg == 0) { - for (short j = 0; j < Q && iq1 + j < args.ne01; ++j) { - const float S = ss[j*TS + 0]; + for (short j = sgitg; j < Q && iq1 + j < args.ne01; j += nsg) { + const float S = 1.0f/sf[j*TS + 0]; - for (short i = tiisg; i < DV4; i += NW) { - dst4[((uint64_t)iq3*args.ne2*args.ne1 + iq2 + (uint64_t)(iq1 + j)*args.ne1)*DV4 + i] = (float4) so4[j*DV4 + i]/S; - } + device float4 * dst4 = (device float4 *) dst + ((uint64_t)iq3*args.ne2*args.ne1 + iq2 + (uint64_t)(iq1 + j)*args.ne1)*DV4; + + for (short i = tiisg; i < DV4; i += NW) { + dst4[i] = (float4) so4[j*DV4 + i]*S; } } } @@ -3719,12 +3718,22 @@ kernel void kernel_flash_attn_ext( // template to be able to explore different combinations // #define FA_TYPES \ - half, half4, simdgroup_half8x8, \ - half, half4x4, simdgroup_half8x8, \ - half, half4x4, simdgroup_half8x8, \ - float, simdgroup_float8x8, \ - float, simdgroup_float8x8, \ - half, half4, simdgroup_half8x8 + float, float4, simdgroup_float8x8, \ + half, half4x4, simdgroup_half8x8, \ + half, half4x4, simdgroup_half8x8, \ + float, simdgroup_float8x8, \ + float, simdgroup_float8x8, \ + float, float4, simdgroup_float8x8 + //half, half4, simdgroup_half8x8 + +#define FA_TYPES_BF \ + bfloat, bfloat4, simdgroup_bfloat8x8, \ + bfloat, bfloat4x4, simdgroup_bfloat8x8, \ + bfloat, bfloat4x4, simdgroup_bfloat8x8, \ + float, simdgroup_float8x8, \ + float, simdgroup_float8x8, \ + float, float4, simdgroup_float8x8 + //half, half4, simdgroup_half8x8 typedef decltype(kernel_flash_attn_ext) flash_attn_ext_t; @@ -3739,15 +3748,15 @@ template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_at template [[host_name("kernel_flash_attn_ext_f16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext; #if defined(GGML_METAL_USE_BF16) -template [[host_name("kernel_flash_attn_ext_bf16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; -template [[host_name("kernel_flash_attn_ext_bf16_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; -template [[host_name("kernel_flash_attn_ext_bf16_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; -template [[host_name("kernel_flash_attn_ext_bf16_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext; -template [[host_name("kernel_flash_attn_ext_bf16_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext; -template [[host_name("kernel_flash_attn_ext_bf16_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext; -template [[host_name("kernel_flash_attn_ext_bf16_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext; -template [[host_name("kernel_flash_attn_ext_bf16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext; -template [[host_name("kernel_flash_attn_ext_bf16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext; +template [[host_name("kernel_flash_attn_ext_bf16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; +template [[host_name("kernel_flash_attn_ext_bf16_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; +template [[host_name("kernel_flash_attn_ext_bf16_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; +template [[host_name("kernel_flash_attn_ext_bf16_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext; +template [[host_name("kernel_flash_attn_ext_bf16_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext; +template [[host_name("kernel_flash_attn_ext_bf16_h192")]] kernel flash_attn_ext_t kernel_flash_attn_ext; +template [[host_name("kernel_flash_attn_ext_bf16_hk192_hv128")]] kernel flash_attn_ext_t kernel_flash_attn_ext; +template [[host_name("kernel_flash_attn_ext_bf16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext; +template [[host_name("kernel_flash_attn_ext_bf16_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext; #endif template [[host_name("kernel_flash_attn_ext_q4_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext; @@ -3801,6 +3810,7 @@ template [[host_name("kernel_flash_attn_ext_q8_0_h256")]] kernel flash_at template [[host_name("kernel_flash_attn_ext_q8_0_hk576_hv512")]] kernel flash_attn_ext_t kernel_flash_attn_ext; #undef FA_TYPES +#undef FA_TYPES_BF template< typename q4_t, // query types in shared memory @@ -3847,12 +3857,12 @@ kernel void kernel_flash_attn_ext_vec( const short T = DK + nsg*SH; // shared memory size per query in (half) - //threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data - threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t - threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*DK); // scratch buffer for attention - threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*DK); // same as above but in s4_t - threadgroup float * sm = (threadgroup float *) (shmem_f16 + sgitg*SH + 2*C + Q*DK); // scratch buffer for mask - threadgroup o4_t * sr4 = (threadgroup o4_t *) (shmem_f16 + sgitg*DV + Q*T); // scratch buffer for the results + //threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*DK); // holds the query data + threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*DK); // same as above but in q4_t + threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*DK); // scratch buffer for attention + threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*DK); // same as above but in s4_t + threadgroup float * sm = (threadgroup float *) (shmem_f16 + sgitg*SH + 2*C + Q*DK); // scratch buffer for mask + threadgroup o4_t * sr4 = (threadgroup o4_t *) (shmem_f16 + 2*sgitg*DV + Q*T); // scratch buffer for the results // store the result for all queries in local memory (the O matrix from the paper) o4_t lo[DV4/NL]; @@ -4157,7 +4167,7 @@ kernel void kernel_flash_attn_ext_vec( half4, \ float, \ float, float4, \ - half4 + float4 typedef decltype(kernel_flash_attn_ext_vec) flash_attn_ext_vec_t; diff --git a/ggml/src/ggml-opencl/CMakeLists.txt b/ggml/src/ggml-opencl/CMakeLists.txt index 352deb321e..d0a8b4cc6d 100644 --- a/ggml/src/ggml-opencl/CMakeLists.txt +++ b/ggml/src/ggml-opencl/CMakeLists.txt @@ -55,14 +55,17 @@ endfunction() set(GGML_OPENCL_KERNELS add + argsort clamp cpy cvt diag_mask_inf + div gelu gemv_noshuffle_general gemv_noshuffle get_rows + group_norm im2col_f32 im2col_f16 mul_mat_Ab_Bi_8x4 @@ -83,12 +86,21 @@ set(GGML_OPENCL_KERNELS rms_norm rope scale + sigmoid silu softmax_4_f32 softmax_4_f16 softmax_f32 softmax_f16 + sub + sum_rows transpose + concat + tsembd + upscale + tanh + pad + repeat ) foreach (K ${GGML_OPENCL_KERNELS}) diff --git a/ggml/src/ggml-opencl/ggml-opencl.cpp b/ggml/src/ggml-opencl/ggml-opencl.cpp index d5412069e6..80a364380d 100644 --- a/ggml/src/ggml-opencl/ggml-opencl.cpp +++ b/ggml/src/ggml-opencl/ggml-opencl.cpp @@ -299,27 +299,43 @@ struct ggml_backend_opencl_context { cl_program program_mul_mv_f16_f32; cl_program program_mul_mv_f32_f32; cl_program program_mul; + cl_program program_div; + cl_program program_sub; cl_program program_norm; cl_program program_relu; cl_program program_rms_norm; + cl_program program_group_norm; cl_program program_rope; cl_program program_scale; cl_program program_silu; + cl_program program_sigmoid; cl_program program_softmax_f32; cl_program program_softmax_f16; cl_program program_softmax_4_f32; cl_program program_softmax_4_f16; + cl_program program_argsort_f32_i32; + cl_program program_sum_rows_f32; + cl_program program_repeat; + cl_program program_pad; + cl_program program_tanh; + cl_program program_upscale; + cl_program program_concat; + cl_program program_tsembd; cl_kernel kernel_add, kernel_add_row; cl_kernel kernel_mul, kernel_mul_row; + cl_kernel kernel_div, kernel_div_row; + cl_kernel kernel_sub, kernel_sub_row; cl_kernel kernel_scale; cl_kernel kernel_silu, kernel_silu_4; cl_kernel kernel_gelu, kernel_gelu_4; cl_kernel kernel_gelu_quick, kernel_gelu_quick_4; cl_kernel kernel_relu; + cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16; cl_kernel kernel_clamp; cl_kernel kernel_norm; cl_kernel kernel_rms_norm; + cl_kernel kernel_group_norm; cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8; cl_kernel kernel_soft_max, kernel_soft_max_4; cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16; @@ -339,6 +355,17 @@ struct ggml_backend_opencl_context { cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat; cl_kernel kernel_mul_mv_q6_K_f32; cl_kernel kernel_im2col_f32, kernel_im2col_f16; + cl_kernel kernel_argsort_f32_i32; + cl_kernel kernel_sum_rows_f32; + cl_kernel kernel_repeat; + cl_kernel kernel_pad; + cl_kernel kernel_tanh_f32_nd; + cl_kernel kernel_tanh_f16_nd; + cl_kernel kernel_upscale; + cl_kernel kernel_upscale_bilinear; + cl_kernel kernel_concat_f32_contiguous; + cl_kernel kernel_concat_f32_non_contiguous; + cl_kernel kernel_timestep_embedding; #ifdef GGML_OPENCL_USE_ADRENO_KERNELS // Transpose kernels @@ -986,6 +1013,249 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve GGML_LOG_CONT("."); } + // argsort + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "argsort.cl.h" + }; +#else + const std::string kernel_src = read_file("argsort.cl"); +#endif + backend_ctx->program_argsort_f32_i32 = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + + CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err)); + GGML_LOG_CONT("."); + } + + // div + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "div.cl.h" + }; +#else + const std::string kernel_src = read_file("div.cl"); +#endif + backend_ctx->program_div = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + + CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err)); + CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err)); + GGML_LOG_CONT("."); + } + + // sub + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "sub.cl.h" + }; +#else + const std::string kernel_src = read_file("sub.cl"); +#endif + backend_ctx->program_sub = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + + CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err)); + CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err)); + GGML_LOG_CONT("."); + } + + // sum_rows + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "sum_rows.cl.h" + }; +#else + const std::string kernel_src = read_file("sum_rows.cl"); +#endif + backend_ctx->program_sum_rows_f32 = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + + CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err)); + GGML_LOG_CONT("."); + } + + // sigmoid + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "sigmoid.cl.h" + }; +#else + const std::string kernel_src = read_file("sigmoid.cl"); +#endif + backend_ctx->program_sigmoid = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + + CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err)); + CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err)); + GGML_LOG_CONT("."); + } + + // group_norm + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "group_norm.cl.h" + }; +#else + const std::string kernel_src = read_file("group_norm.cl"); +#endif + backend_ctx->program_group_norm = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + + CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err)); + GGML_LOG_CONT("."); + } + + // repeat + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "repeat.cl.h" + }; +#else + const std::string kernel_src = read_file("repeat.cl"); +#endif + if (!kernel_src.empty()) { + backend_ctx->program_repeat = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err)); + GGML_LOG_CONT("."); + } else { + GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n"); + backend_ctx->program_repeat = nullptr; + backend_ctx->kernel_repeat = nullptr; + } + } + + // pad + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "pad.cl.h" + }; +#else + const std::string kernel_src = read_file("pad.cl"); +#endif + if (!kernel_src.empty()) { + backend_ctx->program_pad = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + CL_CHECK((backend_ctx->kernel_pad = clCreateKernel(backend_ctx->program_pad, "kernel_pad", &err), err)); + GGML_LOG_CONT("."); + } else { + GGML_LOG_WARN("ggml_opencl: pad kernel source not found or empty. Pad operations will not be available.\n"); + backend_ctx->program_pad = nullptr; + backend_ctx->kernel_pad = nullptr; + } + } + + // tanh + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "tanh.cl.h" + }; +#else + const std::string kernel_src = read_file("tanh.cl"); +#endif + if (!kernel_src.empty()) { + backend_ctx->program_tanh = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err)); + CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err)); + GGML_LOG_CONT("."); + } else { + GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n"); + backend_ctx->program_tanh = nullptr; + backend_ctx->kernel_tanh_f32_nd = nullptr; + backend_ctx->kernel_tanh_f16_nd = nullptr; + } + } + + // upscale + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "upscale.cl.h" + }; +#else + const std::string kernel_src = read_file("upscale.cl"); +#endif + if (!kernel_src.empty()) { + backend_ctx->program_upscale = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + CL_CHECK((backend_ctx->kernel_upscale = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale", &err), err)); + if (backend_ctx->program_upscale) { + cl_int err_bilinear; + backend_ctx->kernel_upscale_bilinear = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale_bilinear", &err_bilinear); + if (err_bilinear != CL_SUCCESS) { + GGML_LOG_WARN("ggml_opencl: kernel_upscale_bilinear not found in upscale.cl. Bilinear upscale will not be available. Error: %d\n", err_bilinear); + backend_ctx->kernel_upscale_bilinear = nullptr; + } + } else { + backend_ctx->kernel_upscale_bilinear = nullptr; + } + GGML_LOG_CONT("."); + } else { + GGML_LOG_WARN("ggml_opencl: upscale kernel source not found or empty. Upscale operations will not be available.\n"); + backend_ctx->program_upscale = nullptr; + backend_ctx->kernel_upscale = nullptr; + backend_ctx->kernel_upscale_bilinear = nullptr; + } + } + + // concat + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "concat.cl.h" + }; +#else + + const std::string kernel_src = read_file("concat.cl"); +#endif + if (!kernel_src.empty()) { + backend_ctx->program_concat = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + + CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err)); + CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err)); + GGML_LOG_CONT("."); + } else { + GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n"); + backend_ctx->program_concat = nullptr; + backend_ctx->kernel_concat_f32_contiguous = nullptr; + backend_ctx->kernel_concat_f32_non_contiguous = nullptr; + } + } + + // timestep_embedding + { +#ifdef GGML_OPENCL_EMBED_KERNELS + const std::string kernel_src { + #include "tsembd.cl.h" + }; +#else + + const std::string kernel_src = read_file("tsembd.cl"); +#endif + if (!kernel_src.empty()) { + backend_ctx->program_tsembd = + build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts); + CL_CHECK((backend_ctx->kernel_timestep_embedding = clCreateKernel(backend_ctx->program_tsembd, "kernel_timestep_embedding", &err), err)); + GGML_LOG_CONT("."); + } else { + GGML_LOG_WARN("ggml_opencl: timestep_embedding kernel source not found or empty. This op will not be available.\n"); + backend_ctx->program_tsembd = nullptr; + backend_ctx->kernel_timestep_embedding = nullptr; + } + } + // Adreno kernels #ifdef GGML_OPENCL_USE_ADRENO_KERNELS // transpose @@ -1752,7 +2022,12 @@ static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const g } static void ggml_backend_opencl_synchronize(ggml_backend_t backend) { - GGML_UNUSED(backend); + auto * backend_ctx = static_cast(backend->context); + + cl_event evt; + CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, 0, nullptr, &evt)); + CL_CHECK(clWaitForEvents(1, &evt)); + CL_CHECK(clReleaseEvent(evt)); } // Syncronizes the 'backend_ctx's device with others so that commands @@ -1856,6 +2131,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te case GGML_OP_ADD: case GGML_OP_SCALE: case GGML_OP_MUL: + case GGML_OP_DIV: + case GGML_OP_SUB: return op->src[0]->type == GGML_TYPE_F32; case GGML_OP_UNARY: switch (ggml_get_unary_op(op)) { @@ -1864,6 +2141,11 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_GELU_QUICK: return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32; + case GGML_UNARY_OP_SIGMOID: + return ggml_is_contiguous(op->src[0]); + case GGML_UNARY_OP_TANH: + return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) || + (op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16); default: return false; } @@ -1873,11 +2155,24 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te case GGML_OP_NORM: case GGML_OP_RMS_NORM: return true; + case GGML_OP_REPEAT: + return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded + case GGML_OP_PAD: + return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32 && + op->src[0]->ne[3] == 1 && op->ne[3] == 1; + case GGML_OP_UPSCALE: + return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; + case GGML_OP_CONCAT: + return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; + case GGML_OP_TIMESTEP_EMBEDDING: + return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; + case GGML_OP_GROUP_NORM: + return ggml_is_contiguous(op->src[0]); case GGML_OP_MUL_MAT: if (op->src[0]->type == GGML_TYPE_F16) { return true; } else if (op->src[0]->type == GGML_TYPE_F32) { - return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]); + return op->src[1]->type == GGML_TYPE_F32; } else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_Q6_K) { return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]); @@ -1912,6 +2207,10 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te } case GGML_OP_IM2COL: return true; + case GGML_OP_ARGSORT: + return op->src[0]->type == GGML_TYPE_F32; + case GGML_OP_SUM_ROWS: + return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]); default: return false; } @@ -1931,7 +2230,7 @@ static ggml_backend_i ggml_backend_opencl_i = { /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */ /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */ /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */ - /* .synchronize = */ NULL, /* ggml_backend_opencl_synchronize */ + /* .synchronize = */ ggml_backend_opencl_synchronize, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_update = */ NULL, @@ -3238,6 +3537,256 @@ static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const } } +static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(src1); + GGML_ASSERT(src1->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne03 = src0->ne[3]; + + const cl_ulong nb00 = src0->nb[0]; + const cl_ulong nb01 = src0->nb[1]; + const cl_ulong nb02 = src0->nb[2]; + const cl_ulong nb03 = src0->nb[3]; + + const int ne10 = src1->ne[0]; + const int ne11 = src1->ne[1]; + const int ne12 = src1->ne[2]; + const int ne13 = src1->ne[3]; + + const cl_ulong nb10 = src1->nb[0]; + const cl_ulong nb11 = src1->nb[1]; + const cl_ulong nb12 = src1->nb[2]; + const cl_ulong nb13 = src1->nb[3]; + + const int ne0 = dst->ne[0]; + + const cl_ulong nb0 = dst->nb[0]; + const cl_ulong nb1 = dst->nb[1]; + const cl_ulong nb2 = dst->nb[2]; + const cl_ulong nb3 = dst->nb[3]; + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offset1 = extra1->offset + src1->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + bool bcast_row = false; + cl_kernel kernel; + + if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { + GGML_ASSERT(ggml_is_contiguous(src0)); + + // src1 is a row + GGML_ASSERT(ne11 == 1); + + bcast_row = true; + int ne = ne00 / 4; + kernel = backend_ctx->kernel_div_row; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne)); + } else { + kernel = backend_ctx->kernel_div; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13)); + CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0)); + CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1)); + CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2)); + CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3)); + } + + if (bcast_row) { + int n = ggml_nelements(dst)/4; + size_t global_work_size[] = {(size_t)n, 1, 1}; + size_t local_work_size[] = {64, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + } else { + unsigned int nth = MIN(64, ne0); + size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03}; + size_t local_work_size[] = {nth, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + } +} + +static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(src1); + GGML_ASSERT(src1->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne03 = src0->ne[3]; + + const cl_ulong nb00 = src0->nb[0]; + const cl_ulong nb01 = src0->nb[1]; + const cl_ulong nb02 = src0->nb[2]; + const cl_ulong nb03 = src0->nb[3]; + + const int ne10 = src1->ne[0]; + const int ne11 = src1->ne[1]; + const int ne12 = src1->ne[2]; + const int ne13 = src1->ne[3]; + + const cl_ulong nb10 = src1->nb[0]; + const cl_ulong nb11 = src1->nb[1]; + const cl_ulong nb12 = src1->nb[2]; + const cl_ulong nb13 = src1->nb[3]; + + const int ne0 = dst->ne[0]; + + const cl_ulong nb0 = dst->nb[0]; + const cl_ulong nb1 = dst->nb[1]; + const cl_ulong nb2 = dst->nb[2]; + const cl_ulong nb3 = dst->nb[3]; + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offset1 = extra1->offset + src1->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + bool bcast_row = false; + cl_kernel kernel; + + if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { + GGML_ASSERT(ggml_is_contiguous(src0)); + + // src1 is a row + GGML_ASSERT(ne11 == 1); + + bcast_row = true; + int ne = ne00 / 4; + kernel = backend_ctx->kernel_sub_row; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne)); + } else { + kernel = backend_ctx->kernel_sub; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13)); + CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0)); + CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0)); + CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1)); + CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2)); + CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3)); + } + + if (bcast_row) { + int n = ggml_nelements(dst)/4; + size_t global_work_size[] = {(size_t)n, 1, 1}; + size_t local_work_size[] = {64, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + } else { + unsigned int nth = MIN(64, ne0); + size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03}; + size_t local_work_size[] = {nth, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif + } +} + static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0); GGML_ASSERT(src0->extra); @@ -3429,6 +3978,58 @@ static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const #endif } +static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + UNUSED(src1); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + cl_kernel kernel; + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + kernel = backend_ctx->kernel_sigmoid_f32; + } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { + kernel = backend_ctx->kernel_sigmoid_f16; + } else { + GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)"); + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + + const int64_t n = ggml_nelements(dst); + + size_t global_work_size[] = {(size_t)n, 1, 1}; + size_t local_work_size[] = {64, 1, 1}; + + size_t * local_work_size_ptr = local_work_size; + if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) { + local_work_size_ptr = nullptr; // Let driver choose the work-group sizes. + } + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size_ptr, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, NULL)); +#endif +} + static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0); GGML_ASSERT(src0->extra); @@ -3626,6 +4227,595 @@ static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, c #endif } +static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + UNUSED(src1); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + int32_t n_groups = ((const int32_t *) dst->op_params)[0]; + int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups); + float eps = ((const float *) dst->op_params)[1]; + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne = ne00*ne01*ne02; + + cl_kernel kernel = backend_ctx->kernel_group_norm; + + size_t sgs = 64; + if (backend_ctx->gpu_family == ADRENO) { + sgs = 64; + } else if (backend_ctx->gpu_family == INTEL) { + sgs = 32; + } else { + GGML_ASSERT(false && "Unsupported GPU"); + } + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps)); + + size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1}; + size_t local_work_size[] = {(size_t)sgs, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + + UNUSED(src1); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0_abs = extra0->offset + src0->view_offs; + cl_ulong offsetd_abs = extrad->offset + dst->view_offs; + + cl_kernel kernel; + if (dst->type == GGML_TYPE_F32) { + kernel = backend_ctx->kernel_tanh_f32_nd; + } else if (dst->type == GGML_TYPE_F16) { + kernel = backend_ctx->kernel_tanh_f16_nd; + } else { + GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh"); + } + GGML_ASSERT(kernel != nullptr); + + const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3]; + const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3]; + + const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3]; + const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3]; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs)); + + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03)); + + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11)); + CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12)); + CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13)); + + size_t global_work_size[3]; + if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements + return; + } + global_work_size[0] = (size_t)ne10; + global_work_size[1] = (size_t)ne11; + global_work_size[2] = (size_t)ne12; + + size_t lws0 = 16, lws1 = 4, lws2 = 1; + if (ne10 < 16) lws0 = ne10; + if (ne11 < 4) lws1 = ne11; + if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1; + + while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2; + while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2; + while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2; + + + size_t local_work_size[] = {lws0, lws1, lws2}; + + size_t* local_work_size_ptr = local_work_size; + if (!backend_ctx->non_uniform_workgroups) { + if (global_work_size[0] % local_work_size[0] != 0 || + global_work_size[1] % local_work_size[1] != 0 || + global_work_size[2] % local_work_size[2] != 0) { + local_work_size_ptr = NULL; + } + } + if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return; + + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size_ptr ? local_work_size : (size_t[3]){0,0,0}, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + GGML_ASSERT(dst->type == src0->type); + + UNUSED(src1_shape_def); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + if (backend_ctx->kernel_repeat == nullptr) { + GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__); + return; + } + + ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong off_src0 = extra_src0->offset + src0->view_offs; + cl_ulong off_dst = extra_dst->offset + dst->view_offs; + + const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3]; + const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3]; + + const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3]; + const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3]; + + cl_kernel kernel = backend_ctx->kernel_repeat; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1)); + CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2)); + CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3)); + + size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1; + size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1; + size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1; + + size_t global_work_size[] = { gws0, gws1, gws2 }; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, NULL, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, (size_t[3]){0,0,0}, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, NULL, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + if (backend_ctx->kernel_pad == nullptr) { + GGML_LOG_WARN("%s: pad kernel not available, skipping OpenCL execution.\n", __func__); + return; + } + + ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong off_src0 = extra_src0->offset + src0->view_offs; + cl_ulong off_dst = extra_dst->offset + dst->view_offs; + + const int s_ne0 = src0->ne[0]; + const int s_ne1 = src0->ne[1]; + const int s_ne2 = src0->ne[2]; + + const int d_ne0 = dst->ne[0]; + const int d_ne1 = dst->ne[1]; + const int d_ne2 = dst->ne[2]; + + cl_kernel kernel = backend_ctx->kernel_pad; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &s_ne0)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &s_ne1)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &s_ne2)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne0)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne1)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne2)); + + size_t lws0 = 64; + size_t gws0 = (( (size_t)d_ne0 + lws0 - 1 ) / lws0) * lws0; + + size_t global_work_size[] = { gws0, (size_t)d_ne1, (size_t)d_ne2 }; + size_t local_work_size[] = { lws0, 1, 1 }; + + size_t * local_work_size_ptr = local_work_size; + if (d_ne0 % lws0 != 0 && !backend_ctx->non_uniform_workgroups) { + local_work_size_ptr = nullptr; + } + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size_ptr ? local_work_size : (size_t[3]){0,0,0}, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_upscale(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + const ggml_scale_mode mode = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0); + cl_kernel kernel = nullptr; + + if (mode == GGML_SCALE_MODE_NEAREST) { + kernel = backend_ctx->kernel_upscale; + if (kernel == nullptr) { + GGML_LOG_WARN("%s: nearest upscale kernel not available, skipping OpenCL execution.\n", __func__); + return; + } + } else if (mode == GGML_SCALE_MODE_BILINEAR) { + kernel = backend_ctx->kernel_upscale_bilinear; + if (kernel == nullptr) { + GGML_LOG_WARN("%s: bilinear upscale kernel not available, skipping OpenCL execution.\n", __func__); + return; + } + } else { + GGML_LOG_WARN("%s: unsupported upscale mode %d, skipping OpenCL execution.\n", __func__, mode); + return; + } + + ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong off_src0 = extra_src0->offset + src0->view_offs; + cl_ulong off_dst = extra_dst->offset + dst->view_offs; + + const cl_ulong nb00 = src0->nb[0]; + const cl_ulong nb01 = src0->nb[1]; + const cl_ulong nb02 = src0->nb[2]; + const cl_ulong nb03 = src0->nb[3]; + + const int ne00_src = src0->ne[0]; + const int ne01_src = src0->ne[1]; + + const int ne10_dst = dst->ne[0]; + const int ne11_dst = dst->ne[1]; + const int ne12_dst = dst->ne[2]; + const int ne13_dst = dst->ne[3]; + + const float sf0 = (float)dst->ne[0] / src0->ne[0]; + const float sf1 = (float)dst->ne[1] / src0->ne[1]; + const float sf2 = (float)dst->ne[2] / src0->ne[2]; + const float sf3 = (float)dst->ne[3] / src0->ne[3]; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb03)); + + if (mode == GGML_SCALE_MODE_NEAREST) { + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne10_dst)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11_dst)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12_dst)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne13_dst)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &sf0)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &sf1)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf2)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf3)); + } else if (mode == GGML_SCALE_MODE_BILINEAR) { + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00_src)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01_src)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10_dst)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11_dst)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12_dst)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13_dst)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf0)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf1)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(float), &sf2)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(float), &sf3)); + } + + + size_t dst_total_elements = (size_t)ne10_dst * ne11_dst * ne12_dst * ne13_dst; + if (dst_total_elements == 0) { + return; + } + size_t global_work_size[] = { dst_total_elements, 1, 1 }; + size_t local_work_size_pref = 256; + size_t local_work_size[] = { MIN(local_work_size_pref, dst_total_elements), 1, 1}; + + size_t * local_work_size_ptr = local_work_size; + if (dst_total_elements % local_work_size[0] != 0 && !backend_ctx->non_uniform_workgroups) { + local_work_size_ptr = nullptr; + } + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 1, NULL, global_work_size, local_work_size_ptr, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + size_t profiling_gws[3] = {global_work_size[0], 1, 1}; + size_t profiling_lws[3] = {local_work_size_ptr ? local_work_size[0] : 0, 1, 1}; + populateProfilingInfo(g_profiling_info.back(), evt, kernel, profiling_gws, profiling_lws, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 1, NULL, global_work_size, local_work_size_ptr, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(src1); + GGML_ASSERT(src1->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) { + GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__); + return; + } + + ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra; + ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong off_src0 = extra0_cl->offset + src0->view_offs; + cl_ulong off_src1 = extra1_cl->offset + src1->view_offs; + cl_ulong off_dst = extrad_cl->offset + dst->view_offs; + + const int32_t dim = ((const int32_t *) dst->op_params)[0]; + GGML_ASSERT(dim >= 0 && dim <= 3); + + if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) { + if (dim == 3) { + + size_t nbytes_src0 = ggml_nbytes(src0); + size_t nbytes_src1 = ggml_nbytes(src1); + + CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device, + off_src0, off_dst, nbytes_src0, 0, NULL, NULL)); + CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device, + off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL)); + } else { + + cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous; + size_t global_work_size[3]; + + for (int i3 = 0; i3 < dst->ne[3]; ++i3) { + cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]); + cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]); + cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]); + + int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2]; + int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2]; + int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2]; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), ¤t_off_src0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), ¤t_off_src1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), ¤t_off_dst)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1)); + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim)); + + global_work_size[0] = d_ne0; + global_work_size[1] = d_ne1; + global_work_size[2] = d_ne2; + + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, NULL, 0, NULL, NULL)); + } + } + } else { + cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous; + + long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3]; + cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3]; + + cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3]; + + long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3]; + cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3]; + + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst)); + + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(long), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(long), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(long), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(long), &ne03)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03)); + + CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10)); + CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11)); + CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12)); + CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13)); + + CL_CHECK(clSetKernelArg(kernel, 18, sizeof(long), &d_ne0)); + CL_CHECK(clSetKernelArg(kernel, 19, sizeof(long), &d_ne1)); + CL_CHECK(clSetKernelArg(kernel, 20, sizeof(long), &d_ne2)); + CL_CHECK(clSetKernelArg(kernel, 21, sizeof(long), &d_ne3)); + CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0)); + CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1)); + CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2)); + CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3)); + CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim)); + + size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1, + d_ne2 > 0 ? (size_t)d_ne2 : 1, + d_ne3 > 0 ? (size_t)d_ne3 : 1 }; + + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size_nc, NULL, 0, NULL, NULL)); + } +} + +static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + if (backend_ctx->kernel_timestep_embedding == nullptr) { + GGML_LOG_WARN("%s: timestep_embedding kernel not available, skipping OpenCL execution.\n", __func__); + return; + } + + ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong off_src0 = extra_src0->offset + src0->view_offs; + cl_ulong off_dst = extra_dst->offset + dst->view_offs; + + const int logical_dim = dst->op_params[0]; + const int max_period = dst->op_params[1]; + const int dst_nb1_bytes = dst->nb[1]; + + cl_kernel kernel = backend_ctx->kernel_timestep_embedding; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &dst_nb1_bytes)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &logical_dim)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &max_period)); + + size_t gws0 = (size_t)(((logical_dim + 1) / 2) + 1); + + size_t gws1 = (size_t)src0->ne[0]; + + size_t global_work_size[] = {gws0, gws1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_work_size, NULL, 0, NULL, &evt)); // Pass 2 for 2D problem + + g_profiling_info.emplace_back(); + size_t profiling_gws[3] = {global_work_size[0], global_work_size[1], 1}; + size_t profiling_lws[3] = {0,0,0}; // Reflects NULL LWS + populateProfilingInfo(g_profiling_info.back(), evt, kernel, profiling_gws, profiling_lws, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_work_size, NULL, 0, NULL, NULL)); // Pass 2 for 2D problem +#endif +} + static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { GGML_ASSERT(src0); GGML_ASSERT(src0->extra); @@ -4975,6 +6165,124 @@ static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, con #endif } +static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + GGML_UNUSED(src1); + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_I32); + GGML_ASSERT(ggml_is_contiguous(src0)); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + const int ne00 = src0->ne[0]; + const int nrows = ggml_nrows(src0); + + int ne00_padded = 1; + while (ne00_padded < ne00) { + ne00_padded *= 2; + } + + int order = (enum ggml_sort_order) dst->op_params[0]; + + cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order)); + CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL)); + + size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1}; + size_t local_work_size[] = {(size_t)ne00_padded, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif +} + +static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(src0); + GGML_ASSERT(src0->extra); + GGML_ASSERT(dst); + GGML_ASSERT(dst->extra); + GGML_UNUSED(src1); + + GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type)); + GGML_ASSERT(ggml_is_contiguous(src0)); + + ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context; + cl_command_queue queue = backend_ctx->queue; + + ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra; + ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra; + + cl_ulong offset0 = extra0->offset + src0->view_offs; + cl_ulong offsetd = extrad->offset + dst->view_offs; + + const int ne00 = src0->ne[0]; + const int ne01 = src0->ne[1]; + const int ne02 = src0->ne[2]; + const int ne03 = src0->ne[3]; + + const cl_ulong nb01 = src0->nb[1]; + const cl_ulong nb02 = src0->nb[2]; + const cl_ulong nb03 = src0->nb[3]; + + const cl_ulong nb1 = dst->nb[1]; + const cl_ulong nb2 = dst->nb[2]; + const cl_ulong nb3 = dst->nb[3]; + + cl_kernel kernel = backend_ctx->kernel_sum_rows_f32; + + CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device)); + CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0)); + CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device)); + CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd)); + CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00)); + CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01)); + CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02)); + CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03)); + CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01)); + CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02)); + CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03)); + CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1)); + CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2)); + CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3)); + + size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03}; + size_t local_work_size[] = {(size_t)64, 1, 1}; + +#ifdef GGML_OPENCL_PROFILING + cl_event evt; + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt)); + + g_profiling_info.emplace_back(); + populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst); +#else + CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL)); +#endif +} + //------------------------------------------------------------------------------ // Op offloading //------------------------------------------------------------------------------ @@ -5023,6 +6331,18 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor } func = ggml_cl_mul; break; + case GGML_OP_DIV: + if (!any_on_device) { + return false; + } + func = ggml_cl_div; + break; + case GGML_OP_SUB: + if (!any_on_device) { + return false; + } + func = ggml_cl_sub; + break; case GGML_OP_UNARY: switch (ggml_get_unary_op(tensor)) { case GGML_UNARY_OP_GELU: @@ -5049,6 +6369,18 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor } func = ggml_cl_relu; break; + case GGML_UNARY_OP_SIGMOID: + if (!any_on_device) { + return false; + } + func = ggml_cl_sigmoid; + break; + case GGML_UNARY_OP_TANH: + if (!any_on_device) { + return false; + } + func = ggml_cl_tanh; + break; default: return false; } break; @@ -5070,6 +6402,42 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor } func = ggml_cl_rms_norm; break; + case GGML_OP_GROUP_NORM: + if (!any_on_device) { + return false; + } + func = ggml_cl_group_norm; + break; + case GGML_OP_REPEAT: + if (!any_on_device) { + return false; + } + func = ggml_cl_repeat; + break; + case GGML_OP_PAD: + if (!any_on_device) { + return false; + } + ggml_cl_pad(backend, tensor->src[0], tensor); + return true; + case GGML_OP_UPSCALE: + if (!any_on_device) { + return false; + } + ggml_cl_upscale(backend, tensor->src[0], tensor); + return true; + case GGML_OP_CONCAT: + if (!any_on_device) { + return false; + } + func = ggml_cl_concat; + break; + case GGML_OP_TIMESTEP_EMBEDDING: + if (!any_on_device) { + return false; + } + ggml_cl_timestep_embedding(backend, tensor->src[0], tensor); + return true; case GGML_OP_MUL_MAT: if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) { return false; @@ -5115,6 +6483,18 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor } func = ggml_cl_im2col; break; + case GGML_OP_ARGSORT: + if (!any_on_device) { + return false; + } + func = ggml_cl_argsort; + break; + case GGML_OP_SUM_ROWS: + if (!any_on_device) { + return false; + } + func = ggml_cl_sum_rows; + break; default: return false; } diff --git a/ggml/src/ggml-opencl/kernels/argsort.cl b/ggml/src/ggml-opencl/kernels/argsort.cl new file mode 100644 index 0000000000..af4adc7b83 --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/argsort.cl @@ -0,0 +1,86 @@ +#pragma OPENCL EXTENSION cl_khr_fp16 : enable + +#ifdef cl_intel_subgroups +#pragma OPENCL EXTENSION cl_intel_subgroups : enable +#else +#pragma OPENCL EXTENSION cl_khr_subgroups : enable +#endif + +#ifdef cl_intel_required_subgroup_size +#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable +#define INTEL_GPU 1 +#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16))) +#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32))) +#elif defined(cl_qcom_reqd_sub_group_size) +#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable +#define ADRENO_GPU 1 +#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half"))) +#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full"))) +#endif + +#define SWAP(x, y, T) { T tmp = (x); (x) = (y); (y) = tmp; } + +enum ggml_sort_order { + GGML_SORT_ORDER_ASC, + GGML_SORT_ORDER_DESC, +}; + +kernel void kernel_argsort_f32_i32( + global float * src0, + ulong offset0, + global int * dst, + ulong offsetd, + const int ne00, + const int ne00_pad, + const int order, + local int * dst_row +) { + // bitonic sort + int col = get_local_id(0); + int row = get_group_id(1); + + if (col >= ne00_pad) { + return; + } + + src0 = (global char *)((global char *)src0 + offset0); + dst = (global float *)((global char *)dst + offsetd); + + global float * x_row = src0 + row * ne00; + + // initialize indices + dst_row[col] = col; + + barrier(CLK_LOCAL_MEM_FENCE); + + for (int k = 2; k <= ne00_pad; k *= 2) { + for (int j = k / 2; j > 0; j /= 2) { + int ixj = col ^ j; + if (ixj > col) { + if ((col & k) == 0) { + if (dst_row[col] >= ne00 || + (dst_row[ixj] < ne00 && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] > x_row[dst_row[ixj]] : + x_row[dst_row[col]] < x_row[dst_row[ixj]])) + ) { + SWAP(dst_row[col], dst_row[ixj], int); + } + } else { + if (dst_row[ixj] >= ne00 || + (dst_row[col] < ne00 && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] < x_row[dst_row[ixj]] : + x_row[dst_row[col]] > x_row[dst_row[ixj]])) + ) { + SWAP(dst_row[col], dst_row[ixj], int); + } + } + } + barrier(CLK_LOCAL_MEM_FENCE); + } + } + + // copy the result to dst without the padding + if (col < ne00) { + dst[row * ne00 + col] = dst_row[col]; + } +} diff --git a/ggml/src/ggml-opencl/kernels/concat.cl b/ggml/src/ggml-opencl/kernels/concat.cl new file mode 100644 index 0000000000..132758469c --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/concat.cl @@ -0,0 +1,109 @@ +kernel void kernel_concat_f32_contiguous( + global const char * p_src0, ulong off_src0, + global const char * p_src1, ulong off_src1, + global char * p_dst, ulong off_dst, + int d_ne00, int d_ne01, int d_ne02, // src0->ne[0..2] for the slice + int d_ne10, int d_ne11, int d_ne12, // src1->ne[0..2] for the slice (d_ne1X must match d_ne0X on non-concat axes) + int d_ne0, int d_ne1, int d_ne2, // dst->ne[0..2] for the slice + int dim +) { + global const float * src0 = (global const float*)((global char*)p_src0 + off_src0); + global const float * src1 = (global const float*)((global char*)p_src1 + off_src1); + global float * dst = (global float*)((global char*)p_dst + off_dst); + + int i0 = get_global_id(0); // Index along dst's 0th dimension + int i1 = get_global_id(1); // Index along dst's 1st dimension + int i2 = get_global_id(2); // Index along dst's 2nd dimension + + if (i0 >= d_ne0 || i1 >= d_ne1 || i2 >= d_ne2) { + return; + } + + ulong dst_idx = (ulong)i2 * d_ne0 * d_ne1 + (ulong)i1 * d_ne0 + i0; + ulong src_idx; + + if (dim == 0) { + if (i0 < d_ne00) { // Data from src0 + src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0; + dst[dst_idx] = src0[src_idx]; + } else { // Data from src1 + src_idx = (ulong)i2 * d_ne10 * d_ne11 + (ulong)i1 * d_ne10 + (i0 - d_ne00); + dst[dst_idx] = src1[src_idx]; + } + } else if (dim == 1) { + if (i1 < d_ne01) { // Data from src0 + src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0; + dst[dst_idx] = src0[src_idx]; + } else { // Data from src1 + src_idx = (ulong)i2 * d_ne10 * d_ne11 + (ulong)(i1 - d_ne01) * d_ne10 + i0; + dst[dst_idx] = src1[src_idx]; + } + } else if (dim == 2) { + if (i2 < d_ne02) { // Data from src0 + src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0; + dst[dst_idx] = src0[src_idx]; + } else { // Data from src1 + + src_idx = (ulong)(i2 - d_ne02) * d_ne10 * d_ne11 + (ulong)i1 * d_ne10 + i0; + dst[dst_idx] = src1[src_idx]; + } + } +} + +kernel void kernel_concat_f32_non_contiguous( + global const char * p_src0, ulong off_src0, + global const char * p_src1, ulong off_src1, + global char * p_dst, ulong off_dst, + + long ne00, long ne01, long ne02, long ne03, + ulong nb00, ulong nb01, ulong nb02, ulong nb03, + + ulong nb10, ulong nb11, ulong nb12, ulong nb13, // Strides for src1 + + long d_ne0, long d_ne1, long d_ne2, long d_ne3, + ulong d_nb0, ulong d_nb1, ulong d_nb2, ulong d_nb3, + int dim +) { + global const char * src0_base = p_src0 + off_src0; + global const char * src1_base = p_src1 + off_src1; + global char * dst_base = p_dst + off_dst; + + long current_i1 = get_global_id(0); // Index for dst_dim_1 + long current_i2 = get_global_id(1); // Index for dst_dim_2 + long current_i3 = get_global_id(2); // Index for dst_dim_3 + + if (current_i1 >= d_ne1 || current_i2 >= d_ne2 || current_i3 >= d_ne3) { + return; + } + + global const float * x_val_ptr; + global float * y_val_ptr; + + for (long current_i0 = 0; current_i0 < d_ne0; ++current_i0) { + bool use_src0; + long s_i0 = current_i0, s_i1 = current_i1, s_i2 = current_i2, s_i3 = current_i3; + + if (dim == 0) { + use_src0 = (current_i0 < ne00); + if (!use_src0) { s_i0 = current_i0 - ne00; } + } else if (dim == 1) { + use_src0 = (current_i1 < ne01); + if (!use_src0) { s_i1 = current_i1 - ne01; } + } else if (dim == 2) { + use_src0 = (current_i2 < ne02); + if (!use_src0) { s_i2 = current_i2 - ne02; } + } else { // dim == 3 + use_src0 = (current_i3 < ne03); + if (!use_src0) { s_i3 = current_i3 - ne03; } + } + + if (use_src0) { + x_val_ptr = (global const float *)(src0_base + (ulong)s_i3*nb03 + (ulong)s_i2*nb02 + (ulong)s_i1*nb01 + (ulong)s_i0*nb00); + } else { + x_val_ptr = (global const float *)(src1_base + (ulong)s_i3*nb13 + (ulong)s_i2*nb12 + (ulong)s_i1*nb11 + (ulong)s_i0*nb10); + } + + y_val_ptr = (global float *)(dst_base + (ulong)current_i3*d_nb3 + (ulong)current_i2*d_nb2 + (ulong)current_i1*d_nb1 + (ulong)current_i0*d_nb0); + *y_val_ptr = *x_val_ptr; + } +} diff --git a/ggml/src/ggml-opencl/kernels/div.cl b/ggml/src/ggml-opencl/kernels/div.cl new file mode 100644 index 0000000000..d453ad99be --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/div.cl @@ -0,0 +1,72 @@ +#pragma OPENCL EXTENSION cl_khr_fp16 : enable + +//------------------------------------------------------------------------------ +// div +//------------------------------------------------------------------------------ +kernel void kernel_div( + global char * src0, + ulong offset0, + global char * src1, + ulong offset1, + global char * dst, + ulong offsetd, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne10, + int ne11, + int ne12, + int ne13, + ulong nb10, + ulong nb11, + ulong nb12, + ulong nb13, + int ne0, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3 +) { + src0 = src0 + offset0; + src1 = src1 + offset1; + dst = dst + offsetd; + + int i03 = get_group_id(2); + int i02 = get_group_id(1); + int i01 = get_group_id(0); + + int i13 = i03 % ne13; + int i12 = i02 % ne12; + int i11 = i01 % ne11; + + global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01; + global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11; + global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1; + + for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) { + const int i10 = i0 % ne10; + *((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) / *((global float *)(src1_ptr + i10*nb10)); + } +} + +// assumption: src1 is a row +// broadcast src1 into src0 +kernel void kernel_div_row( + global float4 * src0, + ulong offset0, + global float4 * src1, + ulong offset1, + global float4 * dst, + ulong offsetd, + int ne +) { + src0 = (global float4*)((global char*)src0 + offset0); + src1 = (global float4*)((global char*)src1 + offset1); + dst = (global float4*)((global char*)dst + offsetd); + + // This performs better than using %. + uint gid = get_global_id(0); + uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne + dst[gid] = src0[gid] / src1[idx1]; +} diff --git a/ggml/src/ggml-opencl/kernels/group_norm.cl b/ggml/src/ggml-opencl/kernels/group_norm.cl new file mode 100644 index 0000000000..57c9df4d35 --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/group_norm.cl @@ -0,0 +1,72 @@ +#pragma OPENCL EXTENSION cl_khr_fp16 : enable + +#ifdef cl_intel_subgroups +#pragma OPENCL EXTENSION cl_intel_subgroups : enable +#else +#pragma OPENCL EXTENSION cl_khr_subgroups : enable +#endif + +#ifdef cl_intel_required_subgroup_size +#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable +#define INTEL_GPU 1 +#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16))) +#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32))) +#elif defined(cl_qcom_reqd_sub_group_size) +#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable +#define ADRENO_GPU 1 +#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half"))) +#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full"))) +#endif + +// Workgroup must be a subgroup +#ifdef INTEL_GPU +REQD_SUBGROUP_SIZE_32 +#elif defined (ADRENO_GPU) +REQD_SUBGROUP_SIZE_64 +#endif +kernel void kernel_group_norm( + global float * src0, + ulong offset0, + global float * dst, + ulong offsetd, + int ne, + int group_size, + float eps +) { + src0 = (global float *)((global char *)src0 + offset0); + dst = (global float *)((global char *)dst + offsetd); + + int start = get_group_id(0) * group_size; + int end = start + group_size; + + start += get_local_id(0); + + if (end >= ne) { + end = ne; + } + + float tmp = 0.0f; + + for (int j = start; j < end; j += get_local_size(0)) { + tmp += src0[j]; + } + + tmp = sub_group_reduce_add(tmp); + + const float mean = tmp / group_size; + tmp = 0.0f; + + for (int j = start; j < end; j += get_local_size(0)) { + float xi = src0[j] - mean; + dst[j] = xi; + tmp += xi * xi; + } + + tmp = sub_group_reduce_add(tmp); + + const float variance = tmp / group_size; + const float scale = 1.0f/sqrt(variance + eps); + for (int j = start; j < end; j += get_local_size(0)) { + dst[j] *= scale; + } +} diff --git a/ggml/src/ggml-opencl/kernels/pad.cl b/ggml/src/ggml-opencl/kernels/pad.cl new file mode 100644 index 0000000000..747fa7febc --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/pad.cl @@ -0,0 +1,30 @@ +kernel void kernel_pad( + global const void * src0_ptr, + ulong src0_offset, + global void * dst_ptr, + ulong dst_offset, + int s_ne0, int s_ne1, int s_ne2, + int d_ne0, int d_ne1, int d_ne2 +) { + global const float * src0 = (global const float *)((global const char *)src0_ptr + src0_offset); + global float * dst = (global float *)((global char *)dst_ptr + dst_offset); + + int nidx = get_global_id(0); + int idx_d1 = get_group_id(1); + int idx_d2 = get_group_id(2); + + if (nidx >= d_ne0) { + return; + } + + int dst_el_offset = nidx + idx_d1 * d_ne0 + idx_d2 * d_ne0 * d_ne1; + + bool in_src_bounds = (nidx < s_ne0) && (idx_d1 < s_ne1) && (idx_d2 < s_ne2); + + if (in_src_bounds) { + int src_el_offset = nidx + idx_d1 * s_ne0 + idx_d2 * s_ne0 * s_ne1; + dst[dst_el_offset] = src0[src_el_offset]; + } else { + dst[dst_el_offset] = 0.0f; + } +} diff --git a/ggml/src/ggml-opencl/kernels/repeat.cl b/ggml/src/ggml-opencl/kernels/repeat.cl new file mode 100644 index 0000000000..079498f5ab --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/repeat.cl @@ -0,0 +1,39 @@ +kernel void kernel_repeat( + global const char * src0_data_in, + global char * dst_data_in, + ulong src0_offset, + ulong dst_offset, + int src0_ne0, int src0_ne1, int src0_ne2, int src0_ne3, + ulong src0_nb0, ulong src0_nb1, ulong src0_nb2, ulong src0_nb3, + int dst_ne0, int dst_ne1, int dst_ne2, int dst_ne3, + ulong dst_nb0, ulong dst_nb1, ulong dst_nb2, ulong dst_nb3 +) { + global const char * src0_data = src0_data_in + src0_offset; + global char * dst_data = dst_data_in + dst_offset; + + const int d3 = get_global_id(2); + const int d2 = get_global_id(1); + const int d1 = get_global_id(0); + + if (d3 >= dst_ne3 || d2 >= dst_ne2 || d1 >= dst_ne1) { + return; + } + + const int s3 = d3 % src0_ne3; + const int s2 = d2 % src0_ne2; + const int s1 = d1 % src0_ne1; + + const global char * p_src0_slice = src0_data + (ulong)s3*src0_nb3 + (ulong)s2*src0_nb2 + (ulong)s1*src0_nb1; + global char * p_dst_slice = dst_data + (ulong)d3*dst_nb3 + (ulong)d2*dst_nb2 + (ulong)d1*dst_nb1; + + for (int d0 = 0; d0 < dst_ne0; ++d0) { + // Determine source index for dimension 0 based on tiling/broadcasting. + const int s0 = d0 % src0_ne0; + + const global char * restrict current_src_el_ptr = p_src0_slice + (ulong)s0*src0_nb0; + global char * restrict current_dst_el_ptr = p_dst_slice + (ulong)d0*dst_nb0; + for (int k = 0; k < src0_nb0; ++k) { + current_dst_el_ptr[k] = current_src_el_ptr[k]; + } + } +} diff --git a/ggml/src/ggml-opencl/kernels/sigmoid.cl b/ggml/src/ggml-opencl/kernels/sigmoid.cl new file mode 100644 index 0000000000..e3f669dde8 --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/sigmoid.cl @@ -0,0 +1,29 @@ +#pragma OPENCL EXTENSION cl_khr_fp16 : enable + +//------------------------------------------------------------------------------ +// sigmoid +//------------------------------------------------------------------------------ + +kernel void kernel_sigmoid_f32( + global float * src0, + ulong offset0, + global float * dst, + ulong offsetd +) { + src0 = (global float*)((global char*)src0 + offset0); + dst = (global float*)((global char*)dst + offsetd); + + dst[get_global_id(0)] = 1.0f / (1.0f + exp(-src0[get_global_id(0)])); +} + +kernel void kernel_sigmoid_f16( + global half * src0, + ulong offset0, + global half * dst, + ulong offsetd +) { + src0 = (global half*)((global char*)src0 + offset0); + dst = (global half*)((global char*)dst + offsetd); + + dst[get_global_id(0)] = 1.0f / (1.0f + exp(-src0[get_global_id(0)])); +} diff --git a/ggml/src/ggml-opencl/kernels/sub.cl b/ggml/src/ggml-opencl/kernels/sub.cl new file mode 100644 index 0000000000..041e88ad3a --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/sub.cl @@ -0,0 +1,72 @@ +#pragma OPENCL EXTENSION cl_khr_fp16 : enable + +//------------------------------------------------------------------------------ +// div +//------------------------------------------------------------------------------ +kernel void kernel_sub( + global char * src0, + ulong offset0, + global char * src1, + ulong offset1, + global char * dst, + ulong offsetd, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne10, + int ne11, + int ne12, + int ne13, + ulong nb10, + ulong nb11, + ulong nb12, + ulong nb13, + int ne0, + ulong nb0, + ulong nb1, + ulong nb2, + ulong nb3 +) { + src0 = src0 + offset0; + src1 = src1 + offset1; + dst = dst + offsetd; + + int i03 = get_group_id(2); + int i02 = get_group_id(1); + int i01 = get_group_id(0); + + int i13 = i03 % ne13; + int i12 = i02 % ne12; + int i11 = i01 % ne11; + + global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01; + global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11; + global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1; + + for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) { + const int i10 = i0 % ne10; + *((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) - *((global float *)(src1_ptr + i10*nb10)); + } +} + +// assumption: src1 is a row +// broadcast src1 into src0 +kernel void kernel_sub_row( + global float4 * src0, + ulong offset0, + global float4 * src1, + ulong offset1, + global float4 * dst, + ulong offsetd, + int ne +) { + src0 = (global float4*)((global char*)src0 + offset0); + src1 = (global float4*)((global char*)src1 + offset1); + dst = (global float4*)((global char*)dst + offsetd); + + // This performs better than using %. + uint gid = get_global_id(0); + uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne + dst[gid] = src0[gid] - src1[idx1]; +} diff --git a/ggml/src/ggml-opencl/kernels/sum_rows.cl b/ggml/src/ggml-opencl/kernels/sum_rows.cl new file mode 100644 index 0000000000..c5f7c570f9 --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/sum_rows.cl @@ -0,0 +1,39 @@ + +kernel void kernel_sum_rows_f32( + global float * src0, + ulong offset0, + global float * dst, + ulong offsetd, + int ne00, + int ne01, + int ne02, + int ne03, + ulong nb01, + ulong nb02, + ulong nb03, + ulong nb1, + ulong nb2, + ulong nb3 +) { + src0 = (global float *)((global char *)src0 + offset0); + dst = (global float *)((global char *)dst + offsetd); + + int i3 = get_global_id(2); + int i2 = get_global_id(1); + int i1 = get_global_id(0); + + if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) { + return; + } + + global float * src_row = (global float *) ((global char *) src0 + i1*nb01 + i2*nb02 + i3*nb03); + global float * dst_row = (global float *) ((global char *) dst + i1*nb1 + i2*nb2 + i3*nb3); + + float row_sum = 0; + + for (int i0 = 0; i0 < ne00; i0++) { + row_sum += src_row[i0]; + } + + dst_row[0] = row_sum; +} diff --git a/ggml/src/ggml-opencl/kernels/tanh.cl b/ggml/src/ggml-opencl/kernels/tanh.cl new file mode 100644 index 0000000000..d9da86b148 --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/tanh.cl @@ -0,0 +1,63 @@ +#pragma OPENCL EXTENSION cl_khr_fp16 : enable + +#ifdef cl_intel_required_subgroup_size +#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable +#define INTEL_GPU 1 +#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16))) +#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32))) +#elif defined(cl_qcom_reqd_sub_group_size) +#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable +#define ADRENO_GPU 1 +#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half"))) +#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full"))) +#endif + +kernel void kernel_tanh_f32_nd( + global void * p_src0_base, ulong off_src0_abs, + global void * p_dst_base, ulong off_dst_abs, + int ne00, int ne01, int ne02, int ne03, + ulong nb00, ulong nb01, ulong nb02, ulong nb03, + int ne10, int ne11, int ne12, int ne13, + ulong nb10, ulong nb11, ulong nb12, ulong nb13 +) { + int i0 = get_global_id(0); + int i1 = get_global_id(1); + int i2 = get_global_id(2); + + if (i0 < ne10 && i1 < ne11 && i2 < ne12) { + for (int i3 = 0; i3 < ne13; ++i3) { + ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03; + global const float *src_val_ptr = (global const float *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor); + + ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13; + global float *dst_val_ptr = (global float *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor); + + *dst_val_ptr = tanh(*src_val_ptr); + } + } +} + +kernel void kernel_tanh_f16_nd( + global void * p_src0_base, ulong off_src0_abs, + global void * p_dst_base, ulong off_dst_abs, + int ne00, int ne01, int ne02, int ne03, + ulong nb00, ulong nb01, ulong nb02, ulong nb03, + int ne10, int ne11, int ne12, int ne13, + ulong nb10, ulong nb11, ulong nb12, ulong nb13 +) { + int i0 = get_global_id(0); + int i1 = get_global_id(1); + int i2 = get_global_id(2); + + if (i0 < ne10 && i1 < ne11 && i2 < ne12) { + for (int i3 = 0; i3 < ne13; ++i3) { + ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03; + global const half *src_val_ptr = (global const half *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor); + + ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13; + global half *dst_val_ptr = (global half *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor); + + *dst_val_ptr = tanh(*src_val_ptr); + } + } +} diff --git a/ggml/src/ggml-opencl/kernels/tsembd.cl b/ggml/src/ggml-opencl/kernels/tsembd.cl new file mode 100644 index 0000000000..4b1107f70b --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/tsembd.cl @@ -0,0 +1,48 @@ +kernel void kernel_timestep_embedding( + global const void * p_timesteps, + ulong off_timesteps, + global void * p_dst, + ulong off_dst, + int dst_nb1_bytes, + int logical_dim, + int max_period +) { + int local_i; + int local_j; + int local_half_dim; + float local_timestep_val; + float local_freq; + float local_arg; + global float * local_embed_data_ptr; + global const float * local_timesteps_input_ptr; + global float * local_dst_output_base_ptr; + + local_timesteps_input_ptr = (global const float *)((global char *)p_timesteps + off_timesteps); + local_dst_output_base_ptr = (global float *)((global char *)p_dst + off_dst); + + local_i = get_global_id(1); + local_j = get_global_id(0); + + local_half_dim = logical_dim / 2; + local_embed_data_ptr = (global float *)((global char *)local_dst_output_base_ptr + local_i * dst_nb1_bytes); + + if (logical_dim % 2 != 0 && local_j == ((logical_dim + 1) / 2)) { + local_embed_data_ptr[logical_dim] = 0.0f; + } + + if (local_j >= local_half_dim) { + return; + } + + local_timestep_val = local_timesteps_input_ptr[local_i]; + + if (local_half_dim == 0) { + local_freq = 1.0f; + } else { + local_freq = exp(-log((float)max_period) * (float)local_j / (float)local_half_dim); + } + + local_arg = local_timestep_val * local_freq; + local_embed_data_ptr[local_j] = cos(local_arg); + local_embed_data_ptr[local_j + local_half_dim] = sin(local_arg); +} diff --git a/ggml/src/ggml-opencl/kernels/upscale.cl b/ggml/src/ggml-opencl/kernels/upscale.cl new file mode 100644 index 0000000000..219d31dbb9 --- /dev/null +++ b/ggml/src/ggml-opencl/kernels/upscale.cl @@ -0,0 +1,121 @@ +kernel void kernel_upscale( + global const void * p_src0, + ulong off_src0, + global void * p_dst, + ulong off_dst, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne10, + int ne11, + int ne12, + int ne13, + float sf0, + float sf1, + float sf2, + float sf3 +) { + global const char * src_base = (global const char *)p_src0 + off_src0; + global float * dst_base = (global float *)((global char *)p_dst + off_dst); + + int index = get_global_id(0); + int dst_total_elements = ne10 * ne11 * ne12 * ne13; + + if (index >= dst_total_elements) { + return; + } + + int i10 = index % ne10; + int i11 = (index / ne10) % ne11; + int i12 = (index / (ne10 * ne11)) % ne12; + int i13 = index / (ne10 * ne11 * ne12); + + int i00 = (int)(i10 / sf0); + int i01 = (int)(i11 / sf1); + int i02 = (int)(i12 / sf2); + int i03 = (int)(i13 / sf3); + + ulong offset_src_element = (ulong)i03 * nb03 + (ulong)i02 * nb02 + (ulong)i01 * nb01 + (ulong)i00 * nb00; + global const float * src_element_ptr = (global const float *)(src_base + offset_src_element); + + dst_base[index] = *src_element_ptr; +} + +kernel void kernel_upscale_bilinear( + global const void * p_src0, + ulong off_src0, + global void * p_dst, + ulong off_dst, + ulong nb00, + ulong nb01, + ulong nb02, + ulong nb03, + int ne00_src, + int ne01_src, + int ne10_dst, + int ne11_dst, + int ne12_dst, + int ne13_dst, + float sf0, + float sf1, + float sf2, + float sf3 +) { + global const char * src_base = (global const char *)p_src0 + off_src0; + global float * dst_base = (global float *)((global char *)p_dst + off_dst); + + int index = get_global_id(0); + int dst_total_elements = ne10_dst * ne11_dst * ne12_dst * ne13_dst; + + if (index >= dst_total_elements) { + return; + } + + int i10_dst = index % ne10_dst; + int i11_dst = (index / ne10_dst) % ne11_dst; + int i12_dst = (index / (ne10_dst * ne11_dst)) % ne12_dst; + int i13_dst = index / (ne10_dst * ne11_dst * ne12_dst); + + int i02_src = (int)(i12_dst / sf2); + int i03_src = (int)(i13_dst / sf3); + + const float pixel_offset = 0.5f; + + float y_src_f = ((float)i11_dst + pixel_offset) / sf1 - pixel_offset; + long y0_src = (long)floor(y_src_f); + long y1_src = y0_src + 1; + + y0_src = max(0L, min(y0_src, (long)ne01_src - 1)); + y1_src = max(0L, min(y1_src, (long)ne01_src - 1)); + + float dy = y_src_f - (float)y0_src; + dy = max(0.0f, min(dy, 1.0f)); + + float x_src_f = ((float)i10_dst + pixel_offset) / sf0 - pixel_offset; + long x0_src = (long)floor(x_src_f); + long x1_src = x0_src + 1; + + x0_src = max(0L, min(x0_src, (long)ne00_src - 1)); + x1_src = max(0L, min(x1_src, (long)ne00_src - 1)); + + float dx = x_src_f - (float)x0_src; + dx = max(0.0f, min(dx, 1.0f)); + + global const float * p_a = (global const float *)(src_base + (ulong)x0_src * nb00 + (ulong)y0_src * nb01 + (ulong)i02_src * nb02 + (ulong)i03_src * nb03); + global const float * p_b = (global const float *)(src_base + (ulong)x1_src * nb00 + (ulong)y0_src * nb01 + (ulong)i02_src * nb02 + (ulong)i03_src * nb03); + global const float * p_c = (global const float *)(src_base + (ulong)x0_src * nb00 + (ulong)y1_src * nb01 + (ulong)i02_src * nb02 + (ulong)i03_src * nb03); + global const float * p_d = (global const float *)(src_base + (ulong)x1_src * nb00 + (ulong)y1_src * nb01 + (ulong)i02_src * nb02 + (ulong)i03_src * nb03); + + const float val_a = *p_a; + const float val_b = *p_b; + const float val_c = *p_c; + const float val_d = *p_d; + + float result = val_a * (1.0f - dx) * (1.0f - dy) + + val_b * dx * (1.0f - dy) + + val_c * (1.0f - dx) * dy + + val_d * dx * dy; + + dst_base[index] = result; +} diff --git a/ggml/src/ggml-sycl/CMakeLists.txt b/ggml/src/ggml-sycl/CMakeLists.txt index a2e2612480..2a0045bcc1 100644 --- a/ggml/src/ggml-sycl/CMakeLists.txt +++ b/ggml/src/ggml-sycl/CMakeLists.txt @@ -13,7 +13,7 @@ elseif(SUPPORTS_SYCL) If you expected the oneAPI Release compiler, please install oneAPI & source it, like: source /opt/intel/oneapi/setvars.sh") else() - message(FATAL_ERROR, "C++ compiler lacks SYCL support.") + message(FATAL_ERROR "C++ compiler lacks SYCL support.") endif() message(STATUS "SYCL found") #todo: AOT @@ -170,7 +170,7 @@ else() target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_NVIDIA) elseif (GGML_SYCL_TARGET STREQUAL "AMD") if (NOT GGML_SYCL_DEVICE_ARCH) - message(ERROR "Can't enable SYCL hip backend, GGML_SYCL_DEVICE_ARCH has not been set.") + message(FATAL_ERROR "Can't enable SYCL hip backend, GGML_SYCL_DEVICE_ARCH has not been set.") endif() target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath_blas_rocblas) target_compile_options(ggml-sycl PRIVATE "-fsycl-targets=amdgcn-amd-amdhsa") diff --git a/ggml/src/ggml-sycl/cpy.cpp b/ggml/src/ggml-sycl/cpy.cpp index 44487c2564..56373b4d08 100644 --- a/ggml/src/ggml-sycl/cpy.cpp +++ b/ggml/src/ggml-sycl/cpy.cpp @@ -1,8 +1,12 @@ #include "cpy.hpp" #include +#include #include "dequantize.hpp" +#include "ggml-sycl/common.hpp" +#include "ggml-sycl/presets.hpp" +#include "ggml.h" static __dpct_inline__ int best_index_int8(int n, const int8_t * val, float x) { if (x <= val[0]) { @@ -116,6 +120,15 @@ static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) { } } +/* quantized type same copy */ +template +static void cpy_blck_q_q(const char * cxi, char * cdsti) { + const T * xi = (const T *) cxi; + T * dsti = (T *) cdsti; + *dsti = *xi; +} + + static void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) { float * cdstf = (float *) (cdsti); @@ -311,6 +324,34 @@ template static void cpy_blck_q_f32(const } } + +template +static void cpy_q_q(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, + const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, + const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, + const sycl::nd_item<3> & item_ct1) { + const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) + item_ct1.get_local_id(2)) * qk; + + if (i >= ne) { + return; + } + + const int i03 = i / (ne00 * ne01 * ne02); + const int i02 = (i - i03 * ne00 * ne01 * ne02) / (ne00 * ne01); + const int i01 = (i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00) / ne00; + const int i00 = i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00 - i01 * ne00; + const int x_offset = (i00 / qk) * nb00 + i01 * nb01 + i02 * nb02 + i03 * nb03; + + + const int i13 = i / (ne10 * ne11 * ne12); + const int i12 = (i - i13 * ne10 * ne11 * ne12) / (ne10 * ne11); + const int i11 = (i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11) / ne10; + const int i10 = i - i13 * ne10 * ne11 * ne12 - i12 * ne10 * ne11 - i11 * ne10; + const int dst_offset = (i10 / qk) * nb10 + i11 * nb11 + i12 * nb12 + i13 * nb13; + + cpy_blck_q_q(cx + x_offset, cdst + dst_offset); +} + template static void cpy_f32_q(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, const int ne10, const int ne11, @@ -322,6 +363,7 @@ static void cpy_f32_q(const char * cx, char * cdst, const int ne, const int ne00 return; } + const int i03 = i / (ne00 * ne01 * ne02); const int i02 = (i - i03 * ne00 * ne01 * ne02) / (ne00 * ne01); const int i01 = (i - i03 * ne00 * ne01 * ne02 - i02 * ne01 * ne00) / ne00; @@ -615,6 +657,70 @@ static void ggml_cpy_i32_i32_sycl(const char * cx, char * cdst, const int ne, co } } +static void ggml_cpy_q8_0_q8_0(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, + const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, + const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, + const int nb12, const int nb13, queue_ptr stream) { + const int num_blocks = ceil_div(ne, SYCL_CPY_BLOCK_SIZE); + stream->parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), + sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { + cpy_q_q(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); + }); +} + + +static void ggml_cpy_q5_0_q5_0(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, + const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, + const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, + const int nb12, const int nb13, queue_ptr stream) { + const int num_blocks = ceil_div(ne, SYCL_CPY_BLOCK_SIZE); + stream->parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), + sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { + cpy_q_q(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); + }); +} + + +static void ggml_cpy_q5_1_q5_1(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, + const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, + const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, + const int nb12, const int nb13, queue_ptr stream) { + const int num_blocks = ceil_div(ne, SYCL_CPY_BLOCK_SIZE); + + stream->parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), + sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { + cpy_q_q(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); + }); +} + + +static void ggml_cpy_q4_0_q4_0(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, + const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, + const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, + const int nb12, const int nb13, queue_ptr stream) { + const int num_blocks = ceil_div(ne, SYCL_CPY_BLOCK_SIZE); + stream->parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { + cpy_q_q(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); + }); +} + + +static void ggml_cpy_q4_1_q4_1(const char * cx, char * cdst, const int ne, const int ne00, const int ne01, + const int ne02, const int nb00, const int nb01, const int nb02, const int nb03, + const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, + const int nb12, const int nb13, queue_ptr stream) { + + const int num_blocks = ceil_div(ne, SYCL_CPY_BLOCK_SIZE); + stream->parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE), sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)), [=](sycl::nd_item<3> item_ct1) { + cpy_q_q(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, item_ct1); + }); +} + void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1) try { // Unlike other operators ggml_sycl_cpy takes 2 distinct tensors instead of a dst ggml_tensor and rely on its src field scope_op_debug_print scope_dbg_print(__func__, src1, /*num_src=*/0, @@ -632,8 +738,10 @@ void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, co char * src0_ddc = (char *) src0->data; char * src1_ddc = (char *) src1->data; - - if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { + if ((src0->type == src1->type) && (ggml_is_contiguous(src0) && ggml_is_contiguous(src1))) { + GGML_SYCL_DEBUG("%s: memcpy path\n", __func__); + main_stream->memcpy(src1_ddc, src0_ddc, ggml_nbytes(src0)); + } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { ggml_cpy_f32_f32_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { @@ -684,6 +792,16 @@ void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, co } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) { ggml_cpy_f32_iq4_nl_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + } else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_Q8_0) { + ggml_cpy_q8_0_q8_0(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + } else if (src0->type == GGML_TYPE_Q5_0 && src1->type == GGML_TYPE_Q5_0) { + ggml_cpy_q5_0_q5_0(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + } else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_Q5_1) { + ggml_cpy_q5_1_q5_1(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + } else if (src0->type == GGML_TYPE_Q4_0 && src1->type == GGML_TYPE_Q4_0) { + ggml_cpy_q4_0_q4_0(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); + } else if (src0->type == GGML_TYPE_Q4_1 && src1->type == GGML_TYPE_Q4_1) { + ggml_cpy_q4_1_q4_1(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); } else { GGML_LOG_ERROR("%s: unsupported type combination (%s to %s)\n", __func__, ggml_type_name(src0->type), ggml_type_name(src1->type)); diff --git a/ggml/src/ggml-sycl/element_wise.cpp b/ggml/src/ggml-sycl/element_wise.cpp index fd3cfb573e..5b7c4f0b4f 100644 --- a/ggml/src/ggml-sycl/element_wise.cpp +++ b/ggml/src/ggml-sycl/element_wise.cpp @@ -84,6 +84,15 @@ static void gelu_quick(const T *x, T *dst, int k, dst[i] = x[i] * (static_cast(1.0f) / (static_cast(1.0f) + sycl::native::exp(GELU_QUICK_COEF * x[i]))); } +template +static void gelu_erf(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) { + const T SQRT_2_INV = static_cast(0.70710678118654752440084436210484f); + for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) { + auto x_i = x[i]; + dst[i] = static_cast(0.5f) * x_i * (static_cast(1.0f) + sycl::erf(x_i * SQRT_2_INV)); + } +} + template static void tanh(const T *x, T *dst, int k, const sycl::nd_item<3> &item_ct1) { @@ -400,6 +409,20 @@ static void gelu_quick_sycl(const T *x, T *dst, const int k, }); } + +template +static void gelu_erf_sycl(const T *x, T *dst, const int k, + queue_ptr stream) { + const int num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE); + stream->parallel_for( + sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * + sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE), + sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)), + [=](sycl::nd_item<3> item_ct1) { + gelu_erf(x, dst, k, item_ct1); + }); +} + template static void tanh_sycl(const T *x, T *dst, const int k, queue_ptr stream) { @@ -816,6 +839,38 @@ inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor } } +inline void ggml_sycl_op_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor *dst) { +#if defined (GGML_SYCL_F16) + GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); + GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); +#else + GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); +#endif + GGML_ASSERT(dst->src[0]->type == dst->type); + dpct::queue_ptr main_stream = ctx.stream(); + SYCL_CHECK(ggml_sycl_set_device(ctx.device)); + switch (dst->type) { +#if defined (GGML_SYCL_F16) + case GGML_TYPE_F16: + { + auto data_pts = cast_data(dst); + gelu_erf_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); + break; + } +#endif + case GGML_TYPE_F32: + { + auto data_pts = cast_data(dst); + gelu_erf_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream); + break; + } + default: + GGML_ABORT("GGML tensor type not supported!\n"); + } +} + + inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { #if defined (GGML_SYCL_F16) GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16); @@ -1425,6 +1480,11 @@ void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { ggml_sycl_op_gelu_quick(ctx, dst); } +void ggml_sycl_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); + ggml_sycl_op_gelu_erf(ctx, dst); +} + void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1); ggml_sycl_op_tanh(ctx, dst); diff --git a/ggml/src/ggml-sycl/element_wise.hpp b/ggml/src/ggml-sycl/element_wise.hpp index f4199d69da..bd40113f09 100644 --- a/ggml/src/ggml-sycl/element_wise.hpp +++ b/ggml/src/ggml-sycl/element_wise.hpp @@ -38,6 +38,8 @@ void ggml_sycl_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst); +void ggml_sycl_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst); + void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst); void ggml_sycl_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst); diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp index 6a53bd12c4..3936f1eaf5 100644 --- a/ggml/src/ggml-sycl/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl/ggml-sycl.cpp @@ -1434,6 +1434,59 @@ static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, reinterpret_cast(y[ib].ds.y()) = sum; } +template +static __dpct_inline__ void quantize_and_reorder_q8_1(const float * __restrict__ x, void * reordered_q8_tensor, + const int kx, const int kx_padded, const sycl::nd_item<1> & it) { + /* + Quantizes and reorders the resultant q8 tensor in a per row fashion + Each sub-group calculates one quant block. i.e. QK8_1 quant values and the d and sum values + */ + + auto subgroup_id = it.get_group(0); + auto wi_id = it.get_local_id(0); + + const int num_blocks_per_row = kx / QK8_1; + auto row = subgroup_id / num_blocks_per_row; + auto col = subgroup_id % num_blocks_per_row; + + auto row_offset = row * (kx_padded / QK8_1) * sizeof(block_q8_1); + auto col_offset = QK8_1 * col + wi_id * ElementsPerWI; + + auto quant_ptr = (int8_t *) ((char *) reordered_q8_tensor + row_offset + col_offset); + auto ds_ptr = (sycl::half2 *) ((char *) reordered_q8_tensor + row_offset + kx + col * sizeof(sycl::half2)); + + sycl::vec wi_f32_vals; + sycl::vec quantized_values; + + auto float_ptr_offset = subgroup_id * QK8_1 + ElementsPerWI * wi_id; + wi_f32_vals = *reinterpret_cast *>(x + float_ptr_offset); + + float sum = 0.0f; + float amax = 0.0f; + +#pragma unroll(ElementsPerWI) + for (int i = 0; i < ElementsPerWI; i++) { + sum += wi_f32_vals[i]; + amax = sycl::fmax(amax, sycl::fabs(wi_f32_vals[i])); + quantized_values[i] = 0; + } + sum = sycl::reduce_over_group(it.get_group(), sum, sycl::plus()); + amax = sycl::reduce_over_group(it.get_group(), amax, sycl::maximum()); + float d = amax == 0 ? 1 : amax / 127; + +#pragma unroll(ElementsPerWI) + for (int i = 0; i < ElementsPerWI; i++) { + quantized_values[i] = sycl::round(wi_f32_vals[i] / d); + } + + d = amax == 0 ? 0 : d; + + *reinterpret_cast *>(quant_ptr) = quantized_values; + if (wi_id == 0) { + *ds_ptr = sycl::half2(sycl::half(d), sycl::half(sum)); + } +} + static void mul_mat_p021_f16_f32( const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y, @@ -1718,23 +1771,30 @@ static void pool2d_nchw_kernel( o_ptr[cur_oh * ow + cur_ow] = res; } -static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx, - const int ky, const int kx_padded, - queue_ptr stream) { - const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE; - const sycl::range<3> num_blocks(1, ky, block_num_x); - int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE; - static_assert(QK8_1 % WARP_SIZE == 0); - const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE); - { - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); +static void quantize_row_q8_1_sycl(const float * x, void * vy, const int kx, const int ky, const int kx_padded, + bool reorder_q8_tensor, queue_ptr stream) { + if (reorder_q8_tensor) { + auto local_range = std::size_t(WARP_SIZE); + auto num_quant_blocks = ky * (kx / QK8_1); + auto global_range = num_quant_blocks * local_range; + stream->parallel_for(sycl::nd_range<1>({ global_range }, { local_range }), + [=](sycl::nd_item<1> it) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { + quantize_and_reorder_q8_1(x, vy, kx, kx_padded, it); + }); + } else { + const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE; + const sycl::range<3> num_blocks(1, ky, block_num_x); + int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE; + static_assert(QK8_1 % WARP_SIZE == 0); + const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE); + { + dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); - stream->parallel_for( - sycl::nd_range<3>(num_blocks * block_size, block_size), - [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { - quantize_q8_1(x, vy, kx, kx_padded, item_ct1); - }); + stream->parallel_for(sycl::nd_range<3>(num_blocks * block_size, block_size), + [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { + quantize_q8_1(x, vy, kx, kx_padded, item_ct1); + }); + } } } @@ -2446,9 +2506,10 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten dev[i].src1_ddq = dev[i].src1_ddq_alloc.alloc(ctx.pool(i), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs); if (src1_on_device && src1_is_contiguous) { + bool reorder_q8_tensor = src0->extra && ((ggml_tensor_extra_gpu *)src0->extra)->optimized_feature.reorder; scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst, /*num_src=*/2, " : converting src1 to Q8_1"); - quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, stream); + quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, reorder_q8_tensor, stream); /* DPCT1010:90: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You need to @@ -2554,7 +2615,7 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten if (convert_src1_to_q8_1 && !src1_is_contiguous) { scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst, /*num_src=*/2, " : converting src1 to Q8_1"); - quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream); + quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, false, stream); /* DPCT1010:92: SYCL uses exceptions to report errors and does not use the error codes. The call was replaced with 0. You @@ -3543,6 +3604,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg case GGML_UNARY_OP_GELU_QUICK: ggml_sycl_gelu_quick(ctx, dst); break; + case GGML_UNARY_OP_GELU_ERF: + ggml_sycl_gelu_erf(ctx, dst); + break; case GGML_UNARY_OP_TANH: ggml_sycl_tanh(ctx, dst); break; @@ -4096,6 +4160,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g case GGML_UNARY_OP_HARDSIGMOID: case GGML_UNARY_OP_HARDSWISH: case GGML_UNARY_OP_GELU_QUICK: + case GGML_UNARY_OP_GELU_ERF: case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_EXP: case GGML_UNARY_OP_SGN: @@ -4161,6 +4226,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g { ggml_type src0_type = op->src[0]->type; ggml_type src1_type = op->src[1]->type; + if (src0_type == src1_type && (ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) && src0_type != GGML_TYPE_BF16) { + return true; + } if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { return true; } @@ -4206,6 +4274,21 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) { return true; } + if(src0_type == GGML_TYPE_Q8_0 && src1_type == GGML_TYPE_Q8_0) { + return true; + } + if(src0_type == GGML_TYPE_Q5_0 && src1_type == GGML_TYPE_Q5_0) { + return true; + } + if(src0_type == GGML_TYPE_Q5_1 && src1_type == GGML_TYPE_Q5_1) { + return true; + } + if(src0_type == GGML_TYPE_Q4_0 && src1_type == GGML_TYPE_Q4_0) { + return true; + } + if(src0_type == GGML_TYPE_Q4_1 && src1_type == GGML_TYPE_Q4_1) { + return true; + } return false; } case GGML_OP_CONCAT: @@ -4253,14 +4336,6 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g case GGML_OP_SOFT_MAX: return true; case GGML_OP_ROPE: - { - const int mode = ((const int32_t *) op->op_params)[2]; - // mode is not used as a bitmask in practice, the various rope type modes are independent implementations - if (mode == GGML_ROPE_TYPE_MROPE) { - return false; - } - return true; - } case GGML_OP_IM2COL: return true; case GGML_OP_UPSCALE: diff --git a/ggml/src/ggml-sycl/mmvq.cpp b/ggml/src/ggml-sycl/mmvq.cpp index cb70f83a4f..80c780b209 100644 --- a/ggml/src/ggml-sycl/mmvq.cpp +++ b/ggml/src/ggml-sycl/mmvq.cpp @@ -29,8 +29,6 @@ static void mul_mat_vec_q_reorder(const void * __restrict__ vx, const void * __r static_assert(blocks_per_subgroup > 0); static_assert(block_elements_per_subgroup > 0); - const block_q8_1 * y = (const block_q8_1 *) vy; - float partial_sum = 0.0f; for (int i = sg.get_local_linear_id() / block_elements_per_subgroup; i < blocks_per_row; i += blocks_per_subgroup) { const int ibx = row * blocks_per_row + i; // x block index @@ -40,13 +38,15 @@ static void mul_mat_vec_q_reorder(const void * __restrict__ vx, const void * __r // Y block index that aligns with ibx const int iby = i * block_type::block_to_q8_1_ratio(); + const int8_t* q8_1_quant_ptr = (const int8_t*)vy + iby * QK8_1; + const sycl::half2* q8_1_ds_ptr = (const sycl::half2*)((const char*)vy + ncols + iby * sizeof(sycl::half2)); #pragma unroll for (int elem = 0; elem < block_elements_per_subgroup; elem += WARP_SIZE) { // x block quant index when casting the quants to int const int iqs = elem + block_traits::vdr_mmvq * (sg.get_local_linear_id() % block_elements_per_subgroup); - partial_sum += reorder_vec_dot_q_sycl()(vx, bx_offset, d_offset, &y[iby], iqs, nblocks); + partial_sum += reorder_vec_dot_q_sycl()(vx, bx_offset, d_offset, q8_1_quant_ptr, q8_1_ds_ptr, iqs, nblocks); } } diff --git a/ggml/src/ggml-sycl/rope.cpp b/ggml/src/ggml-sycl/rope.cpp index a6516a7e1b..44473e1e55 100644 --- a/ggml/src/ggml-sycl/rope.cpp +++ b/ggml/src/ggml-sycl/rope.cpp @@ -49,10 +49,7 @@ static void rope_norm(const T * x, T * dst, const int ne0, const int ne1, const if (i0 >= n_dims) { const int i = row * ne0 + i0; - - dst[i + 0] = x[i + 0]; - dst[i + 1] = x[i + 1]; - + *reinterpret_cast *>(dst + i) = *reinterpret_cast *>(x + i); return; } @@ -93,10 +90,7 @@ static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const if (i0 >= n_dims) { const int i = row * ne0 + i0; - - dst[i + 0] = x[i + 0]; - dst[i + 1] = x[i + 1]; - + *reinterpret_cast *>(dst + i) = *reinterpret_cast *>(x + i); return; } @@ -122,6 +116,63 @@ static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const dst[i + n_dims / 2] = x0 * sin_theta + x1 * cos_theta; } +template +static void rope_multi(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, + const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale, + const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims, + const float theta_scale, const float * freq_factors, const mrope_sections sections, + const sycl::nd_item<3> & item_ct1) { + // get index pos + const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1)); + if (i0 >= ne0) { + return; + } + const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2); + + if (i0 >= n_dims) { + const int i = row_dst*ne0 + i0; + *reinterpret_cast *>(dst + i) = *reinterpret_cast *>(x + i); + return; + } + + const int row_x = row_dst % ne1; + const int channel_x = row_dst / ne1; + const int idst = (row_dst * ne0) + (i0 / 2); + const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2); + + const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3]; + const int sec_w = sections.v[1] + sections.v[0]; + const int sector = (i0 / 2) % sect_dims; + + + float theta_base = 0.0; + if (sector < sections.v[0]) { + theta_base = pos[channel_x]*sycl::pow(theta_scale, i0/2.0f); + } + else if (sector >= sections.v[0] && sector < sec_w) { + theta_base = pos[channel_x + ne2 * 1]*sycl::pow(theta_scale, i0/2.0f); + } + else if (sector >= sec_w && sector < sec_w + sections.v[2]) { + theta_base = pos[channel_x + ne2 * 2]*sycl::pow(theta_scale, i0/2.0f); + } + else if (sector >= sec_w + sections.v[2]) { + theta_base = pos[channel_x + ne2 * 3]*sycl::pow(theta_scale, i0/2.0f); + } + + const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f; + float cos_theta; + float sin_theta; + rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); + const float x0 = x[ix + 0]; + const float x1 = x[ix + n_dims/2]; + + // store results in dst + dst[idst + 0] = x0 * cos_theta - x1 * sin_theta; + dst[idst + n_dims/2] = x0 * sin_theta + x1 * cos_theta; +} + + + template static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale, @@ -171,7 +222,7 @@ static void rope_norm_sycl(const T * x, T * dst, const int ne0, const int ne1, c const float * freq_factors, queue_ptr stream) { GGML_ASSERT(ne0 % 2 == 0); const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); - const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE); + const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE)); const sycl::range<3> block_nums(1, num_blocks_x, nr); const float theta_scale = powf(freq_base, -2.0f / n_dims); @@ -208,7 +259,7 @@ static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, c const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) { GGML_ASSERT(ne0 % 2 == 0); const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); - const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE); + const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE)); const sycl::range<3> block_nums(1, num_blocks_x, nr); const float theta_scale = powf(freq_base, -2.0f / n_dims); @@ -228,6 +279,40 @@ static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, c } } +template +static void rope_multi_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, + const size_t s2, const int n_dims, const int nr, const int32_t * pos, + const float freq_scale, const float freq_base, const float ext_factor, + const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors, + const mrope_sections sections, queue_ptr stream) { + GGML_ASSERT(ne0 % 2 == 0); + const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); + const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE)); + const sycl::range<3> grid_dims(1, n_blocks_y, nr); + const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims); + + const float theta_scale = std::pow(freq_base, -2.0f / n_dims); + // Add FP16 capability check if T could be sycl::half + if constexpr (std::is_same_v) { + dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 }); + } + // launch kernel + if (freq_factors == nullptr) { + stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) { + rope_multi(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, + corr_dims, theta_scale, freq_factors, sections, item_ct1); + }); + } else { + stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) { + rope_multi(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, + corr_dims, theta_scale, freq_factors, sections, item_ct1); + }); + } +} + + + + // rope vision template static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, @@ -237,7 +322,7 @@ static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const mrope_sections sections, queue_ptr stream) { GGML_ASSERT(ne0 % 2 == 0); const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); - const int n_blocks_y = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE); + const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE)); const sycl::range<3> grid_dims(1, n_blocks_y, nr); const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims); @@ -298,8 +383,17 @@ inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) memcpy(§ions.v, (int32_t *) dst->op_params + 11, sizeof(int)*4); const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; + const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; const bool is_vision = mode == GGML_ROPE_TYPE_VISION; + if (is_mrope) { + GGML_ASSERT(sections.v[0] > 0 || sections.v[1] > 0 || sections.v[2] > 0); + } + + if (is_vision) { + GGML_ASSERT(n_dims == ne00/2); + } + const int32_t * pos = (const int32_t *) dst->src[1]->data; const float * freq_factors = nullptr; @@ -326,6 +420,19 @@ inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) } else { GGML_ABORT("fatal error"); } + } else if (is_mrope && !is_vision) { + GGML_SYCL_DEBUG("%s: mrope path\n", __func__); + if (dst->src[0]->type == GGML_TYPE_F16) { + rope_multi_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01, + s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, + freq_factors, sections, main_stream); + } else if (dst->src[0]->type == GGML_TYPE_F32) { + rope_multi_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims, + nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, + main_stream); + } else { + GGML_ABORT("Fatal error: Tensor type unsupported!"); + } } else if (is_vision) { GGML_SYCL_DEBUG("%s: vision path\n", __func__); if (dst->src[0]->type == GGML_TYPE_F16) { diff --git a/ggml/src/ggml-sycl/vecdotq.hpp b/ggml/src/ggml-sycl/vecdotq.hpp index ed36993134..fa258e4d4d 100644 --- a/ggml/src/ggml-sycl/vecdotq.hpp +++ b/ggml/src/ggml-sycl/vecdotq.hpp @@ -285,21 +285,21 @@ template <> struct reorder_vec_dot_q_sycl { } __dpct_inline__ float operator()(const void * __restrict__ vbq, const int ibx_offset, const int d_offset, - const block_q8_1 * __restrict__ bq8_1, const int & iqs, int /* nblocks */) { + const int8_t* q8_1_quant_ptr, const sycl::half2* q8_1_ds, const int & iqs, int /* nblocks */) { const uint8_t * bq4_0 = static_cast(vbq) + ibx_offset; const ggml_half d = *(reinterpret_cast(static_cast(vbq) + d_offset)); int v[q4_0_traits::vdr_mmvq]; int u[2 * q4_0_traits::vdr_mmvq]; -#pragma unroll +#pragma unroll for (size_t i = 0; i < q4_0_traits::vdr_mmvq; ++i) { v[i] = get_int_from_uint8(bq4_0, iqs + i); - u[2 * i + 0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); - u[2 * i + 1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + q4_0_traits::qi); + u[2 * i + 0] = get_int_from_int8_aligned(q8_1_quant_ptr, iqs + i); + u[2 * i + 1] = get_int_from_int8_aligned(q8_1_quant_ptr, iqs + i + q4_0_traits::qi); } - return vec_dot_q4_0_q8_1_impl(v, u, d, bq8_1->ds); + return vec_dot_q4_0_q8_1_impl(v, u, d, *q8_1_ds); }; }; @@ -347,7 +347,7 @@ template <> struct reorder_vec_dot_q_sycl { using q4_k_traits = typename q4_k_block::traits; float operator()(const void * __restrict__ vbq, const int ibx_offset, const int d_offset, - const block_q8_1 * __restrict__ bq8_1, const int & iqs, int nblocks) { + const int8_t* q8_1_quant_ptr, const sycl::half2* q8_1_ds, const int & iqs, int nblocks) { const int ib = ibx_offset / (QK_K / 2); const uint8_t * base = static_cast(vbq); @@ -360,7 +360,38 @@ template <> struct reorder_vec_dot_q_sycl { const int * q4 = (const int *) (qs + 16 * bq8_offset + 4 * ((iqs / 2) % 4)); const uint16_t * scales = (const uint16_t *) scs; - return vec_dot_q4_K_q8_1_common(q4, scales, *dms, bq8_1, iqs); + int v[2]; + int u[2 * QR4_K]; + float d8[QR4_K]; + + v[0] = q4[0]; + v[1] = q4[4]; + + uint16_t aux[2]; + const int j = (QR4_K * ((iqs / 2) / (QI8_1 / 2))) / 2; + if (j < 2) { + aux[0] = scales[j + 0] & 0x3f3f; + aux[1] = scales[j + 2] & 0x3f3f; + } else { + aux[0] = ((scales[j + 2] >> 0) & 0x0f0f) | ((scales[j - 2] & 0xc0c0) >> 2); + aux[1] = ((scales[j + 2] >> 4) & 0x0f0f) | ((scales[j - 0] & 0xc0c0) >> 2); + } + + const uint8_t * sc = (const uint8_t *) aux; + const uint8_t * m = sc + 2; + + for (int i = 0; i < QR4_K; ++i) { + const int8_t* quant_base_ptr = q8_1_quant_ptr + (bq8_offset + i) * QK8_1; + sycl::half2 ds_values = *(q8_1_ds + bq8_offset + i); + + d8[i] = ds_values[0]; + + const int * q8 = (const int *) quant_base_ptr + ((iqs / 2) % 4); + u[2 * i + 0] = q8[0]; + u[2 * i + 1] = q8[4]; + } + + return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, *dms, d8); } }; diff --git a/ggml/src/ggml-vulkan/CMakeLists.txt b/ggml/src/ggml-vulkan/CMakeLists.txt index 662f137710..4a88415f96 100644 --- a/ggml/src/ggml-vulkan/CMakeLists.txt +++ b/ggml/src/ggml-vulkan/CMakeLists.txt @@ -109,10 +109,6 @@ if (Vulkan_FOUND) add_compile_definitions(GGML_VULKAN_SHADER_DEBUG_INFO) endif() - if (GGML_VULKAN_PERF) - add_compile_definitions(GGML_VULKAN_PERF) - endif() - if (GGML_VULKAN_VALIDATE) add_compile_definitions(GGML_VULKAN_VALIDATE) endif() diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index a5d7587536..3e43b03bc4 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -1,6 +1,6 @@ #include "ggml-vulkan.h" #include -#if defined(GGML_VULKAN_RUN_TESTS) || defined(GGML_VULKAN_PERF) || defined(GGML_VULKAN_CHECK_RESULTS) +#if defined(GGML_VULKAN_RUN_TESTS) || defined(GGML_VULKAN_CHECK_RESULTS) #include #include "ggml-cpu.h" #endif @@ -184,9 +184,7 @@ static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = { #ifdef GGML_VULKAN_MEMORY_DEBUG class vk_memory_logger; #endif -#ifdef GGML_VULKAN_PERF class vk_perf_logger; -#endif static void ggml_vk_destroy_buffer(vk_buffer& buf); static constexpr uint32_t mul_mat_vec_max_cols = 8; @@ -198,6 +196,7 @@ enum vk_device_architecture { AMD_RDNA1, AMD_RDNA2, AMD_RDNA3, + INTEL_XE2, }; static vk_device_architecture get_device_architecture(const vk::PhysicalDevice& device) { @@ -248,6 +247,34 @@ static vk_device_architecture get_device_architecture(const vk::PhysicalDevice& } return vk_device_architecture::AMD_RDNA2; } + } else if (props.vendorID == VK_VENDOR_ID_INTEL) { + const std::vector ext_props = device.enumerateDeviceExtensionProperties(); + + bool subgroup_size_control = false; + + for (const auto& properties : ext_props) { + if (strcmp("VK_EXT_subgroup_size_control", properties.extensionName) == 0) { + subgroup_size_control = true; + } + } + + if (!subgroup_size_control) { + return vk_device_architecture::OTHER; + } + + vk::PhysicalDeviceProperties2 props2; + vk::PhysicalDeviceSubgroupSizeControlPropertiesEXT subgroup_size_control_props; + + props2.pNext = &subgroup_size_control_props; + device.getProperties2(&props2); + + if (subgroup_size_control_props.minSubgroupSize == 16) { + // Xe2 architecture uses SIMD16 while previous Xe and Gen architecture uses SIMD8. + // Minimum subgroup size matches the SIMD width so we distinguish architecture by checking this value. + // https://www.intel.com/content/www/us/en/content-details/824434/2024-intel-tech-tour-xe2-and-lunar-lake-s-gpu.html + // https://www.intel.com/content/www/us/en/docs/oneapi/optimization-guide-gpu/2025-0/intel-xe-gpu-architecture.html + return vk_device_architecture::INTEL_XE2; + } } return vk_device_architecture::OTHER; } @@ -398,6 +425,7 @@ struct vk_device_struct { vk_pipeline pipeline_count_equal_i32; vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16; vk_pipeline pipeline_timestep_embedding_f32; + vk_pipeline pipeline_conv_transpose_1d_f32; vk_pipeline pipeline_pool2d_f32; vk_pipeline pipeline_rwkv_wkv6_f32; vk_pipeline pipeline_rwkv_wkv7_f32; @@ -442,9 +470,11 @@ struct vk_device_struct { #ifdef GGML_VULKAN_MEMORY_DEBUG std::unique_ptr memory_logger; #endif -#ifdef GGML_VULKAN_PERF + + // for GGML_VK_PERF_LOGGER std::unique_ptr perf_logger; -#endif + vk::QueryPool query_pool; + int32_t num_queries; ~vk_device_struct() { VK_LOG_DEBUG("destroy device " << name); @@ -706,6 +736,21 @@ struct vk_op_timestep_embedding_push_constants { uint32_t max_period; }; +struct vk_op_conv_transpose_1d_push_constants { + uint32_t Cout; + uint32_t Cin; + uint32_t K; + uint32_t L; + uint32_t KL; + + uint32_t nb01; + uint32_t nb02; + uint32_t nb11; + uint32_t nb1; + + int32_t s0; +}; + struct vk_op_pool2d_push_constants { uint32_t IW; uint32_t IH; uint32_t OW; uint32_t OH; @@ -828,8 +873,6 @@ private: #define VK_LOG_MEMORY(msg) ((void) 0) #endif // GGML_VULKAN_MEMORY_DEBUG -#if defined(GGML_VULKAN_PERF) - class vk_perf_logger { public: void print_timings() { @@ -839,7 +882,7 @@ public: for (const auto& time : t.second) { total += time; } - std::cerr << t.first << ": " << t.second.size() << " x " << (total / t.second.size() / 1000.0) << " ms" << std::endl; + std::cerr << t.first << ": " << t.second.size() << " x " << (total / t.second.size() / 1000.0) << " us" << std::endl; } timings.clear(); @@ -868,7 +911,6 @@ public: private: std::map> timings; }; -#endif // GGML_VULKAN_PERF struct ggml_backend_vk_context { std::string name; @@ -958,6 +1000,8 @@ struct vk_instance_t { static bool vk_instance_initialized = false; static vk_instance_t vk_instance; +static bool vk_perf_logger_enabled = false; + #ifdef GGML_VULKAN_CHECK_RESULTS static size_t vk_skip_checks; static size_t vk_output_tensor; @@ -1653,7 +1697,7 @@ static std::array fa_rows_cols(FaCodePath path, uint32_t D, uint32_ return {64, 32}; } return {64, 64}; -}; +} static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vector& warptile, bool mul_mat_id, ggml_type src0_type) { @@ -2727,6 +2771,8 @@ static void ggml_vk_load_shaders(vk_device& device) { ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_conv_transpose_1d_f32, "conv_transpose_1d_f32", conv_transpose_1d_f32_len, conv_transpose_1d_f32_data, "main", 3, sizeof(vk_op_conv_transpose_1d_push_constants), {1, 1, 1}, {}, 1); + ggml_vk_create_pipeline(device, device->pipeline_pool2d_f32, "pool2d_f32", pool2d_f32_len, pool2d_f32_data, "main", 2, sizeof(vk_op_pool2d_push_constants), {512, 1, 1}, {}, 1); ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv6_f32, "rwkv_wkv6_f32", rwkv_wkv6_f32_len, rwkv_wkv6_f32_data, "main", 7, sizeof(vk_op_rwkv_wkv6_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); @@ -2757,9 +2803,9 @@ static vk_device ggml_vk_get_device(size_t idx) { #ifdef GGML_VULKAN_MEMORY_DEBUG device->memory_logger = std::unique_ptr(new vk_memory_logger()); #endif -#ifdef GGML_VULKAN_PERF - device->perf_logger = std::unique_ptr(new vk_perf_logger()); -#endif + if (vk_perf_logger_enabled) { + device->perf_logger = std::unique_ptr(new vk_perf_logger()); + } size_t dev_num = vk_instance.device_indices[idx]; @@ -3547,6 +3593,8 @@ static void ggml_vk_instance_init() { vk_instance.instance = vk::createInstance(instance_create_info); vk_instance_initialized = true; + vk_perf_logger_enabled = getenv("GGML_VK_PERF_LOGGER") != nullptr; + size_t num_available_devices = vk_instance.instance.enumeratePhysicalDevices().size(); // Emulate behavior of CUDA_VISIBLE_DEVICES for Vulkan @@ -4060,7 +4108,33 @@ static vk_submission ggml_vk_begin_submission(vk_device& device, vk_queue& q, bo return s; } -static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context& subctx, vk_pipeline& pipeline, std::initializer_list const& descriptor_buffer_infos, size_t push_constant_size, const void* push_constants, std::array elements) { +template size_t push_constant_size(const T &t) { + static_assert(std::is_class::value, "T must be a struct/class"); + GGML_UNUSED(t); + return sizeof(T); +} +template size_t push_constant_size(const std::vector &t) { + GGML_UNUSED(t); + return sizeof(T) * t.size(); +} +template size_t push_constant_size(const std::array &t) { + GGML_UNUSED(t); + return sizeof(T) * N; +} + +template const T *push_constant_data(const T &t) { + static_assert(std::is_class::value, "T must be a struct/class"); + return &t; +} +template const T *push_constant_data(const std::vector &t) { + return t.data(); +} +template const T *push_constant_data(const std::array &t) { + return t.data(); +} + +template +static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context& subctx, vk_pipeline& pipeline, std::initializer_list const& descriptor_buffer_infos, const T &push_constants, std::array elements) { const uint32_t wg0 = CEIL_DIV(elements[0], pipeline->wg_denoms[0]); const uint32_t wg1 = CEIL_DIV(elements[1], pipeline->wg_denoms[1]); const uint32_t wg2 = CEIL_DIV(elements[2], pipeline->wg_denoms[2]); @@ -4076,7 +4150,7 @@ static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context& vk::WriteDescriptorSet write_descriptor_set{ descriptor_set, 0, 0, pipeline->parameter_count, vk::DescriptorType::eStorageBuffer, nullptr, descriptor_buffer_infos.begin() }; ctx->device->device.updateDescriptorSets({ write_descriptor_set }, {}); - subctx->s->buffer.pushConstants(pipeline->layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size, push_constants); + subctx->s->buffer.pushConstants(pipeline->layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size(push_constants), push_constant_data(push_constants)); subctx->s->buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline->pipeline); subctx->s->buffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute, pipeline->layout, @@ -4539,7 +4613,7 @@ static void ggml_vk_matmul( ggml_vk_sync_buffers(subctx); if (split_k == 1) { const vk_mat_mat_push_constants pc = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, k, ne02, ne12, broadcast2, broadcast3, padded_n }; - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d }, sizeof(vk_mat_mat_push_constants), &pc, { m, n, batch }); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d }, pc, { m, n, batch }); return; } @@ -4547,10 +4621,10 @@ static void ggml_vk_matmul( const vk_mat_mat_push_constants pc1 = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, CEIL_DIV(k, split_k), ne02, ne12, broadcast2, broadcast3, padded_n }; // Make sure enough workgroups get assigned for split k to work - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, split_k_buffer }, sizeof(vk_mat_mat_push_constants), &pc1, { (CEIL_DIV(m, pipeline->wg_denoms[0]) * pipeline->wg_denoms[0]) * split_k, n, batch }); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, split_k_buffer }, pc1, { (CEIL_DIV(m, pipeline->wg_denoms[0]) * pipeline->wg_denoms[0]) * split_k, n, batch }); ggml_vk_sync_buffers(subctx); const std::array pc2 = { (uint32_t)(m * n * batch), split_k }; - ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_matmul_split_k_reduce, { split_k_buffer, d }, pc2.size() * sizeof(uint32_t), pc2.data(), { m * n * batch, 1, 1 }); + ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_matmul_split_k_reduce, { split_k_buffer, d }, pc2, { m * n * batch, 1, 1 }); } static vk_pipeline ggml_vk_guess_matmul_id_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, uint32_t m, uint32_t n, bool aligned, ggml_type src0_type) { @@ -4598,7 +4672,7 @@ static void ggml_vk_matmul_id( ggml_vk_sync_buffers(subctx); const vk_mat_mat_id_push_constants pc = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, nei0, nei1, nbi1, ne11, padded_n }; - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d, ids }, sizeof(vk_mat_mat_id_push_constants), &pc, { m, nei1, n_as }); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d, ids }, pc, { m, nei1, n_as }); } static bool ggml_vk_dim01_contiguous(const ggml_tensor * tensor) { @@ -4719,7 +4793,7 @@ static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context& }; init_pushconst_fastdiv(pc); ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(vk_op_unary_push_constants), &pc, elements); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, pc, elements); } static vk_pipeline ggml_vk_get_quantize_pipeline(ggml_backend_vk_context * ctx, ggml_type type) { @@ -4738,7 +4812,7 @@ static void ggml_vk_quantize_q8_1(ggml_backend_vk_context * ctx, vk_context& sub vk_pipeline pipeline = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1); ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(uint32_t), &ne, { ne, 1, 1 }); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, std::array{ne}, { ne, 1, 1 }); } static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { @@ -4938,7 +5012,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub } else if (qx_needs_dequant) { const std::vector pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) }; ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1}); + ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc, { (uint32_t)(x_ne * ne02 * ne03), 1, 1}); } if (y_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); @@ -5154,7 +5228,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, dmmv, { vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23} }, - sizeof(vk_mat_vec_push_constants), &pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z }); + pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z }); } static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { @@ -5242,7 +5316,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c } ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32[gqa_ratio - 1], { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, workgroups_z }); + ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32[gqa_ratio - 1], { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, pc, { 1, (uint32_t)ne01, workgroups_z }); } static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { @@ -5325,7 +5399,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con const std::array pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, channel_stride_y, (uint32_t)(ne12 / ne02), (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, - { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); + { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, pc, { 1, (uint32_t)ne01, (uint32_t)ne12 }); } static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { @@ -5541,7 +5615,7 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& const std::vector pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) }; ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, - { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1}); + { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc, { (uint32_t)(x_ne * ne02 * ne03), 1, 1}); } if (y_non_contig) { ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }); @@ -5761,7 +5835,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte ggml_vk_dispatch_pipeline(ctx, subctx, dmmv, { vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23}, vk_subbuffer{ d_ids, ids_buf_offset, ids_sz } }, - sizeof(vk_mat_vec_id_push_constants), &pc, { groups_x, (uint32_t)nei0, groups_z }); + pc, { groups_x, (uint32_t)nei0, groups_z }); } static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool dryrun = false) { @@ -6111,7 +6185,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx // there's no more than one tile of rows (i.e. workgroups_x would have been // one). We reuse workgroups_x to mean the number of splits, so we need to // cancel out the divide by wg_denoms[0]. - sizeof(vk_flash_attn_push_constants), &pc, { workgroups_x * pipeline->wg_denoms[0], workgroups_y, workgroups_z }); + pc, { workgroups_x * pipeline->wg_denoms[0], workgroups_y, workgroups_z }); ggml_vk_sync_buffers(subctx); const std::array pc2 = { D, (uint32_t)ne1, split_k }; @@ -6120,7 +6194,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx vk_subbuffer{ctx->prealloc_split_k, 0, VK_WHOLE_SIZE}, vk_subbuffer{d_D, d_buf_offset, VK_WHOLE_SIZE}, }, - pc2.size() * uint32_t{sizeof(uint32_t)}, pc2.data(), { (uint32_t)ne1, 1, 1 }); + pc2, { (uint32_t)ne1, 1, 1 }); } else { ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { @@ -6130,7 +6204,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx vk_subbuffer{d_M, m_buf_offset, VK_WHOLE_SIZE}, vk_subbuffer{d_D, d_buf_offset, VK_WHOLE_SIZE}, }, - sizeof(vk_flash_attn_push_constants), &pc, { workgroups_x, workgroups_y, workgroups_z }); + pc, { workgroups_x, workgroups_y, workgroups_z }); } } @@ -6391,6 +6465,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const return ctx->device->pipeline_timestep_embedding_f32; } return nullptr; + case GGML_OP_CONV_TRANSPOSE_1D: + if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { + return ctx->device->pipeline_conv_transpose_1d_f32; + } + return nullptr; case GGML_OP_POOL_2D: if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_pool2d_f32; @@ -6725,6 +6804,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co uint32_t half_ceil = (dim + 1) / 2; elements = { half_ceil, (uint32_t)src0->ne[0], 1 }; } break; + case GGML_OP_CONV_TRANSPOSE_1D: + { + elements = {uint32_t(src0->ne[1]), 1, 1}; // parallelize in {Cout, 1, 1} + } break; case GGML_OP_POOL_2D: { const uint32_t N = dst->ne[3]; @@ -6799,7 +6882,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co } ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, subbuf_y, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, subbuf_y, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements); } else if (op == GGML_OP_ROPE || op == GGML_OP_ROPE_BACK) { // Empty src2 is possible in rope, but the shader needs a buffer vk_subbuffer subbuf_z; @@ -6810,26 +6893,26 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co } ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, subbuf_z, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, subbuf_z, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements); } else if (op == GGML_OP_IM2COL) { // im2col uses only src1 and dst buffers ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements); } else if (op == GGML_OP_COUNT_EQUAL) { ggml_vk_sync_buffers(subctx); // count_equal assumes that destination buffer is initialized with zeroes ggml_vk_buffer_memset_async(subctx, d_D, d_buf_offset, 0, d_sz); ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements); } else if (use_src2) { ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_Z, z_buf_offset, z_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_Z, z_buf_offset, z_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements); } else if (use_src1) { ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements); } else { ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements); } } @@ -6998,7 +7081,7 @@ static void ggml_vk_op_f32_wkv(ggml_backend_vk_context * ctx, vk_context& subctx vk_subbuffer{ d_srcs[4], src_offsets[4], src_sizes[4] }, vk_subbuffer{ d_srcs[5], src_offsets[5], src_sizes[5] }, vk_subbuffer{ d_D, dst_offset, dst_size } - }, sizeof(vk_op_rwkv_wkv6_push_constants), &pc, elements); + }, pc, elements); } else if (version == 7) { ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_srcs[0], src_offsets[0], src_sizes[0] }, @@ -7009,7 +7092,7 @@ static void ggml_vk_op_f32_wkv(ggml_backend_vk_context * ctx, vk_context& subctx vk_subbuffer{ d_srcs[5], src_offsets[5], src_sizes[5] }, vk_subbuffer{ d_srcs[6], src_offsets[6], src_sizes[6] }, vk_subbuffer{ d_D, dst_offset, dst_size } - }, sizeof(vk_op_rwkv_wkv7_push_constants), &pc, elements); + }, pc, elements); } else { // shouldn't happen GGML_ASSERT(false); @@ -7146,7 +7229,7 @@ static void ggml_vk_op_f32_opt_step_adamw(ggml_backend_vk_context * ctx, vk_cont vk_subbuffer{ d_GM, gm_offset, gm_size }, vk_subbuffer{ d_GV, gv_offset, gv_size }, vk_subbuffer{ d_P, p_offset, p_size }, - }, sizeof(vk_op_push_constants), &pc, elements); + }, pc, elements); } static void ggml_vk_opt_step_adamw(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, bool dryrun = false) { @@ -7528,6 +7611,37 @@ static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context }, dryrun); } +static void ggml_vk_conv_transpose_1d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) { + // src0: (K, Cout, Cin, 1) -- kernel + // src1: (L, Cin, 1, 1) -- input + // dst: (*, Cout, 1, 1) + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + GGML_TENSOR_BINARY_OP_LOCALS + + GGML_ASSERT(nb00 == sizeof(float)); + GGML_ASSERT(nb10 == sizeof(float)); + + const int32_t s0 = dst->op_params[0]; + + vk_op_conv_transpose_1d_push_constants p{}; + p.Cout = static_cast(ne01); + p.Cin = static_cast(ne02); + p.K = static_cast(ne00); + p.L = static_cast(ne10); + p.KL = static_cast(ne0); + p.nb01 = static_cast(nb01 / nb00); + p.nb02 = static_cast(nb02 / nb00); + p.nb11 = static_cast(nb11 / nb10); + p.nb1 = static_cast(nb1 / nb0); + p.s0 = static_cast(s0); + + ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_TRANSPOSE_1D, std::move(p), dryrun); +} + static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) { uint32_t op = static_cast(dst->op_params[0]); const int32_t k1 = dst->op_params[1]; @@ -8004,7 +8118,7 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_ vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); ggml_vk_ctx_begin(ctx->device, subctx); const std::vector pc = { 1, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne }; - ggml_vk_dispatch_pipeline(ctx, subctx, p, { vk_subbuffer{ qx_buf, 0, qx_sz }, vk_subbuffer{ x_buf, 0, x_sz_f16 } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)ne, 1, 1}); + ggml_vk_dispatch_pipeline(ctx, subctx, p, { vk_subbuffer{ qx_buf, 0, qx_sz }, vk_subbuffer{ x_buf, 0, x_sz_f16 } }, pc, { (uint32_t)ne, 1, 1}); ggml_vk_ctx_end(subctx); auto begin = std::chrono::high_resolution_clock::now(); @@ -8599,6 +8713,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod case GGML_OP_COUNT_EQUAL: case GGML_OP_IM2COL: case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_POOL_2D: case GGML_OP_CONV_2D_DW: case GGML_OP_RWKV_WKV6: @@ -8663,6 +8778,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod case GGML_OP_COUNT_EQUAL: case GGML_OP_IM2COL: case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_POOL_2D: case GGML_OP_CONV_2D_DW: case GGML_OP_LEAKY_RELU: @@ -8834,6 +8950,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod case GGML_OP_TIMESTEP_EMBEDDING: ggml_vk_timestep_embedding(ctx, compute_ctx, src0, node, dryrun); + break; + case GGML_OP_CONV_TRANSPOSE_1D: + ggml_vk_conv_transpose_1d(ctx, compute_ctx, src0, src1, node, dryrun); + break; case GGML_OP_POOL_2D: ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun); @@ -8885,7 +9005,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod ctx->tensor_ctxs[node_idx] = compute_ctx; -#if defined(GGML_VULKAN_CHECK_RESULTS) || defined(GGML_VULKAN_PERF) +#if defined(GGML_VULKAN_CHECK_RESULTS) // Force context reset on each node so that each tensor ends up in its own context // and can be run and compared to its CPU equivalent separately last_node = true; @@ -8962,6 +9082,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * case GGML_OP_COUNT_EQUAL: case GGML_OP_IM2COL: case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_POOL_2D: case GGML_OP_CONV_2D_DW: case GGML_OP_RWKV_WKV6: @@ -9505,6 +9626,29 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg bool first_node_in_batch = true; // true if next node will be first node in a batch int submit_node_idx = 0; // index to first node in a batch + vk_context compute_ctx; + if (vk_perf_logger_enabled) { + // allocate/resize the query pool + if (ctx->device->num_queries < cgraph->n_nodes + 1) { + if (ctx->device->query_pool) { + ctx->device->device.destroyQueryPool(ctx->device->query_pool); + } + vk::QueryPoolCreateInfo query_create_info; + query_create_info.queryType = vk::QueryType::eTimestamp; + query_create_info.queryCount = cgraph->n_nodes + 100; + ctx->device->query_pool = ctx->device->device.createQueryPool(query_create_info); + ctx->device->num_queries = query_create_info.queryCount; + } + + ctx->device->device.resetQueryPool(ctx->device->query_pool, 0, cgraph->n_nodes+1); + + GGML_ASSERT(ctx->compute_ctx.expired()); + compute_ctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); + ctx->compute_ctx = compute_ctx; + ggml_vk_ctx_begin(ctx->device, compute_ctx); + compute_ctx->s->buffer.writeTimestamp(vk::PipelineStageFlagBits::eAllCommands, ctx->device->query_pool, 0); + } + // Submit after enough work has accumulated, to overlap CPU cmdbuffer generation with GPU execution. // Estimate the amount of matmul work by looking at the weight matrix size, and submit every 100MB // (and scaled down based on model size, so smaller models submit earlier). @@ -9532,6 +9676,17 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg bool enqueued = ggml_vk_build_graph(ctx, cgraph->nodes[i], i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i == last_node, almost_ready, submit); + if (vk_perf_logger_enabled) { + if (ctx->compute_ctx.expired()) { + compute_ctx = ggml_vk_create_context(ctx, ctx->device->compute_queue); + ctx->compute_ctx = compute_ctx; + ggml_vk_ctx_begin(ctx->device, compute_ctx); + } else { + compute_ctx = ctx->compute_ctx.lock(); + } + compute_ctx->s->buffer.writeTimestamp(vk::PipelineStageFlagBits::eAllCommands, ctx->device->query_pool, i+1); + } + if (enqueued) { ++submitted_nodes; @@ -9553,9 +9708,27 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg } } -#ifdef GGML_VULKAN_PERF - ctx->device->perf_logger->print_timings(); -#endif + if (vk_perf_logger_enabled) { + // End the command buffer and submit/wait + GGML_ASSERT(!ctx->compute_ctx.expired()); + compute_ctx = ctx->compute_ctx.lock(); + ggml_vk_ctx_end(compute_ctx); + + ggml_vk_submit(compute_ctx, ctx->device->fence); + VK_CHECK(ctx->device->device.waitForFences({ ctx->device->fence }, true, UINT64_MAX), "GGML_VULKAN_PERF waitForFences"); + ctx->device->device.resetFences({ ctx->device->fence }); + + // Get the results and pass them to the logger + std::vector timestamps(cgraph->n_nodes + 1); + VK_CHECK(ctx->device->device.getQueryPoolResults(ctx->device->query_pool, 0, cgraph->n_nodes + 1, (cgraph->n_nodes + 1)*sizeof(uint64_t), timestamps.data(), sizeof(uint64_t), vk::QueryResultFlagBits::e64 | vk::QueryResultFlagBits::eWait), "get timestamp results"); + for (int i = 0; i < cgraph->n_nodes; i++) { + if (!ggml_vk_is_empty(cgraph->nodes[i])) { + ctx->device->perf_logger->log_timing(cgraph->nodes[i], uint64_t((timestamps[i+1] - timestamps[i]) * ctx->device->properties.limits.timestampPeriod)); + } + } + + ctx->device->perf_logger->print_timings(); + } ggml_vk_graph_cleanup(ctx); @@ -9971,6 +10144,8 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm case GGML_OP_LEAKY_RELU: case GGML_OP_OPT_STEP_ADAMW: return true; + case GGML_OP_CONV_TRANSPOSE_1D: + return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32; default: return false; } @@ -10117,8 +10292,9 @@ static bool ggml_vk_instance_portability_enumeration_ext_available(const std::ve static bool ggml_vk_khr_cooperative_matrix_support(const vk::PhysicalDeviceProperties& props, const vk::PhysicalDeviceDriverProperties& driver_props, vk_device_architecture arch) { switch (props.vendorID) { case VK_VENDOR_ID_INTEL: - // Intel drivers don't support coopmat properly yet - return false; + // Only allowing Xe2 GPU at the moment since Xe2 GPU can gain significant performance boost, + // while some older hardware (ex. Arc A770) has performance regressions + return arch == vk_device_architecture::INTEL_XE2; case VK_VENDOR_ID_AMD: if (driver_props.driverID == vk::DriverId::eAmdProprietary || driver_props.driverID == vk::DriverId::eAmdOpenSource) { // Workaround for AMD proprietary driver reporting support on all GPUs @@ -10462,6 +10638,11 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) { const int32_t dim = tensor->op_params[0]; const int32_t max_period = tensor->op_params[1]; tensor_clone = ggml_timestep_embedding(ggml_ctx, src_clone[0], dim, max_period); + } else if (tensor->op == GGML_OP_CONV_TRANSPOSE_1D){ + const int32_t s0 = tensor->op_params[0]; + const int32_t p0 = tensor->op_params[1]; + const int32_t d0 = tensor->op_params[2]; + tensor_clone = ggml_conv_transpose_1d(ggml_ctx, src_clone[0], src_clone[1], s0, p0, d0); } else if (tensor->op == GGML_OP_POOL_2D) { enum ggml_op_pool op = static_cast(tensor->op_params[0]); const int32_t k0 = tensor->op_params[1]; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/conv_transpose_1d.comp b/ggml/src/ggml-vulkan/vulkan-shaders/conv_transpose_1d.comp new file mode 100644 index 0000000000..b17b4e83ee --- /dev/null +++ b/ggml/src/ggml-vulkan/vulkan-shaders/conv_transpose_1d.comp @@ -0,0 +1,98 @@ +#version 450 + +#include "types.comp" + +layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; // src0 - kernel: [K, Cout, Cin] +layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; // src1 - input: [L, Cin] +layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; // dst - result [KL, Cout] + +layout(local_size_x = 128 , local_size_y = 1, local_size_z = 1) in; + +layout (push_constant) uniform parameter { + uint32_t Cout; + uint32_t Cin; + uint32_t K; + uint32_t L; + uint32_t KL; + + uint32_t nb01; + uint32_t nb02; + uint32_t nb11; + uint32_t nb1; + + int32_t s0; +} p; + + +uint32_t Cout_idx = gl_WorkGroupID.x; +const uint32_t bs = gl_WorkGroupSize.x; +uint32_t tid = gl_LocalInvocationID.x; +// Code is more straightforward if we assume it is bs*s0+K instead of (bs-1)*s0+K. +uint32_t tmp_len = bs*p.s0+p.K; +shared D_TYPE tmp[4096]; + +uint splitWork(uint workSize){ + return (bs + workSize -1) / bs; +} + +void main(){ + for(uint32_t i = 0; i < splitWork(tmp_len); i++){ + uint32_t idx = i*bs+tid; + if(idx < tmp_len){ + tmp[idx] = 0.0; + } + } + + uint32_t L_blocks = splitWork(p.L); + for(uint32_t L_block_id = 0; L_block_id < L_blocks; L_block_id++){ + if(L_block_id > 0){ + barrier(); + // Shift values in tmp to the current processing window + for(int i = 0; i < splitWork(tmp_len); i++){ + uint32_t idx = i*bs+tid; + if(idx >= bs*p.s0 && idx < tmp_len){ + tmp[idx-bs*p.s0] = tmp[idx]; + tmp[idx] = 0.0; + }else if(idx >= p.K && idx < bs*p.s0){ + tmp[idx] = 0.0; + } + } + } + barrier(); + + // Save contributions of the block to tmp + uint32_t L_idx = L_block_id*bs + tid; + for(uint32_t K_idx = 0; K_idx < p.K; K_idx++){ + D_TYPE dp = 0.0; + for(uint32_t Cin_idx = 0; Cin_idx < p.Cin; Cin_idx++){ + A_TYPE elemKrn = data_a[K_idx + Cout_idx * p.nb01 + Cin_idx * p.nb02]; + if(L_idx < p.L){ + B_TYPE elemInp = data_b[L_idx + Cin_idx*p.nb11]; + dp = fma(elemKrn, elemInp, dp); + } + } + tmp[tid*p.s0 + K_idx] += dp; + barrier(); + } + + // Save the computed values except the last block that can have different size + uint32_t KLb_idx = L_block_id*bs*p.s0; + if(L_block_id < L_blocks-1){ + for(uint32_t s0_idx = 0; s0_idx < p.s0; s0_idx++){ + uint32_t sh_idx = p.s0*tid+s0_idx; + uint32_t KL_idx = KLb_idx+sh_idx; + if(KL_idx < p.KL){ + data_d[KL_idx + Cout_idx*p.nb1] = tmp[sh_idx]; + } + } + } + } + + for(uint32_t i = 0; i < splitWork(tmp_len); i++){ + uint32_t idx = i*bs+tid; + uint32_t KL_idx = (L_blocks-1)*bs*p.s0+idx; + if(KL_idx < p.KL){ + data_d[KL_idx + Cout_idx*p.nb1] = tmp[idx]; + } + } +} diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index 9361e2ac83..c63345ec8b 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -622,6 +622,8 @@ void process_shaders() { string_to_spv("timestep_embedding_f32", "timestep_embedding.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); + string_to_spv("conv_transpose_1d_f32", "conv_transpose_1d.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}); + string_to_spv("pool2d_f32", "pool2d.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); string_to_spv("rwkv_wkv6_f32", "wkv6.comp", merge_maps(base_dict, {{"A_TYPE", "float"}})); diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 57d3e39adf..196b7b8f3e 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -133,7 +133,7 @@ static void ggml_print_backtrace_symbols(void) { } #endif -static void ggml_print_backtrace(void) { +void ggml_print_backtrace(void) { const char * GGML_NO_BACKTRACE = getenv("GGML_NO_BACKTRACE"); if (GGML_NO_BACKTRACE) { return; @@ -160,6 +160,10 @@ static void ggml_print_backtrace(void) { const int parent_pid = getpid(); const int child_pid = fork(); if (child_pid < 0) { // error +#if defined(__linux__) + close(lock[1]); + close(lock[0]); +#endif return; } else if (child_pid == 0) { // child char attach[32]; @@ -167,6 +171,7 @@ static void ggml_print_backtrace(void) { #if defined(__linux__) close(lock[1]); (void) !read(lock[0], lock, 1); + close(lock[0]); #endif // try gdb execlp("gdb", "gdb", "--batch", @@ -195,7 +200,7 @@ static void ggml_print_backtrace(void) { } } #else -static void ggml_print_backtrace(void) { +void ggml_print_backtrace(void) { // platform not supported } #endif @@ -216,6 +221,8 @@ void ggml_abort(const char * file, int line, const char * fmt, ...) { abort(); } +// ggml_print_backtrace is registered with std::set_terminate by ggml.cpp + // // logging // @@ -2312,6 +2319,26 @@ struct ggml_tensor * ggml_repeat( return result; } +struct ggml_tensor * ggml_repeat_4d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { + const bool can_repeat = ggml_is_empty(a) || ( + (ne0 % a->ne[0] == 0) && + (ne1 % a->ne[1] == 0) && + (ne2 % a->ne[2] == 0) && + (ne3 % a->ne[3] == 0) + ); + GGML_ASSERT(can_repeat); + + struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3); + + result->op = GGML_OP_REPEAT; + result->src[0] = a; + + return result; +} + // ggml_repeat_back struct ggml_tensor * ggml_repeat_back( diff --git a/ggml/src/ggml.cpp b/ggml/src/ggml.cpp new file mode 100644 index 0000000000..0d388d4553 --- /dev/null +++ b/ggml/src/ggml.cpp @@ -0,0 +1,26 @@ +#include "ggml-impl.h" + +#include +#include + +static std::terminate_handler previous_terminate_handler; + +GGML_NORETURN static void ggml_uncaught_exception() { + ggml_print_backtrace(); + if (previous_terminate_handler) { + previous_terminate_handler(); + } + abort(); // unreachable unless previous_terminate_handler was nullptr +} + +static bool ggml_uncaught_exception_init = []{ + const char * GGML_NO_BACKTRACE = getenv("GGML_NO_BACKTRACE"); + if (GGML_NO_BACKTRACE) { + return false; + } + const auto prev{std::get_terminate()}; + GGML_ASSERT(prev != ggml_uncaught_exception); + previous_terminate_handler = prev; + std::set_terminate(ggml_uncaught_exception); + return true; +}(); diff --git a/ggml/src/gguf.cpp b/ggml/src/gguf.cpp index 8667a80bd0..a0a318a29f 100644 --- a/ggml/src/gguf.cpp +++ b/ggml/src/gguf.cpp @@ -347,11 +347,28 @@ struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_par int64_t n_tensors = 0; if (ok && gr.read(ctx->version)) { - if (ctx->version == 1) { + if (ok && ctx->version == 0) { + GGML_LOG_ERROR("%s: bad GGUF version: %" PRIu32 "\n", __func__, ctx->version); + ok = false; + } + + /* + * bit layout is different when reading non-native endian models. + * assuming that the GGUF version is 3, the non-native endian model + * would read it as 0x30000000. we can use the AND operation against + * the last 4 hexadecimal digits to check if the model is the same + * endianness as the host system. + */ + if (ok && (ctx->version & 0x0000FFFF) == 0x00000000) { + GGML_LOG_ERROR("%s: failed to load model: this GGUF file version %" PRIu32 " is extremely large, is there a mismatch between the host and model endianness?\n", __func__, ctx->version); + ok = false; + } + + if (ok && ctx->version == 1) { GGML_LOG_ERROR("%s: GGUFv1 is no longer supported, please use a more up-to-date version\n", __func__); ok = false; } - if (ctx->version > GGUF_VERSION) { + if (ok && ctx->version > GGUF_VERSION) { GGML_LOG_ERROR("%s: this GGUF file is version %" PRIu32 " but this software only supports up to version %d\n", __func__, ctx->version, GGUF_VERSION); ok = false; diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index c6255d6867..3ee2b2064e 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -177,6 +177,9 @@ class Keys: EMBEDDING_LENGTH = "{arch}.convnext.embedding_length" BLOCK_COUNT = "{arch}.convnext.block_count" + class Classifier: + OUTPUT_LABELS = "{arch}.classifier.output_labels" + class Tokenizer: MODEL = "tokenizer.ggml.model" PRE = "tokenizer.ggml.pre" @@ -1033,6 +1036,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.POS_EMBD, MODEL_TENSOR.OUTPUT_NORM, MODEL_TENSOR.ATTN_OUT_NORM, + MODEL_TENSOR.ATTN_QKV, MODEL_TENSOR.ATTN_Q, MODEL_TENSOR.ATTN_K, MODEL_TENSOR.ATTN_V, @@ -2260,6 +2264,7 @@ class VisionProjectorType: ULTRAVOX = "ultravox" INTERNVL = "internvl" QWEN2A = "qwen2a" # audio + QWEN25O = "qwen2.5o" # omni # Items here are (block size, type size) diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index e507b7019d..adc673e38f 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -49,6 +49,7 @@ class TensorInfo: class GGUFValue: value: Any type: GGUFValueType + sub_type: GGUFValueType | None = None class WriterState(Enum): @@ -238,7 +239,7 @@ class GGUFWriter: for key, val in kv_data.items(): kv_bytes += self._pack_val(key, GGUFValueType.STRING, add_vtype=False) - kv_bytes += self._pack_val(val.value, val.type, add_vtype=True) + kv_bytes += self._pack_val(val.value, val.type, add_vtype=True, sub_type=val.sub_type) fout.write(kv_bytes) @@ -268,11 +269,11 @@ class GGUFWriter: fout.flush() self.state = WriterState.TI_DATA - def add_key_value(self, key: str, val: Any, vtype: GGUFValueType) -> None: + def add_key_value(self, key: str, val: Any, vtype: GGUFValueType, sub_type: GGUFValueType | None = None) -> None: if any(key in kv_data for kv_data in self.kv_data): raise ValueError(f'Duplicated key name {key!r}') - self.kv_data[0][key] = GGUFValue(value=val, type=vtype) + self.kv_data[0][key] = GGUFValue(value=val, type=vtype, sub_type=sub_type) def add_uint8(self, key: str, val: int) -> None: self.add_key_value(key,val, GGUFValueType.UINT8) @@ -934,6 +935,9 @@ class GGUFWriter: def add_eom_token_id(self, id: int) -> None: self.add_uint32(Keys.Tokenizer.EOM_ID, id) + def add_classifier_output_labels(self, labels: Sequence[str]) -> None: + self.add_array(Keys.Classifier.OUTPUT_LABELS.format(arch=self.arch), labels) + # for vision models def add_clip_has_vision_encoder(self, value: bool) -> None: @@ -1022,7 +1026,7 @@ class GGUFWriter: pack_prefix = '<' if self.endianess == GGUFEndian.LITTLE else '>' return struct.pack(f'{pack_prefix}{fmt}', value) - def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool) -> bytes: + def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool, sub_type: GGUFValueType | None = None) -> bytes: kv_data = bytearray() if add_vtype: @@ -1043,7 +1047,9 @@ class GGUFWriter: if len(val) == 0: raise ValueError("Invalid GGUF metadata array. Empty array") - if isinstance(val, bytes): + if sub_type is not None: + ltype = sub_type + elif isinstance(val, bytes): ltype = GGUFValueType.UINT8 else: ltype = GGUFValueType.get_type(val[0]) diff --git a/gguf-py/gguf/scripts/gguf_editor_gui.py b/gguf-py/gguf/scripts/gguf_editor_gui.py index 3d38b5cbab..05f4db0f8c 100755 --- a/gguf-py/gguf/scripts/gguf_editor_gui.py +++ b/gguf-py/gguf/scripts/gguf_editor_gui.py @@ -1521,19 +1521,21 @@ class GGUFEditorWindow(QMainWindow): continue # Apply changes if any + sub_type = None if field.name in self.metadata_changes: value_type, value = self.metadata_changes[field.name] if value_type == GGUFValueType.ARRAY: # Handle array values - element_type, array_values = value - writer.add_array(field.name, array_values) - else: - writer.add_key_value(field.name, value, value_type) + sub_type, value = value else: # Copy original value value = field.contents() - if value is not None and field.types: - writer.add_key_value(field.name, value, field.types[0]) + value_type = field.types[0] + if value_type == GGUFValueType.ARRAY: + sub_type = field.types[-1] + + if value is not None: + writer.add_key_value(field.name, value, value_type, sub_type=sub_type) # Add new metadata for key, (value_type, value) in self.metadata_changes.items(): @@ -1541,7 +1543,12 @@ class GGUFEditorWindow(QMainWindow): if self.reader.get_field(key) is not None: continue - writer.add_key_value(key, value, value_type) + sub_type = None + if value_type == GGUFValueType.ARRAY: + # Handle array values + sub_type, value = value + + writer.add_key_value(key, value, value_type, sub_type=sub_type) # Add tensors (including data) for tensor in self.reader.tensors: diff --git a/gguf-py/gguf/scripts/gguf_new_metadata.py b/gguf-py/gguf/scripts/gguf_new_metadata.py index 7aff6c9259..63f2300348 100755 --- a/gguf-py/gguf/scripts/gguf_new_metadata.py +++ b/gguf-py/gguf/scripts/gguf_new_metadata.py @@ -24,6 +24,7 @@ class MetadataDetails(NamedTuple): type: gguf.GGUFValueType value: Any description: str = '' + sub_type: gguf.GGUFValueType | None = None def get_field_data(reader: gguf.GGUFReader, key: str) -> Any: @@ -57,7 +58,9 @@ def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new logger.debug(f'Removing {field.name}') continue - old_val = MetadataDetails(field.types[0], field.contents()) + val_type = field.types[0] + sub_type = field.types[-1] if val_type == gguf.GGUFValueType.ARRAY else None + old_val = MetadataDetails(val_type, field.contents(), sub_type=sub_type) val = new_metadata.get(field.name, old_val) if field.name in new_metadata: @@ -67,7 +70,7 @@ def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new logger.debug(f'Copying {field.name}') if val.value is not None: - writer.add_key_value(field.name, val.value, val.type) + writer.add_key_value(field.name, val.value, val.type, sub_type=sub_type if val.sub_type is None else val.sub_type) if gguf.Keys.Tokenizer.CHAT_TEMPLATE in new_metadata: logger.debug('Adding chat template(s)') diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index 4a0615b656..93dd1d8028 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -157,6 +157,7 @@ class TensorNameMap: "h.{bid}.attn.c_attn", # gpt2 "transformer.h.{bid}.mixer.Wqkv", # phi2 "encoder.layers.{bid}.attn.Wqkv", # nomic-bert + "encoder.layers.{bid}.mixer.Wqkv", # jina "model.layers.{bid}.self_attn.qkv_proj", # phi3 "encoder.layers.{bid}.self_attention.query_key_value", # chatglm "transformer.layers.{bid}.attn.qkv_proj", # openelm @@ -168,6 +169,7 @@ class TensorNameMap: "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom "layers.{bid}.attention.wq", # llama-pth "encoder.layer.{bid}.attention.self.query", # bert + "transformer.layer.{bid}.attention.q_lin", # distillbert "transformer.h.{bid}.attn.q_proj", # gpt-j "model.layers.layers.{bid}.self_attn.q_proj", # plamo "model.layers.{bid}.attention.wq", # internlm2 @@ -182,6 +184,7 @@ class TensorNameMap: "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom "layers.{bid}.attention.wk", # llama-pth "encoder.layer.{bid}.attention.self.key", # bert + "transformer.layer.{bid}.attention.k_lin", # distillbert "transformer.h.{bid}.attn.k_proj", # gpt-j "transformer.h.{bid}.attn.k", # refact "model.layers.layers.{bid}.self_attn.k_proj", # plamo @@ -196,6 +199,7 @@ class TensorNameMap: "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe "layers.{bid}.attention.wv", # llama-pth "encoder.layer.{bid}.attention.self.value", # bert + "transformer.layer.{bid}.attention.v_lin", # distillbert "transformer.h.{bid}.attn.v_proj", # gpt-j "transformer.h.{bid}.attn.v", # refact "model.layers.layers.{bid}.self_attn.v_proj", # plamo @@ -216,6 +220,7 @@ class TensorNameMap: "model.layers.{bid}.self_attn.linear_attn", # deci "layers.{bid}.attention.wo", # llama-pth "encoder.layer.{bid}.attention.output.dense", # bert + "transformer.layer.{bid}.attention.out_lin", # distillbert "transformer.h.{bid}.attn.out_proj", # gpt-j "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon "model.layers.{bid}.self_attn.dense", # persimmon @@ -224,6 +229,7 @@ class TensorNameMap: "model.layers.layers.{bid}.self_attn.o_proj", # plamo "model.layers.{bid}.attention.wo", # internlm2 "encoder.layers.{bid}.attn.out_proj", # nomic-bert + "encoder.layers.{bid}.mixer.out_proj", # jina "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx "encoder.layers.{bid}.self_attention.dense", # chatglm @@ -235,6 +241,7 @@ class TensorNameMap: # Attention output norm MODEL_TENSOR.ATTN_OUT_NORM: ( "encoder.layer.{bid}.attention.output.LayerNorm", # bert + "transformer.layer.{bid}.sa_layer_norm", # distillbert "encoder.layers.{bid}.norm1", # nomic-bert "transformer.decoder_layer.{bid}.rms_norm_1", # Grok "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx @@ -311,6 +318,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2 "layers.{bid}.feed_forward.w3", # llama-pth "encoder.layer.{bid}.intermediate.dense", # bert + "transformer.layer.{bid}.ffn.lin1", # distillbert "transformer.h.{bid}.mlp.fc_in", # gpt-j "transformer.h.{bid}.mlp.linear_3", # refact "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon @@ -394,6 +402,7 @@ class TensorNameMap: "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2 "layers.{bid}.feed_forward.w2", # llama-pth "encoder.layer.{bid}.output.dense", # bert + "transformer.layer.{bid}.ffn.lin2", # distillbert "transformer.h.{bid}.mlp.fc_out", # gpt-j "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon @@ -455,6 +464,7 @@ class TensorNameMap: MODEL_TENSOR.LAYER_OUT_NORM: ( "encoder.layer.{bid}.output.LayerNorm", # bert + "transformer.layer.{bid}.output_layer_norm", # distillbert "encoder.layers.{bid}.norm2", # nomic-bert "transformer.decoder_layer.{bid}.rms_norm_3", # Grok "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2 @@ -825,6 +835,7 @@ class TensorNameMap: MODEL_TENSOR.CLS: ( "classifier", # jina "classifier.dense", # roberta + "pre_classifier", # distillbert ), MODEL_TENSOR.CLS_OUT: ( @@ -902,7 +913,6 @@ class TensorNameMap: MODEL_TENSOR.V_MMPROJ_FC: ( "model.connector.modality_projection.proj", # SmolVLM - "multi_modal_projector.linear_1", # llama 4 ), MODEL_TENSOR.V_MMPROJ_MLP: ( @@ -1125,6 +1135,7 @@ class TensorNameMap: MODEL_TENSOR.A_POST_NORM: ( "audio_tower.layer_norm", # ultravox + "audio_tower.ln_post", # qwen2omni ), MODEL_TENSOR.A_ENC_ATTN_Q: ( @@ -1161,12 +1172,16 @@ class TensorNameMap: "audio_tower.layers.{bid}.fc2", # ultravox ), + # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors + # this prefix is added in the conversion code in modify_tensors() + MODEL_TENSOR.A_MMPROJ: ( "audio.multi_modal_projector.linear_{bid}", # ultravox ), MODEL_TENSOR.A_MMPROJ_FC: ( "audio.multi_modal_projector.linear", # qwen2audio + "audio_tower.proj", # qwen2omni ), MODEL_TENSOR.A_MM_NORM_PRE: ( diff --git a/gguf-py/gguf/utility.py b/gguf-py/gguf/utility.py index e5251aef8c..00adcbc937 100644 --- a/gguf-py/gguf/utility.py +++ b/gguf-py/gguf/utility.py @@ -231,7 +231,7 @@ class SafetensorRemote: response.raise_for_status() # Get raw byte data - return response.content[:size] + return response.content[slice(size if size > -1 else None)] @classmethod def check_file_exist(cls, url: str) -> bool: diff --git a/gguf-py/pyproject.toml b/gguf-py/pyproject.toml index bb9b86ace7..f11351cba1 100644 --- a/gguf-py/pyproject.toml +++ b/gguf-py/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "gguf" -version = "0.16.3" +version = "0.17.0" description = "Read and write ML models in GGUF for GGML" authors = ["GGML "] packages = [ diff --git a/include/llama.h b/include/llama.h index 01762bea2b..015a57898e 100644 --- a/include/llama.h +++ b/include/llama.h @@ -61,7 +61,10 @@ extern "C" { struct llama_model; struct llama_context; struct llama_sampler; - struct llama_kv_cache; + + typedef struct llama_memory_i * llama_memory_t; + + struct llama_kv_cache; // DEPRECATED (use llama_memory instead) typedef int32_t llama_pos; typedef int32_t llama_token; @@ -259,9 +262,9 @@ extern "C" { llama_token * token; float * embd; llama_pos * pos; - int32_t * n_seq_id; - llama_seq_id ** seq_id; - int8_t * logits; // TODO: rename this to "output" + int32_t * n_seq_id; // TODO: remove, should belong to only 1 sequence + llama_seq_id ** seq_id; // TODO: become llama_seq_id * seq_id; + int8_t * logits; // TODO: rename this to "output" } llama_batch; enum llama_model_kv_override_type { @@ -366,6 +369,8 @@ extern "C" { bool no_perf; // measure performance timings bool op_offload; // offload host tensor operations to device bool swa_full; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055) + // NOTE: setting to false when n_seq_max > 1 can cause bad performance in some cases + // ref: https://github.com/ggml-org/llama.cpp/pull/13845#issuecomment-2924800573 }; // model quantization parameters @@ -491,9 +496,11 @@ extern "C" { DEPRECATED(LLAMA_API int32_t llama_n_vocab (const struct llama_vocab * vocab), "use llama_vocab_n_tokens instead"); LLAMA_API const struct llama_model * llama_get_model (const struct llama_context * ctx); - LLAMA_API struct llama_kv_cache * llama_get_kv_self ( struct llama_context * ctx); + LLAMA_API llama_memory_t llama_get_memory (const struct llama_context * ctx); LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx); // TODO: rename to llama_get_pooling_type + DEPRECATED(LLAMA_API struct llama_kv_cache * llama_get_kv_self(struct llama_context * ctx), "use llama_get_memory instead"); + LLAMA_API const struct llama_vocab * llama_model_get_vocab(const struct llama_model * model); LLAMA_API enum llama_rope_type llama_model_rope_type(const struct llama_model * model); @@ -502,10 +509,18 @@ extern "C" { LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model); LLAMA_API int32_t llama_model_n_head (const struct llama_model * model); LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model); + LLAMA_API int32_t llama_model_n_swa (const struct llama_model * model); // Get the model's RoPE frequency scaling factor LLAMA_API float llama_model_rope_freq_scale_train(const struct llama_model * model); + // Returns the number of classifier outputs (only valid for classifier models) + // Undefined behavior for non-classifier models + LLAMA_API uint32_t llama_model_n_cls_out(const struct llama_model * model); + + // Returns label of classifier output by index ( 1` + // p0 < 0 : [0, p1] + // p1 < 0 : [p0, inf) + LLAMA_API void llama_memory_seq_div( + llama_memory_t mem, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1, + int d); + + // Returns the smallest position present in the memory for the specified sequence + // This is typically non-zero only for SWA caches + // Note that all positions in the range [pos_min, pos_max] are guaranteed to be present in the memory + // Return -1 if the sequence is empty + LLAMA_API llama_pos llama_memory_seq_pos_min( + llama_memory_t mem, + llama_seq_id seq_id); + + // Returns the largest position present in the memory for the specified sequence + // Note that all positions in the range [pos_min, pos_max] are guaranteed to be present in the memory + // Return -1 if the sequence is empty + LLAMA_API llama_pos llama_memory_seq_pos_max( + llama_memory_t mem, + llama_seq_id seq_id); + + // Check if the memory supports shifting + LLAMA_API bool llama_memory_can_shift(llama_memory_t mem); + + // + // KV cache for self-attention (TODO: deprecate in favor of llama_memory) // // Returns the number of tokens in the KV cache (slow, use only for debug) @@ -619,93 +708,103 @@ extern "C" { "Use llama_kv_self_seq_pos_max() and llama_kv_self_seq_pos_min() instead (https://github.com/ggml-org/llama.cpp/issues/13793)"); // Clear the KV cache - both cell info is erased and KV data is zeroed - LLAMA_API void llama_kv_self_clear( - struct llama_context * ctx); + DEPRECATED(LLAMA_API void llama_kv_self_clear( + struct llama_context * ctx), + "Use llama_memory_clear() instead"); // Removes all tokens that belong to the specified sequence and have positions in [p0, p1) // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails // seq_id < 0 : match any sequence // p0 < 0 : [0, p1] // p1 < 0 : [p0, inf) - LLAMA_API bool llama_kv_self_seq_rm( + DEPRECATED(LLAMA_API bool llama_kv_self_seq_rm( struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, - llama_pos p1); + llama_pos p1), + "Use llama_memory_seq_rm() instead"); // Copy all tokens that belong to the specified sequence to another sequence // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence // p0 < 0 : [0, p1] // p1 < 0 : [p0, inf) - LLAMA_API void llama_kv_self_seq_cp( + DEPRECATED(LLAMA_API void llama_kv_self_seq_cp( struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, - llama_pos p1); + llama_pos p1), + "Use llama_memory_seq_cp() instead"); // Removes all tokens that do not belong to the specified sequence - LLAMA_API void llama_kv_self_seq_keep( + DEPRECATED(LLAMA_API void llama_kv_self_seq_keep( struct llama_context * ctx, - llama_seq_id seq_id); + llama_seq_id seq_id), + "Use llama_memory_seq_keep() instead"); // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1) // If the KV cache is RoPEd, the KV data is updated accordingly: // - lazily on next llama_decode() - // - explicitly with llama_kv_self_update() // p0 < 0 : [0, p1] // p1 < 0 : [p0, inf) - LLAMA_API void llama_kv_self_seq_add( + DEPRECATED(LLAMA_API void llama_kv_self_seq_add( struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, - llama_pos delta); + llama_pos delta), + "Use llama_memory_seq_add() instead"); // Integer division of the positions by factor of `d > 1` // If the KV cache is RoPEd, the KV data is updated accordingly: // - lazily on next llama_decode() - // - explicitly with llama_kv_self_update() // p0 < 0 : [0, p1] // p1 < 0 : [p0, inf) - LLAMA_API void llama_kv_self_seq_div( + DEPRECATED(void llama_kv_self_seq_div( struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, - int d); + int d), + "Use llama_memory_seq_div() instead"); // Returns the smallest position present in the KV cache for the specified sequence // This is typically non-zero only for SWA caches + // Note that all positions in the range [pos_min, pos_max] are guaranteed to be present in the KV cache // Return -1 if the sequence is empty - LLAMA_API llama_pos llama_kv_self_seq_pos_min( + DEPRECATED(LLAMA_API llama_pos llama_kv_self_seq_pos_min( struct llama_context * ctx, - llama_seq_id seq_id); + llama_seq_id seq_id), + "Use llama_memory_seq_pos_min() instead"); // Returns the largest position present in the KV cache for the specified sequence + // Note that all positions in the range [pos_min, pos_max] are guaranteed to be present in the KV cache // Return -1 if the sequence is empty - LLAMA_API llama_pos llama_kv_self_seq_pos_max( + DEPRECATED(LLAMA_API llama_pos llama_kv_self_seq_pos_max( struct llama_context * ctx, - llama_seq_id seq_id); + llama_seq_id seq_id), + "Use llama_memory_seq_pos_max() instead"); // Defragment the KV cache // This will be applied: // - lazily on next llama_decode() - // - explicitly with llama_kv_self_update() - LLAMA_API void llama_kv_self_defrag(struct llama_context * ctx); + DEPRECATED(LLAMA_API void llama_kv_self_defrag(struct llama_context * ctx), + "simply remove this call, the context will automatically decide when to do a defragmentation based on 'defrag_thold'"); // Check if the context supports KV cache shifting - LLAMA_API bool llama_kv_self_can_shift(const struct llama_context * ctx); + DEPRECATED(LLAMA_API bool llama_kv_self_can_shift(const struct llama_context * ctx), + "use llama_memory_can_shift() instead"); // Apply the KV cache updates (such as K-shifts, defragmentation, etc.) - LLAMA_API void llama_kv_self_update(struct llama_context * ctx); + DEPRECATED(LLAMA_API void llama_kv_self_update(struct llama_context * ctx), + "simply remove this call, updates are applied lazily on the next llama_decode()"); // // State / sessions // // Returns the *actual* size in bytes of the state - // (logits, embedding and kv_cache) + // (logits, embedding and memory) // Only use when saving the state, not when restoring it, otherwise the size may be too small. LLAMA_API size_t llama_state_get_size(struct llama_context * ctx); LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx), @@ -761,12 +860,12 @@ extern "C" { size_t n_token_count), "use llama_state_save_file instead"); - // Get the exact size needed to copy the KV cache of a single sequence + // Get the exact size needed to copy the state of a single sequence LLAMA_API size_t llama_state_seq_get_size( struct llama_context * ctx, llama_seq_id seq_id); - // Copy the KV cache of a single sequence into the specified buffer + // Copy the state of a single sequence into the specified buffer LLAMA_API size_t llama_state_seq_get_data( struct llama_context * ctx, uint8_t * dst, @@ -832,16 +931,16 @@ extern "C" { // For encode-decoder contexts, processes the batch using the encoder. // Can store the encoder output internally for later use by the decoder's cross-attention layers. // 0 - success - // < 0 - error. the KV cache state is restored to the state before this call + // < 0 - error. the memory state is restored to the state before this call LLAMA_API int32_t llama_encode( struct llama_context * ctx, struct llama_batch batch); // Process a batch of tokens. - // Requires KV cache. + // Requires the context to have a memory. // For encode-decoder contexts, processes the batch using the decoder. // Positive return values does not mean a fatal error, but rather a warning. - // Upon non-zero return values, the KV cache state is restored to the state before this call + // Upon non-zero return values, the memory state is restored to the state before this call // 0 - success // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context) // 2 - aborted @@ -912,7 +1011,7 @@ extern "C" { // Get the embeddings for a sequence id // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE - // when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[1] with the rank of the sequence + // when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[n_cls_out] with the rank(s) of the sequence // otherwise: float[n_embd] (1-dimensional) LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id); diff --git a/models/ggml-vocab-bert-bge.gguf.inp b/models/ggml-vocab-bert-bge.gguf.inp index 9baf7d77ae..86b934e402 100644 --- a/models/ggml-vocab-bert-bge.gguf.inp +++ b/models/ggml-vocab-bert-bge.gguf.inp @@ -1,6 +1,6 @@ ied 4 ½ months __ggml_vocab_test__ -Führer +Äpfel __ggml_vocab_test__ __ggml_vocab_test__ diff --git a/models/ggml-vocab-bert-bge.gguf.out b/models/ggml-vocab-bert-bge.gguf.out index a62566ce75..b1c49672fa 100644 --- a/models/ggml-vocab-bert-bge.gguf.out +++ b/models/ggml-vocab-bert-bge.gguf.out @@ -1,5 +1,5 @@ 29464 2094 1018 1092 2706 - 11865 17875 + 9706 7959 2140 diff --git a/models/ggml-vocab-chameleon.gguf.inp b/models/ggml-vocab-chameleon.gguf.inp deleted file mode 100644 index 9baf7d77ae..0000000000 --- a/models/ggml-vocab-chameleon.gguf.inp +++ /dev/null @@ -1,112 +0,0 @@ -ied 4 ½ months -__ggml_vocab_test__ -Führer -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - - -__ggml_vocab_test__ - - - -__ggml_vocab_test__ - - - - -__ggml_vocab_test__ - - -__ggml_vocab_test__ -Hello world -__ggml_vocab_test__ - Hello world -__ggml_vocab_test__ -Hello World -__ggml_vocab_test__ - Hello World -__ggml_vocab_test__ - Hello World! -__ggml_vocab_test__ -Hello, world! -__ggml_vocab_test__ - Hello, world! -__ggml_vocab_test__ - this is 🦙.cpp -__ggml_vocab_test__ -w048 7tuijk dsdfhu -__ggml_vocab_test__ -нещо на Български -__ggml_vocab_test__ -កាន់តែពិសេសអាចខលចេញ -__ggml_vocab_test__ -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) -__ggml_vocab_test__ -Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello - Hello -__ggml_vocab_test__ - ( -__ggml_vocab_test__ - - = -__ggml_vocab_test__ -' era -__ggml_vocab_test__ -Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ -__ggml_vocab_test__ -!!!!!! -__ggml_vocab_test__ -3 -__ggml_vocab_test__ -33 -__ggml_vocab_test__ -333 -__ggml_vocab_test__ -3333 -__ggml_vocab_test__ -33333 -__ggml_vocab_test__ -333333 -__ggml_vocab_test__ -3333333 -__ggml_vocab_test__ -33333333 -__ggml_vocab_test__ -333333333 -__ggml_vocab_test__ -Cửa Việt -__ggml_vocab_test__ - discards -__ggml_vocab_test__ - - - - - - - - - - - -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL -__ggml_vocab_test__ diff --git a/models/ggml-vocab-chameleon.gguf.out b/models/ggml-vocab-chameleon.gguf.out deleted file mode 100644 index 7c5413fee0..0000000000 --- a/models/ggml-vocab-chameleon.gguf.out +++ /dev/null @@ -1,46 +0,0 @@ - 17245 16604 16403 16604 33583 18355 - 16421 51153 - - 16604 - 16650 - 16650 16604 - 16581 - 16582 - 16582 16582 - 16582 16582 16582 - 16581 16582 - 31596 17394 - 34926 17394 - 31596 18671 - 34926 18671 - 34926 18671 16384 - 31596 16395 17394 16384 - 34926 16395 17394 16384 - 16811 16704 20410 16483 16631 16397 52854 - 16470 16399 16403 16407 16604 16406 35764 38185 51595 22592 26639 - 29479 23955 17012 20103 25527 27670 17408 19005 21473 24774 - 54254 42231 48084 29409 16617 61889 29409 16608 21954 16628 21954 16499 58445 29409 16607 58445 21954 16479 42231 21954 16611 21954 16607 21954 16633 21954 16611 29409 16607 21954 16615 - 52351 16604 16391 25825 16392 23686 16498 39161 18885 16618 16488 30853 16604 16391 54124 17153 25134 16656 18476 26169 16895 16392 62193 16611 16604 16391 24664 17153 57169 16721 16872 17073 17304 28729 16392 - 31596 - 34926 - 16650 31596 - 16650 34926 - 16696 31596 - 16696 31596 16582 16696 31596 - 16604 16391 - 16582 16604 16412 - 16390 22623 - 31596 16395 16712 16390 16828 16384 17674 16769 16732 23686 16607 16604 16414 24427 16623 41809 16495 28999 36469 45292 30197 16400 16402 16400 16403 16400 16404 16400 43969 65211 16636 - 16384 16384 16384 16384 16384 16384 - 16402 - 16402 16402 - 16402 16402 16402 - 16402 16402 16402 16402 - 16402 16402 16402 16402 16402 - 16402 16402 16402 16402 16402 16402 - 16402 16402 16402 16402 16402 16402 16402 - 16402 16402 16402 16402 16402 16402 16402 16402 - 16402 16402 16402 16402 16402 16402 16402 16402 16402 - 16418 19038 16639 16448 24315 33727 16467 - 18765 17981 - 16582 16604 16582 16582 16604 16582 16582 16582 16604 16581 16604 16581 16581 16604 16581 16582 16650 16582 16650 16604 16582 16696 16582 16696 16604 16582 52351 16604 16391 25825 16392 23686 16498 39161 18885 16618 16488 30853 16604 16391 54124 17153 25134 16656 18476 26169 16895 16392 62193 16611 20410 16483 16631 18885 16483 16631 16604 16402 16604 16402 16402 16604 16402 16402 16402 16604 16402 16402 16402 16402 16604 16402 16402 16402 16402 16402 16604 16402 16402 16402 16402 16402 16402 16604 16402 16402 16402 16402 16402 16402 16402 16604 16402 16402 16402 16402 16402 16402 16402 16402 16604 16402 16397 16402 16604 16402 16397 16397 16402 16604 16402 16397 16397 16397 16402 16604 54254 42231 48084 29409 16617 61889 29409 16608 21954 16628 21954 16499 58445 29409 16607 58445 21954 16479 42231 21954 16611 27683 16607 16604 16414 24427 16623 41809 16495 28999 36469 45292 30197 16400 16402 16400 16403 16400 16404 16400 43969 65211 16636 16604 16396 16396 16396 16396 16396 16396 16412 16412 16412 16412 16412 16412 16412 27268 23955 17012 20103 25527 27670 17408 19005 21473 24774 16604 16390 16390 16390 16390 16390 16390 16447 16447 16447 16447 16447 16447 16447 16385 16385 16385 16385 16397 16397 16397 16397 16397 16397 16384 16384 16384 16384 16384 16384 16414 16414 16414 16414 16414 16414 16687 16390 16690 16992 16604 16390 61797 16733 16390 16466 16986 16395 16604 16390 17879 16732 17811 16414 16604 16390 16428 16804 17811 16687 16390 16683 17190 16728 16395 16604 16390 16419 16732 16945 16991 25251 16414 17119 16390 38127 16641 16390 16459 16427 diff --git a/models/ggml-vocab-command-r.gguf.inp b/models/ggml-vocab-command-r.gguf.inp index 9baf7d77ae..86b934e402 100644 --- a/models/ggml-vocab-command-r.gguf.inp +++ b/models/ggml-vocab-command-r.gguf.inp @@ -1,6 +1,6 @@ ied 4 ½ months __ggml_vocab_test__ -Führer +Äpfel __ggml_vocab_test__ __ggml_vocab_test__ diff --git a/models/ggml-vocab-command-r.gguf.out b/models/ggml-vocab-command-r.gguf.out index 3f6b418888..0e3af72eb1 100644 --- a/models/ggml-vocab-command-r.gguf.out +++ b/models/ggml-vocab-command-r.gguf.out @@ -1,5 +1,5 @@ 2536 228 27 228 22957 6983 - 45 193433 + 90711 87 20910 228 1667 diff --git a/models/ggml-vocab-deepseek-coder.gguf.inp b/models/ggml-vocab-deepseek-coder.gguf.inp index 9baf7d77ae..86b934e402 100644 --- a/models/ggml-vocab-deepseek-coder.gguf.inp +++ b/models/ggml-vocab-deepseek-coder.gguf.inp @@ -1,6 +1,6 @@ ied 4 ½ months __ggml_vocab_test__ -Führer +Äpfel __ggml_vocab_test__ __ggml_vocab_test__ diff --git a/models/ggml-vocab-deepseek-coder.gguf.out b/models/ggml-vocab-deepseek-coder.gguf.out index 52c4111a18..ef6bc5b8a3 100644 --- a/models/ggml-vocab-deepseek-coder.gguf.out +++ b/models/ggml-vocab-deepseek-coder.gguf.out @@ -1,5 +1,5 @@ 1050 207 19 207 19192 4217 - 37 32009 71 6247 + 125 213 26862 282 207 243 diff --git a/models/ggml-vocab-deepseek-llm.gguf.inp b/models/ggml-vocab-deepseek-llm.gguf.inp index 9baf7d77ae..86b934e402 100644 --- a/models/ggml-vocab-deepseek-llm.gguf.inp +++ b/models/ggml-vocab-deepseek-llm.gguf.inp @@ -1,6 +1,6 @@ ied 4 ½ months __ggml_vocab_test__ -Führer +Äpfel __ggml_vocab_test__ __ggml_vocab_test__ diff --git a/models/ggml-vocab-deepseek-llm.gguf.out b/models/ggml-vocab-deepseek-llm.gguf.out index 0191b7a115..f9d49c9afe 100644 --- a/models/ggml-vocab-deepseek-llm.gguf.out +++ b/models/ggml-vocab-deepseek-llm.gguf.out @@ -1,5 +1,5 @@ 1052 207 19 207 19109 4223 - 37 100014 71 6245 + 82077 26723 282 207 243 diff --git a/models/ggml-vocab-deepseek-r1-qwen.gguf.inp b/models/ggml-vocab-deepseek-r1-qwen.gguf.inp deleted file mode 100644 index 9baf7d77ae..0000000000 --- a/models/ggml-vocab-deepseek-r1-qwen.gguf.inp +++ /dev/null @@ -1,112 +0,0 @@ -ied 4 ½ months -__ggml_vocab_test__ -Führer -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - - -__ggml_vocab_test__ - - - -__ggml_vocab_test__ - - - - -__ggml_vocab_test__ - - -__ggml_vocab_test__ -Hello world -__ggml_vocab_test__ - Hello world -__ggml_vocab_test__ -Hello World -__ggml_vocab_test__ - Hello World -__ggml_vocab_test__ - Hello World! -__ggml_vocab_test__ -Hello, world! -__ggml_vocab_test__ - Hello, world! -__ggml_vocab_test__ - this is 🦙.cpp -__ggml_vocab_test__ -w048 7tuijk dsdfhu -__ggml_vocab_test__ -нещо на Български -__ggml_vocab_test__ -កាន់តែពិសេសអាចខលចេញ -__ggml_vocab_test__ -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) -__ggml_vocab_test__ -Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello - Hello -__ggml_vocab_test__ - ( -__ggml_vocab_test__ - - = -__ggml_vocab_test__ -' era -__ggml_vocab_test__ -Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ -__ggml_vocab_test__ -!!!!!! -__ggml_vocab_test__ -3 -__ggml_vocab_test__ -33 -__ggml_vocab_test__ -333 -__ggml_vocab_test__ -3333 -__ggml_vocab_test__ -33333 -__ggml_vocab_test__ -333333 -__ggml_vocab_test__ -3333333 -__ggml_vocab_test__ -33333333 -__ggml_vocab_test__ -333333333 -__ggml_vocab_test__ -Cửa Việt -__ggml_vocab_test__ - discards -__ggml_vocab_test__ - - - - - - - - - - - -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL -__ggml_vocab_test__ diff --git a/models/ggml-vocab-deepseek-r1-qwen.gguf.out b/models/ggml-vocab-deepseek-r1-qwen.gguf.out deleted file mode 100644 index 18b4b45cd1..0000000000 --- a/models/ggml-vocab-deepseek-r1-qwen.gguf.out +++ /dev/null @@ -1,46 +0,0 @@ - 1122 220 19 220 26062 3951 - 37 50753 261 - - 220 - 256 - 262 - 197 - 198 - 271 - 1406 - 1572 - 9707 1879 - 21927 1879 - 9707 4337 - 21927 4337 - 21927 4337 0 - 9707 11 1879 0 - 21927 11 1879 0 - 419 374 11162 99 247 13 10821 - 86 15 19 23 220 22 83 1963 41808 11472 2940 16739 - 78762 14144 1456 13073 63471 33594 3038 133178 79012 - 146394 97529 241 44258 233 146568 44258 224 147603 20879 115 146280 44258 223 146280 147272 97529 227 147805 148301 147270 44258 223 146848 - 145836 320 8252 8 26525 114 378 235 149921 30543 320 35673 99066 97534 8 25521 227 320 3243 42365 429 702 1181 1828 3950 8 - 9707 - 21927 - 220 21927 - 256 21927 - 262 21927 - 262 21927 198 262 21927 - 320 - 198 284 - 6 11385 - 9707 11 379 64848 0 2585 525 498 26525 223 937 104100 18493 22377 99257 16 18 16 19 16 20 16 35727 21216 - 17085 2928 - 18 - 18 18 - 18 18 18 - 18 18 18 18 - 18 18 18 18 18 - 18 18 18 18 18 18 - 18 18 18 18 18 18 18 - 18 18 18 18 18 18 18 18 - 18 18 18 18 18 18 18 18 18 - 34 90063 128324 - 2560 2347 - 198 4710 14731 65497 7847 1572 2303 78672 10947 145836 320 8252 8 26525 114 378 235 149921 30543 320 35673 99066 97534 8 25521 227 11162 99 247 149955 220 18 220 18 18 220 18 18 18 220 18 18 18 18 220 18 18 18 18 18 220 18 18 18 18 18 18 220 18 18 18 18 18 18 18 220 18 18 18 18 18 18 18 18 220 18 13 18 220 18 496 18 220 18 1112 18 220 146394 97529 241 44258 233 146568 44258 224 147603 20879 115 146280 44258 223 146280 147272 97529 227 144534 937 104100 18493 22377 99257 16 18 16 19 16 20 16 35727 21216 55460 53237 18658 14144 1456 13073 63471 33594 3038 133178 79012 3355 4605 4605 13874 13874 73594 3014 3014 28149 17085 2928 26610 7646 358 3003 1012 364 83 813 566 594 1052 11 364 787 498 2704 30 364 44 537 2704 358 3278 1281 432 11 364 35 498 1075 1045 15243 30 1205 6 42612 264 63866 43 diff --git a/models/ggml-vocab-falcon.gguf.inp b/models/ggml-vocab-falcon.gguf.inp index 9baf7d77ae..86b934e402 100644 --- a/models/ggml-vocab-falcon.gguf.inp +++ b/models/ggml-vocab-falcon.gguf.inp @@ -1,6 +1,6 @@ ied 4 ½ months __ggml_vocab_test__ -Führer +Äpfel __ggml_vocab_test__ __ggml_vocab_test__ diff --git a/models/ggml-vocab-falcon.gguf.out b/models/ggml-vocab-falcon.gguf.out index 64a48d97f7..6319de60e2 100644 --- a/models/ggml-vocab-falcon.gguf.out +++ b/models/ggml-vocab-falcon.gguf.out @@ -1,5 +1,5 @@ 878 204 31 3068 133 2137 - 28611 132 30042 + 34502 18614 286 204 258 diff --git a/models/ggml-vocab-gpt-2.gguf.inp b/models/ggml-vocab-gpt-2.gguf.inp index 9baf7d77ae..86b934e402 100644 --- a/models/ggml-vocab-gpt-2.gguf.inp +++ b/models/ggml-vocab-gpt-2.gguf.inp @@ -1,6 +1,6 @@ ied 4 ½ months __ggml_vocab_test__ -Führer +Äpfel __ggml_vocab_test__ __ggml_vocab_test__ diff --git a/models/ggml-vocab-gpt-2.gguf.out b/models/ggml-vocab-gpt-2.gguf.out index 17a13bdfc3..6464ded3d2 100644 --- a/models/ggml-vocab-gpt-2.gguf.out +++ b/models/ggml-vocab-gpt-2.gguf.out @@ -1,5 +1,5 @@ 798 604 25208 1933 - 37 9116 71 11751 + 127 226 79 69 417 220 220 220 diff --git a/models/ggml-vocab-gpt-4o.gguf.inp b/models/ggml-vocab-gpt-4o.gguf.inp deleted file mode 100644 index 9baf7d77ae..0000000000 --- a/models/ggml-vocab-gpt-4o.gguf.inp +++ /dev/null @@ -1,112 +0,0 @@ -ied 4 ½ months -__ggml_vocab_test__ -Führer -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - - -__ggml_vocab_test__ - - - -__ggml_vocab_test__ - - - - -__ggml_vocab_test__ - - -__ggml_vocab_test__ -Hello world -__ggml_vocab_test__ - Hello world -__ggml_vocab_test__ -Hello World -__ggml_vocab_test__ - Hello World -__ggml_vocab_test__ - Hello World! -__ggml_vocab_test__ -Hello, world! -__ggml_vocab_test__ - Hello, world! -__ggml_vocab_test__ - this is 🦙.cpp -__ggml_vocab_test__ -w048 7tuijk dsdfhu -__ggml_vocab_test__ -нещо на Български -__ggml_vocab_test__ -កាន់តែពិសេសអាចខលចេញ -__ggml_vocab_test__ -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) -__ggml_vocab_test__ -Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello - Hello -__ggml_vocab_test__ - ( -__ggml_vocab_test__ - - = -__ggml_vocab_test__ -' era -__ggml_vocab_test__ -Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ -__ggml_vocab_test__ -!!!!!! -__ggml_vocab_test__ -3 -__ggml_vocab_test__ -33 -__ggml_vocab_test__ -333 -__ggml_vocab_test__ -3333 -__ggml_vocab_test__ -33333 -__ggml_vocab_test__ -333333 -__ggml_vocab_test__ -3333333 -__ggml_vocab_test__ -33333333 -__ggml_vocab_test__ -333333333 -__ggml_vocab_test__ -Cửa Việt -__ggml_vocab_test__ - discards -__ggml_vocab_test__ - - - - - - - - - - - -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL -__ggml_vocab_test__ diff --git a/models/ggml-vocab-gpt-4o.gguf.out b/models/ggml-vocab-gpt-4o.gguf.out deleted file mode 100644 index 478df726fa..0000000000 --- a/models/ggml-vocab-gpt-4o.gguf.out +++ /dev/null @@ -1,46 +0,0 @@ - 1165 220 19 220 27124 5503 - 37 19194 259 - - 220 - 256 - 271 - 197 - 198 - 279 - 2499 - 2775 - 13225 2375 - 32949 2375 - 13225 5922 - 32949 5922 - 32949 5922 0 - 13225 11 2375 0 - 32949 11 2375 0 - 495 382 9552 99 247 13 17159 - 86 45404 220 22 10191 2852 22924 4750 6916 - 3907 53641 1235 185386 8118 - 11400 107516 15867 20804 22851 134178 77431 32010 104312 37984 16329 27751 89335 - 112927 222 350 14559 8 22861 114 2524 64364 104 15148 350 76466 166700 121942 780 8 91349 350 7393 74471 484 853 1617 2316 6602 8 - 13225 - 32949 - 220 32949 - 256 32949 - 271 32949 - 271 32949 198 271 32949 - 350 - 198 314 - 6 6837 - 13225 11 342 70653 0 3253 553 481 22861 223 1423 7522 18165 2178 34058 22369 16412 32999 16 867 8208 - 147475 - 18 - 2546 - 15517 - 15517 18 - 15517 2546 - 15517 15517 - 15517 15517 18 - 15517 15517 2546 - 15517 15517 15517 - 34 60213 53904 - 2960 3098 - 126470 25980 160432 16609 2775 4066 172261 19432 112927 222 350 14559 8 22861 114 2524 64364 104 15148 350 76466 166700 121942 780 8 91349 9552 99 247 4103 99 247 220 18 220 2546 220 15517 220 15517 18 220 15517 2546 220 15517 15517 220 15517 15517 18 220 15517 15517 2546 220 18 13 18 220 18 485 18 220 18 1008 18 44735 107516 15867 20804 22851 134178 77431 32010 104312 156437 1423 7522 18165 2178 34058 22369 16412 32999 16 867 8208 105024 106657 1967 53641 1235 185386 8118 22434 39336 26178 26178 168394 194663 27271 147475 25883 6961 9790 1339 461 83 1280 19016 1354 11 461 1099 481 3239 30 461 44 625 3239 17291 1520 480 11 461 35 481 1299 1236 17966 30 1416 6 27493 261 54602 43 diff --git a/models/ggml-vocab-llama-bpe.gguf.inp b/models/ggml-vocab-llama-bpe.gguf.inp index 9baf7d77ae..86b934e402 100644 --- a/models/ggml-vocab-llama-bpe.gguf.inp +++ b/models/ggml-vocab-llama-bpe.gguf.inp @@ -1,6 +1,6 @@ ied 4 ½ months __ggml_vocab_test__ -Führer +Äpfel __ggml_vocab_test__ __ggml_vocab_test__ diff --git a/models/ggml-vocab-llama-bpe.gguf.out b/models/ggml-vocab-llama-bpe.gguf.out index 4b35cf93f7..a77376625a 100644 --- a/models/ggml-vocab-llama-bpe.gguf.out +++ b/models/ggml-vocab-llama-bpe.gguf.out @@ -1,5 +1,5 @@ 1142 220 19 220 27154 4038 - 37 51853 261 + 88075 16276 301 220 256 diff --git a/models/ggml-vocab-llama-spm.gguf.inp b/models/ggml-vocab-llama-spm.gguf.inp index 9baf7d77ae..86b934e402 100644 --- a/models/ggml-vocab-llama-spm.gguf.inp +++ b/models/ggml-vocab-llama-spm.gguf.inp @@ -1,6 +1,6 @@ ied 4 ½ months __ggml_vocab_test__ -Führer +Äpfel __ggml_vocab_test__ __ggml_vocab_test__ diff --git a/models/ggml-vocab-llama-spm.gguf.out b/models/ggml-vocab-llama-spm.gguf.out index 93aacf8bae..2a71a6ef86 100644 --- a/models/ggml-vocab-llama-spm.gguf.out +++ b/models/ggml-vocab-llama-spm.gguf.out @@ -1,5 +1,5 @@ 474 287 29871 29946 29871 30226 7378 - 383 4000 261 + 11585 7810 295 259 1678 diff --git a/models/ggml-vocab-llama4.gguf.inp b/models/ggml-vocab-llama4.gguf.inp deleted file mode 100644 index 9baf7d77ae..0000000000 --- a/models/ggml-vocab-llama4.gguf.inp +++ /dev/null @@ -1,112 +0,0 @@ -ied 4 ½ months -__ggml_vocab_test__ -Führer -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - - -__ggml_vocab_test__ - - - -__ggml_vocab_test__ - - - - -__ggml_vocab_test__ - - -__ggml_vocab_test__ -Hello world -__ggml_vocab_test__ - Hello world -__ggml_vocab_test__ -Hello World -__ggml_vocab_test__ - Hello World -__ggml_vocab_test__ - Hello World! -__ggml_vocab_test__ -Hello, world! -__ggml_vocab_test__ - Hello, world! -__ggml_vocab_test__ - this is 🦙.cpp -__ggml_vocab_test__ -w048 7tuijk dsdfhu -__ggml_vocab_test__ -нещо на Български -__ggml_vocab_test__ -កាន់តែពិសេសអាចខលចេញ -__ggml_vocab_test__ -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) -__ggml_vocab_test__ -Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello - Hello -__ggml_vocab_test__ - ( -__ggml_vocab_test__ - - = -__ggml_vocab_test__ -' era -__ggml_vocab_test__ -Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ -__ggml_vocab_test__ -!!!!!! -__ggml_vocab_test__ -3 -__ggml_vocab_test__ -33 -__ggml_vocab_test__ -333 -__ggml_vocab_test__ -3333 -__ggml_vocab_test__ -33333 -__ggml_vocab_test__ -333333 -__ggml_vocab_test__ -3333333 -__ggml_vocab_test__ -33333333 -__ggml_vocab_test__ -333333333 -__ggml_vocab_test__ -Cửa Việt -__ggml_vocab_test__ - discards -__ggml_vocab_test__ - - - - - - - - - - - -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL -__ggml_vocab_test__ diff --git a/models/ggml-vocab-llama4.gguf.out b/models/ggml-vocab-llama4.gguf.out deleted file mode 100644 index 7ca46ce597..0000000000 --- a/models/ggml-vocab-llama4.gguf.out +++ /dev/null @@ -1,46 +0,0 @@ - 1190 220 32 220 18215 7112 - 50 16800 258 - - 220 - 256 - 277 - 197 - 198 - 368 - 2946 - 3271 - 19873 3817 - 39715 3817 - 19873 7353 - 39715 7353 - 39715 7353 13 - 19873 24 3817 13 - 39715 24 3817 13 - 544 373 9522 112 247 26 36315 - 99 39923 220 35 9607 21498 21470 3679 9433 - 1595 7653 633 79829 34051 1636 - 8755 102595 115960 21125 148305 96819 102816 39048 14105 22528 160234 - 114590 222 330 14879 21 51358 127 12817 93293 117 24204 330 68239 881 120327 170428 21 89101 330 7384 88230 511 947 1492 3742 7233 21 - 19873 - 39715 - 220 39715 - 256 39715 - 277 39715 - 277 39715 198 277 39715 - 330 - 198 319 - 19 7359 - 19873 24 386 87799 13 2403 583 650 51358 223 1663 155736 1522 42056 7544 13336 28785 29 4412 20645 - 17931 4959 - 31 - 1922 - 12325 - 12325 31 - 12325 1922 - 12325 12325 - 12325 12325 31 - 12325 12325 1922 - 12325 12325 12325 - 47 19811 12077 - 3260 3579 - 198 7283 51499 191231 20192 3271 3322 9287 2143 17860 114590 222 330 14879 21 51358 127 12817 93293 117 24204 330 68239 881 120327 170428 21 89101 9522 112 247 172394 247 220 31 220 1922 220 12325 220 12325 31 220 12325 1922 220 12325 12325 220 12325 12325 31 220 12325 12325 1922 220 31 26 31 220 31 396 31 220 31 1043 31 117131 102595 115960 21125 148305 96819 102816 80883 223 1663 155736 1522 42056 7544 13336 28785 29 4412 20645 79745 150278 117079 633 79829 34051 1636 25611 41990 109428 1488 91054 24072 17931 4959 29795 9296 16517 1806 481 96 1386 36633 1609 24 481 1109 650 5074 43 481 57 702 5074 27088 2170 536 24 481 48 650 1933 1696 30262 43 1665 19 32818 262 27236 56 diff --git a/models/ggml-vocab-mpt.gguf.inp b/models/ggml-vocab-mpt.gguf.inp index 9baf7d77ae..86b934e402 100644 --- a/models/ggml-vocab-mpt.gguf.inp +++ b/models/ggml-vocab-mpt.gguf.inp @@ -1,6 +1,6 @@ ied 4 ½ months __ggml_vocab_test__ -Führer +Äpfel __ggml_vocab_test__ __ggml_vocab_test__ diff --git a/models/ggml-vocab-mpt.gguf.out b/models/ggml-vocab-mpt.gguf.out index 372c751bf7..ca62669ad0 100644 --- a/models/ggml-vocab-mpt.gguf.out +++ b/models/ggml-vocab-mpt.gguf.out @@ -1,5 +1,5 @@ 728 577 24142 2607 - 39 26288 6554 + 37515 18569 293 209 50276 diff --git a/models/ggml-vocab-nomic-bert-moe.gguf.inp b/models/ggml-vocab-nomic-bert-moe.gguf.inp deleted file mode 100644 index 9baf7d77ae..0000000000 --- a/models/ggml-vocab-nomic-bert-moe.gguf.inp +++ /dev/null @@ -1,112 +0,0 @@ -ied 4 ½ months -__ggml_vocab_test__ -Führer -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - - -__ggml_vocab_test__ - - - -__ggml_vocab_test__ - - - - -__ggml_vocab_test__ - - -__ggml_vocab_test__ -Hello world -__ggml_vocab_test__ - Hello world -__ggml_vocab_test__ -Hello World -__ggml_vocab_test__ - Hello World -__ggml_vocab_test__ - Hello World! -__ggml_vocab_test__ -Hello, world! -__ggml_vocab_test__ - Hello, world! -__ggml_vocab_test__ - this is 🦙.cpp -__ggml_vocab_test__ -w048 7tuijk dsdfhu -__ggml_vocab_test__ -нещо на Български -__ggml_vocab_test__ -កាន់តែពិសេសអាចខលចេញ -__ggml_vocab_test__ -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) -__ggml_vocab_test__ -Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello - Hello -__ggml_vocab_test__ - ( -__ggml_vocab_test__ - - = -__ggml_vocab_test__ -' era -__ggml_vocab_test__ -Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ -__ggml_vocab_test__ -!!!!!! -__ggml_vocab_test__ -3 -__ggml_vocab_test__ -33 -__ggml_vocab_test__ -333 -__ggml_vocab_test__ -3333 -__ggml_vocab_test__ -33333 -__ggml_vocab_test__ -333333 -__ggml_vocab_test__ -3333333 -__ggml_vocab_test__ -33333333 -__ggml_vocab_test__ -333333333 -__ggml_vocab_test__ -Cửa Việt -__ggml_vocab_test__ - discards -__ggml_vocab_test__ - - - - - - - - - - - -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL -__ggml_vocab_test__ diff --git a/models/ggml-vocab-nomic-bert-moe.gguf.out b/models/ggml-vocab-nomic-bert-moe.gguf.out deleted file mode 100644 index c31c61092c..0000000000 --- a/models/ggml-vocab-nomic-bert-moe.gguf.out +++ /dev/null @@ -1,46 +0,0 @@ - 17 297 201 78660 21775 - 72805 4097 56 - - - - - - - - - - 35378 8999 - 35378 8999 - 35378 6661 - 35378 6661 - 35378 6661 38 - 35378 4 8999 38 - 35378 4 8999 38 - 903 83 6 3 5 238 6366 - 148 7709 1019 361 458 134362 104 7 71 420 1132 - 14271 29 117152 - 6 149561 78270 48967 64254 7616 81705 - 6 247206 15 33176 16 6 247442 6 3 15755 15 144227 8705 18255 40292 158 4460 33 27686 16 6 142325 15 191 538 28 121505 450 1556 6863 10002 47 1098 16 - 35378 - 35378 - 35378 - 35378 - 35378 - 35378 35378 - 15 - 2203 - 242 1615 - 35378 4 113 25 5584 38 11249 621 398 6 201344 705 23638 213 9007 133 1879 2681 2592 135224 1906 6087 - 6 90827 - 138 - 3912 - 6 66000 - 138 66000 - 3912 66000 - 6 66000 66000 - 138 66000 66000 - 3912 66000 66000 - 6 66000 66000 66000 - 199152 3763 - 17116 99397 - 6 247206 15 33176 16 6 247442 6 3 15755 15 144227 8705 18255 40292 158 4460 33 27686 16 6 142325 6 3 138 3912 6 66000 138 66000 3912 66000 6 66000 66000 138 66000 66000 3912 66000 66000 80308 1031 5 363 138 27 363 6 149561 78270 48967 201344 705 23638 213 9007 133 1879 2681 2592 135224 1906 6087 6 110405 1369 69112 69112 69112 14271 29 117152 5106 4765 4765 1135 164721 164721 164721 58 58 58 58 2551 90827 32 85908 87 25 272 2809 242 18 18345 764 25 7 2685 4 242 11766 398 9077 32 242 594 959 9077 87 25 1181 3249 442 4 242 397 398 1884 3060 26156 32 1401 25 26455 10 25 141 866 diff --git a/models/ggml-vocab-phi-3.gguf.inp b/models/ggml-vocab-phi-3.gguf.inp index 9baf7d77ae..86b934e402 100644 --- a/models/ggml-vocab-phi-3.gguf.inp +++ b/models/ggml-vocab-phi-3.gguf.inp @@ -1,6 +1,6 @@ ied 4 ½ months __ggml_vocab_test__ -Führer +Äpfel __ggml_vocab_test__ __ggml_vocab_test__ diff --git a/models/ggml-vocab-phi-3.gguf.out b/models/ggml-vocab-phi-3.gguf.out index 93aacf8bae..2a71a6ef86 100644 --- a/models/ggml-vocab-phi-3.gguf.out +++ b/models/ggml-vocab-phi-3.gguf.out @@ -1,5 +1,5 @@ 474 287 29871 29946 29871 30226 7378 - 383 4000 261 + 11585 7810 295 259 1678 diff --git a/models/ggml-vocab-pixtral.gguf.inp b/models/ggml-vocab-pixtral.gguf.inp deleted file mode 100644 index 9baf7d77ae..0000000000 --- a/models/ggml-vocab-pixtral.gguf.inp +++ /dev/null @@ -1,112 +0,0 @@ -ied 4 ½ months -__ggml_vocab_test__ -Führer -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - - -__ggml_vocab_test__ - - - -__ggml_vocab_test__ - - - - -__ggml_vocab_test__ - - -__ggml_vocab_test__ -Hello world -__ggml_vocab_test__ - Hello world -__ggml_vocab_test__ -Hello World -__ggml_vocab_test__ - Hello World -__ggml_vocab_test__ - Hello World! -__ggml_vocab_test__ -Hello, world! -__ggml_vocab_test__ - Hello, world! -__ggml_vocab_test__ - this is 🦙.cpp -__ggml_vocab_test__ -w048 7tuijk dsdfhu -__ggml_vocab_test__ -нещо на Български -__ggml_vocab_test__ -កាន់តែពិសេសអាចខលចេញ -__ggml_vocab_test__ -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) -__ggml_vocab_test__ -Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello - Hello -__ggml_vocab_test__ - ( -__ggml_vocab_test__ - - = -__ggml_vocab_test__ -' era -__ggml_vocab_test__ -Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ -__ggml_vocab_test__ -!!!!!! -__ggml_vocab_test__ -3 -__ggml_vocab_test__ -33 -__ggml_vocab_test__ -333 -__ggml_vocab_test__ -3333 -__ggml_vocab_test__ -33333 -__ggml_vocab_test__ -333333 -__ggml_vocab_test__ -3333333 -__ggml_vocab_test__ -33333333 -__ggml_vocab_test__ -333333333 -__ggml_vocab_test__ -Cửa Việt -__ggml_vocab_test__ - discards -__ggml_vocab_test__ - - - - - - - - - - - -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL -__ggml_vocab_test__ diff --git a/models/ggml-vocab-pixtral.gguf.out b/models/ggml-vocab-pixtral.gguf.out deleted file mode 100644 index 53309d1bc9..0000000000 --- a/models/ggml-vocab-pixtral.gguf.out +++ /dev/null @@ -1,46 +0,0 @@ - 2014 1032 1052 1032 28504 6972 - 1070 7088 1258 - - 1032 - 1256 - 1293 - 1009 - 1010 - 1267 - 4688 - 1009 1010 - 22177 4304 - 45383 4304 - 22177 5325 - 45383 5325 - 45383 5325 1033 - 22177 1044 4304 1033 - 45383 1044 4304 1033 - 1593 1395 119685 1166 1153 1046 51228 - 1119 1048 1052 1056 1032 1055 17391 23216 30203 7785 17279 - 3337 30757 1902 4200 63073 3671 - 1225 1158 1128 1225 1158 1182 1225 1158 1147 1225 1159 1139 1225 1158 1143 1225 1159 1130 1225 1158 1150 1225 1158 1183 1225 1158 1159 1225 21359 1225 1158 1159 1225 1158 1162 1225 1158 1182 1225 1158 1133 1225 1158 1129 1225 1158 1155 1225 1158 1133 1225 21359 1225 1158 1137 - 1240 1159 1154 1128 1319 13052 1041 119685 1152 1182 29568 1240 1159 1140 1171 1239 1184 1143 1319 88181 1873 3659 1275 56421 1621 1041 126241 1133 1319 11234 1873 26303 1455 1934 2246 3754 10835 1041 - 22177 - 45383 - 1032 45383 - 1256 45383 - 1293 45383 - 1293 45383 1010 1293 45383 - 1319 - 1010 1376 - 1039 4033 - 22177 1044 1404 48054 1033 3075 1584 1636 119685 1152 1129 3082 26060 2998 63614 82278 1049 1051 1049 1052 1049 1053 1049 6434 6749 - 7290 7290 7290 - 1051 - 1051 1051 - 1051 1051 1051 - 1051 1051 1051 1051 - 1051 1051 1051 1051 1051 - 1051 1051 1051 1051 1051 1051 - 1051 1051 1051 1051 1051 1051 1051 - 1051 1051 1051 1051 1051 1051 1051 1051 - 1051 1051 1051 1051 1051 1051 1051 1051 1051 - 1067 59503 28783 - 3724 4058 - 1010 1032 1267 1032 4688 1032 17152 1458 29356 1010 1256 1010 1293 1010 1260 1010 1652 1010 1240 1159 1154 1128 1319 13052 1041 119685 1152 1182 29568 1240 1159 1140 1171 1239 1184 1143 1319 88181 1873 3659 1275 56421 1621 1041 126241 1133 119685 1166 1153 1240 1159 1166 1153 1032 1051 1032 1051 1051 1032 1051 1051 1051 1032 1051 1051 1051 1051 1032 1051 1051 1051 1051 1051 1032 1051 1051 1051 1051 1051 1051 1032 1051 1051 1051 1051 1051 1051 1051 1032 1051 1051 1051 1051 1051 1051 1051 1051 1032 1051 1046 1051 1032 1051 1791 1051 1032 1051 2880 1051 71881 1158 1128 1225 1158 1182 1225 1158 1147 1225 1159 1139 1225 1158 1143 1225 1159 1130 1225 1158 1150 1225 1158 1183 1225 1158 1159 1225 21359 1225 1158 1159 1225 1158 1162 1225 1158 1182 1225 1158 1133 1240 1159 1152 1129 3082 26060 2998 63614 82278 1049 1051 1049 1052 1049 1053 1049 6434 6749 45577 1045 6626 43555 2843 30757 1902 4200 63073 3671 14931 20040 20040 1657 1657 1975 14135 14135 83923 7290 7290 7290 45509 45509 45509 1362 6483 2151 1576 1116 2189 1514 1681 2156 1044 1576 3609 1636 5257 1063 1576 1077 1605 5257 1362 7534 3180 1494 1044 1576 1068 1636 2479 2269 26883 1063 2837 1039 45654 1261 54297 1076 diff --git a/models/ggml-vocab-qwen2.gguf.inp b/models/ggml-vocab-qwen2.gguf.inp index 9baf7d77ae..86b934e402 100644 --- a/models/ggml-vocab-qwen2.gguf.inp +++ b/models/ggml-vocab-qwen2.gguf.inp @@ -1,6 +1,6 @@ ied 4 ½ months __ggml_vocab_test__ -Führer +Äpfel __ggml_vocab_test__ __ggml_vocab_test__ diff --git a/models/ggml-vocab-qwen2.gguf.out b/models/ggml-vocab-qwen2.gguf.out index 18b4b45cd1..595d59a449 100644 --- a/models/ggml-vocab-qwen2.gguf.out +++ b/models/ggml-vocab-qwen2.gguf.out @@ -1,5 +1,5 @@ 1122 220 19 220 26062 3951 - 37 50753 261 + 86975 15897 301 220 256 diff --git a/models/ggml-vocab-refact.gguf.inp b/models/ggml-vocab-refact.gguf.inp index 9baf7d77ae..86b934e402 100644 --- a/models/ggml-vocab-refact.gguf.inp +++ b/models/ggml-vocab-refact.gguf.inp @@ -1,6 +1,6 @@ ied 4 ½ months __ggml_vocab_test__ -Führer +Äpfel __ggml_vocab_test__ __ggml_vocab_test__ diff --git a/models/ggml-vocab-refact.gguf.out b/models/ggml-vocab-refact.gguf.out index 63d8305c3f..f13dda52ce 100644 --- a/models/ggml-vocab-refact.gguf.out +++ b/models/ggml-vocab-refact.gguf.out @@ -1,5 +1,5 @@ 4833 225 38 225 143 140 17723 - 56 2006 3935 265 + 144 231 7132 342 225 261 diff --git a/models/ggml-vocab-roberta-bpe.gguf.inp b/models/ggml-vocab-roberta-bpe.gguf.inp deleted file mode 100644 index 9baf7d77ae..0000000000 --- a/models/ggml-vocab-roberta-bpe.gguf.inp +++ /dev/null @@ -1,112 +0,0 @@ -ied 4 ½ months -__ggml_vocab_test__ -Führer -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - -__ggml_vocab_test__ - - -__ggml_vocab_test__ - - - -__ggml_vocab_test__ - - - - -__ggml_vocab_test__ - - -__ggml_vocab_test__ -Hello world -__ggml_vocab_test__ - Hello world -__ggml_vocab_test__ -Hello World -__ggml_vocab_test__ - Hello World -__ggml_vocab_test__ - Hello World! -__ggml_vocab_test__ -Hello, world! -__ggml_vocab_test__ - Hello, world! -__ggml_vocab_test__ - this is 🦙.cpp -__ggml_vocab_test__ -w048 7tuijk dsdfhu -__ggml_vocab_test__ -нещо на Български -__ggml_vocab_test__ -កាន់តែពិសេសអាចខលចេញ -__ggml_vocab_test__ -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token) -__ggml_vocab_test__ -Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello -__ggml_vocab_test__ - Hello - Hello -__ggml_vocab_test__ - ( -__ggml_vocab_test__ - - = -__ggml_vocab_test__ -' era -__ggml_vocab_test__ -Hello, y'all! How are you 😁 ?我想在apple工作1314151天~ -__ggml_vocab_test__ -!!!!!! -__ggml_vocab_test__ -3 -__ggml_vocab_test__ -33 -__ggml_vocab_test__ -333 -__ggml_vocab_test__ -3333 -__ggml_vocab_test__ -33333 -__ggml_vocab_test__ -333333 -__ggml_vocab_test__ -3333333 -__ggml_vocab_test__ -33333333 -__ggml_vocab_test__ -333333333 -__ggml_vocab_test__ -Cửa Việt -__ggml_vocab_test__ - discards -__ggml_vocab_test__ - - - - - - - - - - - -🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL -__ggml_vocab_test__ diff --git a/models/ggml-vocab-roberta-bpe.gguf.out b/models/ggml-vocab-roberta-bpe.gguf.out deleted file mode 100644 index f181ac3dcc..0000000000 --- a/models/ggml-vocab-roberta-bpe.gguf.out +++ /dev/null @@ -1,46 +0,0 @@ - 2550 204 18430 377 - 597 2768 298 8564 - - 1437 - 1437 1437 - 1437 1437 1437 - 50117 - 50118 - 50140 - 50140 50118 - 50117 50118 - 31414 232 - 20920 232 - 31414 623 - 20920 623 - 20920 623 328 - 31414 6 232 328 - 20920 6 232 328 - 42 16 8103 18164 27 4 49317 - 605 40976 262 10109 18474 385 29 36807 6455 - 36765 25482 22063 23171 34251 18697 10809 26161 18697 3602 22063 27969 40966 25417 15264 26161 24269 36709 41171 35328 - 1376 17772 7471 1376 17772 19002 1376 17772 9085 1376 4333 13859 1376 17772 9357 1376 4333 9264 1376 17772 25448 1376 17772 18400 1376 17772 4333 1376 4333 10172 1376 17772 4333 1376 17772 7258 1376 17772 19002 1376 17772 5782 1376 17772 10172 1376 17772 3726 1376 17772 5782 1376 4333 10172 1376 17772 23171 - 6569 15113 7471 36 21113 43 17841 19002 17 8384 6569 14285 4958 12605 36 34654 2841 4203 354 10146 26511 1070 43 36174 5782 36 8338 21554 14 34 63 308 19233 43 - 31414 - 20920 - 1437 20920 - 1437 1437 20920 - 1437 1437 1437 20920 - 1437 1437 1437 20920 50118 1437 1437 1437 20920 - 36 - 50118 5457 - 108 3567 - 31414 6 1423 108 1250 328 1336 32 47 17841 10172 17487 47876 3602 48617 15264 46537 11423 27326 48494 8210 49233 1558 1570 27761 49429 43251 10809 17772 - 32376 12846 - 246 - 3103 - 25631 - 46152 - 3103 25631 - 46152 3103 - 46152 25631 - 46152 46152 - 46152 3103 25631 - 347 1376 2023 12410 102 16376 1376 2023 6382 90 - 9553 5954 - 50118 1437 50140 1437 50140 50118 1437 50117 1437 50117 50117 1437 50117 50118 1437 1437 50118 1437 1437 1437 50118 1437 1437 1437 1437 50118 1437 1437 1437 1437 1437 50118 6569 15113 7471 36 21113 43 17841 19002 17 8384 6569 14285 4958 12605 36 34654 2841 4203 354 10146 26511 1070 43 36174 5782 8103 18164 27 6569 18164 27 155 2357 30242 155 25631 30242 3103 30242 25631 30242 46152 30242 3103 25631 155 4 246 155 7586 246 155 734 246 25974 17772 7471 1376 17772 19002 1376 17772 9085 1376 4333 13859 1376 17772 9357 1376 4333 9264 1376 17772 25448 1376 17772 18400 1376 17772 4333 1376 4333 10172 1376 17772 4333 1376 17772 7258 1376 17772 19002 1376 17772 5782 18636 10172 17487 47876 3602 48617 15264 46537 11423 27326 48494 8210 49233 1558 1570 27761 49429 43251 10809 17772 36738 48332 47463 18697 10809 25482 22063 23171 34251 18697 10809 26161 18697 3602 22063 27969 40966 25417 15264 26161 24269 36709 41171 35328 128 49690 108 49972 49519 12905 48149 48149 43796 32376 12846 27282 28749 38 348 57 128 41042 37 18 89 6 128 4629 47 686 116 128 448 45 686 38 581 146 24 6 128 495 47 101 103 6845 116 166 108 30660 10 108 462 574 diff --git a/models/ggml-vocab-starcoder.gguf.inp b/models/ggml-vocab-starcoder.gguf.inp index 9baf7d77ae..86b934e402 100644 --- a/models/ggml-vocab-starcoder.gguf.inp +++ b/models/ggml-vocab-starcoder.gguf.inp @@ -1,6 +1,6 @@ ied 4 ½ months __ggml_vocab_test__ -Führer +Äpfel __ggml_vocab_test__ __ggml_vocab_test__ diff --git a/models/ggml-vocab-starcoder.gguf.out b/models/ggml-vocab-starcoder.gguf.out index 87e2465d36..4698e2c3c8 100644 --- a/models/ggml-vocab-starcoder.gguf.out +++ b/models/ggml-vocab-starcoder.gguf.out @@ -1,5 +1,5 @@ 4850 244 57 244 162 159 17722 - 75 2022 3943 284 + 163 250 7146 361 244 280 diff --git a/requirements/requirements-gguf_editor_gui.txt b/requirements/requirements-gguf_editor_gui.txt index 920dc7cf90..fd253364e1 100644 --- a/requirements/requirements-gguf_editor_gui.txt +++ b/requirements/requirements-gguf_editor_gui.txt @@ -1,3 +1,3 @@ numpy~=1.26.4 PySide6~=6.9.0 -gguf>=0.16.0 +gguf>=0.17.0 diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index b141cabc9d..aa0fb8fb02 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -7c06c10c532a6cda913c17fc56341e8880ae341d +94a83ba5a725ae2aee79df75dd99b2119d0478cc diff --git a/scripts/sync_vendor.py b/scripts/sync_vendor.py new file mode 100755 index 0000000000..1151c9f019 --- /dev/null +++ b/scripts/sync_vendor.py @@ -0,0 +1,22 @@ +#!/usr/bin/env python3 + +import urllib.request + +vendor = { + "https://github.com/nlohmann/json/releases/latest/download/json.hpp": "vendor/nlohmann/json.hpp", + "https://github.com/nlohmann/json/releases/latest/download/json_fwd.hpp": "vendor/nlohmann/json_fwd.hpp", + + # sync manually + # "https://raw.githubusercontent.com/ochafik/minja/refs/heads/main/include/minja/minja.hpp": "vendor/minja/minja.hpp", + # "https://raw.githubusercontent.com/ochafik/minja/refs/heads/main/include/minja/chat-template.hpp": "vendor/minja/chat-template.hpp", + + "https://raw.githubusercontent.com/nothings/stb/refs/heads/master/stb_image.h": "vendor/stb/stb_image.h", + + "https://github.com/mackron/miniaudio/raw/refs/tags/0.11.22/miniaudio.h": "vendor/miniaudio/miniaudio.h", + + "https://raw.githubusercontent.com/yhirose/cpp-httplib/refs/tags/v0.20.1/httplib.h": "vendor/cpp-httplib/httplib.h", +} + +for url, filename in vendor.items(): + print(f"downloading {url} to {filename}") # noqa: NP100 + urllib.request.urlretrieve(url, filename) diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index d4bf37b1cf..70be604e4b 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -14,12 +14,15 @@ add_library(llama llama-batch.cpp llama-chat.cpp llama-context.cpp + llama-cparams.cpp llama-grammar.cpp llama-graph.cpp llama-hparams.cpp llama-impl.cpp llama-io.cpp - llama-kv-cache.cpp + llama-kv-cache-unified.cpp + llama-kv-cache-unified-iswa.cpp + llama-kv-cache-recurrent.cpp llama-memory.cpp llama-mmap.cpp llama-model-loader.cpp diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp index abf436adac..43fa60a807 100644 --- a/src/llama-arch.cpp +++ b/src/llama-arch.cpp @@ -174,6 +174,8 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_CONVNEXT_EMBEDDING_LENGTH, "%s.convnext.embedding_length" }, { LLM_KV_CONVNEXT_BLOCK_COUNT, "%s.convnext.block_count" }, + { LLM_KV_CLASSIFIER_OUTPUT_LABELS, "%s.classifier.output_labels" }, + { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" }, { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" }, @@ -198,7 +200,6 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" }, { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" }, { LLM_KV_TOKENIZER_CHAT_TEMPLATE, "tokenizer.chat_template" }, - { LLM_KV_TOKENIZER_CHAT_TEMPLATE_N, "tokenizer.chat_template.%s" }, { LLM_KV_TOKENIZER_FIM_PRE_ID, "tokenizer.ggml.fim_pre_token_id" }, { LLM_KV_TOKENIZER_FIM_SUF_ID, "tokenizer.ggml.fim_suf_token_id" }, { LLM_KV_TOKENIZER_FIM_MID_ID, "tokenizer.ggml.fim_mid_token_id" }, @@ -448,6 +449,7 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_TOKEN_TYPES, "token_types" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, @@ -1704,8 +1706,14 @@ static const std::map LLM_TENSOR_INFOS = { LLM_KV::LLM_KV(llm_arch arch, const char * suffix) : arch(arch), suffix(suffix) {} std::string LLM_KV::operator()(llm_kv kv) const { - return suffix ? ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch), suffix) - : ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch)); + std::string name = ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch)); + + if (suffix != nullptr) { + name += "."; + name += suffix; + } + + return name; } std::string LLM_TN_IMPL::str() const { diff --git a/src/llama-arch.h b/src/llama-arch.h index 41a023da3d..f3825528ae 100644 --- a/src/llama-arch.h +++ b/src/llama-arch.h @@ -196,7 +196,6 @@ enum llm_kv { LLM_KV_TOKENIZER_HF_JSON, LLM_KV_TOKENIZER_RWKV, LLM_KV_TOKENIZER_CHAT_TEMPLATE, - LLM_KV_TOKENIZER_CHAT_TEMPLATE_N, LLM_KV_TOKENIZER_FIM_PRE_ID, LLM_KV_TOKENIZER_FIM_SUF_ID, LLM_KV_TOKENIZER_FIM_MID_ID, @@ -213,6 +212,8 @@ enum llm_kv { LLM_KV_CONVNEXT_EMBEDDING_LENGTH, LLM_KV_CONVNEXT_BLOCK_COUNT, + LLM_KV_CLASSIFIER_OUTPUT_LABELS, + // deprecated: LLM_KV_TOKENIZER_PREFIX_ID, LLM_KV_TOKENIZER_SUFFIX_ID, diff --git a/src/llama-batch.cpp b/src/llama-batch.cpp index b98e3256c3..6a19a24311 100644 --- a/src/llama-batch.cpp +++ b/src/llama-batch.cpp @@ -15,24 +15,31 @@ llama_ubatch llama_sbatch::reserve_ubatch(size_t n_ubatch, bool has_embd) { break; } } - ubatch_token.resize(!has_embd ? n_ubatch : 0); - ubatch_embd.resize(has_embd ? n_embd * n_ubatch : 0); - ubatch_pos.resize(n_ubatch); - ubatch_n_seq_id.resize(n_ubatch); - ubatch_seq_id.resize(n_ubatch); - ubatch_output.resize(n_ubatch); + + udatas.push_back({}); + + auto & udata = udatas.back(); + + udata.token.resize(!has_embd ? n_ubatch : 0); + udata.embd.resize(has_embd ? n_embd * n_ubatch : 0); + udata.pos.resize(n_ubatch); + udata.n_seq_id.resize(n_ubatch); + udata.seq_id.resize(n_ubatch); + udata.output.resize(n_ubatch); + llama_ubatch ubatch = { /*equal_seqs =*/ true, /*n_tokens =*/ 0, /*n_seq_tokens =*/ 0, /*n_seqs =*/ 0, - /*token =*/ !has_embd ? ubatch_token.data() : nullptr, - /*embd =*/ has_embd ? ubatch_embd.data() : nullptr, - /*pos =*/ ubatch_pos.data(), - /*n_seq_id =*/ ubatch_n_seq_id.data(), - /*seq_id =*/ ubatch_seq_id.data(), - /*output =*/ ubatch_output.data(), + /*token =*/ !has_embd ? udata.token.data() : nullptr, + /*embd =*/ has_embd ? udata.embd.data() : nullptr, + /*pos =*/ udata.pos.data(), + /*n_seq_id =*/ udata.n_seq_id.data(), + /*seq_id =*/ udata.seq_id.data(), + /*output =*/ udata.output.data(), }; + return ubatch; } diff --git a/src/llama-batch.h b/src/llama-batch.h index 6305051b62..b8260b94fd 100644 --- a/src/llama-batch.h +++ b/src/llama-batch.h @@ -11,15 +11,15 @@ struct llama_ubatch { bool equal_seqs; // TODO: whole_seqs for embeddings? - uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs) + uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs) uint32_t n_seq_tokens; // tokens per sequence uint32_t n_seqs; llama_token * token; // [n_tokens] float * embd; // [n_embd, n_tokens] llama_pos * pos; // [n_tokens] - int32_t * n_seq_id; // [n_seqs] - llama_seq_id ** seq_id; // [n_seqs] + int32_t * n_seq_id; // [n_seqs] // TODO: remove, should belong to only 1 sequence + llama_seq_id ** seq_id; // [n_seqs] // TODO: become llama_seq_id * seq_id; int8_t * output; // [n_tokens] }; @@ -49,13 +49,18 @@ struct llama_sbatch { const llama_batch * batch = nullptr; - // buffers for the ubatch - std::vector ubatch_token; - std::vector ubatch_embd; - std::vector ubatch_pos; - std::vector ubatch_n_seq_id; - std::vector ubatch_seq_id; - std::vector ubatch_output; + // buffers for the ubatches + // TODO: very hacky, this needs a complete rework + struct ubatch_data { + std::vector token; + std::vector embd; + std::vector pos; + std::vector n_seq_id; + std::vector seq_id; + std::vector output; + }; + + std::vector udatas; llama_ubatch reserve_ubatch(size_t n_ubatch, bool has_embd = false); diff --git a/src/llama-context.cpp b/src/llama-context.cpp index ad77cae20e..b130b484bc 100644 --- a/src/llama-context.cpp +++ b/src/llama-context.cpp @@ -2,13 +2,14 @@ #include "llama-impl.h" #include "llama-io.h" +#include "llama-memory.h" #include "llama-mmap.h" #include "llama-model.h" -#include "llama-kv-cache.h" -#include -#include #include +#include +#include +#include // // llama_context @@ -122,6 +123,11 @@ llama_context::llama_context( __func__, n_ctx_per_seq, hparams.n_ctx_train); } + if (!params.swa_full && cparams.n_seq_max > 1 && hparams.is_swa_any()) { + LLAMA_LOG_WARN("%s: requested n_seq_max (%u) > 1, but swa_full is not enabled -- performance may be degraded: %s\n", + __func__, cparams.n_seq_max, "https://github.com/ggml-org/llama.cpp/pull/13845#issuecomment-2924800573"); + } + if (!hparams.vocab_only) { // GPU backends for (auto * dev : model.devices) { @@ -259,15 +265,9 @@ llama_context::llama_context( // reserve worst-case graph if (!hparams.vocab_only && memory) { - const uint32_t n_seqs = 1; // TODO: worst-case number of sequences + const uint32_t n_seqs = cparams.n_seq_max; const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch); - llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph - - // restore later - // TODO: something cleaner - const auto n_outputs_save = n_outputs; - LLAMA_LOG_DEBUG("%s: worst-case: n_tokens = %d, n_seqs = %d, n_outputs = %d\n", __func__, n_tokens, n_seqs, n_outputs); int n_splits_pp = -1; @@ -277,25 +277,18 @@ llama_context::llama_context( int n_nodes_tg = -1; // simulate full KV cache - llama_kv_cache * kv_self = static_cast(memory.get()); - kv_self->set_full(); + const auto mstate = memory->init_full(); + if (!mstate) { + throw std::runtime_error("failed to initialize KV cache"); + } cross.v_embd.clear(); // reserve pp graph first so that buffers are only allocated once { - llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; - - // max number of outputs - n_outputs = ubatch_pp.n_tokens; - - LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_pp.n_tokens, ubatch_pp.n_seqs); - - auto * gf = graph_init(); - graph_build(ctx_compute.get(), gf, ubatch_pp, LLM_GRAPH_TYPE_DEFAULT); - - if (!ggml_backend_sched_reserve(sched.get(), gf)) { + auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mstate.get()); + if (!gf) { throw std::runtime_error("failed to allocate compute pp buffers"); } @@ -305,16 +298,8 @@ llama_context::llama_context( // reserve with tg graph to get the number of splits and nodes { - llama_ubatch ubatch_tg = { true, 1, 1, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; - - n_outputs = ubatch_tg.n_tokens; - - LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_tg.n_tokens, ubatch_tg.n_seqs); - - auto * gf = graph_init(); - graph_build(ctx_compute.get(), gf, ubatch_tg, LLM_GRAPH_TYPE_DEFAULT); - - if (!ggml_backend_sched_reserve(sched.get(), gf)) { + auto * gf = graph_reserve(1, 1, 1, mstate.get()); + if (!gf) { throw std::runtime_error("failed to allocate compute tg buffers"); } @@ -324,22 +309,12 @@ llama_context::llama_context( // reserve again with pp graph to avoid ggml-alloc reallocations during inference { - llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; - - n_outputs = ubatch_pp.n_tokens; - - LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_pp.n_tokens, ubatch_pp.n_seqs); - - auto * gf = graph_init(); - graph_build(ctx_compute.get(), gf, ubatch_pp, LLM_GRAPH_TYPE_DEFAULT); - - if (!ggml_backend_sched_reserve(sched.get(), gf)) { + auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mstate.get()); + if (!gf) { throw std::runtime_error("failed to allocate compute pp buffers"); } } - n_outputs = n_outputs_save; - for (size_t i = 0; i < backend_ptrs.size(); ++i) { ggml_backend_t backend = backend_ptrs[i]; ggml_backend_buffer_type_t buft = backend_buft[i]; @@ -443,46 +418,71 @@ uint32_t llama_context::n_threads_batch() const { return cparams.n_threads_batch; } -llama_kv_cache * llama_context::get_kv_self() { - llama_kv_cache * kv_self = static_cast(memory.get()); - return kv_self; +llama_memory_t llama_context::get_memory() const { + return memory.get(); } -const llama_kv_cache * llama_context::get_kv_self() const { - llama_kv_cache * kv_self = static_cast(memory.get()); - return kv_self; +// deprecated +void llama_context::kv_self_defrag_sched() { + if (!memory) { + return; + } + + memory_force_optimize = true; } -void llama_context::kv_self_update() { - bool need_reserve = false; +// deprecated +bool llama_context::kv_self_update(bool optimize) { + if (!memory) { + return false; + } - llama_kv_cache * kv_self = static_cast(memory.get()); + { + // TODO: remove in the future + optimize |= memory_force_optimize; + memory_force_optimize = false; - need_reserve = kv_self->update(*this); + const auto mstate = memory->init_update(this, optimize); + switch (mstate->get_status()) { + case LLAMA_MEMORY_STATUS_SUCCESS: + { + // noop + } break; + case LLAMA_MEMORY_STATUS_NO_UPDATE: + { + // no updates need to be performed + return false; + } + case LLAMA_MEMORY_STATUS_FAILED_PREPARE: + case LLAMA_MEMORY_STATUS_FAILED_COMPUTE: + { + LLAMA_LOG_ERROR("%s: failed to prepare memory update\n", __func__); + return false; + } + } - // reserve a worst case graph if needed - if (need_reserve) { - LLAMA_LOG_DEBUG("%s: reserving a worst case graph\n", __func__); - - // build worst-case graph - uint32_t n_seqs = 1; // TODO: worst-case number of sequences - uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch); - - // simulate full KV cache - kv_self->set_full(); - - llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph - llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; - - auto * gf = graph_init(); - graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT); - - // initialize scheduler with the worst-case graph - ggml_backend_sched_reset(sched.get()); - if (!ggml_backend_sched_reserve(sched.get(), gf)) { - LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); + if (!mstate->apply()) { + LLAMA_LOG_ERROR("%s: failed to apply memory update\n", __func__); } } + + // if the memory module did any computation, we have to reserve a new worst-case graph + { + const auto mstate = memory->init_full(); + if (!mstate) { + throw std::runtime_error("failed to initialize memory state"); + } + + const uint32_t n_seqs = cparams.n_seq_max; + const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch); + + auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mstate.get()); + if (!gf) { + LLAMA_LOG_ERROR("%s: failed to reserve graph after the memory update\n", __func__); + } + } + + return true; } enum llama_pooling_type llama_context::pooling_type() const { @@ -676,6 +676,49 @@ bool llama_context::apply_adapter_cvec( return cvec.apply(model, data, len, n_embd, il_start, il_end); } +llm_graph_result_ptr llama_context::process_ubatch(const llama_ubatch & ubatch, llm_graph_type gtype, llama_memory_state_i * mstate, ggml_status & ret) { + if (mstate && !mstate->apply()) { + LLAMA_LOG_ERROR("%s: failed to apply memory state\n", __func__); + ret = GGML_STATUS_FAILED; + return nullptr; + } + + auto * gf = graph_init(); + if (!gf) { + LLAMA_LOG_ERROR("%s: failed to initialize graph\n", __func__); + ret = GGML_STATUS_FAILED; + return nullptr; + } + + auto res = graph_build(ctx_compute.get(), gf, ubatch, gtype, mstate); + if (!res) { + LLAMA_LOG_ERROR("%s: failed to build graph\n", __func__); + ret = GGML_STATUS_FAILED; + return nullptr; + } + + // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); + + if (!ggml_backend_sched_alloc_graph(sched.get(), gf)) { + LLAMA_LOG_ERROR("%s: failed to allocate graph\n", __func__); + ret = GGML_STATUS_ALLOC_FAILED; + return nullptr; + } + + res->set_inputs(&ubatch); + + const auto status = graph_compute(gf, ubatch.n_tokens > 1); + if (status != GGML_STATUS_SUCCESS) { + LLAMA_LOG_ERROR("%s: failed to compute graph, compute status: %d\n", __func__, status); + ret = status; + return nullptr; + } + + ret = GGML_STATUS_SUCCESS; + + return res; +} + int llama_context::encode(llama_batch & inp_batch) { if (inp_batch.n_tokens == 0) { LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__); @@ -693,12 +736,18 @@ int llama_context::encode(llama_batch & inp_batch) { GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT + // TODO: move the validation to the llama_batch_allocr if (batch.token) { for (int32_t i = 0; i < n_tokens; ++i) { if (batch.token[i] < 0 || (uint32_t) batch.token[i] >= model.vocab.n_tokens()) { LLAMA_LOG_ERROR("%s: invalid token[%d] = %d\n", __func__, i, batch.token[i]); return -1; } + + if (batch.seq_id && (batch.seq_id[i][0] < 0 || batch.seq_id[i][0] >= LLAMA_MAX_PARALLEL_SEQUENCES)) { + LLAMA_LOG_ERROR("%s: invalid seq_id[%d] = %d > %d\n", __func__, i, batch.seq_id[i][0], LLAMA_MAX_PARALLEL_SEQUENCES); + throw -1; + } } } @@ -731,8 +780,6 @@ int llama_context::encode(llama_batch & inp_batch) { n_outputs = n_tokens; - //batch_manager->prepare(ubatch); - ggml_backend_sched_reset(sched.get()); ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data); @@ -743,26 +790,18 @@ int llama_context::encode(llama_batch & inp_batch) { // ref: https://github.com/ggml-org/llama.cpp/pull/12181#issuecomment-2730451223 cparams.causal_attn = false; - auto * gf = graph_init(); - auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_ENCODER); - - ggml_backend_sched_alloc_graph(sched.get(), gf); - - res->set_inputs(&ubatch); + ggml_status status; + const auto res = process_ubatch(ubatch, LLM_GRAPH_TYPE_ENCODER, nullptr, status); cparams.causal_attn = causal_attn_org; - const auto compute_status = graph_compute(gf, n_tokens > 1); - switch (compute_status) { - case GGML_STATUS_SUCCESS: - break; - case GGML_STATUS_ABORTED: - return 2; - case GGML_STATUS_ALLOC_FAILED: - return -2; - case GGML_STATUS_FAILED: - default: - return -3; + if (!res) { + switch (status) { + case GGML_STATUS_ABORTED: return 2; + case GGML_STATUS_ALLOC_FAILED: return -2; + case GGML_STATUS_FAILED: return -3; + case GGML_STATUS_SUCCESS: GGML_ABORT("should not happen"); + } } auto * t_embd = res->get_embd_pooled() ? res->get_embd_pooled() : res->get_embd(); @@ -802,16 +841,17 @@ int llama_context::encode(llama_batch & inp_batch) { } break; case LLAMA_POOLING_TYPE_RANK: { - // extract the rerank score - a single float per sequence + // extract the rerank score - n_cls_out floats per sequence auto & embd_seq_out = embd_seq; + const uint32_t n_cls_out = hparams.n_cls_out; for (uint32_t s = 0; s < ubatch.n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; if (embd_seq_out.find(seq_id) != embd_seq_out.end()) { continue; } - embd_seq_out[seq_id].resize(1); - ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (seq_id)*sizeof(float), sizeof(float)); + embd_seq_out[seq_id].resize(n_cls_out); + ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_cls_out*seq_id)*sizeof(float), n_cls_out*sizeof(float)); } } break; case LLAMA_POOLING_TYPE_UNSPECIFIED: @@ -868,10 +908,8 @@ int llama_context::decode(llama_batch & inp_batch) { } } - llama_kv_cache * kv_self = static_cast(memory.get()); - // temporary allocate memory for the input batch if needed - llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->seq_pos_max(0) + 1); + llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : memory->seq_pos_max(0) + 1); const llama_batch & batch = batch_allocr.batch; @@ -883,15 +921,19 @@ int llama_context::decode(llama_batch & inp_batch) { const int64_t n_tokens_all = batch.n_tokens; const int64_t n_embd = hparams.n_embd; - llama_kv_cache_guard kv_guard(kv_self); - GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT + // TODO: move the validation to the llama_batch_allocr if (batch.token) { for (int64_t i = 0; i < n_tokens_all; ++i) { if (batch.token[i] < 0 || (uint32_t) batch.token[i] >= model.vocab.n_tokens()) { LLAMA_LOG_ERROR("%s: invalid token[%" PRId64 "] = %d\n", __func__, i, batch.token[i]); - throw std::runtime_error("invalid token"); + return -1; + } + + if (batch.seq_id && (batch.seq_id[i][0] < 0 || batch.seq_id[i][0] >= LLAMA_MAX_PARALLEL_SEQUENCES)) { + LLAMA_LOG_ERROR("%s: invalid seq_id[%" PRId64 "] = %d >= %d\n", __func__, i, batch.seq_id[i][0], LLAMA_MAX_PARALLEL_SEQUENCES); + return -1; } } } @@ -924,7 +966,55 @@ int llama_context::decode(llama_batch & inp_batch) { n_outputs_all = 1; } - llama_sbatch sbatch = kv_self->sbatch_init(batch, /* logits_all */ n_outputs_all == n_tokens_all); + bool did_optimize = false; + + // handle any pending defrags/shifts + kv_self_update(false); + + llama_memory_state_ptr mstate; + + while (true) { + mstate = memory->init_batch(batch, cparams.n_ubatch, embd_pooled, /* logits_all */ n_outputs_all == n_tokens_all); + if (!mstate) { + return -2; + } + + switch (mstate->get_status()) { + case LLAMA_MEMORY_STATUS_SUCCESS: + { + } break; + case LLAMA_MEMORY_STATUS_NO_UPDATE: + { + LLAMA_LOG_ERROR("%s: unexpected memory state status: %d\n", __func__, mstate->get_status()); + + return -2; + } + case LLAMA_MEMORY_STATUS_FAILED_PREPARE: + { + if (!did_optimize) { + did_optimize = true; + + if (kv_self_update(true)) { + LLAMA_LOG_DEBUG("%s: retrying batch size %d after cache optimization\n", __func__, batch.n_tokens); + + continue; + } + } + + LLAMA_LOG_WARN("%s: failed to find a memory slot for batch of size %d\n", __func__, batch.n_tokens); + + return 1; + } + case LLAMA_MEMORY_STATUS_FAILED_COMPUTE: + { + LLAMA_LOG_ERROR("%s: compute failed while preparing batch of size %d\n", __func__, batch.n_tokens); + + return -2; + } + } + + break; + } // reserve output buffer if (output_reserve(n_outputs_all) < n_outputs_all) { @@ -932,13 +1022,10 @@ int llama_context::decode(llama_batch & inp_batch) { return -2; }; - // handle any pending defrags/shifts - kv_self_update(); - int64_t n_outputs_prev = 0; - while (sbatch.n_tokens > 0) { - llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled); + do { + const auto & ubatch = mstate->get_ubatch(); // count the outputs in this u_batch { @@ -957,33 +1044,40 @@ int llama_context::decode(llama_batch & inp_batch) { n_outputs = n_outputs_new; } - // find KV slot - if (!kv_self->find_slot(ubatch)) { - return 1; - } - ggml_backend_sched_reset(sched.get()); ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data); - auto * gf = graph_init(); - auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DECODER); + ggml_status status; + const auto res = process_ubatch(ubatch, LLM_GRAPH_TYPE_DECODER, mstate.get(), status); - // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); + if (!res) { + // the last ubatch failed or was aborted -> remove all positions of that ubatch from the KV cache + llama_pos pos_min[LLAMA_MAX_PARALLEL_SEQUENCES]; + for (int s = 0; s < LLAMA_MAX_PARALLEL_SEQUENCES; ++s) { + pos_min[s] = std::numeric_limits::max(); + } - ggml_backend_sched_alloc_graph(sched.get(), gf); + for (uint32_t i = 0; i < ubatch.n_tokens; ++i) { + const auto & seq_id = ubatch.seq_id[i][0]; - res->set_inputs(&ubatch); + pos_min[seq_id] = std::min(pos_min[seq_id], ubatch.pos[i]); + } - const auto compute_status = graph_compute(gf, ubatch.n_tokens > 1); - if (compute_status != GGML_STATUS_SUCCESS) { - switch (compute_status) { - case GGML_STATUS_ABORTED: - return 2; - case GGML_STATUS_ALLOC_FAILED: - return -2; - case GGML_STATUS_FAILED: - default: - return -3; + for (int s = 0; s < LLAMA_MAX_PARALLEL_SEQUENCES; ++s) { + if (pos_min[s] == std::numeric_limits::max()) { + continue; + } + + LLAMA_LOG_WARN("%s: removing KV cache entries for seq_id = %d, pos = [%d, +inf)\n", __func__, s, pos_min[s]); + + memory->seq_rm(s, pos_min[s], -1); + } + + switch (status) { + case GGML_STATUS_ABORTED: return 2; + case GGML_STATUS_ALLOC_FAILED: return -2; + case GGML_STATUS_FAILED: return -3; + case GGML_STATUS_SUCCESS: GGML_ABORT("should not happen"); } } @@ -1070,10 +1164,7 @@ int llama_context::decode(llama_batch & inp_batch) { } n_outputs_prev += n_outputs; - } - - // finalize the batch processing - kv_guard.commit(); + } while (mstate->next()); // set to total number of outputs in the batch, for use in llama_get_logits_ith n_outputs = n_outputs_all; @@ -1082,7 +1173,7 @@ int llama_context::decode(llama_batch & inp_batch) { { bool sorted_output = true; - auto & out_ids = sbatch.out_ids; + auto & out_ids = mstate->out_ids(); GGML_ASSERT(out_ids.size() == (size_t) n_outputs_all); @@ -1134,11 +1225,6 @@ int llama_context::decode(llama_batch & inp_batch) { // wait for the computation to finish (automatically done when obtaining the model output) //synchronize(); - // decide if we need to defrag the kv cache - if (cparams.defrag_thold > 0.0f) { - kv_self->defrag_sched(cparams.defrag_thold); - } - // Reset state for the next token before backend sync, to allow the CPU activities in the reset to // overlap with device computation. ggml_backend_sched_reset(sched.get()); @@ -1242,11 +1328,52 @@ ggml_cgraph * llama_context::graph_init() { return ggml_new_graph_custom(ctx_compute.get(), graph_max_nodes(), false); } +ggml_cgraph * llama_context::graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_state_i * mstate) { + LLAMA_LOG_DEBUG("%s: reserving a graph for ubatch with n_tokens = %4u, n_seqs = %2u, n_outputs = %4u\n", __func__, n_tokens, n_seqs, n_outputs); + + if (n_tokens % n_seqs != 0) { + n_tokens = (n_tokens / n_seqs) * n_seqs; + n_outputs = std::min(n_outputs, n_tokens); + + LLAMA_LOG_DEBUG("%s: making n_tokens a multiple of n_seqs - n_tokens = %u, n_seqs = %u, n_outputs = %u\n", __func__, n_tokens, n_seqs, n_outputs); + } + + // store the n_outputs as it is, and restore it afterwards + // TODO: not sure if needed, might simplify in the future by removing this + const auto save_n_outputs = this->n_outputs; + + this->n_outputs = n_outputs; + + llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph + llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; + + auto * gf = graph_init(); + auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT, mstate); + + this->n_outputs = save_n_outputs; + + if (!res) { + LLAMA_LOG_ERROR("%s: failed to build worst-case graph\n", __func__); + return nullptr; + } + + ggml_backend_sched_reset(sched.get()); + + // initialize scheduler with the specified graph + if (!ggml_backend_sched_reserve(sched.get(), gf)) { + LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); + return nullptr; + } + + return gf; +} + llm_graph_result_ptr llama_context::graph_build( - ggml_context * ctx, - ggml_cgraph * gf, - const llama_ubatch & ubatch, - llm_graph_type gtype) { + ggml_context * ctx, + ggml_cgraph * gf, + const llama_ubatch & ubatch, + llm_graph_type gtype, + const llama_memory_state_i * mstate) { return model.build_graph( { /*.ctx =*/ ctx, @@ -1258,7 +1385,7 @@ llm_graph_result_ptr llama_context::graph_build( /*.backend_cpu =*/ backend_cpu, /*.cvec =*/ &cvec, /*.loras =*/ &loras, - /*.memory =*/ memory.get(), + /*.mstate =*/ mstate, /*.cross =*/ &cross, /*.n_outputs =*/ n_outputs, /*.cb =*/ graph_get_cb(), @@ -1714,11 +1841,9 @@ size_t llama_context::state_write_data(llama_io_write_i & io) { } } - llama_kv_cache * kv_self = static_cast(memory.get()); - - if (kv_self != nullptr) { + if (memory != nullptr) { LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__); - kv_self->state_write(io); + memory->state_write(io); } return io.n_bytes(); @@ -1805,9 +1930,7 @@ size_t llama_context::state_read_data(llama_io_read_i & io) { if (memory) { LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__); - llama_kv_cache * kv_self = static_cast(memory.get()); - - kv_self->state_read(io); + memory->state_read(io); } return io.n_bytes(); @@ -1817,9 +1940,7 @@ size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id s GGML_UNUSED(seq_id); if (memory) { - llama_kv_cache * kv_self = static_cast(memory.get()); - - kv_self->state_write(io, seq_id); + memory->state_write(io, seq_id); } return io.n_bytes(); @@ -1829,9 +1950,7 @@ size_t llama_context::state_seq_read_data(llama_io_read_i & io, llama_seq_id seq GGML_UNUSED(seq_id); if (memory) { - llama_kv_cache * kv_self = static_cast(memory.get()); - - kv_self->state_read(io, seq_id); + memory->state_read(io, seq_id); } return io.n_bytes(); @@ -1936,10 +2055,7 @@ void llama_context::opt_epoch_iter( const uint32_t n_batch = std::min(this->n_batch(), n_ctx); const uint32_t n_ubatch = std::min(this->n_ubatch(), n_batch); - llama_kv_cache * kv_self = static_cast(memory.get()); - - kv_self->clear(); - llama_kv_cache_guard kv_guard(kv_self); + memory->clear(true); for (uint32_t pos_ctx = 0; pos_ctx < n_ctx; pos_ctx += n_batch) { batch.n_tokens = n_batch; @@ -1962,7 +2078,11 @@ void llama_context::opt_epoch_iter( int64_t n_outputs_all = n_tokens_all; - llama_sbatch sbatch = kv_self->sbatch_init(batch, /*logits_all =*/ true); + auto mstate = memory->init_batch(batch, cparams.n_ubatch, embd_pooled, /* logits_all */ true); + if (!mstate || mstate->get_status() != LLAMA_MEMORY_STATUS_SUCCESS) { + LLAMA_LOG_ERROR("%s: could not initialize batch\n", __func__); + break; + } // reserve output buffer if (output_reserve(n_outputs_all) < n_outputs_all) { @@ -1970,20 +2090,19 @@ void llama_context::opt_epoch_iter( GGML_ABORT("TODO: handle this error"); }; - for (uint32_t pos_batch = 0; pos_batch < n_batch; pos_batch += n_ubatch) { - llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled); + uint32_t pos_batch = 0; + do { + const auto & ubatch = mstate->get_ubatch(); n_outputs = ubatch.n_tokens; - // TODO: not sure if this is needed - if (!kv_self->find_slot(ubatch)) { - LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens); - - GGML_ABORT("TODO: handle this error"); + if (!mstate->apply()) { + LLAMA_LOG_ERROR("%s: failed to update the memory state\n", __func__); + break; } auto * gf = graph_init(); - auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT); + auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT, mstate.get()); struct ggml_context * ctx_compute_opt; { @@ -1998,6 +2117,7 @@ void llama_context::opt_epoch_iter( } ggml_opt_prepare_alloc(opt_ctx, ctx_compute_opt, gf, res->get_tokens(), res->get_logits()); ggml_opt_alloc(opt_ctx, train); + res->set_inputs(&ubatch); { struct ggml_tensor * labels = ggml_opt_labels(opt_ctx); @@ -2015,10 +2135,10 @@ void llama_context::opt_epoch_iter( callback(train, opt_ctx, dataset, result, idata_in_loop + (pos_ctx + pos_batch)/n_ubatch + 1, ndata_in_loop, t_loop_start); } ggml_free(ctx_compute_opt); - } - } - kv_guard.commit(); + pos_batch += ubatch.n_tokens; + } while (mstate->next()); + } } void llama_context::opt_epoch( @@ -2178,12 +2298,14 @@ const llama_model * llama_get_model(const llama_context * ctx) { return &ctx->get_model(); } +// deprecated llama_kv_cache * llama_get_kv_self(llama_context * ctx) { - return ctx->get_kv_self(); + return dynamic_cast(ctx->get_memory()); } +// deprecated void llama_kv_self_update(llama_context * ctx) { - ctx->kv_self_update(); + ctx->kv_self_update(false); } enum llama_pooling_type llama_pooling_type(const llama_context * ctx) { @@ -2298,13 +2420,118 @@ int32_t llama_apply_adapter_cvec( return res ? 0 : -1; } +// +// memory +// + +llama_memory_t llama_get_memory(const struct llama_context * ctx) { + return ctx->get_memory(); +} + +void llama_memory_clear(llama_memory_t mem, bool data) { + if (!mem) { + return; + } + + mem->clear(data); +} + +bool llama_memory_seq_rm( + llama_memory_t mem, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1) { + if (!mem) { + return true; + } + + return mem->seq_rm(seq_id, p0, p1); +} + +void llama_memory_seq_cp( + llama_memory_t mem, + llama_seq_id seq_id_src, + llama_seq_id seq_id_dst, + llama_pos p0, + llama_pos p1) { + if (!mem) { + return; + } + + mem->seq_cp(seq_id_src, seq_id_dst, p0, p1); +} + +void llama_memory_seq_keep( + llama_memory_t mem, + llama_seq_id seq_id) { + if (!mem) { + return; + } + + mem->seq_keep(seq_id); +} + +void llama_memory_seq_add( + llama_memory_t mem, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1, + llama_pos delta) { + if (!mem) { + return; + } + + mem->seq_add(seq_id, p0, p1, delta); +} + +void llama_memory_seq_div( + llama_memory_t mem, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1, + int d) { + if (!mem) { + return; + } + + mem->seq_div(seq_id, p0, p1, d); +} + +llama_pos llama_memory_seq_pos_min( + llama_memory_t mem, + llama_seq_id seq_id) { + if (!mem) { + return -1; + } + + return mem->seq_pos_min(seq_id); +} + +llama_pos llama_memory_seq_pos_max( + llama_memory_t mem, + llama_seq_id seq_id) { + if (!mem) { + return -1; + } + + return mem->seq_pos_max(seq_id); +} + +bool llama_memory_can_shift(llama_memory_t mem) { + if (!mem) { + return false; + } + + return mem->get_can_shift(); +} + // // kv cache // // deprecated int32_t llama_kv_self_n_tokens(const llama_context * ctx) { - const auto * kv = ctx->get_kv_self(); + const auto * kv = llama_get_memory(ctx); if (!kv) { return 0; } @@ -2326,7 +2553,7 @@ int32_t llama_kv_self_n_tokens(const llama_context * ctx) { // deprecated // note: this is the same as above - will be removed anyway, so it's ok int32_t llama_kv_self_used_cells(const llama_context * ctx) { - const auto * kv = ctx->get_kv_self(); + const auto * kv = llama_get_memory(ctx); if (!kv) { return 0; } @@ -2345,114 +2572,119 @@ int32_t llama_kv_self_used_cells(const llama_context * ctx) { return res; } +// deprecated void llama_kv_self_clear(llama_context * ctx) { - auto * kv = ctx->get_kv_self(); + auto * kv = llama_get_memory(ctx); if (!kv) { return; } - kv->clear(); + llama_memory_clear(kv, true); } +// deprecated bool llama_kv_self_seq_rm( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { - auto * kv = ctx->get_kv_self(); + auto * kv = llama_get_memory(ctx); if (!kv) { return true; } - return kv->seq_rm(seq_id, p0, p1); + return llama_memory_seq_rm(kv, seq_id, p0, p1); } +// deprecated void llama_kv_self_seq_cp( llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { - auto * kv = ctx->get_kv_self(); + auto * kv = llama_get_memory(ctx); if (!kv) { return; } - kv->seq_cp(seq_id_src, seq_id_dst, p0, p1); + llama_memory_seq_cp(kv, seq_id_src, seq_id_dst, p0, p1); } +// deprecated void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) { - auto * kv = ctx->get_kv_self(); + auto * kv = llama_get_memory(ctx); if (!kv) { return; } - kv->seq_keep(seq_id); + llama_memory_seq_keep(kv, seq_id); } +// deprecated void llama_kv_self_seq_add( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { - auto * kv = ctx->get_kv_self(); + auto * kv = llama_get_memory(ctx); if (!kv) { return; } - kv->seq_add(seq_id, p0, p1, delta); + llama_memory_seq_add(kv, seq_id, p0, p1, delta); } +// deprecated void llama_kv_self_seq_div( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { - auto * kv = ctx->get_kv_self(); + auto * kv = llama_get_memory(ctx); if (!kv) { return; } - kv->seq_div(seq_id, p0, p1, d); + llama_memory_seq_div(kv, seq_id, p0, p1, d); } +// deprecated llama_pos llama_kv_self_seq_pos_min(llama_context * ctx, llama_seq_id seq_id) { - const auto * kv = ctx->get_kv_self(); + auto * kv = llama_get_memory(ctx); if (!kv) { return -1; } - return kv->seq_pos_min(seq_id); + return llama_memory_seq_pos_min(kv, seq_id); } +// deprecated llama_pos llama_kv_self_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) { - const auto * kv = ctx->get_kv_self(); + auto * kv = llama_get_memory(ctx); if (!kv) { return -1; } - return kv->seq_pos_max(seq_id); + return llama_memory_seq_pos_max(kv, seq_id); } +// deprecated void llama_kv_self_defrag(llama_context * ctx) { - auto * kv = ctx->get_kv_self(); - if (!kv) { - return; - } - // force defrag - kv->defrag_sched(-1.0f); + ctx->kv_self_defrag_sched(); } +// deprecated bool llama_kv_self_can_shift(const llama_context * ctx) { - const auto * kv = ctx->get_kv_self(); + auto * kv = llama_get_memory(ctx); if (!kv) { return false; } - return kv->get_can_shift(); + return llama_memory_can_shift(kv); } // llama state API @@ -2577,22 +2809,8 @@ int32_t llama_encode( int32_t llama_decode( llama_context * ctx, llama_batch batch) { - int ret = ctx->decode(batch); - - // defrag and try again - // TODO: distinguish return code when we are sure that even after defrag there is no space available - if (ret == 1) { - llama_kv_self_defrag(ctx); - ret = ctx->decode(batch); - - if (ret == 1) { - LLAMA_LOG_WARN("%s: failed to find KV cache slot for batch of size %d\n", __func__, batch.n_tokens); - - return ret; - } - } - - if (ret != 0) { + const int ret = ctx->decode(batch); + if (ret != 0 && ret != 1) { LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); } diff --git a/src/llama-context.h b/src/llama-context.h index c0ceacb10c..2e0da8c83b 100644 --- a/src/llama-context.h +++ b/src/llama-context.h @@ -13,11 +13,13 @@ #include struct llama_model; -struct llama_kv_cache; class llama_io_read_i; class llama_io_write_i; +struct llama_memory_i; +struct llama_memory_state_i; + struct llama_context { // init scheduler and compute buffers, reserve worst-case graphs llama_context( @@ -44,10 +46,12 @@ struct llama_context { uint32_t n_threads() const; uint32_t n_threads_batch() const; - llama_kv_cache * get_kv_self(); - const llama_kv_cache * get_kv_self() const; + llama_memory_t get_memory() const; - void kv_self_update(); + // return true of the KV cache was updated + // TODO: remove + bool kv_self_update(bool optimize); + void kv_self_defrag_sched(); enum llama_pooling_type pooling_type() const; @@ -88,6 +92,16 @@ struct llama_context { int32_t il_start, int32_t il_end); + // process a single ubatch with a specific graph type + // if memory_state is provided, it will be applied first to the context's memory + // ret contains the status of the graph computation + // returns nullptr only if ret != GGML_STATUS_SUCCESS + llm_graph_result_ptr process_ubatch( + const llama_ubatch & ubatch, + llm_graph_type gtype, + llama_memory_state_i * mstate, + ggml_status & ret); + int encode(llama_batch & inp_batch); int decode(llama_batch & inp_batch); @@ -180,16 +194,18 @@ public: ggml_cgraph * graph_init(); // returns the result of ggml_backend_sched_graph_compute_async execution - ggml_status graph_compute( - ggml_cgraph * gf, - bool batched); + ggml_status graph_compute(ggml_cgraph * gf, bool batched); + + // reserve a graph with a dummy ubatch of the specified size + ggml_cgraph * graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_state_i * mstate); private: llm_graph_result_ptr graph_build( - ggml_context * ctx, - ggml_cgraph * gf, - const llama_ubatch & ubatch, - llm_graph_type gtype); + ggml_context * ctx, + ggml_cgraph * gf, + const llama_ubatch & ubatch, + llm_graph_type gtype, + const llama_memory_state_i * mstate); llm_graph_cb graph_get_cb() const; @@ -214,6 +230,9 @@ private: std::unique_ptr memory; + // TODO: temporary, until the llama_kv_self_defrag() API is removed + bool memory_force_optimize = false; + // decode output (2-dimensional array: [n_outputs][n_vocab]) size_t logits_size = 0; // capacity (of floats) for logits float * logits = nullptr; diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp index cdd5887de9..55390d42e7 100644 --- a/src/llama-graph.cpp +++ b/src/llama-graph.cpp @@ -3,7 +3,10 @@ #include "llama-impl.h" #include "llama-batch.h" #include "llama-cparams.h" -#include "llama-kv-cache.h" + +#include "llama-kv-cache-unified.h" +#include "llama-kv-cache-unified-iswa.h" +#include "llama-kv-cache-recurrent.h" #include #include @@ -83,7 +86,7 @@ void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) { void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) { if (pos_bucket) { - kv_self->set_input_pos_bucket(pos_bucket, ubatch); + kv_state->set_input_pos_bucket(pos_bucket, ubatch); } } @@ -234,7 +237,7 @@ void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) { void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) { GGML_UNUSED(ubatch); - const int64_t n_kv = kv_self->n; + const int64_t n_kv = kv_state->get_n_kv(); if (s_copy) { GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer)); @@ -242,7 +245,7 @@ void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) { // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n for (uint32_t i = 0; i < n_kv; ++i) { - data[i] = kv_self->s_copy(i); + data[i] = kv_state->s_copy(i); } } } @@ -250,7 +253,7 @@ void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) { void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) { GGML_UNUSED(ubatch); - const int64_t n_kv = kv_self->n; + const int64_t n_kv = kv_state->get_n_kv(); if (s_mask) { GGML_ASSERT(ggml_backend_buffer_is_host(s_mask->buffer)); @@ -258,7 +261,7 @@ void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) { // clear unused states for (int i = 0; i < n_kv; ++i) { - data[i] = kv_self->s_mask(i); + data[i] = kv_state->s_mask(i); } } } @@ -362,17 +365,17 @@ void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) { void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) { if (self_kq_mask) { - kv_self->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn); + kv_state->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn); } } void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch) { if (self_kq_mask) { - kv_self->get_kv_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn); + kv_state->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn); } if (self_kq_mask_swa) { - kv_self->get_kv_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn); + kv_state->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn); } } @@ -448,14 +451,14 @@ llm_graph_context::llm_graph_context(const llm_graph_params & params) : backend_cpu (params.backend_cpu), cvec (params.cvec), loras (params.loras), - memory (params.memory), + mstate (params.mstate), cross (params.cross), cb_func (params.cb), res (std::make_unique()) { } int64_t llm_graph_context::n_pos_per_embd() const { - return arch == LLM_ARCH_QWEN2VL ? 4 : 1; + return hparams.rope_type == LLAMA_ROPE_TYPE_MROPE ? 4 : 1; } void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const { @@ -656,6 +659,28 @@ ggml_tensor * llm_graph_context::build_ffn( cur = ggml_mul(ctx0, x0, x1); cb(cur, "ffn_mul", il); } break; + case LLM_FFN_GEGLU: + { + // Split into two equal parts + int64_t split_point = cur->ne[0] / 2; + ggml_tensor * output_ffn_up = ggml_cont(ctx0, ggml_view_2d( + ctx0, cur, split_point, + cur->ne[1], cur->nb[1], 0 + )); + ggml_tensor * output_ffn_gate = ggml_cont(ctx0, ggml_view_2d( + ctx0, cur, split_point, + cur->ne[1], cur->nb[1], + split_point * ggml_element_size(cur) + )); + + // Apply GELU activation function to the first part + output_ffn_up = ggml_gelu(ctx0, output_ffn_up); + cb(output_ffn_up, "ffn_gelu", il); + + // Element-wise multiplication between the activated part and the gate part + cur = ggml_mul(ctx0, output_ffn_up, output_ffn_gate); + cb(cur, "ffn_geglu", il); + } break; } if (gate && type_gate == LLM_FFN_PAR) { @@ -766,9 +791,8 @@ ggml_tensor * llm_graph_context::build_moe_ffn( cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens); if (weight_before_ffn) { - // TODO: this is a workaround as we don't yet have a repeat op that takes custom dim (ggml_repeat_4d) - ggml_tensor * repeated = ggml_new_tensor_3d(ctx0, cur->type, n_embd, n_expert_used, n_tokens); - repeated = ggml_repeat(ctx0, cur, repeated); // [n_embd, n_expert_used, n_tokens] + // repeat cur to [n_embd, n_expert_used, n_tokens] + ggml_tensor * repeated = ggml_repeat_4d(ctx0, cur, n_embd, n_expert_used, n_tokens, 1); cur = ggml_mul(ctx0, repeated, weights); cb(cur, "ffn_moe_weighted", il); } @@ -954,11 +978,11 @@ ggml_tensor * llm_graph_context::build_inp_cls() const { } ggml_tensor * llm_graph_context::build_inp_s_copy() const { - const llama_kv_cache_recurrent * kv_self = static_cast(memory); + const auto * kv_state = static_cast(mstate); - auto inp = std::make_unique(kv_self); + auto inp = std::make_unique(kv_state); - const auto n_kv = kv_self->n; + const auto n_kv = kv_state->get_n_kv(); auto & cur = inp->s_copy; @@ -971,11 +995,11 @@ ggml_tensor * llm_graph_context::build_inp_s_copy() const { } ggml_tensor * llm_graph_context::build_inp_s_mask() const { - const llama_kv_cache_recurrent * kv_self = static_cast(memory); + const auto * kv_state = static_cast(mstate); - auto inp = std::make_unique(kv_self); + auto inp = std::make_unique(kv_state); - const auto n_kv = kv_self->n; + const auto n_kv = kv_state->get_n_kv(); auto & cur = inp->s_mask; @@ -1025,11 +1049,11 @@ ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const { } ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const { - const llama_kv_cache_unified * kv_self = static_cast(memory); + const auto * kv_state = static_cast(mstate); - auto inp = std::make_unique(hparams, kv_self); + auto inp = std::make_unique(hparams, kv_state); - const auto n_kv = kv_self->get_n(); + const auto n_kv = kv_state->get_n_kv(); auto & cur = inp->pos_bucket; @@ -1231,14 +1255,14 @@ ggml_tensor * llm_graph_context::build_attn( } llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const { - const llama_kv_cache_unified * kv_self = static_cast(memory); + const auto * kv_state = static_cast(mstate); - auto inp = std::make_unique(hparams, cparams, kv_self); + auto inp = std::make_unique(hparams, cparams, kv_state); { GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified_iswa for SWA"); - const auto n_kv = kv_self->get_n(); + const auto n_kv = kv_state->get_n_kv(); inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); //cb(inp->self_kq_mask, "KQ_mask", -1); @@ -1268,19 +1292,19 @@ ggml_tensor * llm_graph_context::build_attn( ggml_build_forward_expand(gf, k_cur); ggml_build_forward_expand(gf, v_cur); - const llama_kv_cache_unified * kv_self = static_cast(memory); + const auto * kv_state = static_cast(mstate); // store to KV cache { - ggml_build_forward_expand(gf, kv_self->cpy_k(ctx0, k_cur, il)); - ggml_build_forward_expand(gf, kv_self->cpy_v(ctx0, v_cur, il)); + ggml_build_forward_expand(gf, kv_state->cpy_k(ctx0, k_cur, il)); + ggml_build_forward_expand(gf, kv_state->cpy_v(ctx0, v_cur, il)); } const auto & kq_mask = inp->get_kq_mask(); ggml_tensor * q = q_cur; - ggml_tensor * k = kv_self->get_k(ctx0, il); - ggml_tensor * v = kv_self->get_v(ctx0, il); + ggml_tensor * k = kv_state->get_k(ctx0, il); + ggml_tensor * v = kv_state->get_v(ctx0, il); ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale); cb(cur, "kqv_out", il); @@ -1301,12 +1325,12 @@ ggml_tensor * llm_graph_context::build_attn( } llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unified_iswa() const { - const llama_kv_cache_unified_iswa * kv_self = static_cast(memory); + const auto * kv_state = static_cast(mstate); - auto inp = std::make_unique(hparams, cparams, kv_self); + auto inp = std::make_unique(hparams, cparams, kv_state); { - const auto n_kv = kv_self->get_kv_base()->get_n(); + const auto n_kv = kv_state->get_base()->get_n_kv(); inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); //cb(inp->self_kq_mask, "KQ_mask", -1); @@ -1318,7 +1342,7 @@ llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unif { GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified for non-SWA"); - const auto n_kv = kv_self->get_kv_swa()->get_n(); + const auto n_kv = kv_state->get_swa()->get_n_kv(); inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD)); //cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1); @@ -1348,23 +1372,23 @@ ggml_tensor * llm_graph_context::build_attn( ggml_build_forward_expand(gf, k_cur); ggml_build_forward_expand(gf, v_cur); + const auto * kv_state_iswa = static_cast(mstate); + const bool is_swa = hparams.is_swa(il); - const llama_kv_cache_unified_iswa * kv_self = static_cast(memory); - - const auto * kv = is_swa ? kv_self->get_kv_swa() : kv_self->get_kv_base(); + const auto * kv_state = is_swa ? kv_state_iswa->get_swa() : kv_state_iswa->get_base(); // store to KV cache { - ggml_build_forward_expand(gf, kv->cpy_k(ctx0, k_cur, il)); - ggml_build_forward_expand(gf, kv->cpy_v(ctx0, v_cur, il)); + ggml_build_forward_expand(gf, kv_state->cpy_k(ctx0, k_cur, il)); + ggml_build_forward_expand(gf, kv_state->cpy_v(ctx0, v_cur, il)); } const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask(); ggml_tensor * q = q_cur; - ggml_tensor * k = kv->get_k(ctx0, il); - ggml_tensor * v = kv->get_v(ctx0, il); + ggml_tensor * k = kv_state->get_k(ctx0, il); + ggml_tensor * v = kv_state->get_v(ctx0, il); ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale); cb(cur, "kqv_out", il); @@ -1446,12 +1470,12 @@ ggml_tensor * llm_graph_context::build_copy_mask_state( ggml_tensor * state_mask, int32_t n_state, int32_t n_seqs) const { - const llama_kv_cache_recurrent * kv_self = static_cast(memory); + const auto * kv_state = static_cast(mstate); - const auto n_kv = kv_self->n; - const auto kv_head = kv_self->head; + const auto n_kv = kv_state->get_n_kv(); + const auto kv_head = kv_state->get_head(); - ggml_tensor * states = ggml_reshape_2d(ctx0, s, n_state, kv_self->size); + ggml_tensor * states = ggml_reshape_2d(ctx0, s, n_state, kv_state->get_size()); // copy states // NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv @@ -1478,13 +1502,13 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_load( ggml_tensor * state_mask, const llama_ubatch & ubatch, int il) const { - const llama_kv_cache_recurrent * kv_self = static_cast(memory); + const auto * kv_state = static_cast(mstate); const auto token_shift_count = hparams.token_shift_count; const int64_t n_seqs = ubatch.n_seqs; - ggml_tensor * token_shift_all = kv_self->k_l[il]; + ggml_tensor * token_shift_all = kv_state->get_k_l(il); ggml_tensor * token_shift = build_copy_mask_state( gf, token_shift_all, state_copy, state_mask, @@ -1499,19 +1523,19 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store( ggml_tensor * token_shift, const llama_ubatch & ubatch, int il) const { - const llama_kv_cache_recurrent * kv_self = static_cast(memory); + const auto * kv_state = static_cast(mstate); const auto token_shift_count = hparams.token_shift_count; const auto n_embd = hparams.n_embd; const int64_t n_seqs = ubatch.n_seqs; - const auto kv_head = kv_self->head; + const auto kv_head = kv_state->get_head(); return ggml_cpy( ctx0, ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0), - ggml_view_1d(ctx0, kv_self->k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * ggml_element_size(kv_self->k_l[il])) + ggml_view_1d(ctx0, kv_state->get_k_l(il), hparams.n_embd_k_s()*n_seqs, hparams.n_embd_k_s()*kv_head*ggml_element_size(kv_state->get_k_l(il))) ); } @@ -1562,20 +1586,25 @@ void llm_graph_context::build_pooling( ggml_tensor * inp_cls = build_inp_cls(); inp = ggml_get_rows(ctx0, inp, inp_cls); - // classification head - // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566 - GGML_ASSERT(cls != nullptr); - GGML_ASSERT(cls_b != nullptr); + if (cls != nullptr && cls_b != nullptr) { + // classification head + // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566 + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, cls, inp), cls_b); + cur = ggml_tanh(ctx0, cur); - cur = ggml_add (ctx0, ggml_mul_mat(ctx0, cls, inp), cls_b); - cur = ggml_tanh(ctx0, cur); - - // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en - // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896 - if (cls_out) { + // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en + // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896 + if (cls_out) { + GGML_ASSERT(cls_out_b != nullptr); + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, cls_out, cur), cls_out_b); + } + } else if (cls_out) { + // Single layer classification head (direct projection) + // https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476 GGML_ASSERT(cls_out_b != nullptr); - - cur = ggml_add (ctx0, ggml_mul_mat(ctx0, cls_out, cur), cls_out_b); + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, cls_out, inp), cls_out_b); + } else { + GGML_ABORT("RANK pooling requires either cls+cls_b or cls_out+cls_out_b"); } } break; default: diff --git a/src/llama-graph.h b/src/llama-graph.h index 2b85bb25be..28da6a5228 100644 --- a/src/llama-graph.h +++ b/src/llama-graph.h @@ -17,10 +17,11 @@ struct ggml_tensor; struct llama_ubatch; struct llama_cparams; -class llama_memory_i; -class llama_kv_cache_unified; -class llama_kv_cache_unified_iswa; -class llama_kv_cache_recurrent; +struct llama_memory_state_i; + +class llama_kv_cache_unified_state; +class llama_kv_cache_unified_iswa_state; +class llama_kv_cache_recurrent_state; // certain models (typically multi-modal) can produce different types of graphs enum llm_graph_type { @@ -35,6 +36,7 @@ enum llm_ffn_op_type { LLM_FFN_RELU, LLM_FFN_RELU_SQR, LLM_FFN_SWIGLU, + LLM_FFN_GEGLU, }; enum llm_ffn_gate_type { @@ -133,7 +135,7 @@ class llm_graph_input_pos_bucket_kv : public llm_graph_input_i { public: llm_graph_input_pos_bucket_kv( const llama_hparams & hparams, - const llama_kv_cache_unified * kv_self) : hparams(hparams), kv_self(kv_self) {} + const llama_kv_cache_unified_state * kv_state) : hparams(hparams), kv_state(kv_state) {} virtual ~llm_graph_input_pos_bucket_kv() = default; void set_input(const llama_ubatch * ubatch) override; @@ -141,7 +143,7 @@ public: ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch] const llama_hparams & hparams; - const llama_kv_cache_unified * kv_self; + const llama_kv_cache_unified_state * kv_state; }; class llm_graph_input_out_ids : public llm_graph_input_i { @@ -188,26 +190,26 @@ public: class llm_graph_input_s_copy : public llm_graph_input_i { public: - llm_graph_input_s_copy(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {} + llm_graph_input_s_copy(const llama_kv_cache_recurrent_state * kv_state) : kv_state(kv_state) {} virtual ~llm_graph_input_s_copy() = default; void set_input(const llama_ubatch * ubatch) override; ggml_tensor * s_copy; // I32 [kv_size] - const llama_kv_cache_recurrent * kv_self; + const llama_kv_cache_recurrent_state * kv_state; }; class llm_graph_input_s_mask : public llm_graph_input_i { public: - llm_graph_input_s_mask(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {} + llm_graph_input_s_mask(const llama_kv_cache_recurrent_state * kv_state) : kv_state(kv_state) {} virtual ~llm_graph_input_s_mask() = default; void set_input(const llama_ubatch * ubatch) override; ggml_tensor * s_mask; // F32 [1, n_kv] - const llama_kv_cache_recurrent * kv_self; + const llama_kv_cache_recurrent_state * kv_state; }; class llm_graph_input_cross_embd : public llm_graph_input_i { @@ -247,10 +249,10 @@ public: llm_graph_input_attn_kv_unified( const llama_hparams & hparams, const llama_cparams & cparams, - const llama_kv_cache_unified * kv_self) : + const llama_kv_cache_unified_state * kv_state) : hparams(hparams), cparams(cparams), - kv_self(kv_self) { + kv_state(kv_state) { } ~llm_graph_input_attn_kv_unified() = default; @@ -264,7 +266,7 @@ public: const llama_hparams & hparams; const llama_cparams & cparams; - const llama_kv_cache_unified * kv_self; + const llama_kv_cache_unified_state * kv_state; }; class llm_graph_input_attn_kv_unified_iswa : public llm_graph_input_i { @@ -272,10 +274,10 @@ public: llm_graph_input_attn_kv_unified_iswa( const llama_hparams & hparams, const llama_cparams & cparams, - const llama_kv_cache_unified_iswa * kv_self) : + const llama_kv_cache_unified_iswa_state * kv_state) : hparams(hparams), cparams(cparams), - kv_self(kv_self) { + kv_state(kv_state) { } ~llm_graph_input_attn_kv_unified_iswa() = default; @@ -292,7 +294,7 @@ public: const llama_hparams & hparams; const llama_cparams & cparams; - const llama_kv_cache_unified_iswa * kv_self; + const llama_kv_cache_unified_iswa_state * kv_state; }; class llm_graph_input_attn_cross : public llm_graph_input_i { @@ -383,10 +385,10 @@ struct llm_graph_params { ggml_backend_sched_t sched; ggml_backend_t backend_cpu; - const llama_adapter_cvec * cvec; - const llama_adapter_loras * loras; - const llama_memory_i * memory; - const llama_cross * cross; + const llama_adapter_cvec * cvec; + const llama_adapter_loras * loras; + const llama_memory_state_i * mstate; + const llama_cross * cross; int32_t n_outputs; @@ -435,10 +437,10 @@ struct llm_graph_context { ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove? - const llama_adapter_cvec * cvec; - const llama_adapter_loras * loras; - const llama_memory_i * memory; - const llama_cross * cross; + const llama_adapter_cvec * cvec; + const llama_adapter_loras * loras; + const llama_memory_state_i * mstate; + const llama_cross * cross; const llm_graph_cb & cb_func; diff --git a/src/llama-hparams.h b/src/llama-hparams.h index 2d72eab180..b2bcb8b01a 100644 --- a/src/llama-hparams.h +++ b/src/llama-hparams.h @@ -131,6 +131,9 @@ struct llama_hparams { bool attn_soft_cap = false; bool use_kq_norm = true; + // for Classifiers + uint32_t n_cls_out = 1; + // llama4 uint32_t n_moe_layer_step = 0; uint32_t n_no_rope_layer_step = 4; diff --git a/src/llama-kv-cache-recurrent.cpp b/src/llama-kv-cache-recurrent.cpp new file mode 100644 index 0000000000..f5c6dcd66c --- /dev/null +++ b/src/llama-kv-cache-recurrent.cpp @@ -0,0 +1,1132 @@ +#include "llama-kv-cache-recurrent.h" + +#include "llama-impl.h" +#include "llama-io.h" +#include "llama-batch.h" +#include "llama-model.h" + +#include +#include +#include +#include +#include + +// +// llama_kv_cache_recurrent +// + +llama_kv_cache_recurrent::llama_kv_cache_recurrent( + const llama_model & model, + ggml_type type_k, + ggml_type type_v, + bool offload, + uint32_t kv_size, + uint32_t n_seq_max) : hparams(model.hparams), n_seq_max(n_seq_max) { + const int32_t n_layer = hparams.n_layer; + + LLAMA_LOG_INFO("%s: kv_size = %u, n_seq_max = %u, type_k = '%s', type_v = '%s', n_layer = %d\n", + __func__, kv_size, n_seq_max, ggml_type_name(type_k), ggml_type_name(type_v), n_layer); + + head = 0; + size = kv_size; + used = 0; + + cells.clear(); + cells.resize(kv_size); + + // create a context for each buffer type + std::map ctx_map; + auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { + auto it = ctx_map.find(buft); + if (it == ctx_map.end()) { + ggml_init_params params = { + /*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + + ggml_context * ctx = ggml_init(params); + if (!ctx) { + return nullptr; + } + + ctx_map[buft] = ctx; + ctxs.emplace_back(ctx); + + return ctx; + } + + return it->second; + }; + + k_l.reserve(n_layer); + v_l.reserve(n_layer); + + for (int i = 0; i < n_layer; i++) { + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s(); + + const char * dev_name = "CPU"; + + ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type(); + + if (offload) { + auto * dev = model.dev_layer(i); + buft = ggml_backend_dev_buffer_type(dev); + + dev_name = ggml_backend_dev_name(dev); + } + + LLAMA_LOG_DEBUG("%s, layer %3d: dev = %s\n", __func__, i, dev_name); + + ggml_context * ctx = ctx_for_buft(buft); + if (!ctx) { + throw std::runtime_error("failed to create ggml context for kv cache"); + } + + ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); + ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); + ggml_format_name(k, "cache_k_l%d", i); + ggml_format_name(v, "cache_v_l%d", i); + k_l.push_back(k); + v_l.push_back(v); + } + + // allocate tensors and initialize the buffers to avoid NaNs in the padding + for (auto it : ctx_map) { + auto * buft = it.first; + auto * ctx = it.second; + + ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); + if (!buf) { + throw std::runtime_error("failed to allocate buffer for kv cache"); + } + ggml_backend_buffer_clear(buf, 0); + LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); + bufs.emplace_back(buf); + } + + { + const size_t memory_size_k = size_k_bytes(); + const size_t memory_size_v = size_v_bytes(); + + LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, + (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), + ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), + ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); + } +} + +void llama_kv_cache_recurrent::clear(bool data) { + for (int32_t i = 0; i < (int32_t) size; ++i) { + cells[i].pos = -1; + cells[i].seq_id.clear(); + cells[i].src = -1; + cells[i].tail = -1; + } + + head = 0; + used = 0; + + if (data) { + for (auto & buf : bufs) { + ggml_backend_buffer_clear(buf.get(), 0); + } + } +} + +bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { + uint32_t new_head = size; + + if (p0 < 0) { + p0 = 0; + } + + if (p1 < 0) { + p1 = std::numeric_limits::max(); + } + + // models like Mamba or RWKV can't have a state partially erased + if (seq_id >= (int64_t) size) { + // could be fatal + return false; + } + if (0 <= seq_id) { + int32_t & tail_id = cells[seq_id].tail; + if (tail_id >= 0) { + const kv_cell & cell = cells[tail_id]; + // partial intersection is invalid + if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) { + return false; + } + // invalidate tails which will be cleared + if (p0 <= cell.pos && cell.pos < p1) { + tail_id = -1; + } + } + } else { + // seq_id is negative, then the range should include everything or nothing + if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits::max())) { + return false; + } + } + + for (uint32_t i = 0; i < size; ++i) { + if (cells[i].pos >= p0 && cells[i].pos < p1) { + if (seq_id < 0) { + cells[i].seq_id.clear(); + } else if (cells[i].has_seq_id(seq_id)) { + cells[i].seq_id.erase(seq_id); + } else { + continue; + } + if (cells[i].is_empty()) { + // keep count of the number of used cells + if (cells[i].pos >= 0) { + used--; + } + cells[i].pos = -1; + cells[i].src = -1; + if (new_head == size) { + new_head = i; + } + } + } + } + + // If we freed up a slot, set head to it so searching can start there. + if (new_head != size && new_head < head) { + head = new_head; + } + + return true; +} + +void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { + if (seq_id_src == seq_id_dst) { + return; + } + + if (p0 < 0) { + p0 = 0; + } + + if (p1 < 0) { + p1 = std::numeric_limits::max(); + } + + if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) { + kv_cell & tail_src = cells[seq_id_src]; + kv_cell & tail_dst = cells[seq_id_dst]; + if (tail_dst.tail >= 0) { + // clear destination seq_id if it wasn't empty + kv_cell & cell_dst = cells[tail_dst.tail]; + + cell_dst.seq_id.erase(seq_id_dst); + tail_dst.tail = -1; + if (cell_dst.seq_id.empty()) { + cell_dst.pos = -1; + cell_dst.src = -1; + used -= 1; + } + } + if (tail_src.tail >= 0) { + kv_cell & cell_src = cells[tail_src.tail]; + + cell_src.seq_id.insert(seq_id_dst); + tail_dst.tail = tail_src.tail; + } + } +} + +void llama_kv_cache_recurrent::seq_keep(llama_seq_id seq_id) { + uint32_t new_head = size; + + for (uint32_t i = 0; i < size; ++i) { + if ((llama_seq_id) i != seq_id) { + cells[i].tail = -1; + } + + if (!cells[i].has_seq_id(seq_id)) { + if (cells[i].pos >= 0) { + used--; + } + + cells[i].pos = -1; + cells[i].src = -1; + cells[i].seq_id.clear(); + + if (new_head == size){ + new_head = i; + } + } else { + cells[i].seq_id.clear(); + cells[i].seq_id.insert(seq_id); + } + } + + // If we freed up a slot, set head to it so searching can start there. + if (new_head != size && new_head < head) { + head = new_head; + } +} + +void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { + if (shift == 0) { + return; + } + + if (p0 < 0) { + p0 = 0; + } + + if (p1 < 0) { + p1 = std::numeric_limits::max(); + } + + // If there is no range then return early to avoid looping over the + if (p0 == p1) { + return; + } + + // for Mamba-like or RWKV models, only the pos needs to be shifted + if (0 <= seq_id && seq_id < (int64_t) size) { + const int32_t tail_id = cells[seq_id].tail; + if (tail_id >= 0) { + kv_cell & cell = cells[tail_id]; + if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { + cell.pos += shift; + } + } + } +} + +void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { + if (d == 1) { + return; + } + + if (p0 < 0) { + p0 = 0; + } + + if (p1 < 0) { + p1 = std::numeric_limits::max(); + } + + // If there is no range then return early to avoid looping over the cache. + if (p0 == p1) { + return; + } + + // for Mamba-like or RWKV models, only the pos needs to be changed + if (0 <= seq_id && seq_id < (int64_t) size) { + const int32_t tail_id = cells[seq_id].tail; + if (tail_id >= 0) { + kv_cell & cell = cells[tail_id]; + if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { + cell.pos /= d; + } + } + } +} + +llama_pos llama_kv_cache_recurrent::seq_pos_min(llama_seq_id seq_id) const { + llama_pos result = std::numeric_limits::max(); + + for (uint32_t i = 0; i < size; ++i) { + if (cells[i].has_seq_id(seq_id)) { + result = std::min(result, cells[i].pos); + } + } + + if (result == std::numeric_limits::max()) { + result = -1; + } + + return result; +} + +llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const { + llama_pos result = -1; + + for (uint32_t i = 0; i < size; ++i) { + if (cells[i].has_seq_id(seq_id)) { + result = std::max(result, cells[i].pos); + } + } + + return result; +} + +llama_memory_state_ptr llama_kv_cache_recurrent::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled, bool logits_all) { + GGML_UNUSED(embd_pooled); + + auto sbatch = llama_sbatch(batch, hparams.n_embd, false, logits_all); + + std::vector ubatches; + + while (sbatch.n_tokens > 0) { + llama_ubatch ubatch; + + if (embd_pooled) { + // Pooled embeddings cannot be split across ubatches (yet) + ubatch = sbatch.split_seq(n_ubatch); + } else { + ubatch = sbatch.split_equal(n_ubatch); + } + + ubatches.push_back(ubatch); + } + + if (!prepare(ubatches)) { + return std::make_unique(LLAMA_MEMORY_STATUS_FAILED_PREPARE); + } + + return std::make_unique(LLAMA_MEMORY_STATUS_SUCCESS, this, std::move(sbatch), std::move(ubatches)); +} + +llama_memory_state_ptr llama_kv_cache_recurrent::init_full() { + return std::make_unique(LLAMA_MEMORY_STATUS_SUCCESS, this); +} + +llama_memory_state_ptr llama_kv_cache_recurrent::init_update(llama_context * lctx, bool optimize) { + GGML_UNUSED(lctx); + GGML_UNUSED(optimize); + + return std::make_unique(LLAMA_MEMORY_STATUS_NO_UPDATE); +} + +bool llama_kv_cache_recurrent::prepare(const std::vector & ubatches) { + // simply remember the full state because it is very small for this type of cache + // TODO: optimize + auto org_cells = cells; + auto org_used = used; + auto org_head = head; + + bool success = true; + + // TODO: here we have to verify that all ubatches can fit in the cells + // however, the current implementation is broken because it relies on s_copy() and s_mask() to update the cells + // during the compute of each ubatch. to reproduce, uncomment the following loop and run: + // + // $ llama-parallel -m ./mamba-130m/ggml-model-f16.gguf -np 5 -ns 8 + // + // recovery from failures when the batch does not fit in the KV cache will not work correctly until this is fixed + // + GGML_UNUSED(ubatches); + //for (const auto & ubatch : ubatches) { + // if (!find_slot(ubatch)) { + // success = false; + // break; + // } + //} + + // restore the original state + cells = std::move(org_cells); + used = org_used; + head = org_head; + + return success; +} + +bool llama_kv_cache_recurrent::find_slot(const llama_ubatch & ubatch) { + const uint32_t n_tokens = ubatch.n_tokens; + const uint32_t n_seqs = ubatch.n_seqs; + + const uint32_t n_seq_tokens = ubatch.n_seq_tokens; + + // if we have enough unused cells before the current head -> + // better to start searching from the beginning of the cache, hoping to fill it + if (head > used + 2*n_tokens) { + head = 0; + } + + // For recurrent state architectures (like Mamba or RWKV), + // each cache cell can store the state for a whole sequence. + // A slot should be always be contiguous. + + // can only process batches with an equal number of new tokens in each sequence + GGML_ASSERT(ubatch.equal_seqs); + + int32_t min = size - 1; + int32_t max = 0; + + // everything should fit if all seq_ids are smaller than the max + for (uint32_t s = 0; s < n_seqs; ++s) { + const uint32_t n_seq_id = ubatch.n_seq_id[s]; + for (uint32_t j = 0; j < n_seq_id; ++j) { + const llama_seq_id seq_id = ubatch.seq_id[s][j]; + + if (seq_id < 0 || (uint32_t) seq_id >= size) { + // too big seq_id + // TODO: would it be possible to resize the cache instead? + LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%u Try using a bigger --parallel value\n", __func__, seq_id, n_seq_max); + return false; + } + if (j > 0) { + kv_cell & seq = cells[seq_id]; + if (seq.tail >= 0) { + kv_cell & cell = cells[seq.tail]; + // clear cells from seq_ids that become shared + // (should not normally happen, but let's handle it anyway) + cell.seq_id.erase(seq_id); + seq.tail = -1; + if (cell.seq_id.empty()) { + cell.pos = -1; + cell.src = -1; + used -= 1; + } + } + } + } + } + +#ifndef NDEBUG + { + std::vector tails_verif; + tails_verif.assign(size, -1); + for (uint32_t i = 0; i < size; ++i) { + kv_cell & cell = cells[i]; + for (llama_seq_id seq_id : cell.seq_id) { + if (tails_verif[seq_id] != -1) { + LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]); + } + tails_verif[seq_id] = i; + } + } + for (uint32_t i = 0; i < size; ++i) { + if (tails_verif[i] != cells[i].tail) { + LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]); + } + } + } +#endif + + // find next empty cell + uint32_t next_empty_cell = head; + + for (uint32_t i = 0; i < size; ++i) { + if (next_empty_cell >= size) { next_empty_cell -= size; } + kv_cell & cell = cells[next_empty_cell]; + if (cell.is_empty()) { break; } + next_empty_cell += 1; + } + + // find usable cell range + for (uint32_t s = 0; s < n_seqs; ++s) { + const llama_seq_id seq_id = ubatch.seq_id[s][0]; + kv_cell & seq_meta = cells[seq_id]; + bool has_cell = false; + if (seq_meta.tail >= 0) { + kv_cell & cell = cells[seq_meta.tail]; + GGML_ASSERT(cell.has_seq_id(seq_id)); + // does this seq_id "own" the cell? + if (cell.seq_id.size() == 1) { has_cell = true; } + } + if (!has_cell) { + kv_cell & empty_cell = cells[next_empty_cell]; + GGML_ASSERT(empty_cell.is_empty()); + // copy old tail into the empty cell + if (seq_meta.tail >= 0) { + kv_cell & orig_cell = cells[seq_meta.tail]; + empty_cell.pos = orig_cell.pos; + empty_cell.src = orig_cell.src; + orig_cell.seq_id.erase(seq_id); + empty_cell.seq_id.insert(seq_id); // will be overwritten + } + seq_meta.tail = next_empty_cell; + // find next empty cell + if (s + 1 < n_seqs) { + next_empty_cell += 1; + for (uint32_t i = 0; i < size; ++i) { + if (next_empty_cell >= size) { next_empty_cell -= size; } + kv_cell & cell = cells[next_empty_cell]; + if (cell.is_empty()) { break; } + next_empty_cell += 1; + } + } + } + if (min > seq_meta.tail) { min = seq_meta.tail; } + if (max < seq_meta.tail) { max = seq_meta.tail; } + } + + // gather and re-order + for (uint32_t s = 0; s < n_seqs; ++s) { + int32_t dst_id = s + min; + int32_t src_id = cells[ubatch.seq_id[s][0]].tail; + if (dst_id != src_id) { + kv_cell & dst_cell = cells[dst_id]; + kv_cell & src_cell = cells[src_id]; + + std::swap(dst_cell.pos, src_cell.pos); + std::swap(dst_cell.src, src_cell.src); + std::swap(dst_cell.seq_id, src_cell.seq_id); + + // swap tails (assuming they NEVER overlap) + for (const llama_seq_id seq_id : src_cell.seq_id) { + cells[seq_id].tail = src_id; + } + for (const llama_seq_id seq_id : dst_cell.seq_id) { + cells[seq_id].tail = dst_id; + } + } + } + + // update the pos of the used seqs + for (uint32_t s = 0; s < n_seqs; ++s) { + const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1]; + int32_t cell_id = s + min; + kv_cell & cell = cells[cell_id]; + + if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) { + // What should happen when the pos backtracks or skips a value? + // Clearing the state mid-batch would require special-casing which isn't done. + LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n", + __func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens); + } + cell.pos = last_pos; + cell.seq_id.clear(); + for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) { + const llama_seq_id seq_id = ubatch.seq_id[s][j]; + cell.seq_id.insert(seq_id); + cells[seq_id].tail = cell_id; + } + } + + // allow getting the range of used cells, from head to head + n + head = min; + n = max - min + 1; + used = std::count_if(cells.begin(), cells.end(), + [](const kv_cell & cell){ return !cell.is_empty(); }); + + // sanity check + return n >= n_seqs; +} + +bool llama_kv_cache_recurrent::get_can_shift() const { + return false; +} + +int32_t llama_kv_cache_recurrent::s_copy(int i) const { + const uint32_t cell_id = i + head; + + ////////////////////////////////////////////// + // TODO: this should not mutate the KV cache ! + kv_cell & cell = const_cast(cells[cell_id]); + + // prevent out-of-bound sources + if (cell.src < 0 || (uint32_t) cell.src >= size) { + cell.src = cell_id; + } + + int32_t res = cell.src; + + // TODO: do not mutate the KV cache + // ensure copy only happens once + if (cell.src != (int32_t) cell_id) { + cell.src = cell_id; + } + + return res; +} + +float llama_kv_cache_recurrent::s_mask(int i) const { + const uint32_t cell_id = i + head; + + ////////////////////////////////////////////// + // TODO: this should not mutate the KV cache ! + kv_cell & cell = const_cast(cells[cell_id]); + + float res = (float) (cell.src >= 0); + + // only clear once + if (cell.src < 0) { + cell.src = cell_id; + } + + return res; +} + +size_t llama_kv_cache_recurrent::total_size() const { + size_t size = 0; + for (const auto & buf : bufs) { + size += ggml_backend_buffer_get_size(buf.get()); + } + + return size; +} + +size_t llama_kv_cache_recurrent::size_k_bytes() const { + size_t size_k_bytes = 0; + + for (const auto & k : k_l) { + size_k_bytes += ggml_nbytes(k); + } + + return size_k_bytes; +} + +size_t llama_kv_cache_recurrent::size_v_bytes() const { + size_t size_v_bytes = 0; + + for (const auto & v : v_l) { + size_v_bytes += ggml_nbytes(v); + } + + return size_v_bytes; +} + +void llama_kv_cache_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { + std::vector> cell_ranges; // ranges, from inclusive, to exclusive + uint32_t cell_count = 0; + + // Count the number of cells with the specified seq_id + // Find all the ranges of cells with this seq id (or all, when -1) + uint32_t cell_range_begin = size; + for (uint32_t i = 0; i < size; ++i) { + const auto & cell = cells[i]; + if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) { + ++cell_count; + if (cell_range_begin == size) { + cell_range_begin = i; + } + } else { + if (cell_range_begin != size) { + cell_ranges.emplace_back(cell_range_begin, i); + cell_range_begin = size; + } + } + } + if (cell_range_begin != size) { + cell_ranges.emplace_back(cell_range_begin, size); + } + + // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count + uint32_t cell_count_check = 0; + for (const auto & range : cell_ranges) { + cell_count_check += range.second - range.first; + } + GGML_ASSERT(cell_count == cell_count_check); + + io.write(&cell_count, sizeof(cell_count)); + + state_write_meta(io, cell_ranges, seq_id); + state_write_data(io, cell_ranges); +} + +void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) { + uint32_t cell_count; + io.read_to(&cell_count, sizeof(cell_count)); + + bool res = true; + + res = res && state_read_meta(io, cell_count, seq_id); + res = res && state_read_data(io, cell_count); + + if (!res) { + if (seq_id == -1) { + clear(true); + } else { + seq_rm(seq_id, -1, -1); + } + throw std::runtime_error("failed to restore kv cache"); + } +} + +void llama_kv_cache_recurrent::state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id) const { + for (const auto & range : cell_ranges) { + for (uint32_t i = range.first; i < range.second; ++i) { + const auto & cell = cells[i]; + const llama_pos pos = cell.pos; + const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0; + + io.write(&pos, sizeof(pos)); + io.write(&n_seq_id, sizeof(n_seq_id)); + + if (n_seq_id) { + for (auto seq_id : cell.seq_id) { + io.write(&seq_id, sizeof(seq_id)); + } + } + } + } +} + +void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const { + const uint32_t v_trans = 0; + const uint32_t n_layer = hparams.n_layer; + + io.write(&v_trans, sizeof(v_trans)); + io.write(&n_layer, sizeof(n_layer)); + + std::vector tmp_buf; + + // Iterate and write all the keys first, each row is a cell + // Get whole range at a time + for (uint32_t il = 0; il < n_layer; ++il) { + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); + + // Write key type + const int32_t k_type_i = (int32_t)k_l[il]->type; + io.write(&k_type_i, sizeof(k_type_i)); + + // Write row size of key + const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); + io.write(&k_size_row, sizeof(k_size_row)); + + // Read each range of cells of k_size length each into tmp_buf and write out + for (const auto & range : cell_ranges) { + const size_t range_size = range.second - range.first; + const size_t buf_size = range_size * k_size_row; + io.write_tensor(k_l[il], range.first * k_size_row, buf_size); + } + } + + if (!v_trans) { + for (uint32_t il = 0; il < n_layer; ++il) { + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + + // Write value type + const int32_t v_type_i = (int32_t)v_l[il]->type; + io.write(&v_type_i, sizeof(v_type_i)); + + // Write row size of value + const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); + io.write(&v_size_row, sizeof(v_size_row)); + + // Read each range of cells of v_size length each into tmp_buf and write out + for (const auto & range : cell_ranges) { + const size_t range_size = range.second - range.first; + const size_t buf_size = range_size * v_size_row; + io.write_tensor(v_l[il], range.first * v_size_row, buf_size); + } + } + } else { + // When v is transposed, we also need the element size and get the element ranges from each row + const uint32_t kv_size = size; + for (uint32_t il = 0; il < n_layer; ++il) { + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + + // Write value type + const int32_t v_type_i = (int32_t)v_l[il]->type; + io.write(&v_type_i, sizeof(v_type_i)); + + // Write element size + const uint32_t v_size_el = ggml_type_size(v_l[il]->type); + io.write(&v_size_el, sizeof(v_size_el)); + + // Write GQA embedding size + io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); + + // For each row, we get the element values of each cell + for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { + // Read each range of cells of v_size_el length each into tmp_buf and write out + for (const auto & range : cell_ranges) { + const size_t range_size = range.second - range.first; + const size_t src_offset = (range.first + j * kv_size) * v_size_el; + const size_t buf_size = range_size * v_size_el; + io.write_tensor(v_l[il], src_offset, buf_size); + } + } + } + } +} + +bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) { + if (dest_seq_id != -1) { + // single sequence + + seq_rm(dest_seq_id, -1, -1); + + llama_sbatch sbatch; + llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false); + + batch.n_tokens = cell_count; + batch.n_seq_tokens = cell_count; + batch.n_seqs = 1; + + for (uint32_t i = 0; i < cell_count; ++i) { + llama_pos pos; + uint32_t n_seq_id; + + io.read_to(&pos, sizeof(pos)); + io.read_to(&n_seq_id, sizeof(n_seq_id)); + + if (n_seq_id != 0) { + LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); + return false; + } + + batch.pos[i] = pos; + } + batch.n_seq_id[0] = 1; + batch.seq_id[0] = &dest_seq_id; + + if (!find_slot(batch)) { + LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); + return false; + } + + // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values) + // Assume that this is one contiguous block of cells + GGML_ASSERT(head + cell_count <= size); + GGML_ASSERT(cells[head].pos == batch.pos[0]); + GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]); + GGML_ASSERT(cells[head].has_seq_id(dest_seq_id)); + GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id)); + } else { + // whole KV cache restore + + if (cell_count > size) { + LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__); + return false; + } + + clear(true); + + for (uint32_t i = 0; i < cell_count; ++i) { + kv_cell & cell = cells[i]; + + llama_pos pos; + uint32_t n_seq_id; + + io.read_to(&pos, sizeof(pos)); + io.read_to(&n_seq_id, sizeof(n_seq_id)); + + cell.pos = pos; + + for (uint32_t j = 0; j < n_seq_id; ++j) { + llama_seq_id seq_id; + io.read_to(&seq_id, sizeof(seq_id)); + + // TODO: llama_kv_cache_recurrent should have a notion of max sequences + //if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) { + if (seq_id < 0) { + //LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx)); + LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id); + return false; + } + + cell.seq_id.insert(seq_id); + + int32_t & tail = cells[seq_id].tail; + if (tail != -1) { + LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail); + return false; + } + tail = i; + } + } + + head = 0; + used = cell_count; + } + + for (uint32_t i = 0; i < cell_count; ++i) { + uint32_t cell_id = head + i; + // make sure the recurrent states will keep their restored state + cells[cell_id].src = cell_id; + } + + return true; +} + +bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) { + uint32_t v_trans; + uint32_t n_layer; + io.read_to(&v_trans, sizeof(v_trans)); + io.read_to(&n_layer, sizeof(n_layer)); + + if (n_layer != hparams.n_layer) { + LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer); + return false; + } + if (cell_count > size) { + LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size); + return false; + } + if (false != (bool) v_trans) { + LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); + return false; + } + + // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block + for (uint32_t il = 0; il < n_layer; ++il) { + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); + + // Read type of key + int32_t k_type_i_ref; + io.read_to(&k_type_i_ref, sizeof(k_type_i_ref)); + const int32_t k_type_i = (int32_t) k_l[il]->type; + if (k_type_i != k_type_i_ref) { + LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); + return false; + } + + // Read row size of key + uint64_t k_size_row_ref; + io.read_to(&k_size_row_ref, sizeof(k_size_row_ref)); + const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); + if (k_size_row != k_size_row_ref) { + LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); + return false; + } + + if (cell_count) { + // Read and set the keys for the whole cell range + ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row); + } + } + + if (!v_trans) { + for (uint32_t il = 0; il < n_layer; ++il) { + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + + // Read type of value + int32_t v_type_i_ref; + io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); + const int32_t v_type_i = (int32_t)v_l[il]->type; + if (v_type_i != v_type_i_ref) { + LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); + return false; + } + + // Read row size of value + uint64_t v_size_row_ref; + io.read_to(&v_size_row_ref, sizeof(v_size_row_ref)); + const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); + if (v_size_row != v_size_row_ref) { + LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); + return false; + } + + if (cell_count) { + // Read and set the values for the whole cell range + ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row); + } + } + } else { + // For each layer, read the values for each cell (transposed) + for (uint32_t il = 0; il < n_layer; ++il) { + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + + // Read type of value + int32_t v_type_i_ref; + io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); + const int32_t v_type_i = (int32_t)v_l[il]->type; + if (v_type_i != v_type_i_ref) { + LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); + return false; + } + + // Read element size of value + uint32_t v_size_el_ref; + io.read_to(&v_size_el_ref, sizeof(v_size_el_ref)); + const size_t v_size_el = ggml_type_size(v_l[il]->type); + if (v_size_el != v_size_el_ref) { + LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); + return false; + } + + // Read GQA embedding size + uint32_t n_embd_v_gqa_ref; + io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); + if (n_embd_v_gqa != n_embd_v_gqa_ref) { + LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); + return false; + } + + if (cell_count) { + // For each row in the transposed matrix, read the values for the whole cell range + for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { + const size_t dst_offset = (head + j * size) * v_size_el; + ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); + } + } + } + } + + return true; +} + +// +// llama_kv_cache_recurrent_state +// + +llama_kv_cache_recurrent_state::llama_kv_cache_recurrent_state(llama_memory_status status) : status(status) {} + +llama_kv_cache_recurrent_state::llama_kv_cache_recurrent_state( + llama_memory_status status, + llama_kv_cache_recurrent * kv) : status(status), kv(kv), is_full(true) { +} + +llama_kv_cache_recurrent_state::llama_kv_cache_recurrent_state( + llama_memory_status status, + llama_kv_cache_recurrent * kv, + llama_sbatch sbatch, + std::vector ubatches) : status(status), kv(kv), sbatch(std::move(sbatch)), ubatches(std::move(ubatches)) {} + +llama_kv_cache_recurrent_state::~llama_kv_cache_recurrent_state() = default; + +bool llama_kv_cache_recurrent_state::next() { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + if (++i_next >= ubatches.size()) { + return false; + } + + return true; +} + +bool llama_kv_cache_recurrent_state::apply() { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + kv->find_slot(ubatches[i_next]); + + return true; +} + +std::vector & llama_kv_cache_recurrent_state::out_ids() { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + return sbatch.out_ids; +} + +llama_memory_status llama_kv_cache_recurrent_state::get_status() const { + return status; +} + +const llama_ubatch & llama_kv_cache_recurrent_state::get_ubatch() const { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + return ubatches[i_next]; +} + +uint32_t llama_kv_cache_recurrent_state::get_n_kv() const { + return is_full ? kv->size : kv->n; +} + +uint32_t llama_kv_cache_recurrent_state::get_head() const { + return is_full ? 0 : kv->head; +} + +uint32_t llama_kv_cache_recurrent_state::get_size() const { + return kv->size; +} + +ggml_tensor * llama_kv_cache_recurrent_state::get_k_l(int32_t il) const { + return kv->k_l[il]; +} + +ggml_tensor * llama_kv_cache_recurrent_state::get_v_l(int32_t il) const { + return kv->v_l[il]; +} + +int32_t llama_kv_cache_recurrent_state::s_copy(int i) const { + return kv->s_copy(i); +} + +float llama_kv_cache_recurrent_state::s_mask(int i) const { + return kv->s_mask(i); +} diff --git a/src/llama-kv-cache-recurrent.h b/src/llama-kv-cache-recurrent.h new file mode 100644 index 0000000000..d1da122565 --- /dev/null +++ b/src/llama-kv-cache-recurrent.h @@ -0,0 +1,185 @@ +#pragma once + +#include "llama-batch.h" +#include "llama-graph.h" +#include "llama-memory.h" + +#include +#include + +// +// llama_kv_cache_recurrent +// + +// TODO: extract the KV cache state used for graph computation into llama_kv_cache_recurrent_state_i +// see the implementation of llama_kv_cache_unified_state_i for an example how to do it +class llama_kv_cache_recurrent : public llama_memory_i { +public: + llama_kv_cache_recurrent( + const llama_model & model, + ggml_type type_k, + ggml_type type_v, + bool offload, + uint32_t kv_size, + uint32_t n_seq_max); + + ~llama_kv_cache_recurrent() = default; + + // + // llama_memory_i + // + + llama_memory_state_ptr init_batch( + const llama_batch & batch, + uint32_t n_ubatch, + bool embd_pooled, + bool logits_all) override; + + llama_memory_state_ptr init_full() override; + + llama_memory_state_ptr init_update(llama_context * lctx, bool optimize) override; + + void clear(bool data) override; + + bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; + void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; + void seq_keep(llama_seq_id seq_id) override; + void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override; + void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; + + llama_pos seq_pos_min(llama_seq_id seq_id) const override; + llama_pos seq_pos_max(llama_seq_id seq_id) const override; + + bool prepare(const std::vector & ubatches); + + // find a contiguous slot of kv cells and emplace the ubatch there + bool find_slot(const llama_ubatch & ubatch); + + bool get_can_shift() const override; + + // TODO: temporary methods - they are not really const as they do const_cast<>, fix this + int32_t s_copy(int i) const; + float s_mask(int i) const; + + // state write/load + + void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override; + void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override; + + uint32_t head = 0; // the location where the batch will be placed in the cache (see find_slot()) + uint32_t size = 0; // total number of cells, shared across all sequences + uint32_t used = 0; // used cells (i.e. at least one seq_id) + + // computed before each graph build + uint32_t n = 0; + + // TODO: optimize for recurrent state needs + struct kv_cell { + llama_pos pos = -1; + int32_t src = -1; // used to copy states + int32_t tail = -1; + + std::set seq_id; + + bool has_seq_id(const llama_seq_id & id) const { + return seq_id.find(id) != seq_id.end(); + } + + bool is_empty() const { + return seq_id.empty(); + } + + bool is_same_seq(const kv_cell & other) const { + return seq_id == other.seq_id; + } + }; + + std::vector cells; + + std::vector k_l; // per layer + std::vector v_l; + +private: + //const llama_model & model; + const llama_hparams & hparams; + + const uint32_t n_seq_max = 1; + + std::vector ctxs; + std::vector bufs; + + size_t total_size() const; + + size_t size_k_bytes() const; + size_t size_v_bytes() const; + + void state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id = -1) const; + void state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const; + + bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1); + bool state_read_data(llama_io_read_i & io, uint32_t cell_count); +}; + +class llama_kv_cache_recurrent_state : public llama_memory_state_i { +public: + // used for errors + llama_kv_cache_recurrent_state(llama_memory_status status); + + // used to create a full-cache state + llama_kv_cache_recurrent_state( + llama_memory_status status, + llama_kv_cache_recurrent * kv); + + // used to create a state from a batch + llama_kv_cache_recurrent_state( + llama_memory_status status, + llama_kv_cache_recurrent * kv, + llama_sbatch sbatch, + std::vector ubatches); + + virtual ~llama_kv_cache_recurrent_state(); + + // + // llama_memory_state_i + // + + bool next() override; + bool apply() override; + + std::vector & out_ids() override; + + llama_memory_status get_status() const override; + const llama_ubatch & get_ubatch() const override; + + // + // llama_kv_cache_recurrent_state specific API + // + + uint32_t get_n_kv() const; + uint32_t get_head() const; + uint32_t get_size() const; + + ggml_tensor * get_k_l(int32_t il) const; + ggml_tensor * get_v_l(int32_t il) const; + + int32_t s_copy(int i) const; + float s_mask(int i) const; + +private: + const llama_memory_status status; + + llama_kv_cache_recurrent * kv; + + llama_sbatch sbatch; + + size_t i_next = 0; + + std::vector ubatches; + + // + // data needed for building the compute graph for the current ubatch: + // TODO: extract all the state like `head` and `n` here + // + + const bool is_full = false; +}; diff --git a/src/llama-kv-cache-unified-iswa.cpp b/src/llama-kv-cache-unified-iswa.cpp new file mode 100644 index 0000000000..28d1826547 --- /dev/null +++ b/src/llama-kv-cache-unified-iswa.cpp @@ -0,0 +1,252 @@ +#include "llama-kv-cache-unified-iswa.h" + +#include "llama-impl.h" +#include "llama-batch.h" +#include "llama-model.h" + +#include +#include + +// +// llama_kv_cache_unified_iswa +// + +llama_kv_cache_unified_iswa::llama_kv_cache_unified_iswa( + const llama_model & model, + ggml_type type_k, + ggml_type type_v, + bool v_trans, + bool offload, + bool swa_full, + uint32_t kv_size, + uint32_t n_seq_max, + uint32_t n_ubatch, + uint32_t n_pad) : hparams(model.hparams) { + llama_kv_cache_unified::layer_filter_cb filter_base = [&](int32_t il) { return !model.hparams.is_swa(il); }; + llama_kv_cache_unified::layer_filter_cb filter_swa = [&](int32_t il) { return model.hparams.is_swa(il); }; + + const uint32_t size_base = kv_size; + + uint32_t size_swa = std::min(size_base, GGML_PAD(hparams.n_swa*n_seq_max + n_ubatch, n_pad)); + + // when using full-size SWA cache, we set the SWA cache size to be equal to the base cache size + if (swa_full) { + LLAMA_LOG_WARN("%s: using full-size SWA cache (ref: %s)\n", + __func__, "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055"); + + size_swa = size_base; + } + + LLAMA_LOG_INFO("%s: creating non-SWA KV cache, size = %u cells\n", __func__, size_base); + + kv_base = std::make_unique( + model, std::move(filter_base), type_k, type_v, + v_trans, offload, size_base, n_seq_max, n_pad, + 0, LLAMA_SWA_TYPE_NONE); + + LLAMA_LOG_INFO("%s: creating SWA KV cache, size = %u cells\n", __func__, size_swa); + + kv_swa = std::make_unique( + model, std::move(filter_swa), type_k, type_v, + v_trans, offload, size_swa, n_seq_max, n_pad, + hparams.n_swa, hparams.swa_type); +} + +void llama_kv_cache_unified_iswa::clear(bool data) { + kv_base->clear(data); + kv_swa ->clear(data); +} + +bool llama_kv_cache_unified_iswa::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { + bool res = true; + + res = res & kv_base->seq_rm(seq_id, p0, p1); + res = res & kv_swa ->seq_rm(seq_id, p0, p1); + + return res; +} + +void llama_kv_cache_unified_iswa::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { + kv_base->seq_cp(seq_id_src, seq_id_dst, p0, p1); + kv_swa ->seq_cp(seq_id_src, seq_id_dst, p0, p1); +} + +void llama_kv_cache_unified_iswa::seq_keep(llama_seq_id seq_id) { + kv_base->seq_keep(seq_id); + kv_swa ->seq_keep(seq_id); +} + +void llama_kv_cache_unified_iswa::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { + kv_base->seq_add(seq_id, p0, p1, shift); + kv_swa ->seq_add(seq_id, p0, p1, shift); +} + +void llama_kv_cache_unified_iswa::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { + kv_base->seq_div(seq_id, p0, p1, d); + kv_swa ->seq_div(seq_id, p0, p1, d); +} + +llama_pos llama_kv_cache_unified_iswa::seq_pos_min(llama_seq_id seq_id) const { + // the base cache is a superset of the SWA cache, so we can just check the SWA cache + return kv_swa->seq_pos_min(seq_id); +} + +llama_pos llama_kv_cache_unified_iswa::seq_pos_max(llama_seq_id seq_id) const { + return kv_swa->seq_pos_max(seq_id); +} + +llama_memory_state_ptr llama_kv_cache_unified_iswa::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled, bool logits_all) { + GGML_UNUSED(embd_pooled); + + // TODO: if we fail with split_simple, we should attempt different splitting strategies + // but to do that properly, we first have to refactor the batches to be more flexible + + auto sbatch = llama_sbatch(batch, hparams.n_embd, true, logits_all); + + std::vector ubatches; + + while (sbatch.n_tokens > 0) { + auto ubatch = sbatch.split_simple(n_ubatch); + + ubatches.push_back(ubatch); + } + + auto heads_base = kv_base->prepare(ubatches); + if (heads_base.empty()) { + return std::make_unique(LLAMA_MEMORY_STATUS_FAILED_PREPARE); + } + + auto heads_swa = kv_swa->prepare(ubatches); + if (heads_swa.empty()) { + return std::make_unique(LLAMA_MEMORY_STATUS_FAILED_PREPARE); + } + + assert(heads_base.size() == heads_swa.size()); + + return std::make_unique( + this, std::move(sbatch), std::move(heads_base), std::move(heads_swa), std::move(ubatches)); +} + +llama_memory_state_ptr llama_kv_cache_unified_iswa::init_full() { + return std::make_unique(this); +} + +llama_memory_state_ptr llama_kv_cache_unified_iswa::init_update(llama_context * lctx, bool optimize) { + return std::make_unique(this, lctx, optimize); +} + +bool llama_kv_cache_unified_iswa::get_can_shift() const { + return kv_base->get_size() == kv_swa->get_size(); +} + +void llama_kv_cache_unified_iswa::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { + kv_base->state_write(io, seq_id); + kv_swa ->state_write(io, seq_id); +} + +void llama_kv_cache_unified_iswa::state_read(llama_io_read_i & io, llama_seq_id seq_id) { + kv_base->state_read(io, seq_id); + kv_swa ->state_read(io, seq_id); +} + +llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_base() const { + return kv_base.get(); +} + +llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_swa() const { + return kv_swa.get(); +} + +// +// llama_kv_cache_unified_iswa_state +// + +llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state(llama_memory_status status) : status(status) {} + +llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state( + llama_kv_cache_unified_iswa * kv) : status(LLAMA_MEMORY_STATUS_SUCCESS) { + state_base = kv->get_base()->init_full(); + state_swa = kv->get_swa ()->init_full(); + + status = llama_memory_status_combine(state_base->get_status(), state_swa->get_status()); +} + +llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state( + llama_kv_cache_unified_iswa * kv, + llama_context * lctx, + bool optimize) : status(LLAMA_MEMORY_STATUS_SUCCESS) { + state_base = kv->get_base()->init_update(lctx, optimize); + state_swa = kv->get_swa ()->init_update(lctx, optimize); + + status = llama_memory_status_combine(state_base->get_status(), state_swa->get_status()); +} + +llama_kv_cache_unified_iswa_state::llama_kv_cache_unified_iswa_state( + llama_kv_cache_unified_iswa * kv, + llama_sbatch sbatch, + std::vector heads_base, + std::vector heads_swa, + std::vector ubatches) + : status(LLAMA_MEMORY_STATUS_SUCCESS), + sbatch(std::move(sbatch)), + ubatches(std::move(ubatches)) { + // note: here we copy the ubatches. not sure if this is ideal + state_base.reset(new llama_kv_cache_unified_state(kv->get_base(), {}, std::move(heads_base), this->ubatches)); + state_swa .reset(new llama_kv_cache_unified_state(kv->get_swa (), {}, std::move(heads_swa), this->ubatches)); + + status = llama_memory_status_combine(state_base->get_status(), state_swa->get_status()); +} + +llama_kv_cache_unified_iswa_state:: ~llama_kv_cache_unified_iswa_state() = default; + +bool llama_kv_cache_unified_iswa_state::next() { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + state_base->next(); + state_swa ->next(); + + if (++i_next >= ubatches.size()) { + return false; + } + + return true; +} + +bool llama_kv_cache_unified_iswa_state::apply() { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + bool res = true; + + res = res & state_base->apply(); + res = res & state_swa ->apply(); + + return res; +} + +std::vector & llama_kv_cache_unified_iswa_state::out_ids() { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + return sbatch.out_ids; +} + +llama_memory_status llama_kv_cache_unified_iswa_state::get_status() const { + return status; +} + +const llama_ubatch & llama_kv_cache_unified_iswa_state::get_ubatch() const { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + return ubatches[i_next]; +} + +const llama_kv_cache_unified_state * llama_kv_cache_unified_iswa_state::get_base() const { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + return static_cast(state_base.get()); +} + +const llama_kv_cache_unified_state * llama_kv_cache_unified_iswa_state::get_swa() const { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + return static_cast(state_swa.get()); +} diff --git a/src/llama-kv-cache-unified-iswa.h b/src/llama-kv-cache-unified-iswa.h new file mode 100644 index 0000000000..3dbf33ed7b --- /dev/null +++ b/src/llama-kv-cache-unified-iswa.h @@ -0,0 +1,134 @@ +#pragma once + +#include "llama-kv-cache-unified.h" + +#include + +// +// llama_kv_cache_unified_iswa +// + +// utilizes two instances of llama_kv_cache_unified +// the first instance is for the non-SWA layers of the model and the second instance is for the SWA layers + +class llama_kv_cache_unified_iswa : public llama_memory_i { +public: + llama_kv_cache_unified_iswa( + const llama_model & model, + ggml_type type_k, + ggml_type type_v, + bool v_trans, + bool offload, + bool swa_full, + uint32_t kv_size, + uint32_t n_seq_max, + uint32_t n_ubatch, + uint32_t n_pad); + + ~llama_kv_cache_unified_iswa() = default; + + // + // llama_memory_i + // + + llama_memory_state_ptr init_batch( + const llama_batch & batch, + uint32_t n_ubatch, + bool embd_pooled, + bool logits_all) override; + + llama_memory_state_ptr init_full() override; + + llama_memory_state_ptr init_update(llama_context * lctx, bool optimize) override; + + bool get_can_shift() const override; + + void clear(bool data) override; + + bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; + void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; + void seq_keep(llama_seq_id seq_id) override; + void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override; + void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; + + llama_pos seq_pos_min(llama_seq_id seq_id) const override; + llama_pos seq_pos_max(llama_seq_id seq_id) const override; + + // state write/load + + void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override; + void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override; + + // + // llama_kv_cache_unified_iswa specific API + // + + llama_kv_cache_unified * get_base() const; + llama_kv_cache_unified * get_swa () const; + +private: + const llama_hparams & hparams; + + std::unique_ptr kv_base; + std::unique_ptr kv_swa; +}; + +class llama_kv_cache_unified_iswa_state : public llama_memory_state_i { +public: + // used for errors + llama_kv_cache_unified_iswa_state(llama_memory_status status); + + // used to create a full-cache state + llama_kv_cache_unified_iswa_state( + llama_kv_cache_unified_iswa * kv); + + // used to create an update state + llama_kv_cache_unified_iswa_state( + llama_kv_cache_unified_iswa * kv, + llama_context * lctx, + bool optimize); + + // used to create a state from a batch + llama_kv_cache_unified_iswa_state( + llama_kv_cache_unified_iswa * kv, + llama_sbatch sbatch, + std::vector heads_base, + std::vector heads_swa, + std::vector ubatches); + + virtual ~llama_kv_cache_unified_iswa_state(); + + // + // llama_memory_state_i + // + + bool next() override; + bool apply() override; + + std::vector & out_ids() override; + + llama_memory_status get_status() const override; + const llama_ubatch & get_ubatch() const override; + + // + // llama_kv_cache_unified_iswa_state specific API + // + + const llama_kv_cache_unified_state * get_base() const; + const llama_kv_cache_unified_state * get_swa() const; + +private: + llama_memory_status status; + + //llama_kv_cache_unified_iswa * kv; + + llama_sbatch sbatch; + + // the index of the next ubatch to process + size_t i_next = 0; + + std::vector ubatches; + + llama_memory_state_ptr state_base; + llama_memory_state_ptr state_swa; +}; diff --git a/src/llama-kv-cache-unified.cpp b/src/llama-kv-cache-unified.cpp new file mode 100644 index 0000000000..3a40463fd2 --- /dev/null +++ b/src/llama-kv-cache-unified.cpp @@ -0,0 +1,1772 @@ +#include "llama-kv-cache-unified.h" + +#include "llama-impl.h" +#include "llama-io.h" +#include "llama-model.h" +#include "llama-context.h" + +#include +#include +#include +#include +#include +#include + +// +// llama_kv_cache_unified +// + +llama_kv_cache_unified::llama_kv_cache_unified( + const llama_model & model, + layer_filter_cb && filter, + ggml_type type_k, + ggml_type type_v, + bool v_trans, + bool offload, + uint32_t kv_size, + uint32_t n_seq_max, + uint32_t n_pad, + uint32_t n_swa, + llama_swa_type swa_type) : + model(model), hparams(model.hparams), v_trans(v_trans), + n_seq_max(n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) { + + GGML_ASSERT(kv_size % n_pad == 0); + + // create a context for each buffer type + std::map ctx_map; + auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { + auto it = ctx_map.find(buft); + if (it == ctx_map.end()) { + ggml_init_params params = { + /*.mem_size =*/ size_t(2u*hparams.n_layer*ggml_tensor_overhead()), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + + ggml_context * ctx = ggml_init(params); + if (!ctx) { + return nullptr; + } + + ctx_map[buft] = ctx; + ctxs.emplace_back(ctx); + + return ctx; + } + + return it->second; + }; + + head = 0; + + cells.resize(kv_size); + + for (uint32_t il = 0; il < hparams.n_layer; il++) { + if (filter && !filter(il)) { + LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il); + continue; + } + + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + + const char * dev_name = "CPU"; + + ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type(); + + if (offload) { + auto * dev = model.dev_layer(il); + buft = ggml_backend_dev_buffer_type(dev); + + dev_name = ggml_backend_dev_name(dev); + } + + LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name); + + ggml_context * ctx = ctx_for_buft(buft); + if (!ctx) { + throw std::runtime_error("failed to create ggml context for kv cache"); + } + + ggml_tensor * k; + ggml_tensor * v; + + k = ggml_new_tensor_2d(ctx, type_k, n_embd_k_gqa, kv_size); + v = ggml_new_tensor_2d(ctx, type_v, n_embd_v_gqa, kv_size); + + ggml_format_name(k, "cache_k_l%d", il); + ggml_format_name(v, "cache_v_l%d", il); + + map_layer_ids[il] = layers.size(); + layers.push_back({ il, k, v }); + } + + // allocate tensors and initialize the buffers to avoid NaNs in the padding + for (auto it : ctx_map) { + auto * buft = it.first; + auto * ctx = it.second; + + ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); + if (!buf) { + throw std::runtime_error("failed to allocate buffer for kv cache"); + } + + LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); + + ggml_backend_buffer_clear(buf, 0); + bufs.emplace_back(buf); + } + + { + const size_t memory_size_k = size_k_bytes(); + const size_t memory_size_v = size_v_bytes(); + + LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, + (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max, + ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), + ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); + } +} + +void llama_kv_cache_unified::clear(bool data) { + cells.reset(); + + head = 0; + + if (data) { + for (auto & buf : bufs) { + ggml_backend_buffer_clear(buf.get(), 0); + } + } +} + +bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { + uint32_t new_head = cells.size(); + + if (p0 < 0) { + p0 = 0; + } + + if (p1 < 0) { + p1 = std::numeric_limits::max(); + } + + if (seq_id >= 0) { + for (uint32_t i = 0; i < cells.size(); ++i) { + if (!cells.pos_in(i, p0, p1)) { + continue; + } + + if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) { + if (new_head == cells.size()) { + new_head = i; + } + } + } + } else { + // match any sequence + for (uint32_t i = 0; i < cells.size(); ++i) { + if (!cells.pos_in(i, p0, p1)) { + continue; + } + + cells.rm(i); + + if (new_head == cells.size()) { + new_head = i; + } + } + } + + // If we freed up a slot, set head to it so searching can start there. + if (new_head != cells.size() && new_head < head) { + head = new_head; + } + + return true; +} + +void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { + if (seq_id_src == seq_id_dst) { + return; + } + + if (p0 < 0) { + p0 = 0; + } + + if (p1 < 0) { + p1 = std::numeric_limits::max(); + } + + for (uint32_t i = 0; i < cells.size(); ++i) { + if (!cells.pos_in(i, p0, p1)) { + continue; + } + + if (cells.seq_has(i, seq_id_src)) { + cells.seq_add(i, seq_id_dst); + } + } +} + +void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) { + uint32_t new_head = cells.size(); + + for (uint32_t i = 0; i < cells.size(); ++i) { + if (cells.seq_keep(i, seq_id)) { + if (new_head == cells.size()) { + new_head = i; + } + } + } + + // If we freed up a slot, set head to it so searching can start there. + if (new_head != cells.size() && new_head < head) { + head = new_head; + } +} + +void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { + if (shift == 0) { + return; + } + + uint32_t new_head = cells.size(); + + if (p0 < 0) { + p0 = 0; + } + + if (p1 < 0) { + p1 = std::numeric_limits::max(); + } + + // If there is no range then return early to avoid looping over all cells. + if (p0 == p1) { + return; + } + + for (uint32_t i = 0; i < cells.size(); ++i) { + if (!cells.pos_in(i, p0, p1)) { + continue; + } + + if (cells.seq_has(i, seq_id)) { + if (cells.pos_add(i, shift)) { + if (new_head == cells.size()) { + new_head = i; + } + } + } + } + + // If we freed up a slot, set head to it so searching can start there. + // Otherwise we just start the next search from the beginning. + head = new_head != cells.size() ? new_head : 0; +} + +void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { + if (d == 1) { + return; + } + + if (p0 < 0) { + p0 = 0; + } + + if (p1 < 0) { + p1 = std::numeric_limits::max(); + } + + // If there is no range then return early to avoid looping over the cache. + if (p0 == p1) { + return; + } + + for (uint32_t i = 0; i < cells.size(); ++i) { + if (!cells.pos_in(i, p0, p1)) { + continue; + } + + if (cells.seq_has(i, seq_id)) { + cells.pos_div(i, d); + } + } +} + +llama_pos llama_kv_cache_unified::seq_pos_min(llama_seq_id seq_id) const { + return cells.seq_pos_min(seq_id); +} + +llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const { + return cells.seq_pos_max(seq_id); +} + +llama_memory_state_ptr llama_kv_cache_unified::init_batch( + const llama_batch & batch, + uint32_t n_ubatch, + bool embd_pooled, + bool logits_all) { + GGML_UNUSED(embd_pooled); + + auto sbatch = llama_sbatch(batch, hparams.n_embd, true, logits_all); + + std::vector ubatches; + while (sbatch.n_tokens > 0) { + ubatches.push_back(sbatch.split_simple(n_ubatch)); + } + + auto heads = prepare(ubatches); + if (heads.empty()) { + return std::make_unique(LLAMA_MEMORY_STATUS_FAILED_PREPARE); + } + + return std::make_unique( + this, std::move(sbatch), std::move(heads), std::move(ubatches)); +} + +llama_memory_state_ptr llama_kv_cache_unified::init_full() { + return std::make_unique(this); +} + +llama_memory_state_ptr llama_kv_cache_unified::init_update(llama_context * lctx, bool optimize) { + bool do_shift = get_has_shift(); + + defrag_info dinfo; + + // see if we need to defrag + { + bool do_defrag = optimize; + + const auto thold = lctx->get_cparams().defrag_thold; + + if (!do_defrag && thold > 0.0f) { + const auto n_kv = cells.used_max_p1(); + + // - do not defrag small contexts (i.e. < 2048 tokens) + // - count the padding towards the number of used tokens + const float fragmentation = n_kv >= 2048 ? std::max(0.0f, 1.0f - (float(cells.get_used() + n_pad)/n_kv)) : 0.0f; + + if (fragmentation > thold) { + LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation); + + do_defrag = true; + } + } + + if (do_defrag) { + dinfo = defrag_prepare(lctx->graph_max_nodes()); + } + } + + return std::make_unique(this, lctx, do_shift, std::move(dinfo)); +} + +llama_kv_cache_unified::ubatch_heads llama_kv_cache_unified::prepare(const std::vector & ubatches) { + llama_kv_cache_unified::ubatch_heads res; + + struct state { + uint32_t head_old; // old position of the head, before placing the ubatch + uint32_t head_new; // new position of the head, after placing the ubatch + + llama_kv_cells_unified cells; // copy of the old cells, before placing the ubatch + }; + + // remember the old state of the cells so we can restore it in the end + std::vector states; + + bool success = true; + + for (const auto & ubatch : ubatches) { + // only find a suitable slot for the ubatch. don't modify the cells yet + const int32_t head_new = find_slot(ubatch); + if (head_new < 0) { + success = false; + break; + } + + // remeber the position that we found + res.push_back(head_new); + + // store the old state of the cells in the recovery stack + states.push_back({head, (uint32_t) head_new, cells.cp(head_new, ubatch.n_tokens)}); + + // now emplace the ubatch + apply_ubatch(head_new, ubatch); + } + + // iterate backwards and restore the cells to their original state + for (auto it = states.rbegin(); it != states.rend(); ++it) { + cells.set(it->head_new, it->cells); + head = it->head_old; + } + + if (!success) { + return {}; + } + + return res; +} + +bool llama_kv_cache_unified::update(llama_context * lctx, bool do_shift, const defrag_info & dinfo) { + bool updated = false; + + auto * sched = lctx->get_sched(); + + if (do_shift) { + if (!get_can_shift()) { + GGML_ABORT("The current KV cache / model configuration does not support K-shift"); + } + + LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__); + + // apply K-shift if needed + if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) { + ggml_backend_sched_reset(sched); + + auto * gf = lctx->graph_init(); + + auto res = build_graph_shift(lctx->get_cparams(), lctx->get_ctx_compute(), gf); + if (!res) { + LLAMA_LOG_ERROR("%s: failed to build graph for K-shift\n", __func__); + return updated; + } + + if (!ggml_backend_sched_alloc_graph(sched, gf)) { + LLAMA_LOG_ERROR("%s: failed to allocate compute graph for K-shift\n", __func__); + return updated; + } + + res->set_inputs(nullptr); + + if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) { + LLAMA_LOG_ERROR("%s: failed to compute K-shift\n", __func__); + return updated; + } + + updated = true; + } + + cells.reset_shift(); + } + + if (!dinfo.empty()) { + LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__); + + // apply moves: + { + const auto n_kv = dinfo.ids.size(); + + for (uint32_t i = 0; i < n_kv; ++i) { + assert(dinfo.ids[i] <= n_kv); + + if (dinfo.ids[i] == n_kv) { + continue; + } + + cells.mv(i, dinfo.ids[i]); + } + + // reset the head so we can find the first free slot during the next ubatch + head = 0; + } + + ggml_backend_sched_reset(sched); + + auto * gf = lctx->graph_init(); + + auto res = build_graph_defrag(lctx->get_cparams(), lctx->get_ctx_compute(), gf, dinfo); + if (!res) { + LLAMA_LOG_ERROR("%s: failed to build graph for defrag\n", __func__); + return updated; + } + + if (!ggml_backend_sched_alloc_graph(sched, gf)) { + LLAMA_LOG_ERROR("%s: failed to allocate compute graph for defrag\n", __func__); + return updated; + } + + res->set_inputs(nullptr); + + if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) { + LLAMA_LOG_ERROR("%s: failed to compute defrag\n", __func__); + return updated; + } + + updated = true; + } + + return updated; +} + +int32_t llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch) const { + const uint32_t n_tokens = ubatch.n_tokens; + + uint32_t head_cur = this->head; + + // if we have enough unused cells before the current head -> + // better to start searching from the beginning of the cache, hoping to fill it + if (head_cur > cells.get_used() + 2*ubatch.n_tokens) { + head_cur = 0; + } + + // otherwise, one cell per token. + + if (n_tokens > cells.size()) { + LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size()); + return -1; + } + +//#define FIND_SLOT_DEBUG 1 +#if FIND_SLOT_DEBUG + LLAMA_LOG_WARN("begin: n = %5d, used = %5d, head = %5d, n_swa = %5d\n", cells.used_max_p1(), cells.get_used(), head, n_swa); + + // for debugging + { + std::string ss; + if (n_swa > 0) { + for (uint32_t i = 0; i < cells.size(); ++i) { + if (cells.is_empty(i)) { + ss += '.'; + } else { + ss += std::to_string(cells.seq_get(i)); + } + if (i%256 == 255) { + ss += '\n'; + } + } + } + LLAMA_LOG_WARN("\n%s\n", ss.c_str()); + } + + for (int s = 0; s < LLAMA_MAX_PARALLEL_SEQUENCES; ++s) { + if (cells.seq_pos_min(s) < 0) { + continue; + } + + LLAMA_LOG_WARN("kv_cells: n_swa = %4d, min[%d] = %5d, max[%d] = %5d\n", n_swa, s, cells.seq_pos_min(s), s, cells.seq_pos_max(s)); + } +#endif + + uint32_t n_tested = 0; + + while (true) { + if (head_cur + n_tokens > cells.size()) { + n_tested += cells.size() - head_cur; + head_cur = 0; + continue; + } + + // keep track of what the minimum sequence positions would be if we accept the ubatch + llama_seq_id seq_pos_min[LLAMA_MAX_PARALLEL_SEQUENCES]; + for (int s = 0; s < LLAMA_MAX_PARALLEL_SEQUENCES; ++s) { + seq_pos_min[s] = cells.seq_pos_min(s); + } + + bool found = true; + for (uint32_t i = 0; i < n_tokens; i++) { + const llama_pos pos = ubatch.pos[i]; + const llama_seq_id seq_id = ubatch.seq_id[i][0]; + + // can we use this cell? either: + // - the cell is empty + // - the cell is occupied only by one sequence: + // - mask causally, if the sequence is the same as the one we are inserting + // - mask SWA, using current max pos for that sequence in the cache + // always insert in the cell with minimum pos + bool can_use = cells.is_empty(head_cur + i); + + if (!can_use && cells.seq_count(head_cur + i) == 1) { + const llama_pos pos_cell = cells.pos_get(head_cur + i); + + // causal mask + if (cells.seq_has(head_cur + i, seq_id)) { + can_use = pos_cell >= pos; + } + + if (!can_use) { + const llama_seq_id seq_id_cell = cells.seq_get(head_cur + i); + + // SWA mask + // note: we insert only in the cell with minimum pos in order to preserve the invariant that + // all positions between [pos_min, pos_max] for each sequence will be present in the cache + // ref: https://github.com/ggml-org/llama.cpp/pull/13746#issuecomment-2916057092 + if (pos_cell == seq_pos_min[seq_id_cell] && + is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) { + seq_pos_min[seq_id_cell]++; + can_use = true; + } + } + } + + if (!can_use) { + found = false; + head_cur += i + 1; + n_tested += i + 1; + break; + } + } + + if (found) { + break; + } + + if (n_tested >= cells.size()) { + //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); + return -1; + } + } + + return head_cur; +} + +void llama_kv_cache_unified::apply_ubatch(uint32_t head_cur, const llama_ubatch & ubatch) { + for (uint32_t i = 0; i < ubatch.n_tokens; ++i) { + if (!cells.is_empty(head_cur + i)) { + cells.rm(head_cur + i); + } + + cells.pos_set(head_cur + i, ubatch.pos[i]); + + for (int32_t j = 0; j < ubatch.n_seq_id[i]; j++) { + cells.seq_add(head_cur + i, ubatch.seq_id[i][j]); + } + } + + // move the head at the end of the slot + head = head_cur + ubatch.n_tokens; +} + +bool llama_kv_cache_unified::get_can_shift() const { + return true; +} + +uint32_t llama_kv_cache_unified::get_size() const { + return cells.size(); +} + +bool llama_kv_cache_unified::get_has_shift() const { + return cells.get_has_shift(); +} + +uint32_t llama_kv_cache_unified::get_n_kv() const { + return std::min(cells.size(), std::max(n_pad, GGML_PAD(cells.used_max_p1(), n_pad))); +} + +ggml_tensor * llama_kv_cache_unified::get_k(ggml_context * ctx, int32_t il, uint32_t n_kv) const { + const int32_t ikv = map_layer_ids.at(il); + + auto * k = layers[ikv].k; + + return ggml_view_3d(ctx, k, + hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv, + ggml_row_size(k->type, hparams.n_embd_head_k), + ggml_row_size(k->type, hparams.n_embd_k_gqa(il)), + 0); +} + +ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il, uint32_t n_kv) const { + const int32_t ikv = map_layer_ids.at(il); + + auto * v = layers[ikv].v; + + if (!v_trans) { + // note: v->nb[1] <= v->nb[2] + return ggml_view_3d(ctx, v, + hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, + ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1] + ggml_row_size(v->type, hparams.n_embd_v_gqa(il)), // v->nb[2] + 0); + } + + // note: v->nb[1] > v->nb[2] + return ggml_view_3d(ctx, v, + n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, + ggml_row_size(v->type, v->ne[1]*hparams.n_embd_head_v), // v->nb[1] + ggml_row_size(v->type, v->ne[1]), // v->nb[2] + 0); +} + +ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il, uint32_t head_cur) const { + const int32_t ikv = map_layer_ids.at(il); + + auto * k = layers[ikv].k; + + const int64_t n_tokens = k_cur->ne[2]; + + ggml_tensor * k_view = ggml_view_1d(ctx, k, + n_tokens*hparams.n_embd_k_gqa(il), + ggml_row_size(k->type, hparams.n_embd_k_gqa(il))*head_cur); + + return ggml_cpy(ctx, k_cur, k_view); +} + +ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il, uint32_t head_cur) const { + const int32_t ikv = map_layer_ids.at(il); + + auto * v = layers[ikv].v; + + const int64_t n_tokens = v_cur->ne[2]; + + v_cur = ggml_reshape_2d(ctx, v_cur, hparams.n_embd_v_gqa(il), n_tokens); + + ggml_tensor * v_view = nullptr; + + if (!v_trans) { + v_view = ggml_view_1d(ctx, v, + n_tokens*hparams.n_embd_v_gqa(il), + ggml_row_size(v->type, hparams.n_embd_v_gqa(il))*head_cur); + } else { + // note: the V cache is transposed when not using flash attention + v_view = ggml_view_2d(ctx, v, n_tokens, hparams.n_embd_v_gqa(il), + (v->ne[1])*ggml_element_size(v), + (head_cur)*ggml_element_size(v)); + + v_cur = ggml_transpose(ctx, v_cur); + } + + return ggml_cpy(ctx, v_cur, v_view); +} + +void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const { + const int64_t n_tokens = ubatch->n_tokens; + const int64_t n_seq_tokens = ubatch->n_seq_tokens; + const int64_t n_seqs = ubatch->n_seqs; + + GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); + float * data = (float *) dst->data; + + const auto n_kv = dst->ne[0]; + + // Use only the previous KV cells of the correct sequence for each token of the ubatch. + // It's assumed that if a token in the batch has multiple sequences, they are equivalent. + // Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch: + // Causal mask: + // xxx------- + // xxxx------ + // xxxxx----- + // Non-causal mask: + // xxxxx----- + // xxxxx----- + // xxxxx----- + // To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615 + for (int h = 0; h < 1; ++h) { + for (int s = 0; s < n_seqs; ++s) { + const llama_seq_id seq_id = ubatch->seq_id[s][0]; + + for (int j = 0; j < n_seq_tokens; ++j) { + const llama_pos p1 = ubatch->pos[s*n_seq_tokens + j]; + + for (uint32_t i = 0; i < n_kv; ++i) { + float f = 0.0f; + + bool masked = false; + + if (cells.is_empty(i)) { + masked = true; + } else { + const llama_pos p0 = cells.pos_get(i); + + // mask the token if not the same sequence + masked = masked || (!cells.seq_has(i, seq_id)); + + // mask future tokens + masked = masked || (causal_attn && p0 > p1); + + // apply SWA if any + masked = masked || (is_masked_swa(p0, p1)); + + if (!masked && hparams.use_alibi) { + f = -std::abs(p0 - p1); + } + } + + if (masked) { + f = -INFINITY; + } + + data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f; + } + } + } + + // mask padded tokens + if (data) { + for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { + for (uint32_t j = 0; j < n_kv; ++j) { + data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; + } + } + } + } +} + +void llama_kv_cache_unified::set_input_k_shift(ggml_tensor * dst) const { + GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); + + int32_t * data = (int32_t *) dst->data; + + for (uint32_t i = 0; i < cells.size(); ++i) { + data[i] = cells.is_empty(i) ? 0 : cells.get_shift(i); + } +} + +void llama_kv_cache_unified::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const { + const int64_t n_tokens = ubatch->n_tokens; + + GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); + GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing + + int32_t * data = (int32_t *) dst->data; + + const int32_t n_kv = dst->ne[0]; + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + for (int i = 0; i < n_kv; ++i) { + // the position when the cells is empty is irrelevant - it will be masked out later in the attention + const llama_pos p0 = cells.is_empty(i) ? -1 : cells.pos_get(i); + + data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(p0, ubatch->pos[j], hparams.n_rel_attn_bkts, false); + } + } + } +} + +size_t llama_kv_cache_unified::total_size() const { + size_t size = 0; + + for (const auto & buf : bufs) { + size += ggml_backend_buffer_get_size(buf.get()); + } + + return size; +} + +size_t llama_kv_cache_unified::size_k_bytes() const { + size_t size_k_bytes = 0; + + for (const auto & layer : layers) { + size_k_bytes += ggml_nbytes(layer.k); + } + + return size_k_bytes; +} + +size_t llama_kv_cache_unified::size_v_bytes() const { + size_t size_v_bytes = 0; + + for (const auto & layer : layers) { + size_v_bytes += ggml_nbytes(layer.v); + } + + return size_v_bytes; +} + +ggml_tensor * llama_kv_cache_unified::build_rope_shift( + const llama_cparams & cparams, + ggml_context * ctx, + ggml_tensor * cur, + ggml_tensor * shift, + ggml_tensor * factors, + float freq_base, + float freq_scale) const { + const auto & n_ctx_orig = cparams.n_ctx_orig_yarn; + + const auto & yarn_ext_factor = cparams.yarn_ext_factor; + const auto & yarn_beta_fast = cparams.yarn_beta_fast; + const auto & yarn_beta_slow = cparams.yarn_beta_slow; + + const auto & n_rot = hparams.n_rot; + const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE + // @ngxson : this is a workaround + // for M-RoPE, we want to rotate the whole vector when doing KV shift + // a normal RoPE should work, we just need to use the correct ordering + // ref: https://github.com/ggml-org/llama.cpp/pull/13870 + ? LLAMA_ROPE_TYPE_NEOX + : hparams.rope_type; + + // See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly. + // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation. + const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 + ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) + : cparams.yarn_attn_factor; + + ggml_tensor * tmp; + + if (ggml_is_quantized(cur->type)) { + // dequantize to f32 -> RoPE -> quantize back + tmp = ggml_cast(ctx, cur, GGML_TYPE_F32); + + tmp = ggml_rope_ext(ctx, tmp, + shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); + + tmp = ggml_cpy(ctx, tmp, cur); + } else { + // we rotate only the first n_rot dimensions + tmp = ggml_rope_ext_inplace(ctx, cur, + shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, + yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); + } + + return tmp; +} + +class llm_graph_input_k_shift : public llm_graph_input_i { +public: + llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {} + virtual ~llm_graph_input_k_shift() = default; + + void set_input(const llama_ubatch * ubatch) override; + + ggml_tensor * k_shift; // I32 [kv_size] + + const llama_kv_cache_unified * kv_self; +}; + +void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) { + GGML_UNUSED(ubatch); + + if (k_shift) { + kv_self->set_input_k_shift(k_shift); + } +} + +llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift( + const llama_cparams & cparams, + ggml_context * ctx, + ggml_cgraph * gf) const { + auto res = std::make_unique(); + + const auto & n_embd_head_k = hparams.n_embd_head_k; + //const auto & n_embd_head_v = hparams.n_embd_head_v; + + //GGML_ASSERT(kv_self->size == n_ctx); + + auto inp = std::make_unique(this); + + inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, cparams.n_ctx); + ggml_set_input(inp->k_shift); + + for (const auto & layer : layers) { + const uint32_t il = layer.il; + + const int64_t n_head_kv = hparams.n_head_kv(il); + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); + + const float freq_base_l = model.get_rope_freq_base (cparams, il); + const float freq_scale_l = model.get_rope_freq_scale(cparams, il); + + ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); + + ggml_tensor * k = + ggml_view_3d(ctx, layer.k, + n_embd_head_k, n_head_kv, cells.size(), + ggml_row_size(layer.k->type, n_embd_head_k), + ggml_row_size(layer.k->type, n_embd_k_gqa), + 0); + + ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l); + + ggml_build_forward_expand(gf, cur); + } + + res->add_input(std::move(inp)); + + return res; +} + +llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag( + const llama_cparams & cparams, + ggml_context * ctx, + ggml_cgraph * gf, + const defrag_info & dinfo) const { + auto res = std::make_unique(); + + const auto & ids = dinfo.ids; + +#if 0 + // CPU defrag + // + // TODO: optimizations are possible: + // - multiple threads + // - avoid copying to the host memory when already there + // + // likely not worth the effort, as we have ggml_graph based defrag + // + + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + + const uint32_t kv_size = size; + + std::vector buf_k; + std::vector buf_v; + + for (uint32_t il = 0; il < n_layer; ++il) { + const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); + const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size); + + const size_t v_size_el = ggml_type_size(v_l[il]->type); + const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size); + + buf_k.resize(k_size); + buf_v.resize(v_size); + + ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size()); + ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size()); + + // batch move [i, i+nm) to [id, id+nm) + // note: cells can move only to a lower index + for (uint32_t i = 0; i < n_kv; ++i) { + const uint32_t id = ids[i]; + + if (i == id || id == n_kv) { + continue; + } + + uint32_t nm = 1; + + while (i + nm < n_kv && ids[i + nm] == id + nm) { + nm++; + } + + // move keys + { + const int64_t os = i*k_size_row; + const int64_t od = id*k_size_row; + + memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row); + } + + // move values (note: they are transposed) + { + const int64_t os = i; + const int64_t od = id; + + for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { + memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el); + } + } + + i += nm - 1; + } + + ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size()); + ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size()); + } +#else + for (uint32_t i = 0; i < ids.size(); ++i) { + const uint32_t id = ids[i]; + + if (i == id || id == ids.size()) { + continue; + } + + uint32_t nm = 1; + + while (i + nm < ids.size() && ids[i + nm] == id + nm) { + nm++; + } + + for (const auto & layer : layers) { + const uint32_t il = layer.il; + + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); + + ggml_tensor * view_k_src = ggml_view_2d(ctx, layer.k, + n_embd_k_gqa, nm, + ggml_row_size(layer.k->type, n_embd_k_gqa), + ggml_row_size(layer.k->type, n_embd_k_gqa*i)); + + ggml_tensor * view_k_dst = ggml_view_2d(ctx, layer.k, + n_embd_k_gqa, nm, + ggml_row_size(layer.k->type, n_embd_k_gqa), + ggml_row_size(layer.k->type, n_embd_k_gqa*id)); + + ggml_tensor * view_v_src; + ggml_tensor * view_v_dst; + + if (cparams.flash_attn) { + // NOTE: the V cache is not transposed when using flash attention + view_v_src = ggml_view_2d(ctx, layer.v, + n_embd_v_gqa, nm, + ggml_row_size(layer.v->type, n_embd_v_gqa), + ggml_row_size(layer.v->type, n_embd_v_gqa*i)); + + view_v_dst = ggml_view_2d(ctx, layer.v, + n_embd_v_gqa, nm, + ggml_row_size(layer.v->type, n_embd_v_gqa), + ggml_row_size(layer.v->type, n_embd_v_gqa*id)); + } else { + view_v_src = ggml_view_2d(ctx, layer.v, + nm, n_embd_v_gqa, + ggml_row_size(layer.v->type, cells.size()), + ggml_row_size(layer.v->type, i)); + + view_v_dst = ggml_view_2d(ctx, layer.v, + nm, n_embd_v_gqa, + ggml_row_size(layer.v->type, cells.size()), + ggml_row_size(layer.v->type, id)); + } + + ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst)); + ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst)); + } + + i += nm - 1; + } + + //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); +#endif + + return res; +} + +llama_kv_cache_unified::defrag_info llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) const { + const uint32_t n_layer = layers.size(); + + const uint32_t n_kv = cells.used_max_p1(); + const uint32_t n_used = cells.get_used(); + + assert(n_used <= n_kv); + + //const int64_t t_start = ggml_time_us(); + + // number of cells moved + uint32_t n_moves = 0; + + // each move requires 6*n_layer tensors (see graph_build_kv_self_defrag) + // - source view, destination view, copy operation + // - x2 for keys and values + //const uint32_t max_moves = max_nodes()/(6*n_layer); + // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516 + const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer); + + // determine which KV cells to move where + defrag_info res; + auto & ids = res.ids; + + ids.resize(n_kv, n_kv); + + for (uint32_t i0 = 0; i0 < n_used; ++i0) { + if (!cells.is_empty(i0)) { + ids[i0] = i0; + + continue; + } + + // found a hole - fill it with data from the end of the cache + + uint32_t nh = 1; + + // determine the size of the hole + while (i0 + nh < n_used && cells.is_empty(i0 + nh)) { + nh++; + } + + uint32_t nf = 0; + uint32_t is = n_kv - 1; + + // starting from the end, find nh non-empty cells + for (; is > i0; --is) { + if (cells.is_empty(is) || ids[is] != n_kv) { + continue; + } + + // non-empty cell which is not yet moved + nf++; + + if (nf == nh) { + break; + } + } + + // this can only happen if `n_used` is not accurate, which would be a bug + GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh"); + + nf = 0; + + uint32_t i1 = is; + + // are we moving a continuous block of memory? + bool cont = false; + + // should we stop searching for the next move? + bool stop = false; + + // go back and move the nf cells to the hole + for (; i1 < n_kv; ++i1) { + if (cells.is_empty(i1) || ids[i1] != n_kv) { + if (n_moves == max_moves) { + stop = true; + break; + } + + cont = false; + continue; + } + + // this cell goes to (i0 + nf) + ids[i1] = i0 + nf; + + if (!cont) { + n_moves++; + cont = true; + } + + nf++; + + if (nf == nh) { + break; + } + } + + if (stop || n_moves == max_moves) { + break; + } + + //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh); + + i0 += nh - 1; + } + + if (n_moves == 0) { + return {}; + } + + LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves); + + LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer); + + return res; +} + +bool llama_kv_cache_unified::is_masked_swa(llama_pos p0, llama_pos p1) const { + assert(p0 >= 0 && p1 >= 0); + + switch (swa_type) { + case LLAMA_SWA_TYPE_NONE: + { + } break; + case LLAMA_SWA_TYPE_STANDARD: + { + if (p1 - p0 >= (int32_t) n_swa) { + return true; + } + } break; + case LLAMA_SWA_TYPE_CHUNKED: + { + const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa; + + if (p0 < pos_chunk_start) { + return true; + } + } break; + } + + return false; +} + +void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { + std::vector> cell_ranges; // ranges, from inclusive, to exclusive + uint32_t cell_count = 0; + + // Count the number of cells with the specified seq_id + // Find all the ranges of cells with this seq id (or all, when -1) + uint32_t cell_range_begin = cells.size(); + + for (uint32_t i = 0; i < cells.size(); ++i) { + if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) { + ++cell_count; + if (cell_range_begin == cells.size()) { + cell_range_begin = i; + } + } else { + if (cell_range_begin != cells.size()) { + cell_ranges.emplace_back(cell_range_begin, i); + cell_range_begin = cells.size(); + } + } + } + + if (cell_range_begin != cells.size()) { + cell_ranges.emplace_back(cell_range_begin, cells.size()); + } + + // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count + uint32_t cell_count_check = 0; + for (const auto & range : cell_ranges) { + cell_count_check += range.second - range.first; + } + GGML_ASSERT(cell_count == cell_count_check); + + io.write(&cell_count, sizeof(cell_count)); + + state_write_meta(io, cell_ranges, seq_id); + state_write_data(io, cell_ranges); +} + +void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) { + uint32_t cell_count; + io.read_to(&cell_count, sizeof(cell_count)); + + bool res = true; + res = res && state_read_meta(io, cell_count, seq_id); + res = res && state_read_data(io, cell_count); + + if (!res) { + if (seq_id == -1) { + clear(true); + } else { + seq_rm(seq_id, -1, -1); + } + throw std::runtime_error("failed to restore kv cache"); + } +} + +void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id) const { + for (const auto & range : cell_ranges) { + for (uint32_t i = range.first; i < range.second; ++i) { + std::vector seq_ids; + + for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) { + if (cur == seq_id || seq_id == -1) { + if (cells.seq_has(i, cur)) { + seq_ids.push_back(cur); + } + } + } + + const llama_pos pos = cells.pos_get(i); + const uint32_t n_seq_id = seq_ids.size(); + + io.write(&pos, sizeof(pos)); + io.write(&n_seq_id, sizeof(n_seq_id)); + + for (const auto & seq_id : seq_ids) { + io.write(&seq_id, sizeof(seq_id)); + } + } + } +} + +void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const { + const uint32_t v_trans = this->v_trans ? 1 : 0; + const uint32_t n_layer = layers.size(); + + io.write(&v_trans, sizeof(v_trans)); + io.write(&n_layer, sizeof(n_layer)); + + std::vector tmp_buf; + + // Iterate and write all the keys first, each row is a cell + // Get whole range at a time + for (const auto & layer : layers) { + const uint32_t il = layer.il; + + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); + + // Write key type + const int32_t k_type_i = (int32_t)layer.k->type; + io.write(&k_type_i, sizeof(k_type_i)); + + // Write row size of key + const uint64_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa); + io.write(&k_size_row, sizeof(k_size_row)); + + // Read each range of cells of k_size length each into tmp_buf and write out + for (const auto & range : cell_ranges) { + const size_t range_size = range.second - range.first; + const size_t buf_size = range_size * k_size_row; + io.write_tensor(layer.k, range.first * k_size_row, buf_size); + } + } + + if (!v_trans) { + for (const auto & layer : layers) { + const uint32_t il = layer.il; + + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + + // Write value type + const int32_t v_type_i = (int32_t)layer.v->type; + io.write(&v_type_i, sizeof(v_type_i)); + + // Write row size of value + const uint64_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa); + io.write(&v_size_row, sizeof(v_size_row)); + + // Read each range of cells of v_size length each into tmp_buf and write out + for (const auto & range : cell_ranges) { + const size_t range_size = range.second - range.first; + const size_t buf_size = range_size * v_size_row; + io.write_tensor(layer.v, range.first * v_size_row, buf_size); + } + } + } else { + // When v is transposed, we also need the element size and get the element ranges from each row + const uint32_t kv_size = cells.size(); + + for (const auto & layer : layers) { + const uint32_t il = layer.il; + + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + + // Write value type + const int32_t v_type_i = (int32_t)layer.v->type; + io.write(&v_type_i, sizeof(v_type_i)); + + // Write element size + const uint32_t v_size_el = ggml_type_size(layer.v->type); + io.write(&v_size_el, sizeof(v_size_el)); + + // Write GQA embedding size + io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); + + // For each row, we get the element values of each cell + for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { + // Read each range of cells of v_size_el length each into tmp_buf and write out + for (const auto & range : cell_ranges) { + const size_t range_size = range.second - range.first; + const size_t src_offset = (range.first + j * kv_size) * v_size_el; + const size_t buf_size = range_size * v_size_el; + io.write_tensor(layer.v, src_offset, buf_size); + } + } + } + } +} + +bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) { + if (dest_seq_id != -1) { + // single sequence + + seq_rm(dest_seq_id, -1, -1); + + llama_sbatch sbatch; + llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false); + + batch.n_tokens = cell_count; + + for (uint32_t i = 0; i < cell_count; ++i) { + llama_pos pos; + uint32_t n_seq_id; + + io.read_to(&pos, sizeof(pos)); + io.read_to(&n_seq_id, sizeof(n_seq_id)); + + if (n_seq_id != 1) { + LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); + return false; + } + + // read the sequence id, but directly discard it - we will use dest_seq_id instead + { + llama_seq_id seq_id; + io.read_to(&seq_id, sizeof(seq_id)); + } + + batch.pos[i] = pos; + batch.n_seq_id[i] = n_seq_id; + batch.seq_id[i] = &dest_seq_id; + } + + const auto head_cur = find_slot(batch); + if (head_cur < 0) { + LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); + return false; + } + + apply_ubatch(head_cur, batch); + + // keep the head at the old position because we will read the KV data into it in state_read_data() + head = head_cur; + + // DEBUG CHECK: head_cur should be our first cell, head_cur + cell_count - 1 should be our last cell (verify seq_id and pos values) + // Assume that this is one contiguous block of cells + GGML_ASSERT(head_cur + cell_count <= cells.size()); + GGML_ASSERT(cells.pos_get(head_cur) == batch.pos[0]); + GGML_ASSERT(cells.pos_get(head_cur + cell_count - 1) == batch.pos[cell_count - 1]); + GGML_ASSERT(cells.seq_has(head_cur, dest_seq_id)); + GGML_ASSERT(cells.seq_has(head_cur + cell_count - 1, dest_seq_id)); + } else { + // whole KV cache restore + + if (cell_count > cells.size()) { + LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__); + return false; + } + + clear(true); + + for (uint32_t i = 0; i < cell_count; ++i) { + llama_pos pos; + uint32_t n_seq_id; + + io.read_to(&pos, sizeof(pos)); + io.read_to(&n_seq_id, sizeof(n_seq_id)); + + cells.pos_set(i, pos); + + for (uint32_t j = 0; j < n_seq_id; ++j) { + llama_seq_id seq_id; + io.read_to(&seq_id, sizeof(seq_id)); + + if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) { + LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max); + return false; + } + + cells.seq_add(i, seq_id); + } + } + + head = 0; + } + + return true; +} + +bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) { + uint32_t v_trans; + uint32_t n_layer; + + io.read_to(&v_trans, sizeof(v_trans)); + io.read_to(&n_layer, sizeof(n_layer)); + + if (n_layer != layers.size()) { + LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size()); + return false; + } + + if (cell_count > cells.size()) { + LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size()); + return false; + } + + if (this->v_trans != (bool) v_trans) { + LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); + return false; + } + + // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block + for (const auto & layer : layers) { + const uint32_t il = layer.il; + + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); + + // Read type of key + int32_t k_type_i_ref; + io.read_to(&k_type_i_ref, sizeof(k_type_i_ref)); + const int32_t k_type_i = (int32_t) layer.k->type; + if (k_type_i != k_type_i_ref) { + LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); + return false; + } + + // Read row size of key + uint64_t k_size_row_ref; + io.read_to(&k_size_row_ref, sizeof(k_size_row_ref)); + const size_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa); + if (k_size_row != k_size_row_ref) { + LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); + return false; + } + + if (cell_count) { + // Read and set the keys for the whole cell range + ggml_backend_tensor_set(layer.k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row); + } + } + + if (!this->v_trans) { + for (const auto & layer : layers) { + const uint32_t il = layer.il; + + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + + // Read type of value + int32_t v_type_i_ref; + io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); + const int32_t v_type_i = (int32_t)layer.v->type; + if (v_type_i != v_type_i_ref) { + LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); + return false; + } + + // Read row size of value + uint64_t v_size_row_ref; + io.read_to(&v_size_row_ref, sizeof(v_size_row_ref)); + const size_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa); + if (v_size_row != v_size_row_ref) { + LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); + return false; + } + + if (cell_count) { + // Read and set the values for the whole cell range + ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row); + } + } + } else { + // For each layer, read the values for each cell (transposed) + for (const auto & layer : layers) { + const uint32_t il = layer.il; + + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); + + // Read type of value + int32_t v_type_i_ref; + io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); + const int32_t v_type_i = (int32_t)layer.v->type; + if (v_type_i != v_type_i_ref) { + LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); + return false; + } + + // Read element size of value + uint32_t v_size_el_ref; + io.read_to(&v_size_el_ref, sizeof(v_size_el_ref)); + const size_t v_size_el = ggml_type_size(layer.v->type); + if (v_size_el != v_size_el_ref) { + LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); + return false; + } + + // Read GQA embedding size + uint32_t n_embd_v_gqa_ref; + io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); + if (n_embd_v_gqa != n_embd_v_gqa_ref) { + LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); + return false; + } + + if (cell_count) { + // For each row in the transposed matrix, read the values for the whole cell range + for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { + const size_t dst_offset = (head + j * cells.size()) * v_size_el; + ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); + } + } + } + } + + return true; +} + +// +// llama_kv_cache_unified_state +// + +llama_kv_cache_unified_state::llama_kv_cache_unified_state(llama_memory_status status) : status(status) {} + +llama_kv_cache_unified_state::llama_kv_cache_unified_state( + llama_kv_cache_unified * kv) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv) { + n_kv = kv->get_size(); + head = 0; +} + +llama_kv_cache_unified_state::llama_kv_cache_unified_state( + llama_kv_cache_unified * kv, + llama_context * lctx, + bool do_shift, + defrag_info dinfo) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), dinfo(std::move(dinfo)) { + if (!do_shift && dinfo.empty()) { + status = LLAMA_MEMORY_STATUS_NO_UPDATE; + } +} + +llama_kv_cache_unified_state::llama_kv_cache_unified_state( + llama_kv_cache_unified * kv, + llama_sbatch sbatch, + llama_kv_cache_unified::ubatch_heads heads, + std::vector ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sbatch(std::move(sbatch)), heads(std::move(heads)), ubatches(std::move(ubatches)) { +} + +llama_kv_cache_unified_state::~llama_kv_cache_unified_state() = default; + +bool llama_kv_cache_unified_state::next() { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + if (++i_next >= ubatches.size()) { + return false; + } + + return true; +} + +bool llama_kv_cache_unified_state::apply() { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + // no ubatches -> this is a KV cache update + if (ubatches.empty()) { + kv->update(lctx, do_shift, dinfo); + + return true; + } + + kv->apply_ubatch(heads[i_next], ubatches[i_next]); + + n_kv = kv->get_n_kv(); + head = heads[i_next]; + + return true; +} + +std::vector & llama_kv_cache_unified_state::out_ids() { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + return sbatch.out_ids; +} + +llama_memory_status llama_kv_cache_unified_state::get_status() const { + return status; +} + +const llama_ubatch & llama_kv_cache_unified_state::get_ubatch() const { + assert(status == LLAMA_MEMORY_STATUS_SUCCESS); + + return ubatches[i_next]; +} + +uint32_t llama_kv_cache_unified_state::get_n_kv() const { + return n_kv; +} + +ggml_tensor * llama_kv_cache_unified_state::get_k(ggml_context * ctx, int32_t il) const { + return kv->get_k(ctx, il, n_kv); +} + +ggml_tensor * llama_kv_cache_unified_state::get_v(ggml_context * ctx, int32_t il) const { + return kv->get_v(ctx, il, n_kv); +} + +ggml_tensor * llama_kv_cache_unified_state::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const { + return kv->cpy_k(ctx, k_cur, il, head); +} + +ggml_tensor * llama_kv_cache_unified_state::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const { + return kv->cpy_v(ctx, v_cur, il, head); +} + +void llama_kv_cache_unified_state::set_input_k_shift(ggml_tensor * dst) const { + kv->set_input_k_shift(dst); +} + +void llama_kv_cache_unified_state::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const { + kv->set_input_kq_mask(dst, ubatch, causal_attn); +} + +void llama_kv_cache_unified_state::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const { + kv->set_input_pos_bucket(dst, ubatch); +} + +uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) { + // the FA kernels require padding to avoid extra runtime boundary checks + return cparams.flash_attn ? 256u : 32u; +} diff --git a/src/llama-kv-cache-unified.h b/src/llama-kv-cache-unified.h new file mode 100644 index 0000000000..49f410ef6e --- /dev/null +++ b/src/llama-kv-cache-unified.h @@ -0,0 +1,307 @@ +#pragma once + +#include "llama-batch.h" +#include "llama-graph.h" +#include "llama-kv-cells.h" +#include "llama-memory.h" + +#include +#include + +struct llama_cparams; +struct llama_hparams; +struct llama_model; +struct llama_context; + +// +// llama_kv_cache_unified +// + +class llama_kv_cache_unified : public llama_memory_i { +public: + static uint32_t get_padding(const llama_cparams & cparams); + + // this callback is used to filter out layers that should not be included in the cache + using layer_filter_cb = std::function; + + using ubatch_heads = std::vector; + + struct defrag_info { + bool empty() const { + return ids.empty(); + } + + // contains information about which cell moves where: + // - cell i moves to ids[i] + // - if ids[i] == i || ids[i] == ids.size(), then cell i is not moved + std::vector ids; + }; + + llama_kv_cache_unified( + const llama_model & model, + layer_filter_cb && filter, + ggml_type type_k, + ggml_type type_v, + bool v_trans, + bool offload, + uint32_t kv_size, + uint32_t n_seq_max, + uint32_t n_pad, + uint32_t n_swa, + llama_swa_type swa_type); + + ~llama_kv_cache_unified() = default; + + // + // llama_memory_i + // + + llama_memory_state_ptr init_batch( + const llama_batch & batch, + uint32_t n_ubatch, + bool embd_pooled, + bool logits_all) override; + + llama_memory_state_ptr init_full() override; + + llama_memory_state_ptr init_update(llama_context * lctx, bool optimize) override; + + bool get_can_shift() const override; + + void clear(bool data) override; + + bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; + void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; + void seq_keep(llama_seq_id seq_id) override; + void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override; + void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; + + llama_pos seq_pos_min(llama_seq_id seq_id) const override; + llama_pos seq_pos_max(llama_seq_id seq_id) const override; + + // state write/load + + void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override; + void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override; + + // + // llama_kv_cache_unified specific API + // + + uint32_t get_size() const; + + bool get_has_shift() const; + + // + // graph_build API + // + + uint32_t get_n_kv() const; + + // get views of the current state of the cache + ggml_tensor * get_k(ggml_context * ctx, int32_t il, uint32_t n_kv) const; + ggml_tensor * get_v(ggml_context * ctx, int32_t il, uint32_t n_kv) const; + + // store k_cur and v_cur in the cache based on the provided head location + ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il, uint32_t head_cur) const; + ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il, uint32_t head_cur) const; + + // + // preparation API + // + + // find places for the provided ubatches in the cache, returns the head locations + // return empty vector on failure + ubatch_heads prepare(const std::vector & ubatches); + + bool update(llama_context * lctx, bool do_shift, const defrag_info & dinfo); + + // return the cell position where we can insert the ubatch + // return -1 on failure to find a contiguous slot of kv cells + int32_t find_slot(const llama_ubatch & ubatch) const; + + // emplace the ubatch context into slot: [head_cur, head_cur + ubatch.n_tokens) + void apply_ubatch(uint32_t head_cur, const llama_ubatch & ubatch); + + // + // set_input API + // + + void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const; + void set_input_k_shift (ggml_tensor * dst) const; + void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const; + +private: + const llama_model & model; + const llama_hparams & hparams; + + struct kv_layer { + // layer index in the model + // note: can be different from the layer index in the KV cache + uint32_t il; + + ggml_tensor * k; + ggml_tensor * v; + }; + + bool v_trans = true; // the value tensor is transposed + + // the current index from where we start searching for a free slot in the ring buffer of KV cells (see find_slot()) + // note: this is not part of the KV state and it's only used to speed-up the find_slot() method + uint32_t head = 0; + + const uint32_t n_seq_max = 1; + + // required padding + const uint32_t n_pad = 1; + + // SWA + const uint32_t n_swa = 0; + + const llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE; + + std::vector ctxs; + std::vector bufs; + + llama_kv_cells_unified cells; + + std::vector layers; + + // model layer id -> KV cache layer id + std::unordered_map map_layer_ids; + + // return non-empty vector if cells have been moved + defrag_info defrag_prepare(int32_t n_max_nodes) const; + + size_t total_size() const; + + size_t size_k_bytes() const; + size_t size_v_bytes() const; + + bool is_masked_swa(llama_pos p0, llama_pos p1) const; + + ggml_tensor * build_rope_shift( + const llama_cparams & cparams, + ggml_context * ctx, + ggml_tensor * cur, + ggml_tensor * shift, + ggml_tensor * factors, + float freq_base, + float freq_scale) const; + + llm_graph_result_ptr build_graph_shift( + const llama_cparams & cparams, + ggml_context * ctx, + ggml_cgraph * gf) const; + + llm_graph_result_ptr build_graph_defrag( + const llama_cparams & cparams, + ggml_context * ctx, + ggml_cgraph * gf, + const defrag_info & dinfo) const; + + void state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id = -1) const; + void state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const; + + bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1); + bool state_read_data(llama_io_read_i & io, uint32_t cell_count); +}; + +class llama_kv_cache_unified_state : public llama_memory_state_i { +public: + // some shorthands + using ubatch_heads = llama_kv_cache_unified::ubatch_heads; + using defrag_info = llama_kv_cache_unified::defrag_info; + + // used for errors + llama_kv_cache_unified_state(llama_memory_status status); + + // used to create a full-cache state + llama_kv_cache_unified_state( + llama_kv_cache_unified * kv); + + // used to create an update state + llama_kv_cache_unified_state( + llama_kv_cache_unified * kv, + llama_context * lctx, + bool do_shift, + defrag_info dinfo); + + // used to create a decode state from a batch + llama_kv_cache_unified_state( + llama_kv_cache_unified * kv, + llama_sbatch sbatch, + ubatch_heads heads, + std::vector ubatches); + + virtual ~llama_kv_cache_unified_state(); + + // + // llama_memory_state_i + // + + bool next() override; + bool apply() override; + + std::vector & out_ids() override; + + llama_memory_status get_status() const override; + const llama_ubatch & get_ubatch() const override; + + // + // llama_kv_cache_unified_state specific API + // + + uint32_t get_n_kv() const; + + // get views of the current state of the cache + ggml_tensor * get_k(ggml_context * ctx, int32_t il) const; + ggml_tensor * get_v(ggml_context * ctx, int32_t il) const; + + // store k_cur and v_cur in the cache based on the provided head location + ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const; + ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const; + + void set_input_k_shift(ggml_tensor * dst) const; + + void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const; + void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const; + +private: + llama_memory_status status; + + llama_kv_cache_unified * kv; + llama_context * lctx; + + // + // update state + // + + bool do_shift = false; + + defrag_info dinfo; + + // + // batch processing state + // + + llama_sbatch sbatch; + + // the index of the next ubatch to process + size_t i_next = 0; + + ubatch_heads heads; + + std::vector ubatches; + + // + // data needed for building the compute graph for the current ubatch: + // + + // a heuristic, to avoid attending the full cache if it is not yet utilized + // as the cache gets filled, the benefit from this heuristic disappears + int32_t n_kv; + + // the beginning of the current slot in which the ubatch will be inserted + int32_t head; +}; diff --git a/src/llama-kv-cache.cpp b/src/llama-kv-cache.cpp deleted file mode 100644 index ae2d2684f8..0000000000 --- a/src/llama-kv-cache.cpp +++ /dev/null @@ -1,2769 +0,0 @@ -#include "llama-kv-cache.h" - -#include "llama-impl.h" -#include "llama-batch.h" -#include "llama-cparams.h" -#include "llama-model.h" -#include "llama-context.h" - -#include -#include -#include -#include -#include -#include - -// -// llama_kv_cache_unified -// - -uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) { - // the FA kernels require padding to avoid extra runtime boundary checks - return cparams.flash_attn ? 256u : 32u; -} - -llama_kv_cache_unified::llama_kv_cache_unified( - const llama_model & model, - layer_filter_cb && filter, - ggml_type type_k, - ggml_type type_v, - bool v_trans, - bool offload, - uint32_t kv_size, - uint32_t n_seq_max, - uint32_t n_pad, - uint32_t n_swa, - llama_swa_type swa_type) : - model(model), hparams(model.hparams), v_trans(v_trans), - n_seq_max(n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) { - - GGML_ASSERT(kv_size % n_pad == 0); - - // create a context for each buffer type - std::map ctx_map; - auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { - auto it = ctx_map.find(buft); - if (it == ctx_map.end()) { - ggml_init_params params = { - /*.mem_size =*/ size_t(2u*hparams.n_layer*ggml_tensor_overhead()), - /*.mem_buffer =*/ NULL, - /*.no_alloc =*/ true, - }; - - ggml_context * ctx = ggml_init(params); - if (!ctx) { - return nullptr; - } - - ctx_map[buft] = ctx; - ctxs.emplace_back(ctx); - - return ctx; - } - - return it->second; - }; - - head = 0; - - cells.resize(kv_size); - - for (uint32_t il = 0; il < hparams.n_layer; il++) { - if (filter && !filter(il)) { - LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il); - continue; - } - - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); - - const char * dev_name = "CPU"; - - ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type(); - - if (offload) { - auto * dev = model.dev_layer(il); - buft = ggml_backend_dev_buffer_type(dev); - - dev_name = ggml_backend_dev_name(dev); - } - - LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name); - - ggml_context * ctx = ctx_for_buft(buft); - if (!ctx) { - throw std::runtime_error("failed to create ggml context for kv cache"); - } - - ggml_tensor * k; - ggml_tensor * v; - - k = ggml_new_tensor_2d(ctx, type_k, n_embd_k_gqa, kv_size); - v = ggml_new_tensor_2d(ctx, type_v, n_embd_v_gqa, kv_size); - - ggml_format_name(k, "cache_k_l%d", il); - ggml_format_name(v, "cache_v_l%d", il); - - map_layer_ids[il] = layers.size(); - layers.push_back({ il, k, v }); - } - - // allocate tensors and initialize the buffers to avoid NaNs in the padding - for (auto it : ctx_map) { - auto * buft = it.first; - auto * ctx = it.second; - - ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); - if (!buf) { - throw std::runtime_error("failed to allocate buffer for kv cache"); - } - - LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); - - ggml_backend_buffer_clear(buf, 0); - bufs.emplace_back(buf); - } - - { - const size_t memory_size_k = size_k_bytes(); - const size_t memory_size_v = size_v_bytes(); - - LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, - (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max, - ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), - ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); - } -} - -void llama_kv_cache_unified::clear() { - cells.reset(); - - head = 0; - - for (auto & buf : bufs) { - ggml_backend_buffer_clear(buf.get(), 0); - } -} - -bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { - uint32_t new_head = cells.size(); - - if (p0 < 0) { - p0 = 0; - } - - if (p1 < 0) { - p1 = std::numeric_limits::max(); - } - - for (uint32_t i = 0; i < cells.size(); ++i) { - if (!cells.pos_in(i, p0, p1)) { - continue; - } - - if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) { - if (new_head == cells.size()) { - new_head = i; - } - } - } - - // If we freed up a slot, set head to it so searching can start there. - if (new_head != cells.size() && new_head < head) { - head = new_head; - } - - return true; -} - -void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { - if (seq_id_src == seq_id_dst) { - return; - } - - if (p0 < 0) { - p0 = 0; - } - - if (p1 < 0) { - p1 = std::numeric_limits::max(); - } - - for (uint32_t i = 0; i < cells.size(); ++i) { - if (!cells.pos_in(i, p0, p1)) { - continue; - } - - if (cells.seq_has(i, seq_id_src)) { - cells.seq_add(i, seq_id_dst); - } - } -} - -void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) { - uint32_t new_head = cells.size(); - - for (uint32_t i = 0; i < cells.size(); ++i) { - if (cells.seq_keep(i, seq_id)) { - if (new_head == cells.size()) { - new_head = i; - } - } - } - - // If we freed up a slot, set head to it so searching can start there. - if (new_head != cells.size() && new_head < head) { - head = new_head; - } -} - -void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { - if (shift == 0) { - return; - } - - uint32_t new_head = cells.size(); - - if (p0 < 0) { - p0 = 0; - } - - if (p1 < 0) { - p1 = std::numeric_limits::max(); - } - - // If there is no range then return early to avoid looping over all cells. - if (p0 == p1) { - return; - } - - for (uint32_t i = 0; i < cells.size(); ++i) { - if (!cells.pos_in(i, p0, p1)) { - continue; - } - - if (cells.seq_has(i, seq_id)) { - if (cells.pos_add(i, shift)) { - if (new_head == cells.size()) { - new_head = i; - } - } - } - } - - // If we freed up a slot, set head to it so searching can start there. - // Otherwise we just start the next search from the beginning. - head = new_head != cells.size() ? new_head : 0; -} - -void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { - if (d == 1) { - return; - } - - if (p0 < 0) { - p0 = 0; - } - - if (p1 < 0) { - p1 = std::numeric_limits::max(); - } - - // If there is no range then return early to avoid looping over the cache. - if (p0 == p1) { - return; - } - - for (uint32_t i = 0; i < cells.size(); ++i) { - if (!cells.pos_in(i, p0, p1)) { - continue; - } - - if (cells.seq_has(i, seq_id)) { - cells.pos_div(i, d); - } - } -} - -llama_pos llama_kv_cache_unified::seq_pos_min(llama_seq_id seq_id) const { - llama_pos result = std::numeric_limits::max(); - - for (uint32_t i = 0; i < cells.size(); ++i) { - if (cells.seq_has(i, seq_id)) { - result = std::min(result, cells.pos_get(i)); - } - } - - if (result == std::numeric_limits::max()) { - result = -1; - } - - return result; -} - -llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const { - llama_pos result = -1; - - for (uint32_t i = 0; i < cells.size(); ++i) { - if (cells.seq_has(i, seq_id)) { - result = std::max(result, cells.pos_get(i)); - } - } - - return result; -} - -void llama_kv_cache_unified::restore() { - for (auto & state : recovery.states) { - cells.set(state.i, state.cells); - } - - recovery.clear(); -} - -void llama_kv_cache_unified::commit() { - if (recovery.states.empty()) { - LLAMA_LOG_WARN("%s: the recovery information upon a commit was empty - might indicate a bug (ref: %s)\n", - __func__, "https://github.com/ggml-org/llama.cpp/pull/13194"); - return; - } - - recovery.clear(); -} - -bool llama_kv_cache_unified::update(llama_context & lctx) { - bool need_reserve = false; - - auto * sched = lctx.get_sched(); - - if (cells.get_has_shift()) { - if (!get_can_shift()) { - GGML_ABORT("The current KV cache / model configuration does not support K-shift"); - } - - LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__); - - // apply K-shift if needed - if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) { - ggml_backend_sched_reset(sched); - - auto * gf = lctx.graph_init(); - - auto res = build_graph_shift(lctx.get_cparams(), lctx.get_ctx_compute(), gf); - - ggml_backend_sched_alloc_graph(sched, gf); - - res->set_inputs(nullptr); - - lctx.graph_compute(gf, false); - - need_reserve = true; - } - - cells.reset_shift(); - } - - if (do_defrag) { - LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__); - - if (defrag_prepare(lctx.graph_max_nodes())) { - ggml_backend_sched_reset(sched); - - auto * gf = lctx.graph_init(); - - auto res = build_graph_defrag(lctx.get_cparams(), lctx.get_ctx_compute(), gf); - - ggml_backend_sched_alloc_graph(sched, gf); - - res->set_inputs(nullptr); - - lctx.graph_compute(gf, false); - - need_reserve = true; - } - - do_defrag = false; - } - - return need_reserve; -} - -void llama_kv_cache_unified::defrag_sched(float thold) { - // - do not defrag small contexts (i.e. < 2048 tokens) - // - count the padding towards the number of used tokens - const float fragmentation = n >= 2048 ? std::max(0.0f, 1.0f - (float(cells.get_used() + n_pad)/n)) : 0.0f; - - // queue defragmentation for next llama_kv_cache_update - if (fragmentation > thold) { - LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation); - - do_defrag = true; - } -} - -void llama_kv_cache_unified::set_full() { - n = cells.size(); - - // when simulating a full KV cache, the specific value of the "head" pointer is not important because it does not - // affect the shapes of the tensors in the compute graph - it only affects the offsets of the K/V views. - // we should only guarantee that the head position won't cause out-of-bounds view of the K, V tensors, so - // setting it to 0 is the simplest way to achieve that - // ref: https://github.com/ggml-org/llama.cpp/issues/13359 - head = 0; -} - -llama_sbatch llama_kv_cache_unified::sbatch_init(const llama_batch & batch, bool logits_all) { - return llama_sbatch(batch, hparams.n_embd, true, logits_all); -} - -llama_ubatch llama_kv_cache_unified::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const { - GGML_UNUSED(embd_pooled); - return sbatch.split_simple(n_ubatch); -} - -bool llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch) { - const uint32_t n_tokens = ubatch.n_tokens; - - // if we have enough unused cells before the current head -> - // better to start searching from the beginning of the cache, hoping to fill it - if (head > cells.get_used() + 2*ubatch.n_tokens) { - head = 0; - } - - // otherwise, one cell per token. - - if (n_tokens > cells.size()) { - LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size()); - return false; - } - -//#define FIND_SLOT_DEBUG 1 -#if FIND_SLOT_DEBUG - LLAMA_LOG_WARN("begin: n = %5d, used = %5d, head = %5d, n_swa = %5d\n", n, used, head, n_swa); - - // for debugging - { - std::string ss; - if (n_swa > 0) { - for (uint32_t i = 0; i < size; ++i) { - if (cells.is_empty(i)) { - ss += '.'; - } else { - ss += 'x'; - } - if (i%256 == 255) { - ss += '\n'; - } - } - } - LLAMA_LOG_WARN("\n%s\n", ss.c_str()); - } -#endif - - uint32_t n_tested = 0; - - while (true) { - if (head + n_tokens > cells.size()) { - n_tested += cells.size() - head; - head = 0; - continue; - } - - bool found = true; - for (uint32_t i = 0; i < n_tokens; i++) { - // TODO: improve to accept cells that are masked by the SWA - if (!cells.is_empty(head + i)) { - found = false; - head += i + 1; - n_tested += i + 1; - break; - } - } - - if (found) { - break; - } - - if (n_tested >= cells.size()) { - //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); - return false; - } - } - - // store the old state of the cells in the recovery stack - recovery.states.push_back({head, cells.cp(head, n_tokens)}); - - for (uint32_t i = 0; i < n_tokens; ++i) { - cells.pos_set(head + i, ubatch.pos[i]); - - for (int32_t j = 0; j < ubatch.n_seq_id[i]; j++) { - cells.seq_add(head + i, ubatch.seq_id[i][j]); - } - } - - // a heuristic, to avoid attending the full cache if it is not yet utilized - // after enough generations, the benefit from this heuristic disappears - // if we start defragmenting the cache, the benefit from this will be more important - n = std::min(cells.size(), std::max(n_pad, GGML_PAD(cell_max(), n_pad))); - -#ifdef FIND_SLOT_DEBUG - LLAMA_LOG_WARN("end: n = %5d, used = %5d, head = %5d, n_swa = %5d\n", n, used, head, n_swa); -#endif - - return true; -} - -bool llama_kv_cache_unified::get_can_shift() const { - return true; -} - -uint32_t llama_kv_cache_unified::get_n() const { - return n; -} - -uint32_t llama_kv_cache_unified::get_size() const { - return cells.size(); -} - -ggml_tensor * llama_kv_cache_unified::get_k(ggml_context * ctx, int32_t il) const { - const int32_t ikv = map_layer_ids.at(il); - - auto * k = layers[ikv].k; - - return ggml_view_3d(ctx, k, - hparams.n_embd_head_k, hparams.n_head_kv(il), n, - ggml_row_size(k->type, hparams.n_embd_head_k), - ggml_row_size(k->type, hparams.n_embd_k_gqa(il)), - 0); -} - -ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il) const { - const int32_t ikv = map_layer_ids.at(il); - - auto * v = layers[ikv].v; - - if (!v_trans) { - // note: v->nb[1] <= v->nb[2] - return ggml_view_3d(ctx, v, - hparams.n_embd_head_v, hparams.n_head_kv(il), n, - ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1] - ggml_row_size(v->type, hparams.n_embd_v_gqa(il)), // v->nb[2] - 0); - } - - // note: v->nb[1] > v->nb[2] - return ggml_view_3d(ctx, v, - n, hparams.n_head_kv(il), hparams.n_embd_head_v, - ggml_row_size(v->type, v->ne[1]*hparams.n_embd_head_v), // v->nb[1] - ggml_row_size(v->type, v->ne[1]), // v->nb[2] - 0); -} - -ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const { - const int32_t ikv = map_layer_ids.at(il); - - auto * k = layers[ikv].k; - - const int64_t n_tokens = k_cur->ne[2]; - - ggml_tensor * k_view = ggml_view_1d(ctx, k, - n_tokens*hparams.n_embd_k_gqa(il), - ggml_row_size(k->type, hparams.n_embd_k_gqa(il))*head); - - return ggml_cpy(ctx, k_cur, k_view); -} - -ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const { - const int32_t ikv = map_layer_ids.at(il); - - auto * v = layers[ikv].v; - - const int64_t n_tokens = v_cur->ne[2]; - - v_cur = ggml_reshape_2d(ctx, v_cur, hparams.n_embd_v_gqa(il), n_tokens); - - ggml_tensor * v_view = nullptr; - - if (!v_trans) { - v_view = ggml_view_1d(ctx, v, - n_tokens*hparams.n_embd_v_gqa(il), - ggml_row_size(v->type, hparams.n_embd_v_gqa(il))*head); - } else { - // note: the V cache is transposed when not using flash attention - v_view = ggml_view_2d(ctx, v, n_tokens, hparams.n_embd_v_gqa(il), - (v->ne[1])*ggml_element_size(v), - ( head)*ggml_element_size(v)); - - v_cur = ggml_transpose(ctx, v_cur); - } - - return ggml_cpy(ctx, v_cur, v_view); -} - -void llama_kv_cache_unified::prune_swa(llama_seq_id seq_id, llama_pos pmin, llama_pos pmax) { - // no pruning is needed when the cache does not use SWA - GGML_ASSERT(swa_type != LLAMA_SWA_TYPE_NONE && "do not prune non-SWA cache"); - - int n_attended = 0; - - for (uint32_t i = 0; i < cells.size(); ++i) { - if (!cells.seq_has(i, seq_id)) { - continue; - } - - const llama_pos p0 = cells.pos_get(i); - - if (p0 <= pmin && !is_masked_swa(p0, pmin)) { - n_attended++; - } - - if (is_masked_swa(p0, pmax)) { - cells.seq_rm(i, seq_id); - } - } - - if (n_attended < std::min(n_swa, pmin)) { - LLAMA_LOG_WARN("%s: partial SWA cache detected - possible loss of information, pmin = %d, n_attended = %d, n_swa = %d\n", __func__, pmin, n_attended, n_swa); - } -} - -void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const { - const int64_t n_tokens = ubatch->n_tokens; - const int64_t n_seq_tokens = ubatch->n_seq_tokens; - const int64_t n_seqs = ubatch->n_seqs; - - GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); - float * data = (float *) dst->data; - - const int64_t n_kv = n; - - // Use only the previous KV cells of the correct sequence for each token of the ubatch. - // It's assumed that if a token in the batch has multiple sequences, they are equivalent. - // Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch: - // Causal mask: - // xxx------- - // xxxx------ - // xxxxx----- - // Non-causal mask: - // xxxxx----- - // xxxxx----- - // xxxxx----- - // To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615 - for (int h = 0; h < 1; ++h) { - for (int s = 0; s < n_seqs; ++s) { - const llama_seq_id seq_id = ubatch->seq_id[s][0]; - - for (int j = 0; j < n_seq_tokens; ++j) { - const llama_pos p1 = ubatch->pos[s*n_seq_tokens + j]; - - for (int i = 0; i < n_kv; ++i) { - float f = 0.0f; - - bool masked = false; - - if (cells.is_empty(i)) { - masked = true; - } else { - const llama_pos p0 = cells.pos_get(i); - - // mask the token if not the same sequence - masked = masked || (!cells.seq_has(i, seq_id)); - - // mask future tokens - masked = masked || (causal_attn && p0 > p1); - - // apply SWA if any - masked = masked || (is_masked_swa(p0, p1)); - - if (!masked && hparams.use_alibi) { - f = -std::abs(p0 - p1); - } - } - - if (masked) { - f = -INFINITY; - } - - data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f; - } - } - } - - // mask padded tokens - if (data) { - for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { - for (int j = 0; j < n_kv; ++j) { - data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; - } - } - } - } -} - -void llama_kv_cache_unified::set_input_k_shift(ggml_tensor * dst) const { - GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); - - int32_t * data = (int32_t *) dst->data; - - for (uint32_t i = 0; i < cells.size(); ++i) { - data[i] = cells.is_empty(i) ? 0 : cells.get_shift(i); - } -} - -void llama_kv_cache_unified::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const { - const int64_t n_tokens = ubatch->n_tokens; - - GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); - GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing - - int32_t * data = (int32_t *) dst->data; - - const int64_t n_kv = n; - - for (int h = 0; h < 1; ++h) { - for (int j = 0; j < n_tokens; ++j) { - for (int i = 0; i < n_kv; ++i) { - // the position when the cells is empty is irrelevant - it will be masked out later in the attention - const llama_pos p0 = cells.is_empty(i) ? -1 : cells.pos_get(i); - - data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(p0, ubatch->pos[j], hparams.n_rel_attn_bkts, false); - } - } - } -} - -size_t llama_kv_cache_unified::total_size() const { - size_t size = 0; - - for (const auto & buf : bufs) { - size += ggml_backend_buffer_get_size(buf.get()); - } - - return size; -} - -size_t llama_kv_cache_unified::size_k_bytes() const { - size_t size_k_bytes = 0; - - for (const auto & layer : layers) { - size_k_bytes += ggml_nbytes(layer.k); - } - - return size_k_bytes; -} - -size_t llama_kv_cache_unified::size_v_bytes() const { - size_t size_v_bytes = 0; - - for (const auto & layer : layers) { - size_v_bytes += ggml_nbytes(layer.v); - } - - return size_v_bytes; -} - -ggml_tensor * llama_kv_cache_unified::build_rope_shift( - const llama_cparams & cparams, - ggml_context * ctx, - ggml_tensor * cur, - ggml_tensor * shift, - ggml_tensor * factors, - float freq_base, - float freq_scale) const { - const auto & n_ctx_orig = cparams.n_ctx_orig_yarn; - - const auto & yarn_ext_factor = cparams.yarn_ext_factor; - const auto & yarn_beta_fast = cparams.yarn_beta_fast; - const auto & yarn_beta_slow = cparams.yarn_beta_slow; - - const auto & n_rot = hparams.n_rot; - const auto & rope_type = hparams.rope_type; - - // See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly. - // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation. - const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor; - - ggml_tensor * tmp; - - if (ggml_is_quantized(cur->type)) { - // dequantize to f32 -> RoPE -> quantize back - tmp = ggml_cast(ctx, cur, GGML_TYPE_F32); - - tmp = ggml_rope_ext(ctx, tmp, - shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); - - tmp = ggml_cpy(ctx, tmp, cur); - } else { - // we rotate only the first n_rot dimensions - tmp = ggml_rope_ext_inplace(ctx, cur, - shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, - yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); - } - - return tmp; -} - -class llm_graph_input_k_shift : public llm_graph_input_i { -public: - llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {} - virtual ~llm_graph_input_k_shift() = default; - - void set_input(const llama_ubatch * ubatch) override; - - ggml_tensor * k_shift; // I32 [kv_size] - - const llama_kv_cache_unified * kv_self; -}; - -void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) { - GGML_UNUSED(ubatch); - - if (k_shift) { - kv_self->set_input_k_shift(k_shift); - } -} - -llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift( - const llama_cparams & cparams, - ggml_context * ctx, - ggml_cgraph * gf) const { - auto res = std::make_unique(); - - const auto & n_embd_head_k = hparams.n_embd_head_k; - //const auto & n_embd_head_v = hparams.n_embd_head_v; - - //GGML_ASSERT(kv_self->size == n_ctx); - - auto inp = std::make_unique(this); - - inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, cparams.n_ctx); - ggml_set_input(inp->k_shift); - - for (const auto & layer : layers) { - const uint32_t il = layer.il; - - const int64_t n_head_kv = hparams.n_head_kv(il); - const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); - - const float freq_base_l = model.get_rope_freq_base (cparams, il); - const float freq_scale_l = model.get_rope_freq_scale(cparams, il); - - ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); - - ggml_tensor * k = - ggml_view_3d(ctx, layer.k, - n_embd_head_k, n_head_kv, cells.size(), - ggml_row_size(layer.k->type, n_embd_head_k), - ggml_row_size(layer.k->type, n_embd_k_gqa), - 0); - - ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l); - - ggml_build_forward_expand(gf, cur); - } - - res->add_input(std::move(inp)); - - return res; -} - -llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag( - const llama_cparams & cparams, - ggml_context * ctx, - ggml_cgraph * gf) const { - auto res = std::make_unique(); - - const auto & ids = defrag_info.ids; - -#if 0 - // CPU defrag - // - // TODO: optimizations are possible: - // - multiple threads - // - avoid copying to the host memory when already there - // - // likely not worth the effort, as we have ggml_graph based defrag - // - - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); - - const uint32_t kv_size = size; - - std::vector buf_k; - std::vector buf_v; - - for (uint32_t il = 0; il < n_layer; ++il) { - const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); - const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size); - - const size_t v_size_el = ggml_type_size(v_l[il]->type); - const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size); - - buf_k.resize(k_size); - buf_v.resize(v_size); - - ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size()); - ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size()); - - // batch move [i, i+nm) to [id, id+nm) - // note: cells can move only to a lower index - for (uint32_t i = 0; i < n_kv; ++i) { - const uint32_t id = ids[i]; - - if (i == id || id == n_kv) { - continue; - } - - uint32_t nm = 1; - - while (i + nm < n_kv && ids[i + nm] == id + nm) { - nm++; - } - - // move keys - { - const int64_t os = i*k_size_row; - const int64_t od = id*k_size_row; - - memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row); - } - - // move values (note: they are transposed) - { - const int64_t os = i; - const int64_t od = id; - - for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { - memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el); - } - } - - i += nm - 1; - } - - ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size()); - ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size()); - } -#else - for (uint32_t i = 0; i < ids.size(); ++i) { - const uint32_t id = ids[i]; - - if (i == id || id == ids.size()) { - continue; - } - - uint32_t nm = 1; - - while (i + nm < ids.size() && ids[i + nm] == id + nm) { - nm++; - } - - for (const auto & layer : layers) { - const uint32_t il = layer.il; - - const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); - const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); - - ggml_tensor * view_k_src = ggml_view_2d(ctx, layer.k, - n_embd_k_gqa, nm, - ggml_row_size(layer.k->type, n_embd_k_gqa), - ggml_row_size(layer.k->type, n_embd_k_gqa*i)); - - ggml_tensor * view_k_dst = ggml_view_2d(ctx, layer.k, - n_embd_k_gqa, nm, - ggml_row_size(layer.k->type, n_embd_k_gqa), - ggml_row_size(layer.k->type, n_embd_k_gqa*id)); - - ggml_tensor * view_v_src; - ggml_tensor * view_v_dst; - - if (cparams.flash_attn) { - // NOTE: the V cache is not transposed when using flash attention - view_v_src = ggml_view_2d(ctx, layer.v, - n_embd_v_gqa, nm, - ggml_row_size(layer.v->type, n_embd_v_gqa), - ggml_row_size(layer.v->type, n_embd_v_gqa*i)); - - view_v_dst = ggml_view_2d(ctx, layer.v, - n_embd_v_gqa, nm, - ggml_row_size(layer.v->type, n_embd_v_gqa), - ggml_row_size(layer.v->type, n_embd_v_gqa*id)); - } else { - view_v_src = ggml_view_2d(ctx, layer.v, - nm, n_embd_v_gqa, - ggml_row_size(layer.v->type, cells.size()), - ggml_row_size(layer.v->type, i)); - - view_v_dst = ggml_view_2d(ctx, layer.v, - nm, n_embd_v_gqa, - ggml_row_size(layer.v->type, cells.size()), - ggml_row_size(layer.v->type, id)); - } - - ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst)); - ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst)); - } - - i += nm - 1; - } - - //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); -#endif - - return res; -} - -bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) { - const uint32_t n_layer = layers.size(); - - const uint32_t n_kv = cell_max(); - const uint32_t n_used = cells.get_used(); - - assert(n_used <= n_kv); - - //const int64_t t_start = ggml_time_us(); - - // number of cells moved - uint32_t n_moves = 0; - - // each move requires 6*n_layer tensors (see graph_build_kv_self_defrag) - // - source view, destination view, copy operation - // - x2 for keys and values - //const uint32_t max_moves = max_nodes()/(6*n_layer); - // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516 - const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer); - - // determine which KV cells to move where - // - // cell i moves to ids[i] - // - // if ids[i] == i || ids[i] == n_kv, then cell i is not moved - // - auto & ids = defrag_info.ids; - - ids.clear(); - ids.resize(n_kv, n_kv); - - for (uint32_t i0 = 0; i0 < n_used; ++i0) { - if (!cells.is_empty(i0)) { - ids[i0] = i0; - - continue; - } - - // found a hole - fill it with data from the end of the cache - - uint32_t nh = 1; - - // determine the size of the hole - while (i0 + nh < n_used && cells.is_empty(i0 + nh)) { - nh++; - } - - uint32_t nf = 0; - uint32_t is = n_kv - 1; - - // starting from the end, find nh non-empty cells - for (; is > i0; --is) { - if (cells.is_empty(is) || ids[is] != n_kv) { - continue; - } - - // non-empty cell which is not yet moved - nf++; - - if (nf == nh) { - break; - } - } - - // this can only happen if `n_used` is not accurate, which would be a bug - GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh"); - - nf = 0; - - uint32_t i1 = is; - - // are we moving a continuous block of memory? - bool cont = false; - - // should we stop searching for the next move? - bool stop = false; - - // go back and move the nf cells to the hole - for (; i1 < n_kv; ++i1) { - if (cells.is_empty(i1) || ids[i1] != n_kv) { - if (n_moves == max_moves) { - stop = true; - break; - } - - cont = false; - continue; - } - - // this cell goes to (i0 + nf) - ids[i1] = i0 + nf; - - // move the cell meta data - cells.mv(i1, i0 + nf); - - head = n_used; - - if (!cont) { - n_moves++; - cont = true; - } - - nf++; - - if (nf == nh) { - break; - } - } - - if (stop || n_moves == max_moves) { - break; - } - - //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh); - - i0 += nh - 1; - } - - if (n_moves == 0) { - return false; - } - - LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves); - - LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer); - - return true; -} - -uint32_t llama_kv_cache_unified::cell_max() const { - for (uint32_t i = cells.size(); i > 0; --i) { - if (!cells.is_empty(i - 1)) { - return i; - } - } - - return 0; -} - -bool llama_kv_cache_unified::is_masked_swa(llama_pos p0, llama_pos p1) const { - assert(p0 >= 0 && p1 >= 0); - - switch (swa_type) { - case LLAMA_SWA_TYPE_NONE: - { - } break; - case LLAMA_SWA_TYPE_STANDARD: - { - if (p1 - p0 >= (int32_t) n_swa) { - return true; - } - } break; - case LLAMA_SWA_TYPE_CHUNKED: - { - const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa; - - if (p0 < pos_chunk_start) { - return true; - } - } break; - } - - return false; -} - -void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { - std::vector> cell_ranges; // ranges, from inclusive, to exclusive - uint32_t cell_count = 0; - - // Count the number of cells with the specified seq_id - // Find all the ranges of cells with this seq id (or all, when -1) - uint32_t cell_range_begin = cells.size(); - - for (uint32_t i = 0; i < cells.size(); ++i) { - if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) { - ++cell_count; - if (cell_range_begin == cells.size()) { - cell_range_begin = i; - } - } else { - if (cell_range_begin != cells.size()) { - cell_ranges.emplace_back(cell_range_begin, i); - cell_range_begin = cells.size(); - } - } - } - - if (cell_range_begin != cells.size()) { - cell_ranges.emplace_back(cell_range_begin, cells.size()); - } - - // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count - uint32_t cell_count_check = 0; - for (const auto & range : cell_ranges) { - cell_count_check += range.second - range.first; - } - GGML_ASSERT(cell_count == cell_count_check); - - io.write(&cell_count, sizeof(cell_count)); - - state_write_meta(io, cell_ranges, seq_id); - state_write_data(io, cell_ranges); -} - -void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) { - uint32_t cell_count; - io.read_to(&cell_count, sizeof(cell_count)); - - bool res = true; - res = res && state_read_meta(io, cell_count, seq_id); - res = res && state_read_data(io, cell_count); - - if (!res) { - if (seq_id == -1) { - clear(); - } else { - seq_rm(seq_id, -1, -1); - } - throw std::runtime_error("failed to restore kv cache"); - } -} - -void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id) const { - for (const auto & range : cell_ranges) { - for (uint32_t i = range.first; i < range.second; ++i) { - std::vector seq_ids; - - for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) { - if (cur == seq_id || seq_id == -1) { - if (cells.seq_has(i, cur)) { - seq_ids.push_back(cur); - } - } - } - - const llama_pos pos = cells.pos_get(i); - const uint32_t n_seq_id = seq_ids.size(); - - io.write(&pos, sizeof(pos)); - io.write(&n_seq_id, sizeof(n_seq_id)); - - for (const auto & seq_id : seq_ids) { - io.write(&seq_id, sizeof(seq_id)); - } - } - } -} - -void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const { - const uint32_t v_trans = this->v_trans ? 1 : 0; - const uint32_t n_layer = layers.size(); - - io.write(&v_trans, sizeof(v_trans)); - io.write(&n_layer, sizeof(n_layer)); - - std::vector tmp_buf; - - // Iterate and write all the keys first, each row is a cell - // Get whole range at a time - for (const auto & layer : layers) { - const uint32_t il = layer.il; - - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); - - // Write key type - const int32_t k_type_i = (int32_t)layer.k->type; - io.write(&k_type_i, sizeof(k_type_i)); - - // Write row size of key - const uint64_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa); - io.write(&k_size_row, sizeof(k_size_row)); - - // Read each range of cells of k_size length each into tmp_buf and write out - for (const auto & range : cell_ranges) { - const size_t range_size = range.second - range.first; - const size_t buf_size = range_size * k_size_row; - io.write_tensor(layer.k, range.first * k_size_row, buf_size); - } - } - - if (!v_trans) { - for (const auto & layer : layers) { - const uint32_t il = layer.il; - - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); - - // Write value type - const int32_t v_type_i = (int32_t)layer.v->type; - io.write(&v_type_i, sizeof(v_type_i)); - - // Write row size of value - const uint64_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa); - io.write(&v_size_row, sizeof(v_size_row)); - - // Read each range of cells of v_size length each into tmp_buf and write out - for (const auto & range : cell_ranges) { - const size_t range_size = range.second - range.first; - const size_t buf_size = range_size * v_size_row; - io.write_tensor(layer.v, range.first * v_size_row, buf_size); - } - } - } else { - // When v is transposed, we also need the element size and get the element ranges from each row - const uint32_t kv_size = cells.size(); - - for (const auto & layer : layers) { - const uint32_t il = layer.il; - - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); - - // Write value type - const int32_t v_type_i = (int32_t)layer.v->type; - io.write(&v_type_i, sizeof(v_type_i)); - - // Write element size - const uint32_t v_size_el = ggml_type_size(layer.v->type); - io.write(&v_size_el, sizeof(v_size_el)); - - // Write GQA embedding size - io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); - - // For each row, we get the element values of each cell - for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { - // Read each range of cells of v_size_el length each into tmp_buf and write out - for (const auto & range : cell_ranges) { - const size_t range_size = range.second - range.first; - const size_t src_offset = (range.first + j * kv_size) * v_size_el; - const size_t buf_size = range_size * v_size_el; - io.write_tensor(layer.v, src_offset, buf_size); - } - } - } - } -} - -bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) { - if (dest_seq_id != -1) { - // single sequence - - seq_rm(dest_seq_id, -1, -1); - - llama_sbatch sbatch; - llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false); - - batch.n_tokens = cell_count; - - for (uint32_t i = 0; i < cell_count; ++i) { - llama_pos pos; - uint32_t n_seq_id; - - io.read_to(&pos, sizeof(pos)); - io.read_to(&n_seq_id, sizeof(n_seq_id)); - - if (n_seq_id != 1) { - LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); - return false; - } - - // read the sequence id, but directly discard it - we will use dest_seq_id instead - { - llama_seq_id seq_id; - io.read_to(&seq_id, sizeof(seq_id)); - } - - batch.pos[i] = pos; - batch.n_seq_id[i] = n_seq_id; - batch.seq_id[i] = &dest_seq_id; - } - - if (!find_slot(batch)) { - LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); - return false; - } - - commit(); - - // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values) - // Assume that this is one contiguous block of cells - GGML_ASSERT(head + cell_count <= cells.size()); - GGML_ASSERT(cells.pos_get(head) == batch.pos[0]); - GGML_ASSERT(cells.pos_get(head + cell_count - 1) == batch.pos[cell_count - 1]); - GGML_ASSERT(cells.seq_has(head, dest_seq_id)); - GGML_ASSERT(cells.seq_has(head + cell_count - 1, dest_seq_id)); - } else { - // whole KV cache restore - - if (cell_count > cells.size()) { - LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__); - return false; - } - - clear(); - - for (uint32_t i = 0; i < cell_count; ++i) { - llama_pos pos; - uint32_t n_seq_id; - - io.read_to(&pos, sizeof(pos)); - io.read_to(&n_seq_id, sizeof(n_seq_id)); - - cells.pos_set(i, pos); - - for (uint32_t j = 0; j < n_seq_id; ++j) { - llama_seq_id seq_id; - io.read_to(&seq_id, sizeof(seq_id)); - - if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) { - LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max); - return false; - } - - cells.seq_add(i, seq_id); - } - } - - head = 0; - } - - return true; -} - -bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) { - uint32_t v_trans; - uint32_t n_layer; - - io.read_to(&v_trans, sizeof(v_trans)); - io.read_to(&n_layer, sizeof(n_layer)); - - if (n_layer != layers.size()) { - LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size()); - return false; - } - if (cell_count > cells.size()) { - LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size()); - return false; - } - if (this->v_trans != (bool) v_trans) { - LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); - return false; - } - - // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block - for (const auto & layer : layers) { - const uint32_t il = layer.il; - - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); - - // Read type of key - int32_t k_type_i_ref; - io.read_to(&k_type_i_ref, sizeof(k_type_i_ref)); - const int32_t k_type_i = (int32_t) layer.k->type; - if (k_type_i != k_type_i_ref) { - LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); - return false; - } - - // Read row size of key - uint64_t k_size_row_ref; - io.read_to(&k_size_row_ref, sizeof(k_size_row_ref)); - const size_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa); - if (k_size_row != k_size_row_ref) { - LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); - return false; - } - - if (cell_count) { - // Read and set the keys for the whole cell range - ggml_backend_tensor_set(layer.k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row); - } - } - - if (!this->v_trans) { - for (const auto & layer : layers) { - const uint32_t il = layer.il; - - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); - - // Read type of value - int32_t v_type_i_ref; - io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); - const int32_t v_type_i = (int32_t)layer.v->type; - if (v_type_i != v_type_i_ref) { - LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); - return false; - } - - // Read row size of value - uint64_t v_size_row_ref; - io.read_to(&v_size_row_ref, sizeof(v_size_row_ref)); - const size_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa); - if (v_size_row != v_size_row_ref) { - LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); - return false; - } - - if (cell_count) { - // Read and set the values for the whole cell range - ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row); - } - } - } else { - // For each layer, read the values for each cell (transposed) - for (const auto & layer : layers) { - const uint32_t il = layer.il; - - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); - - // Read type of value - int32_t v_type_i_ref; - io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); - const int32_t v_type_i = (int32_t)layer.v->type; - if (v_type_i != v_type_i_ref) { - LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); - return false; - } - - // Read element size of value - uint32_t v_size_el_ref; - io.read_to(&v_size_el_ref, sizeof(v_size_el_ref)); - const size_t v_size_el = ggml_type_size(layer.v->type); - if (v_size_el != v_size_el_ref) { - LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); - return false; - } - - // Read GQA embedding size - uint32_t n_embd_v_gqa_ref; - io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); - if (n_embd_v_gqa != n_embd_v_gqa_ref) { - LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); - return false; - } - - if (cell_count) { - // For each row in the transposed matrix, read the values for the whole cell range - for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { - const size_t dst_offset = (head + j * cells.size()) * v_size_el; - ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); - } - } - } - } - - return true; -} - -// -// llama_kv_cache_unified_iswa -// - -llama_kv_cache_unified_iswa::llama_kv_cache_unified_iswa( - const llama_model & model, - ggml_type type_k, - ggml_type type_v, - bool v_trans, - bool offload, - bool swa_full, - uint32_t kv_size, - uint32_t n_seq_max, - uint32_t n_batch, - uint32_t n_pad) : hparams(model.hparams) { - llama_kv_cache_unified::layer_filter_cb filter_base = [&](int32_t il) { return !model.hparams.is_swa(il); }; - llama_kv_cache_unified::layer_filter_cb filter_swa = [&](int32_t il) { return model.hparams.is_swa(il); }; - - const uint32_t size_base = kv_size; - - uint32_t size_swa = std::min(size_base, GGML_PAD(hparams.n_swa*n_seq_max + n_batch, n_pad)); - - // when using full-size SWA cache, we set the SWA cache size to be equal to the base cache size and disable pruning - if (swa_full) { - LLAMA_LOG_WARN("%s: using full-size SWA cache (ref: %s)\n", - __func__, "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055"); - - size_swa = size_base; - do_prune = false; - } - - LLAMA_LOG_INFO("%s: creating non-SWA KV cache, size = %u cells\n", __func__, size_base); - - kv_base = std::make_unique( - model, std::move(filter_base), type_k, type_v, - v_trans, offload, size_base, n_seq_max, n_pad, - 0, LLAMA_SWA_TYPE_NONE); - - LLAMA_LOG_INFO("%s: creating SWA KV cache, size = %u cells\n", __func__, size_swa); - - kv_swa = std::make_unique( - model, std::move(filter_swa), type_k, type_v, - v_trans, offload, size_swa, n_seq_max, n_pad, - hparams.n_swa, hparams.swa_type); -} - -void llama_kv_cache_unified_iswa::clear() { - kv_base->clear(); - kv_swa ->clear(); -} - -bool llama_kv_cache_unified_iswa::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { - bool res = true; - - res = res & kv_base->seq_rm(seq_id, p0, p1); - res = res & kv_swa ->seq_rm(seq_id, p0, p1); - - return res; -} - -void llama_kv_cache_unified_iswa::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { - kv_base->seq_cp(seq_id_src, seq_id_dst, p0, p1); - kv_swa ->seq_cp(seq_id_src, seq_id_dst, p0, p1); -} - -void llama_kv_cache_unified_iswa::seq_keep(llama_seq_id seq_id) { - kv_base->seq_keep(seq_id); - kv_swa ->seq_keep(seq_id); -} - -void llama_kv_cache_unified_iswa::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { - kv_base->seq_add(seq_id, p0, p1, shift); - kv_swa ->seq_add(seq_id, p0, p1, shift); -} - -void llama_kv_cache_unified_iswa::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { - kv_base->seq_div(seq_id, p0, p1, d); - kv_swa ->seq_div(seq_id, p0, p1, d); -} - -llama_pos llama_kv_cache_unified_iswa::seq_pos_min(llama_seq_id seq_id) const { - // the base cache is a superset of the SWA cache, so we can just check the SWA cache - return kv_swa->seq_pos_min(seq_id); -} - -llama_pos llama_kv_cache_unified_iswa::seq_pos_max(llama_seq_id seq_id) const { - return kv_swa->seq_pos_max(seq_id); -} - -void llama_kv_cache_unified_iswa::restore() { - kv_base->restore(); - kv_swa ->restore(); -} - -void llama_kv_cache_unified_iswa::commit() { - kv_base->commit(); - kv_swa ->commit(); - - // slide the attention window, forgetting/pruning old tokens that are outside the window - if (do_prune) { - for (const auto & [seq_id, entry] : pending.pos) { - kv_swa->prune_swa(seq_id, entry.pmin, entry.pmax); - } - - } - - pending.clear(); -} - -bool llama_kv_cache_unified_iswa::update(llama_context & lctx) { - bool res = true; - - res = res & kv_base->update(lctx); - res = res & kv_swa ->update(lctx); - - return res; -} - -void llama_kv_cache_unified_iswa::defrag_sched(float thold) { - kv_base->defrag_sched(thold); - kv_swa ->defrag_sched(thold); -} - -void llama_kv_cache_unified_iswa::set_full() { - kv_base->set_full(); - kv_swa ->set_full(); -} - -llama_sbatch llama_kv_cache_unified_iswa::sbatch_init(const llama_batch & batch, bool logits_all) { - pending.clear(); - - if (do_prune) { - for (int i = 0; i < batch.n_tokens; ++i) { - for (int s = 0; s < batch.n_seq_id[i]; ++s) { - const llama_seq_id seq_id = batch.seq_id[i][s]; - const llama_pos pos = batch.pos[i]; - - if (pending.pos.find(seq_id) == pending.pos.end()) { - pending.pos[seq_id].pmin = pos; - pending.pos[seq_id].pmax = pos; - } else { - pending.pos[seq_id].pmin = std::min(pending.pos[seq_id].pmin, pos); - pending.pos[seq_id].pmax = std::max(pending.pos[seq_id].pmax, pos); - } - } - } - } - - return llama_sbatch(batch, hparams.n_embd, true, logits_all); -} - -llama_ubatch llama_kv_cache_unified_iswa::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const { - GGML_UNUSED(embd_pooled); - return sbatch.split_simple(n_ubatch); -} - -bool llama_kv_cache_unified_iswa::find_slot(const llama_ubatch & batch) { - bool res = true; - - res = res & kv_base->find_slot(batch); - res = res & kv_swa ->find_slot(batch); - - return res; -} - -bool llama_kv_cache_unified_iswa::get_can_shift() const { - return kv_base->get_size() == kv_swa->get_size(); -} - -void llama_kv_cache_unified_iswa::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { - kv_base->state_write(io, seq_id); - kv_swa ->state_write(io, seq_id); -} - -void llama_kv_cache_unified_iswa::state_read(llama_io_read_i & io, llama_seq_id seq_id) { - kv_base->state_read(io, seq_id); - kv_swa ->state_read(io, seq_id); -} - -llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_kv_base() const { - return kv_base.get(); -} - -llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_kv_swa() const { - return kv_swa.get(); -} - -// -// llama_kv_cache_recurrent -// - -llama_kv_cache_recurrent::llama_kv_cache_recurrent( - const llama_model & model, - ggml_type type_k, - ggml_type type_v, - bool offload, - uint32_t kv_size, - uint32_t n_seq_max) : hparams(model.hparams), n_seq_max(n_seq_max) { - const int32_t n_layer = hparams.n_layer; - - LLAMA_LOG_INFO("%s: kv_size = %u, n_seq_max = %u, type_k = '%s', type_v = '%s', n_layer = %d\n", - __func__, kv_size, n_seq_max, ggml_type_name(type_k), ggml_type_name(type_v), n_layer); - - head = 0; - size = kv_size; - used = 0; - - cells.clear(); - cells.resize(kv_size); - - // create a context for each buffer type - std::map ctx_map; - auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { - auto it = ctx_map.find(buft); - if (it == ctx_map.end()) { - ggml_init_params params = { - /*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()), - /*.mem_buffer =*/ NULL, - /*.no_alloc =*/ true, - }; - - ggml_context * ctx = ggml_init(params); - if (!ctx) { - return nullptr; - } - - ctx_map[buft] = ctx; - ctxs.emplace_back(ctx); - - return ctx; - } - - return it->second; - }; - - k_l.reserve(n_layer); - v_l.reserve(n_layer); - - for (int i = 0; i < n_layer; i++) { - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s(); - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s(); - - const char * dev_name = "CPU"; - - ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type(); - - if (offload) { - auto * dev = model.dev_layer(i); - buft = ggml_backend_dev_buffer_type(dev); - - dev_name = ggml_backend_dev_name(dev); - } - - LLAMA_LOG_DEBUG("%s, layer %3d: dev = %s\n", __func__, i, dev_name); - - ggml_context * ctx = ctx_for_buft(buft); - if (!ctx) { - throw std::runtime_error("failed to create ggml context for kv cache"); - } - - ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); - ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); - ggml_format_name(k, "cache_k_l%d", i); - ggml_format_name(v, "cache_v_l%d", i); - k_l.push_back(k); - v_l.push_back(v); - } - - // allocate tensors and initialize the buffers to avoid NaNs in the padding - for (auto it : ctx_map) { - auto * buft = it.first; - auto * ctx = it.second; - - ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); - if (!buf) { - throw std::runtime_error("failed to allocate buffer for kv cache"); - } - ggml_backend_buffer_clear(buf, 0); - LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); - bufs.emplace_back(buf); - } - - { - const size_t memory_size_k = size_k_bytes(); - const size_t memory_size_v = size_v_bytes(); - - LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, - (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), - ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), - ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); - } -} - -void llama_kv_cache_recurrent::clear() { - for (int32_t i = 0; i < (int32_t) size; ++i) { - cells[i].pos = -1; - cells[i].seq_id.clear(); - cells[i].src = -1; - cells[i].tail = -1; - } - head = 0; - used = 0; - - for (auto & buf : bufs) { - ggml_backend_buffer_clear(buf.get(), 0); - } -} - -bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { - uint32_t new_head = size; - - if (p0 < 0) { - p0 = 0; - } - - if (p1 < 0) { - p1 = std::numeric_limits::max(); - } - - // models like Mamba or RWKV can't have a state partially erased - if (seq_id >= (int64_t) size) { - // could be fatal - return false; - } - if (0 <= seq_id) { - int32_t & tail_id = cells[seq_id].tail; - if (tail_id >= 0) { - const kv_cell & cell = cells[tail_id]; - // partial intersection is invalid - if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) { - return false; - } - // invalidate tails which will be cleared - if (p0 <= cell.pos && cell.pos < p1) { - tail_id = -1; - } - } - } else { - // seq_id is negative, then the range should include everything or nothing - if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits::max())) { - return false; - } - } - - for (uint32_t i = 0; i < size; ++i) { - if (cells[i].pos >= p0 && cells[i].pos < p1) { - if (seq_id < 0) { - cells[i].seq_id.clear(); - } else if (cells[i].has_seq_id(seq_id)) { - cells[i].seq_id.erase(seq_id); - } else { - continue; - } - if (cells[i].is_empty()) { - // keep count of the number of used cells - if (cells[i].pos >= 0) { - used--; - } - cells[i].pos = -1; - cells[i].src = -1; - if (new_head == size) { - new_head = i; - } - } - } - } - - // If we freed up a slot, set head to it so searching can start there. - if (new_head != size && new_head < head) { - head = new_head; - } - - return true; -} - -void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { - if (seq_id_src == seq_id_dst) { - return; - } - - if (p0 < 0) { - p0 = 0; - } - - if (p1 < 0) { - p1 = std::numeric_limits::max(); - } - - if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) { - kv_cell & tail_src = cells[seq_id_src]; - kv_cell & tail_dst = cells[seq_id_dst]; - if (tail_dst.tail >= 0) { - // clear destination seq_id if it wasn't empty - kv_cell & cell_dst = cells[tail_dst.tail]; - - cell_dst.seq_id.erase(seq_id_dst); - tail_dst.tail = -1; - if (cell_dst.seq_id.empty()) { - cell_dst.pos = -1; - cell_dst.src = -1; - used -= 1; - } - } - if (tail_src.tail >= 0) { - kv_cell & cell_src = cells[tail_src.tail]; - - cell_src.seq_id.insert(seq_id_dst); - tail_dst.tail = tail_src.tail; - } - } -} - -void llama_kv_cache_recurrent::seq_keep(llama_seq_id seq_id) { - uint32_t new_head = size; - - for (uint32_t i = 0; i < size; ++i) { - if ((llama_seq_id) i != seq_id) { - cells[i].tail = -1; - } - - if (!cells[i].has_seq_id(seq_id)) { - if (cells[i].pos >= 0) { - used--; - } - - cells[i].pos = -1; - cells[i].src = -1; - cells[i].seq_id.clear(); - - if (new_head == size){ - new_head = i; - } - } else { - cells[i].seq_id.clear(); - cells[i].seq_id.insert(seq_id); - } - } - - // If we freed up a slot, set head to it so searching can start there. - if (new_head != size && new_head < head) { - head = new_head; - } -} - -void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { - if (shift == 0) { - return; - } - - if (p0 < 0) { - p0 = 0; - } - - if (p1 < 0) { - p1 = std::numeric_limits::max(); - } - - // If there is no range then return early to avoid looping over the - if (p0 == p1) { - return; - } - - // for Mamba-like or RWKV models, only the pos needs to be shifted - if (0 <= seq_id && seq_id < (int64_t) size) { - const int32_t tail_id = cells[seq_id].tail; - if (tail_id >= 0) { - kv_cell & cell = cells[tail_id]; - if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { - cell.pos += shift; - } - } - } -} - -void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { - if (d == 1) { - return; - } - - if (p0 < 0) { - p0 = 0; - } - - if (p1 < 0) { - p1 = std::numeric_limits::max(); - } - - // If there is no range then return early to avoid looping over the cache. - if (p0 == p1) { - return; - } - - // for Mamba-like or RWKV models, only the pos needs to be changed - if (0 <= seq_id && seq_id < (int64_t) size) { - const int32_t tail_id = cells[seq_id].tail; - if (tail_id >= 0) { - kv_cell & cell = cells[tail_id]; - if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { - cell.pos /= d; - } - } - } -} - -llama_pos llama_kv_cache_recurrent::seq_pos_min(llama_seq_id seq_id) const { - llama_pos result = std::numeric_limits::max(); - - for (uint32_t i = 0; i < size; ++i) { - if (cells[i].has_seq_id(seq_id)) { - result = std::min(result, cells[i].pos); - } - } - - if (result == std::numeric_limits::max()) { - result = -1; - } - - return result; -} - -llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const { - llama_pos result = -1; - - for (uint32_t i = 0; i < size; ++i) { - if (cells[i].has_seq_id(seq_id)) { - result = std::max(result, cells[i].pos); - } - } - - return result; -} - -void llama_kv_cache_recurrent::restore() { - if (pending.ranges.empty()) { - return; - } - - seq_rm(-1, -1, -1); -} - -void llama_kv_cache_recurrent::commit() { - pending.ranges.clear(); -} - -bool llama_kv_cache_recurrent::update(llama_context & ctx) { - GGML_UNUSED(ctx); - return false; -} - -void llama_kv_cache_recurrent::defrag_sched(float thold) { - GGML_UNUSED(thold); - // noop -} - -void llama_kv_cache_recurrent::set_full() { - n = size; - head = 0; -} - -llama_sbatch llama_kv_cache_recurrent::sbatch_init( - const llama_batch & batch, - bool logits_all) { - return llama_sbatch(batch, hparams.n_embd, false, logits_all); -} - -llama_ubatch llama_kv_cache_recurrent::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const { - if (embd_pooled) { - // Pooled embeddings cannot be split across ubatches (yet) - return sbatch.split_seq(n_ubatch); - } - - return sbatch.split_equal(n_ubatch); -} - -bool llama_kv_cache_recurrent::find_slot( - const llama_ubatch & ubatch) { - const uint32_t n_tokens = ubatch.n_tokens; - const uint32_t n_seqs = ubatch.n_seqs; - - const uint32_t n_seq_tokens = ubatch.n_seq_tokens; - - // if we have enough unused cells before the current head -> - // better to start searching from the beginning of the cache, hoping to fill it - if (head > used + 2*n_tokens) { - head = 0; - } - - // For recurrent state architectures (like Mamba or RWKV), - // each cache cell can store the state for a whole sequence. - // A slot should be always be contiguous. - - // can only process batches with an equal number of new tokens in each sequence - GGML_ASSERT(ubatch.equal_seqs); - - int32_t min = size - 1; - int32_t max = 0; - - // everything should fit if all seq_ids are smaller than the max - for (uint32_t s = 0; s < n_seqs; ++s) { - const uint32_t n_seq_id = ubatch.n_seq_id[s]; - for (uint32_t j = 0; j < n_seq_id; ++j) { - const llama_seq_id seq_id = ubatch.seq_id[s][j]; - - if (seq_id < 0 || (uint32_t) seq_id >= size) { - // too big seq_id - // TODO: would it be possible to resize the cache instead? - LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%u Try using a bigger --parallel value\n", __func__, seq_id, n_seq_max); - return false; - } - if (j > 0) { - kv_cell & seq = cells[seq_id]; - if (seq.tail >= 0) { - kv_cell & cell = cells[seq.tail]; - // clear cells from seq_ids that become shared - // (should not normally happen, but let's handle it anyway) - cell.seq_id.erase(seq_id); - seq.tail = -1; - if (cell.seq_id.empty()) { - cell.pos = -1; - cell.src = -1; - used -= 1; - } - } - } - } - } - -#ifndef NDEBUG - { - std::vector tails_verif; - tails_verif.assign(size, -1); - for (uint32_t i = 0; i < size; ++i) { - kv_cell & cell = cells[i]; - for (llama_seq_id seq_id : cell.seq_id) { - if (tails_verif[seq_id] != -1) { - LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]); - } - tails_verif[seq_id] = i; - } - } - for (uint32_t i = 0; i < size; ++i) { - if (tails_verif[i] != cells[i].tail) { - LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]); - } - } - } -#endif - - // find next empty cell - uint32_t next_empty_cell = head; - - for (uint32_t i = 0; i < size; ++i) { - if (next_empty_cell >= size) { next_empty_cell -= size; } - kv_cell & cell = cells[next_empty_cell]; - if (cell.is_empty()) { break; } - next_empty_cell += 1; - } - - // find usable cell range - for (uint32_t s = 0; s < n_seqs; ++s) { - const llama_seq_id seq_id = ubatch.seq_id[s][0]; - kv_cell & seq_meta = cells[seq_id]; - bool has_cell = false; - if (seq_meta.tail >= 0) { - kv_cell & cell = cells[seq_meta.tail]; - GGML_ASSERT(cell.has_seq_id(seq_id)); - // does this seq_id "own" the cell? - if (cell.seq_id.size() == 1) { has_cell = true; } - } - if (!has_cell) { - kv_cell & empty_cell = cells[next_empty_cell]; - GGML_ASSERT(empty_cell.is_empty()); - // copy old tail into the empty cell - if (seq_meta.tail >= 0) { - kv_cell & orig_cell = cells[seq_meta.tail]; - empty_cell.pos = orig_cell.pos; - empty_cell.src = orig_cell.src; - orig_cell.seq_id.erase(seq_id); - empty_cell.seq_id.insert(seq_id); // will be overwritten - } - seq_meta.tail = next_empty_cell; - // find next empty cell - if (s + 1 < n_seqs) { - next_empty_cell += 1; - for (uint32_t i = 0; i < size; ++i) { - if (next_empty_cell >= size) { next_empty_cell -= size; } - kv_cell & cell = cells[next_empty_cell]; - if (cell.is_empty()) { break; } - next_empty_cell += 1; - } - } - } - if (min > seq_meta.tail) { min = seq_meta.tail; } - if (max < seq_meta.tail) { max = seq_meta.tail; } - } - - // gather and re-order - for (uint32_t s = 0; s < n_seqs; ++s) { - int32_t dst_id = s + min; - int32_t src_id = cells[ubatch.seq_id[s][0]].tail; - if (dst_id != src_id) { - kv_cell & dst_cell = cells[dst_id]; - kv_cell & src_cell = cells[src_id]; - - std::swap(dst_cell.pos, src_cell.pos); - std::swap(dst_cell.src, src_cell.src); - std::swap(dst_cell.seq_id, src_cell.seq_id); - - // swap tails (assuming they NEVER overlap) - for (const llama_seq_id seq_id : src_cell.seq_id) { - cells[seq_id].tail = src_id; - } - for (const llama_seq_id seq_id : dst_cell.seq_id) { - cells[seq_id].tail = dst_id; - } - } - } - - // update the pos of the used seqs - for (uint32_t s = 0; s < n_seqs; ++s) { - const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1]; - int32_t cell_id = s + min; - kv_cell & cell = cells[cell_id]; - - if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) { - // What should happen when the pos backtracks or skips a value? - // Clearing the state mid-batch would require special-casing which isn't done. - LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n", - __func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens); - } - cell.pos = last_pos; - cell.seq_id.clear(); - for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) { - const llama_seq_id seq_id = ubatch.seq_id[s][j]; - cell.seq_id.insert(seq_id); - cells[seq_id].tail = cell_id; - } - } - - // allow getting the range of used cells, from head to head + n - head = min; - n = max - min + 1; - used = std::count_if(cells.begin(), cells.end(), - [](const kv_cell & cell){ return !cell.is_empty(); }); - - // sanity check - return n >= n_seqs; -} - -bool llama_kv_cache_recurrent::get_can_shift() const { - return false; -} - -int32_t llama_kv_cache_recurrent::s_copy(int i) const { - const uint32_t cell_id = i + head; - - ////////////////////////////////////////////// - // TODO: this should not mutate the KV cache ! - kv_cell & cell = const_cast(cells[cell_id]); - - // prevent out-of-bound sources - if (cell.src < 0 || (uint32_t) cell.src >= size) { - cell.src = cell_id; - } - - int32_t res = cell.src; - - // TODO: do not mutate the KV cache - // ensure copy only happens once - if (cell.src != (int32_t) cell_id) { - cell.src = cell_id; - } - - return res; -} - -float llama_kv_cache_recurrent::s_mask(int i) const { - const uint32_t cell_id = i + head; - - ////////////////////////////////////////////// - // TODO: this should not mutate the KV cache ! - kv_cell & cell = const_cast(cells[cell_id]); - - float res = (float) (cell.src >= 0); - - // only clear once - if (cell.src < 0) { - cell.src = cell_id; - } - - return res; -} - -uint32_t llama_kv_cache_recurrent::cell_max() const { - for (uint32_t i = size; i > 0; --i) { - const kv_cell & cell = cells[i - 1]; - - if (cell.pos >= 0 && !cell.is_empty()) { - return i; - } - } - - return 0; -} - -size_t llama_kv_cache_recurrent::total_size() const { - size_t size = 0; - for (const auto & buf : bufs) { - size += ggml_backend_buffer_get_size(buf.get()); - } - - return size; -} - -size_t llama_kv_cache_recurrent::size_k_bytes() const { - size_t size_k_bytes = 0; - - for (const auto & k : k_l) { - size_k_bytes += ggml_nbytes(k); - } - - return size_k_bytes; -} - -size_t llama_kv_cache_recurrent::size_v_bytes() const { - size_t size_v_bytes = 0; - - for (const auto & v : v_l) { - size_v_bytes += ggml_nbytes(v); - } - - return size_v_bytes; -} - -void llama_kv_cache_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { - std::vector> cell_ranges; // ranges, from inclusive, to exclusive - uint32_t cell_count = 0; - - // Count the number of cells with the specified seq_id - // Find all the ranges of cells with this seq id (or all, when -1) - uint32_t cell_range_begin = size; - for (uint32_t i = 0; i < size; ++i) { - const auto & cell = cells[i]; - if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) { - ++cell_count; - if (cell_range_begin == size) { - cell_range_begin = i; - } - } else { - if (cell_range_begin != size) { - cell_ranges.emplace_back(cell_range_begin, i); - cell_range_begin = size; - } - } - } - if (cell_range_begin != size) { - cell_ranges.emplace_back(cell_range_begin, size); - } - - // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count - uint32_t cell_count_check = 0; - for (const auto & range : cell_ranges) { - cell_count_check += range.second - range.first; - } - GGML_ASSERT(cell_count == cell_count_check); - - io.write(&cell_count, sizeof(cell_count)); - - state_write_meta(io, cell_ranges, seq_id); - state_write_data(io, cell_ranges); -} - -void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) { - uint32_t cell_count; - io.read_to(&cell_count, sizeof(cell_count)); - - bool res = true; - - res = res && state_read_meta(io, cell_count, seq_id); - res = res && state_read_data(io, cell_count); - - if (!res) { - if (seq_id == -1) { - clear(); - } else { - seq_rm(seq_id, -1, -1); - } - throw std::runtime_error("failed to restore kv cache"); - } -} - -void llama_kv_cache_recurrent::state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id) const { - for (const auto & range : cell_ranges) { - for (uint32_t i = range.first; i < range.second; ++i) { - const auto & cell = cells[i]; - const llama_pos pos = cell.pos; - const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0; - - io.write(&pos, sizeof(pos)); - io.write(&n_seq_id, sizeof(n_seq_id)); - - if (n_seq_id) { - for (auto seq_id : cell.seq_id) { - io.write(&seq_id, sizeof(seq_id)); - } - } - } - } -} - -void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const { - const uint32_t v_trans = 0; - const uint32_t n_layer = hparams.n_layer; - - io.write(&v_trans, sizeof(v_trans)); - io.write(&n_layer, sizeof(n_layer)); - - std::vector tmp_buf; - - // Iterate and write all the keys first, each row is a cell - // Get whole range at a time - for (uint32_t il = 0; il < n_layer; ++il) { - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); - - // Write key type - const int32_t k_type_i = (int32_t)k_l[il]->type; - io.write(&k_type_i, sizeof(k_type_i)); - - // Write row size of key - const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); - io.write(&k_size_row, sizeof(k_size_row)); - - // Read each range of cells of k_size length each into tmp_buf and write out - for (const auto & range : cell_ranges) { - const size_t range_size = range.second - range.first; - const size_t buf_size = range_size * k_size_row; - io.write_tensor(k_l[il], range.first * k_size_row, buf_size); - } - } - - if (!v_trans) { - for (uint32_t il = 0; il < n_layer; ++il) { - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); - - // Write value type - const int32_t v_type_i = (int32_t)v_l[il]->type; - io.write(&v_type_i, sizeof(v_type_i)); - - // Write row size of value - const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); - io.write(&v_size_row, sizeof(v_size_row)); - - // Read each range of cells of v_size length each into tmp_buf and write out - for (const auto & range : cell_ranges) { - const size_t range_size = range.second - range.first; - const size_t buf_size = range_size * v_size_row; - io.write_tensor(v_l[il], range.first * v_size_row, buf_size); - } - } - } else { - // When v is transposed, we also need the element size and get the element ranges from each row - const uint32_t kv_size = size; - for (uint32_t il = 0; il < n_layer; ++il) { - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); - - // Write value type - const int32_t v_type_i = (int32_t)v_l[il]->type; - io.write(&v_type_i, sizeof(v_type_i)); - - // Write element size - const uint32_t v_size_el = ggml_type_size(v_l[il]->type); - io.write(&v_size_el, sizeof(v_size_el)); - - // Write GQA embedding size - io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); - - // For each row, we get the element values of each cell - for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { - // Read each range of cells of v_size_el length each into tmp_buf and write out - for (const auto & range : cell_ranges) { - const size_t range_size = range.second - range.first; - const size_t src_offset = (range.first + j * kv_size) * v_size_el; - const size_t buf_size = range_size * v_size_el; - io.write_tensor(v_l[il], src_offset, buf_size); - } - } - } - } -} - -bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) { - if (dest_seq_id != -1) { - // single sequence - - seq_rm(dest_seq_id, -1, -1); - - llama_sbatch sbatch; - llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false); - - batch.n_tokens = cell_count; - batch.n_seq_tokens = cell_count; - batch.n_seqs = 1; - - for (uint32_t i = 0; i < cell_count; ++i) { - llama_pos pos; - uint32_t n_seq_id; - - io.read_to(&pos, sizeof(pos)); - io.read_to(&n_seq_id, sizeof(n_seq_id)); - - if (n_seq_id != 0) { - LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); - return false; - } - - batch.pos[i] = pos; - } - batch.n_seq_id[0] = 1; - batch.seq_id[0] = &dest_seq_id; - if (!find_slot(batch)) { - LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); - return false; - } - commit(); - - // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values) - // Assume that this is one contiguous block of cells - GGML_ASSERT(head + cell_count <= size); - GGML_ASSERT(cells[head].pos == batch.pos[0]); - GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]); - GGML_ASSERT(cells[head].has_seq_id(dest_seq_id)); - GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id)); - } else { - // whole KV cache restore - - if (cell_count > size) { - LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__); - return false; - } - - clear(); - - for (uint32_t i = 0; i < cell_count; ++i) { - kv_cell & cell = cells[i]; - - llama_pos pos; - uint32_t n_seq_id; - - io.read_to(&pos, sizeof(pos)); - io.read_to(&n_seq_id, sizeof(n_seq_id)); - - cell.pos = pos; - - for (uint32_t j = 0; j < n_seq_id; ++j) { - llama_seq_id seq_id; - io.read_to(&seq_id, sizeof(seq_id)); - - // TODO: llama_kv_cache_recurrent should have a notion of max sequences - //if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) { - if (seq_id < 0) { - //LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx)); - LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id); - return false; - } - - cell.seq_id.insert(seq_id); - - int32_t & tail = cells[seq_id].tail; - if (tail != -1) { - LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail); - return false; - } - tail = i; - } - } - - head = 0; - used = cell_count; - } - - for (uint32_t i = 0; i < cell_count; ++i) { - uint32_t cell_id = head + i; - // make sure the recurrent states will keep their restored state - cells[cell_id].src = cell_id; - } - - return true; -} - -bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) { - uint32_t v_trans; - uint32_t n_layer; - io.read_to(&v_trans, sizeof(v_trans)); - io.read_to(&n_layer, sizeof(n_layer)); - - if (n_layer != hparams.n_layer) { - LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer); - return false; - } - if (cell_count > size) { - LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size); - return false; - } - if (false != (bool) v_trans) { - LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); - return false; - } - - // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block - for (uint32_t il = 0; il < n_layer; ++il) { - const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); - - // Read type of key - int32_t k_type_i_ref; - io.read_to(&k_type_i_ref, sizeof(k_type_i_ref)); - const int32_t k_type_i = (int32_t) k_l[il]->type; - if (k_type_i != k_type_i_ref) { - LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); - return false; - } - - // Read row size of key - uint64_t k_size_row_ref; - io.read_to(&k_size_row_ref, sizeof(k_size_row_ref)); - const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); - if (k_size_row != k_size_row_ref) { - LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); - return false; - } - - if (cell_count) { - // Read and set the keys for the whole cell range - ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row); - } - } - - if (!v_trans) { - for (uint32_t il = 0; il < n_layer; ++il) { - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); - - // Read type of value - int32_t v_type_i_ref; - io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); - const int32_t v_type_i = (int32_t)v_l[il]->type; - if (v_type_i != v_type_i_ref) { - LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); - return false; - } - - // Read row size of value - uint64_t v_size_row_ref; - io.read_to(&v_size_row_ref, sizeof(v_size_row_ref)); - const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa); - if (v_size_row != v_size_row_ref) { - LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); - return false; - } - - if (cell_count) { - // Read and set the values for the whole cell range - ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row); - } - } - } else { - // For each layer, read the values for each cell (transposed) - for (uint32_t il = 0; il < n_layer; ++il) { - const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); - - // Read type of value - int32_t v_type_i_ref; - io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); - const int32_t v_type_i = (int32_t)v_l[il]->type; - if (v_type_i != v_type_i_ref) { - LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); - return false; - } - - // Read element size of value - uint32_t v_size_el_ref; - io.read_to(&v_size_el_ref, sizeof(v_size_el_ref)); - const size_t v_size_el = ggml_type_size(v_l[il]->type); - if (v_size_el != v_size_el_ref) { - LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); - return false; - } - - // Read GQA embedding size - uint32_t n_embd_v_gqa_ref; - io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); - if (n_embd_v_gqa != n_embd_v_gqa_ref) { - LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); - return false; - } - - if (cell_count) { - // For each row in the transposed matrix, read the values for the whole cell range - for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { - const size_t dst_offset = (head + j * size) * v_size_el; - ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); - } - } - } - } - - return true; -} diff --git a/src/llama-kv-cache.h b/src/llama-kv-cache.h deleted file mode 100644 index 86a96820e2..0000000000 --- a/src/llama-kv-cache.h +++ /dev/null @@ -1,506 +0,0 @@ -#pragma once - -#include "llama.h" -#include "llama-io.h" -#include "llama-graph.h" -#include "llama-memory.h" -#include "llama-kv-cells.h" - -#include "ggml-cpp.h" - -#include -#include -#include - -struct llama_cparams; -struct llama_hparams; -struct llama_ubatch; -struct llama_sbatch; -struct llama_model; -struct llama_context; - -struct llama_kv_cache : public llama_memory_i { - virtual ~llama_kv_cache() = default; - - // call if batch processing fails - restores the cache state - virtual void restore() = 0; - - // call after successful batch processing - clears any pending state - virtual void commit() = 0; - - // process any pending defrag/shift/etc. operations - // optionally call once before processing a new batch - virtual bool update(llama_context & lctx) = 0; - - // schedule a defrag if the fragmentation threshold is exceeded. otherwise, do nothing - virtual void defrag_sched(float thold) = 0; - - // simulate full cache, used for allocating worst-case compute buffers - // TODO: remove - virtual void set_full() = 0; - - // - // batch processing - // - - // ============================================================================================================= - // TODO: refactor and simplify this [TAG: KV_API] - - virtual llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) = 0; - - // different KV caches require different batch splitting strategies - virtual llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const = 0; - - // find an empty slot of size "n_tokens" in the cache - virtual bool find_slot(const llama_ubatch & batch) = 0; - - // ============================================================================================================= - - // getters - virtual bool get_can_shift() const = 0; - - bool get_can_edit() const override { return get_can_shift(); } - - // - // state write/read - // - - virtual void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const = 0; - virtual void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) = 0; -}; - -// -// llama_kv_cache_guard -// - -struct llama_kv_cache_guard { - llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {} - - ~llama_kv_cache_guard() { - kv->restore(); - } - - void commit() { - kv->commit(); - } - -private: - llama_kv_cache * kv; -}; - -// -// llama_kv_cache_unified -// - -class llama_kv_cache_unified : public llama_kv_cache { -public: - static uint32_t get_padding(const llama_cparams & cparams); - - // this callback is used to filter out layers that should not be included in the cache - using layer_filter_cb = std::function; - - llama_kv_cache_unified( - const llama_model & model, - layer_filter_cb && filter, - ggml_type type_k, - ggml_type type_v, - bool v_trans, - bool offload, - uint32_t kv_size, - uint32_t n_seq_max, - uint32_t n_pad, - uint32_t n_swa, - llama_swa_type swa_type); - - ~llama_kv_cache_unified() = default; - - // - // llama_memory_i - // - - void clear() override; - - bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; - void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; - void seq_keep(llama_seq_id seq_id) override; - void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override; - void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; - - llama_pos seq_pos_min(llama_seq_id seq_id) const override; - llama_pos seq_pos_max(llama_seq_id seq_id) const override; - - // - // llama_kv_cache - // - - void restore() override; - void commit() override; - - bool update(llama_context & ctx) override; - - void defrag_sched(float thold) override; - - void set_full() override; - - llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override; - llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override; - - // updates the cache head - // Note: On success, it's important that cache.head points - // to the first cell of the slot. - bool find_slot(const llama_ubatch & batch) override; - - bool get_can_shift() const override; - - // state write/load - - void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override; - void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override; - - // - // llama_kv_cache_unified specific API - // - - uint32_t get_n() const; - uint32_t get_size() const; - - // get views of the current state of the cache - ggml_tensor * get_k(ggml_context * ctx, int32_t il) const; - ggml_tensor * get_v(ggml_context * ctx, int32_t il) const; - - // store k_cur and v_cur in the cache based on the current head location - ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const; - ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const; - - void prune_swa(llama_seq_id seq_id, llama_pos pmin, llama_pos pmax); - - void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const; - void set_input_k_shift (ggml_tensor * dst) const; - void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const; - -private: - const llama_model & model; - const llama_hparams & hparams; - - struct kv_layer { - // layer index in the model - // note: can be different from the layer index in the KV cache - uint32_t il; - - ggml_tensor * k; - ggml_tensor * v; - }; - - bool do_defrag = false; - bool v_trans = true; // the value tensor is transposed - - uint32_t head = 0; // the location where the batch will be placed in the cache (see find_slot()) - - // computed before each graph build - // TODO: cells should start to maintain this value dynamically based on the edits - uint32_t n = 0; - - const uint32_t n_seq_max = 1; - - // required padding - const uint32_t n_pad = 1; - - // SWA - const uint32_t n_swa = 0; - - const llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE; - - std::vector ctxs; - std::vector bufs; - - llama_kv_cells_unified cells; - - std::vector layers; - - // model layer id -> KV cache layer id - std::unordered_map map_layer_ids; - - // recovery information used to restore the KV cells to their original state in case of a failure - // TODO: do not store as a state in the llama_kv_cache object, instead return upon batch preparation - // to achieve that, first need to refactor the llama_kv_cache interface [TAG: KV_API] - struct { - void clear() { - states.clear(); - } - - struct state { - uint32_t i; - - llama_kv_cells_unified cells; - }; - - // stack with the partial states before each ubatch - std::vector states; - } recovery; - - // defrag - struct { - std::vector ids; - } defrag_info; - - // return true if cells have been moved - bool defrag_prepare(int32_t n_max_nodes); - - // find how many cells are currently in use - // TODO: optimize - uint32_t cell_max() const; - - size_t total_size() const; - - size_t size_k_bytes() const; - size_t size_v_bytes() const; - - bool is_masked_swa(llama_pos p0, llama_pos p1) const; - - ggml_tensor * build_rope_shift( - const llama_cparams & cparams, - ggml_context * ctx, - ggml_tensor * cur, - ggml_tensor * shift, - ggml_tensor * factors, - float freq_base, - float freq_scale) const; - - llm_graph_result_ptr build_graph_shift( - const llama_cparams & cparams, - ggml_context * ctx, - ggml_cgraph * gf) const; - - llm_graph_result_ptr build_graph_defrag( - const llama_cparams & cparams, - ggml_context * ctx, - ggml_cgraph * gf) const; - - void state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id = -1) const; - void state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const; - - bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1); - bool state_read_data(llama_io_read_i & io, uint32_t cell_count); -}; - -// -// llama_kv_cache_unified_iswa -// - -// utilizes two instances of llama_kv_cache_unified -// the first instance is for the non-SWA layers of the model and the second instance is for the SWA layers -// upon successful commit, the SWA cache removes old tokens outside the n_swa window - -class llama_kv_cache_unified_iswa : public llama_kv_cache { -public: - llama_kv_cache_unified_iswa( - const llama_model & model, - ggml_type type_k, - ggml_type type_v, - bool v_trans, - bool offload, - bool swa_full, - uint32_t kv_size, - uint32_t n_seq_max, - uint32_t n_batch, - uint32_t n_pad); - - ~llama_kv_cache_unified_iswa() = default; - - // - // llama_memory_i - // - - void clear() override; - - bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; - void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; - void seq_keep(llama_seq_id seq_id) override; - void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override; - void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; - - llama_pos seq_pos_min(llama_seq_id seq_id) const override; - llama_pos seq_pos_max(llama_seq_id seq_id) const override; - - // - // llama_kv_cache - // - - void restore() override; - void commit() override; - - bool update(llama_context & ctx) override; - - void defrag_sched(float thold) override; - - void set_full() override; - - llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override; - llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override; - - bool find_slot(const llama_ubatch & batch) override; - - bool get_can_shift() const override; - - // state write/load - - void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override; - void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override; - - // - // llama_kv_cache_unified_iswa specific API - // - - llama_kv_cache_unified * get_kv_base() const; - llama_kv_cache_unified * get_kv_swa () const; - -private: - const llama_hparams & hparams; - - bool do_prune = true; - - struct { - struct entry { - llama_pos pmin; - llama_pos pmax; - }; - - void clear() { - pos.clear(); - } - - // used to perform SWA pruning of old tokens - std::unordered_map pos; - } pending; - - std::unique_ptr kv_base; - std::unique_ptr kv_swa; -}; - -// -// llama_kv_cache_recurrent -// - -class llama_kv_cache_recurrent : public llama_kv_cache { -public: - struct kv_cell { - llama_pos pos = -1; - int32_t src = -1; // used to copy states - int32_t tail = -1; - - std::set seq_id; - - bool has_seq_id(const llama_seq_id & id) const { - return seq_id.find(id) != seq_id.end(); - } - - bool is_empty() const { - return seq_id.empty(); - } - - bool is_same_seq(const kv_cell & other) const { - return seq_id == other.seq_id; - } - }; - - llama_kv_cache_recurrent( - const llama_model & model, - ggml_type type_k, - ggml_type type_v, - bool offload, - uint32_t kv_size, - uint32_t n_seq_max); - - ~llama_kv_cache_recurrent() = default; - - // - // llama_memory_i - // - - void clear() override; - - bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; - void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; - void seq_keep(llama_seq_id seq_id) override; - void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override; - void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; - - llama_pos seq_pos_min(llama_seq_id seq_id) const override; - llama_pos seq_pos_max(llama_seq_id seq_id) const override; - - // - // llama_kv_cache - // - - void restore() override; - void commit() override; - - bool update(llama_context & ctx) override; - - void defrag_sched(float thold) override; - - void set_full() override; - - llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override; - llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override; - - bool find_slot(const llama_ubatch & batch) override; - - bool get_can_shift() const override; - - // TODO: temporary methods - they are not really const as they do const_cast<>, fix this - int32_t s_copy(int i) const; - float s_mask(int i) const; - - // state write/load - - void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override; - void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override; - - uint32_t head = 0; // the location where the batch will be placed in the cache (see find_slot()) - uint32_t size = 0; // total number of cells, shared across all sequences - uint32_t used = 0; // used cells (i.e. at least one seq_id) - - // computed before each graph build - uint32_t n = 0; - - std::vector cells; - - std::vector k_l; // per layer - std::vector v_l; - -private: - //const llama_model & model; - const llama_hparams & hparams; - - // commit/restore cache - // TODO: rework for recurrent cache - struct slot_range { - uint32_t c0 = 0; // note: these are cell indices, not sequence positions - uint32_t c1 = 0; - }; - - // pending cell updates that are not yet committed - struct { - std::vector ranges; - } pending; - - const uint32_t n_seq_max = 1; - - std::vector ctxs; - std::vector bufs; - - // find how many cells are currently in use - uint32_t cell_max() const; - - size_t total_size() const; - - size_t size_k_bytes() const; - size_t size_v_bytes() const; - - void state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id = -1) const; - void state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const; - - bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1); - bool state_read_data(llama_io_read_i & io, uint32_t cell_count); -}; diff --git a/src/llama-kv-cells.h b/src/llama-kv-cells.h index 138545533e..9e2c4d9276 100644 --- a/src/llama-kv-cells.h +++ b/src/llama-kv-cells.h @@ -6,6 +6,7 @@ #include #include #include +#include // meta information about KV cells that can be part of multiple sequences at the same time // TODO: add unit tests @@ -18,8 +19,13 @@ public: seq[i].reset(); } - used = 0; has_shift = false; + + used.clear(); + + for (uint32_t s = 0; s < LLAMA_MAX_PARALLEL_SEQUENCES; ++s) { + seq_pos[s].clear(); + } } void reset_shift() { @@ -50,7 +56,19 @@ public: } uint32_t get_used() const { - return used; + return used.size(); + } + + // the index of the first cell that is used + // return 0 if no cells are used + uint32_t used_min() const { + return used.empty() ? 0 : *used.begin(); + } + + // the index of the last cell that is used + 1 + // return 0 if no cells are used + uint32_t used_max_p1() const { + return used.empty() ? 0 : *used.rbegin() + 1; } bool get_has_shift() const { @@ -69,6 +87,9 @@ public: pos [isrc] = -1; shift[isrc] = 0; seq [isrc].reset(); + + used.erase (isrc); + used.insert(idst); } // copy the state of cells [i, i + n) (used for save/restore the state of the cells) @@ -95,20 +116,41 @@ public: for (uint32_t j = 0; j < other.pos.size(); ++j) { if (pos[i + j] == -1 && other.pos[j] != -1) { - used++; + used.insert(i + j); } if (pos[i + j] != -1 && other.pos[j] == -1) { - used--; + used.erase(i + j); + } + + if (pos[i + j] != -1) { + seq_pos_rm(i + j); } pos[i + j] = other.pos[j]; seq[i + j] = other.seq[j]; + if (pos[i + j] != -1) { + seq_pos_add(i + j); + } + assert(shift[i + j] == 0); } } + // clear a non-empty cell + void rm(uint32_t i) { + assert(i < pos.size()); + assert(pos[i] != -1); + + seq_pos_rm(i); + + pos[i] = -1; + seq[i].reset(); + + used.erase(i); + } + // note: call only if the cell has seq_id // return true if the cell becomes empty bool seq_rm(uint32_t i, llama_seq_id seq_id) { @@ -118,11 +160,12 @@ public: assert(seq_id >= 0); seq[i].reset(seq_id); + seq_pos[seq_id].erase(pos[i]); if (seq[i].none()) { pos[i] = -1; - used--; + used.erase(i); return true; } @@ -135,17 +178,22 @@ public: assert(i < pos.size()); if (seq[i].test(seq_id)) { + seq_pos_rm(i); seq[i].reset(); + seq[i].set(seq_id); + seq_pos[seq_id].insert(pos[i]); return false; } if (seq[i].any()) { + seq_pos_rm(i); seq[i].reset(); + pos[i] = -1; - used--; + used.erase(i); return true; } @@ -155,6 +203,15 @@ public: return false; } + // number of different sequences in the cell + int seq_count(uint32_t i) const { + assert(i < pos.size()); + assert(pos[i] != -1); + + return seq[i].count(); + } + + // check if the cell contains seq_id bool seq_has(uint32_t i, llama_seq_id seq_id) const { assert(i < pos.size()); assert(seq_id >= 0); @@ -169,6 +226,47 @@ public: assert(!seq[i].test(seq_id)); seq[i].set(seq_id); + seq_pos[seq_id].insert(pos[i]); + } + + // return the sequence id of this cell + // note: call only for cells with exactly one sequence + llama_seq_id seq_get(uint32_t i) const { + assert(seq[i].count() == 1); + + for (int s = 0; s < LLAMA_MAX_PARALLEL_SEQUENCES; ++s) { + if (seq[i].test(s)) { + return s; + } + } + + return -1; + } + + // the minimum position of sequence seq_id currently present in any of the cells + // return -1 if the sequence is not present + llama_pos seq_pos_min(llama_seq_id seq_id) const { + assert(seq_id >= 0); + assert(seq_id < LLAMA_MAX_PARALLEL_SEQUENCES); + + if (seq_pos[seq_id].empty()) { + return -1; + } + + return *seq_pos[seq_id].begin(); + } + + // the maximum position of sequence seq_id currently present in any of the cells + // return -1 if the sequence is not present + llama_pos seq_pos_max(llama_seq_id seq_id) const { + assert(seq_id >= 0); + assert(seq_id < LLAMA_MAX_PARALLEL_SEQUENCES); + + if (seq_pos[seq_id].empty()) { + return -1; + } + + return *seq_pos[seq_id].rbegin(); } // note: call only if the cell is not empty @@ -200,9 +298,11 @@ public: void pos_set(uint32_t i, llama_pos p) { assert(i < pos.size()); assert(pos[i] == -1); + assert(seq[i].none()); pos[i] = p; - used++; + + used.insert(i); } // pos[i] = pos[i] + d @@ -212,16 +312,22 @@ public: assert(i < pos.size()); assert(pos[i] != -1); + seq_pos_rm(i); + pos[i] += d; shift[i] += d; + seq_pos_add(i); + has_shift = true; if (pos[i] < 0) { - pos[i] = -1; - seq[i].reset(); + seq_pos_rm(i); - used--; + seq[i].reset(); + pos[i] = -1; + + used.erase(i); return true; } @@ -238,17 +344,22 @@ public: const llama_pos p_old = pos[i]; + seq_pos_rm(i); + pos[i] /= d; shift[i] += p_old - pos[i]; + seq_pos_add(i); + has_shift = true; } private: - uint32_t used = 0; // used cells (i.e. pos[i] != -1, allowed to not have any seq_id) - bool has_shift = false; + // set of indices of used cells (i.e. pos[i] != -1, allowed to not have any seq_id) + std::set used; + std::vector pos; // this array accumulates any applied shifts to the pos array since the last reset_shift() call @@ -268,6 +379,32 @@ private: // std::vector shift; - std::vector> seq; -}; + using bits_t = std::bitset; + // the bitset seq[i] tells us which sequences are currently occupying the i-th cell + std::vector seq; + + // the set seq_pos[s] tells us which positions are currently present for sequence s + // this way seq_pos[s].begin() and seq_pos[s].rbegin() give us the min/max positions currently in the cache + std::set seq_pos[LLAMA_MAX_PARALLEL_SEQUENCES]; + + // helper functions for updating `seq_pos`, once cell at a time: + + // remove cell i + void seq_pos_rm(uint32_t i) { + for (int s = 0; s < LLAMA_MAX_PARALLEL_SEQUENCES; ++s) { + if (seq[i].test(s)) { + seq_pos[s].erase(pos[i]); + } + } + } + + // add cell i + void seq_pos_add(uint32_t i) { + for (int s = 0; s < LLAMA_MAX_PARALLEL_SEQUENCES; ++s) { + if (seq[i].test(s)) { + seq_pos[s].insert(pos[i]); + } + } + } +}; diff --git a/src/llama-memory.cpp b/src/llama-memory.cpp index 10173253ed..f1107672c6 100644 --- a/src/llama-memory.cpp +++ b/src/llama-memory.cpp @@ -1 +1,42 @@ #include "llama-memory.h" + +llama_memory_status llama_memory_status_combine(llama_memory_status s0, llama_memory_status s1) { + bool has_update = false; + + switch (s0) { + case LLAMA_MEMORY_STATUS_SUCCESS: + { + has_update = true; + break; + } + case LLAMA_MEMORY_STATUS_NO_UPDATE: + { + break; + } + case LLAMA_MEMORY_STATUS_FAILED_PREPARE: + case LLAMA_MEMORY_STATUS_FAILED_COMPUTE: + { + return s0; + } + } + + switch (s1) { + case LLAMA_MEMORY_STATUS_SUCCESS: + { + has_update = true; + break; + } + case LLAMA_MEMORY_STATUS_NO_UPDATE: + { + break; + } + case LLAMA_MEMORY_STATUS_FAILED_PREPARE: + case LLAMA_MEMORY_STATUS_FAILED_COMPUTE: + { + return s1; + } + } + + // if either status has an update, then the combined status has an update + return has_update ? LLAMA_MEMORY_STATUS_SUCCESS : LLAMA_MEMORY_STATUS_NO_UPDATE; +} diff --git a/src/llama-memory.h b/src/llama-memory.h index a2d250434a..991aae781b 100644 --- a/src/llama-memory.h +++ b/src/llama-memory.h @@ -2,6 +2,14 @@ #include "llama.h" +#include +#include + +struct llama_ubatch; + +class llama_io_write_i; +class llama_io_read_i; + struct llama_memory_params { // kv cache ggml_type type_k; @@ -11,13 +19,79 @@ struct llama_memory_params { bool swa_full; }; +enum llama_memory_status { + LLAMA_MEMORY_STATUS_SUCCESS = 0, + LLAMA_MEMORY_STATUS_NO_UPDATE, + LLAMA_MEMORY_STATUS_FAILED_PREPARE, + LLAMA_MEMORY_STATUS_FAILED_COMPUTE, +}; + +// helper function for combining the status of two memory states +// useful for implementing hybrid memory types (e.g. iSWA) +llama_memory_status llama_memory_status_combine(llama_memory_status s0, llama_memory_status s1); + +// the interface for managing the memory state during batch processing +// this interface is implemented per memory type. see: +// - llama_kv_cache_unified_state +// - llama_kv_cache_unified_iswa_state +// ... +// +// the only method that can mutate the memory and the memory state is llama_memory_i::apply() +// +// TODO: rename to llama_memory_context_i ? +struct llama_memory_state_i { + virtual ~llama_memory_state_i() = default; + + // consume the current ubatch from the state and proceed to the next one + // return false if we are done + virtual bool next() = 0; + + // apply the memory state for the current ubatch to the memory object + // return false on failure + virtual bool apply() = 0; + + // TODO: this might get reworked in the future when refactoring llama_batch + virtual std::vector & out_ids() = 0; + + // get the current ubatch + virtual const llama_ubatch & get_ubatch() const = 0; + + // get the status of the memory state - used for error handling and checking if any updates would be applied + virtual llama_memory_status get_status() const = 0; +}; + +using llama_memory_state_ptr = std::unique_ptr; + // general concept of LLM memory // the KV cache is a type of LLM memory, but there can be other types -class llama_memory_i { -public: +struct llama_memory_i { virtual ~llama_memory_i() = default; - virtual void clear() = 0; + // split the input batch into a set of ubatches and verify that they can fit into the cache + // return a state object containing the ubatches and KV cache state required to process them + // check the llama_memory_state_i::get_status() for the result + virtual llama_memory_state_ptr init_batch( + const llama_batch & batch, + uint32_t n_ubatch, + bool embd_pooled, + bool logits_all) = 0; + + // simulate full cache, used for allocating worst-case compute buffers + virtual llama_memory_state_ptr init_full() = 0; + + // prepare for any pending memory updates, such as shifts, defrags, etc. + // status == LLAMA_MEMORY_STATUS_NO_UPDATE if there is nothing to update + virtual llama_memory_state_ptr init_update(llama_context * lctx, bool optimize) = 0; + + // getters + virtual bool get_can_shift() const = 0; + + // + // ops + // + + // if data == true, the data buffers will also be cleared together with the metadata + virtual void clear(bool data) = 0; virtual bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) = 0; virtual void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) = 0; @@ -28,5 +102,17 @@ public: virtual llama_pos seq_pos_min(llama_seq_id seq_id) const = 0; virtual llama_pos seq_pos_max(llama_seq_id seq_id) const = 0; - virtual bool get_can_edit() const = 0; + // + // state write/read + // + + virtual void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const = 0; + virtual void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) = 0; +}; + +using llama_memory_ptr = std::unique_ptr; + +// TODO: temporary until the llama_kv_cache is removed from the public API +struct llama_kv_cache : public llama_memory_i { + virtual ~llama_kv_cache() = default; }; diff --git a/src/llama-mmap.cpp b/src/llama-mmap.cpp index 9da97f1bc5..47497cf953 100644 --- a/src/llama-mmap.cpp +++ b/src/llama-mmap.cpp @@ -401,7 +401,7 @@ struct llama_mmap::impl { } } #else - throw std::runtime_error("PrefetchVirtualMemory unavailable"); + LLAMA_LOG_DEBUG("skipping PrefetchVirtualMemory because _WIN32_WINNT < 0x602\n"); #endif } } diff --git a/src/llama-model-loader.cpp b/src/llama-model-loader.cpp index ddb1b03675..bd9e6da883 100644 --- a/src/llama-model-loader.cpp +++ b/src/llama-model-loader.cpp @@ -288,9 +288,10 @@ namespace GGUFMeta { template bool llama_model_loader::get_arr(const std::string & key, std::vector & result, bool required) { - const int kid = gguf_find_key(meta.get(), key.c_str()); + const gguf_context * ctx = meta.get(); + const int kid = gguf_find_key(ctx, key.c_str()); - if (kid < 0 || gguf_get_kv_type(meta.get(), kid) != GGUF_TYPE_ARRAY) { + if (kid < 0 || gguf_get_kv_type(ctx, kid) != GGUF_TYPE_ARRAY) { if (required) { throw std::runtime_error(format("array key not found in model: %s", key.c_str())); } @@ -298,28 +299,40 @@ namespace GGUFMeta { } struct GGUFMeta::ArrayInfo arr_info = - GGUFMeta::GKV::get_kv(meta.get(), kid); + GGUFMeta::GKV::get_kv(ctx, kid); switch (arr_info.gt) { case GGUF_TYPE_UINT32: - case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same::value) || - (std::is_same::value)); break; - case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same::value)); break; + case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same::value) || + (std::is_same::value)); break; + case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same::value)); break; + case GGUF_TYPE_STRING: GGML_ASSERT((std::is_same::value)); break; default: - throw std::runtime_error(format("%s is not a float32/uint32/int32 array", key.c_str())); + throw std::runtime_error(format("%s is not a string/float32/uint32/int32 array", key.c_str())); } - result.resize(arr_info.length); - result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length); + if constexpr (std::is_same::value) { + const size_t n_items = gguf_get_arr_n(ctx, kid); + result.clear(); + + for (size_t i = 0; i < n_items; i++) { + const T value = gguf_get_arr_str(ctx, kid, i); + result.emplace_back(value); + } + } else { + result.resize(arr_info.length); + result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length); + } return true; } template bool llama_model_loader::get_arr(const std::string & key, std::array & result, bool required) { - const int kid = gguf_find_key(meta.get(), key.c_str()); + const gguf_context * ctx = meta.get(); + const int kid = gguf_find_key(ctx, key.c_str()); - if (kid < 0 || gguf_get_kv_type(meta.get(), kid) != GGUF_TYPE_ARRAY) { + if (kid < 0 || gguf_get_kv_type(ctx, kid) != GGUF_TYPE_ARRAY) { if (required) { throw std::runtime_error(format("array key not found in model: %s", key.c_str())); } @@ -327,22 +340,32 @@ namespace GGUFMeta { } struct GGUFMeta::ArrayInfo arr_info = - GGUFMeta::GKV::get_kv(meta.get(), kid); + GGUFMeta::GKV::get_kv(ctx, kid); switch (arr_info.gt) { case GGUF_TYPE_UINT32: - case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same::value) || - (std::is_same::value)); break; - case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same::value)); break; + case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same::value) || + (std::is_same::value)); break; + case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same::value)); break; + case GGUF_TYPE_STRING: GGML_ASSERT((std::is_same::value)); break; default: - throw std::runtime_error(format("%s is not a float32/uint32/int32 array", key.c_str())); + throw std::runtime_error(format("%s is not a string/float32/uint32/int32 array", key.c_str())); } if (arr_info.length > N_MAX) { throw std::runtime_error(format("array length %u for key %s exceeds max %u", (uint32_t) arr_info.length, key.c_str(), (uint32_t) N_MAX)); } - std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin()); + if constexpr (std::is_same::value) { + const size_t n_items = gguf_get_arr_n(ctx, kid); + + for (size_t i = 0; i < n_items; i++) { + const T value = gguf_get_arr_str(ctx, kid, i); + result[i] = value; + } + } else { + std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin()); + } return true; } @@ -352,6 +375,8 @@ namespace GGUFMeta { return get_arr(llm_kv(kid), result, required); } + template bool llama_model_loader::get_arr>(enum llm_kv kid, std::vector & result, bool required); + template bool llama_model_loader::get_key(const std::string & key, T & result, bool required) { auto it = kv_overrides.find(key); diff --git a/src/llama-model.cpp b/src/llama-model.cpp index e99f5309f9..c41ee24507 100644 --- a/src/llama-model.cpp +++ b/src/llama-model.cpp @@ -5,7 +5,10 @@ #include "llama-batch.h" #include "llama-cparams.h" #include "llama-model-loader.h" -#include "llama-kv-cache.h" + +#include "llama-kv-cache-unified.h" +#include "llama-kv-cache-unified-iswa.h" +#include "llama-kv-cache-recurrent.h" #include "ggml-cpp.h" @@ -540,6 +543,12 @@ void llama_model::load_hparams(llama_model_loader & ml) { uint32_t n_vocab = 0; ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false); + // for classifier models + ml.get_arr(LLM_KV_CLASSIFIER_OUTPUT_LABELS, classifier_labels, false); + if (!classifier_labels.empty()) { + hparams.n_cls_out = classifier_labels.size(); + } + // arch-specific KVs switch (arch) { case LLM_ARCH_LLAMA: @@ -952,6 +961,11 @@ void llama_model::load_hparams(llama_model_loader & ml) { case 46: type = LLM_TYPE_27B; break; default: type = LLM_TYPE_UNKNOWN; } + + // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L173 + hparams.f_attention_scale = type == LLM_TYPE_27B + ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0))) + : 1.0f / std::sqrt(float(hparams.n_embd_head_k)); } break; case LLM_ARCH_GEMMA3: { @@ -972,6 +986,7 @@ void llama_model::load_hparams(llama_model_loader & ml) { default: type = LLM_TYPE_UNKNOWN; } + // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L289 hparams.f_attention_scale = type == LLM_TYPE_27B ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0))) : 1.0f / std::sqrt(float(hparams.n_embd_head_k)); @@ -2113,7 +2128,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) { case LLM_ARCH_NOMIC_BERT_MOE: { tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); - type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); + type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, TENSOR_NOT_REQUIRED); if (arch == LLM_ARCH_BERT) { pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0); @@ -2121,8 +2136,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) { cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED); cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED); - cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED); - cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, TENSOR_NOT_REQUIRED); + cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED); + cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED); } tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); @@ -2131,7 +2146,10 @@ bool llama_model::load_tensors(llama_model_loader & ml) { for (int i = 0; i < n_layer; ++i) { auto & layer = layers[i]; - if (arch == LLM_ARCH_BERT) { + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); + layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED); + + if (!layer.wqkv) { layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); @@ -2140,12 +2158,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) { layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); - } else { - layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); - } - - if (arch == LLM_ARCH_NOMIC_BERT_MOE) { - layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); @@ -4355,6 +4367,15 @@ void llama_model::print_info() const { LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state); LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank); LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms); + + if (!classifier_labels.empty()) { + LLAMA_LOG_INFO("%s: n_cls_out = %u\n", __func__, hparams.n_cls_out); + + size_t i = 0; + for (auto label : classifier_labels) { + LLAMA_LOG_INFO("%s: cls_label[%2zu] = %s\n", __func__, i++, label.c_str()); + } + } } LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str()); @@ -5887,8 +5908,10 @@ struct llm_build_bert : public llm_graph_context { inpL = build_inp_embd(model.tok_embd); // token types are hardcoded to zero ("Sentence A") - ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0); - inpL = ggml_add(ctx0, inpL, type_row0); + if (model.type_embd) { + ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0); + inpL = ggml_add(ctx0, inpL, type_row0); + } if (model.arch == LLM_ARCH_BERT) { inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL); } @@ -5909,36 +5932,11 @@ struct llm_build_bert : public llm_graph_context { ggml_tensor * Vcur; // self-attention - if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) { - Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq); - - if (model.layers[il].attn_q_norm) { - Qcur = build_norm(Qcur, - model.layers[il].attn_q_norm, - model.layers[il].attn_q_norm_b, - LLM_NORM, il); - } - - Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk); - - if (model.layers[il].attn_k_norm) { - Kcur = build_norm(Kcur, - model.layers[il].attn_k_norm, - model.layers[il].attn_k_norm_b, - LLM_NORM, il); - } - - Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv); - - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); - } else { - // compute Q and K and RoPE them + if (model.layers[il].wqkv) { cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); - if (model.arch == LLM_ARCH_NOMIC_BERT_MOE) { + if (model.layers[il].bqkv) { cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); } @@ -5946,11 +5944,32 @@ struct llm_build_bert : public llm_graph_context { Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); + } else { + Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq); + Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk); + Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv); + } - Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); - Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); + if (model.layers[il].attn_q_norm) { + Qcur = build_norm(Qcur, + model.layers[il].attn_q_norm, + model.layers[il].attn_q_norm_b, + LLM_NORM, il); + } + if (model.layers[il].attn_k_norm) { + Kcur = build_norm(Kcur, + model.layers[il].attn_k_norm, + model.layers[il].attn_k_norm_b, + LLM_NORM, il); + } + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); + + // RoPE + if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) { Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, @@ -8485,14 +8504,7 @@ struct llm_build_gemma2_iswa : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); - // ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e - switch (model.type) { - case LLM_TYPE_2B: - case LLM_TYPE_9B: - case LLM_TYPE_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head))); break; - default: GGML_ABORT("fatal error"); - }; - cb(Qcur, "Qcur_scaled", il); + Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale); cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, @@ -8633,9 +8645,12 @@ struct llm_build_gemma3_iswa : public llm_graph_context { cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); + // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315 + Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale); + cur = build_attn(inp_attn, gf, model.layers[il].wo, NULL, - Qcur, Kcur, Vcur, nullptr, nullptr, hparams.f_attention_scale, il); + Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il); } cur = build_norm(cur, @@ -8896,9 +8911,9 @@ struct llm_build_mamba : public llm_graph_context { ggml_tensor * state_mask, const llama_ubatch & ubatch, int il) const { - const llama_kv_cache_recurrent * kv_self = static_cast(memory); + const auto * kv_state = static_cast(mstate); - const auto kv_head = kv_self->head; + const auto kv_head = kv_state->get_head(); const int64_t d_conv = hparams.ssm_d_conv; const int64_t d_inner = hparams.ssm_d_inner; @@ -8916,8 +8931,8 @@ struct llm_build_mamba : public llm_graph_context { GGML_ASSERT(ubatch.equal_seqs); GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs); - ggml_tensor * conv_states_all = kv_self->k_l[il]; - ggml_tensor * ssm_states_all = kv_self->v_l[il]; + ggml_tensor * conv_states_all = kv_state->get_k_l(il); + ggml_tensor * ssm_states_all = kv_state->get_v_l(il); // (ab)using the KV cache to store the states ggml_tensor * conv = build_copy_mask_state( @@ -11644,7 +11659,7 @@ struct llm_build_rwkv6_base : public llm_graph_context { ggml_tensor * state_mask, const llama_ubatch & ubatch, int il) const { - const llama_kv_cache_recurrent * kv_self = static_cast(memory); + const auto * kv_state = static_cast(mstate); const auto n_tokens = ubatch.n_tokens; const auto n_seqs = ubatch.n_seqs; @@ -11654,7 +11669,7 @@ struct llm_build_rwkv6_base : public llm_graph_context { const auto n_head = n_embd / head_size; const auto n_head_kv = hparams.n_head_kv(il); - const auto kv_head = kv_self->head; + const auto kv_head = kv_state->get_head(); const auto & layer = model.layers[il]; @@ -11766,7 +11781,7 @@ struct llm_build_rwkv6_base : public llm_graph_context { } ggml_tensor * wkv_state = build_copy_mask_state( - gf, kv_self->v_l[il], state_copy, state_mask, + gf, kv_state->get_v_l(il), state_copy, state_mask, hparams.n_embd_v_s(), n_seqs); ggml_tensor * wkv_output; @@ -11785,9 +11800,9 @@ struct llm_build_rwkv6_base : public llm_graph_context { wkv_state, ggml_view_1d( ctx0, - kv_self->v_l[il], + kv_state->get_v_l(il), hparams.n_embd_v_s() * n_seqs, - hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il]) + hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_state->get_v_l(il)) ) ) ); @@ -12040,7 +12055,7 @@ struct llm_build_rwkv7_base : public llm_graph_context { ggml_tensor *& first_layer_value, const llama_ubatch & ubatch, int il) const { - const llama_kv_cache_recurrent * kv_self = static_cast(memory); + const auto * kv_state = static_cast(mstate); const auto n_tokens = ubatch.n_tokens; const auto n_seqs = ubatch.n_seqs; @@ -12049,7 +12064,7 @@ struct llm_build_rwkv7_base : public llm_graph_context { const auto head_count = n_embd / head_size; const auto n_seq_tokens = ubatch.n_seq_tokens; - const auto kv_head = kv_self->head; + const auto kv_head = kv_state->get_head(); const auto & layer = model.layers[il]; @@ -12120,7 +12135,7 @@ struct llm_build_rwkv7_base : public llm_graph_context { a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens); ggml_tensor * wkv_state = build_copy_mask_state( - gf, kv_self->v_l[il], state_copy, state_mask, + gf, kv_state->get_v_l(il), state_copy, state_mask, hparams.n_embd_v_s(), n_seqs); ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state); @@ -12134,9 +12149,9 @@ struct llm_build_rwkv7_base : public llm_graph_context { wkv_state, ggml_view_1d( ctx0, - kv_self->v_l[il], + kv_state->get_v_l(il), hparams.n_embd_v_s() * n_seqs, - hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self->v_l[il]) + hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_state->get_v_l(il)) ) ) ); @@ -13234,7 +13249,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params, params.swa_full, cparams.n_ctx, cparams.n_seq_max, - cparams.n_batch, + cparams.n_ubatch, padding); } else { GGML_ASSERT(!hparams.is_swa_any()); @@ -13266,7 +13281,6 @@ llm_graph_result_ptr llama_model::build_graph( switch (arch) { case LLM_ARCH_LLAMA: - case LLM_ARCH_MINICPM: { llm = std::make_unique(*this, params, gf); } break; @@ -13507,6 +13521,7 @@ llm_graph_result_ptr llama_model::build_graph( } break; case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE_MOE: + case LLM_ARCH_MINICPM: { llm = std::make_unique(*this, params, gf); } break; @@ -13597,6 +13612,22 @@ int32_t llama_model_n_head_kv(const llama_model * model) { return model->hparams.n_head_kv(); } +int32_t llama_model_n_swa(const llama_model * model) { + return model->hparams.n_swa; +} + +uint32_t llama_model_n_cls_out(const struct llama_model * model) { + return model->hparams.n_cls_out; +} + +const char * llama_model_cls_label(const struct llama_model * model, uint32_t i) { + if (i < model->classifier_labels.size()) { + return model->classifier_labels[i].c_str(); + } + + return nullptr; +} + // deprecated int32_t llama_n_ctx_train(const llama_model * model) { return llama_model_n_ctx_train(model); @@ -13757,7 +13788,7 @@ uint64_t llama_model_size(const llama_model * model) { } const char * llama_model_chat_template(const llama_model * model, const char * name) { - const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N) + const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE) : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE); const auto & it = model->gguf_kv.find(key); if (it == model->gguf_kv.end()) { diff --git a/src/llama-model.h b/src/llama-model.h index cbea2cb331..18b714620b 100644 --- a/src/llama-model.h +++ b/src/llama-model.h @@ -329,6 +329,9 @@ struct llama_model { llama_hparams hparams = {}; llama_vocab vocab; + // for classifier models + std::vector classifier_labels; + struct ggml_tensor * tok_embd = nullptr; struct ggml_tensor * type_embd = nullptr; struct ggml_tensor * pos_embd = nullptr; diff --git a/src/llama-sampling.cpp b/src/llama-sampling.cpp index 804b11e0a9..bfbf5fa230 100644 --- a/src/llama-sampling.cpp +++ b/src/llama-sampling.cpp @@ -798,7 +798,7 @@ static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_d } // if we have enough values the operation was a success - if (filtered_tokens.size() >= ctx->min_keep) { + if (!filtered_tokens.empty() && filtered_tokens.size() >= ctx->min_keep) { memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); cur_p->size = filtered_tokens.size(); min_p_applied = true; @@ -909,7 +909,7 @@ static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token cum_sum += cur_p->data[idx].p; // Check if the running sum is greater than typical or if we have kept at least min_keep tokens - if (cum_sum > ctx->p && i >= ctx->min_keep - 1) { + if (cum_sum > ctx->p && (ctx->min_keep == 0 || i >= ctx->min_keep - 1)) { last_idx = i + 1; break; } diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index d5a036a8c4..ba2e1864ec 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -2080,9 +2080,11 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { std::string model_name; std::string tokenizer_pre; + std::string general_arch; ml.get_key(LLM_KV_GENERAL_NAME, model_name, false); ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false); + ml.get_key(LLM_KV_GENERAL_ARCHITECTURE, general_arch, false); // model name to lowercase std::transform(model_name.begin(), model_name.end(), model_name.begin(), @@ -2091,9 +2093,16 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { } ); - // set attributes by model/tokenizer name - if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) { - _set_token_attr("", LLAMA_TOKEN_ATTR_LSTRIP, true); + // set attributes by model/tokenizer/architecture name + if (false + || _contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"}) + || _contains_any(general_arch, {"nomic-bert-moe"}) + ) { + if (token_to_id.count("") == 0) { + LLAMA_LOG_WARN("%s: Mask token is missing in vocab, please reconvert model!\n", __func__); + } else { + _set_token_attr("", LLAMA_TOKEN_ATTR_LSTRIP, true); + } } else if (_contains_any(model_name, {"phi-3", "phi3"})) { for (auto id : cache_special_tokens) { _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true); diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index 62a9f5842b..83f7d1a458 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -92,12 +92,14 @@ llama_test(test-tokenizer-0 NAME test-tokenizer-0-gpt-2 ARGS ${CMAKE llama_test(test-tokenizer-0 NAME test-tokenizer-0-llama-bpe ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-bpe.gguf) llama_test(test-tokenizer-0 NAME test-tokenizer-0-llama-spm ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-spm.gguf) llama_test(test-tokenizer-0 NAME test-tokenizer-0-mpt ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf) -llama_test(test-tokenizer-0 NAME test-tokenizer-0-nomic-bert-moe ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-nomic-bert-moe.gguf) llama_test(test-tokenizer-0 NAME test-tokenizer-0-phi-3 ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-phi-3.gguf) llama_test(test-tokenizer-0 NAME test-tokenizer-0-qwen2 ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-qwen2.gguf) llama_test(test-tokenizer-0 NAME test-tokenizer-0-refact ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf) llama_test(test-tokenizer-0 NAME test-tokenizer-0-starcoder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf) +# TODO: missing HF tokenizer for this model in convert_hf_to_gguf_update.py, see https://github.com/ggml-org/llama.cpp/pull/13847 +# llama_test(test-tokenizer-0 NAME test-tokenizer-0-nomic-bert-moe ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-nomic-bert-moe.gguf) + if (LLAMA_LLGUIDANCE) llama_build_and_test(test-grammar-llguidance.cpp ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-bpe.gguf) endif () diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 543db93402..509a4b35f5 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -2706,8 +2706,8 @@ struct test_conv_transpose_1d : public test_case { return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0); } - test_conv_transpose_1d(std::array ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1] - std::array ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1] + test_conv_transpose_1d(std::array ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)] + std::array ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)] int s0 = 1, int p0 = 0, int d0 = 1) : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {} @@ -4029,6 +4029,18 @@ static std::vector> make_test_cases_eval() { test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false)); test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true)); + for(uint32_t Cout : {1, 9}){ + for(uint32_t Cin : {1, 7}){ + for(uint32_t K : {1, 3, 1337}){ + for(uint32_t L : {1, 2, 13}){ + for(uint32_t s0: {1, 2, 3}){ + test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1)); + } + } + } + } + } + test_cases.emplace_back(new test_conv_transpose_1d()); test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1)); test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1)); diff --git a/tests/test-chat-parser.cpp b/tests/test-chat-parser.cpp index 2113a12840..59e44e07d2 100644 --- a/tests/test-chat-parser.cpp +++ b/tests/test-chat-parser.cpp @@ -7,7 +7,6 @@ // #include #include -#include #include #include "chat-parser.h" @@ -15,8 +14,6 @@ #include "log.h" #include "regex-partial.h" -using json = nlohmann::ordered_json; - template static void assert_equals(const T & expected, const T & actual) { if (expected != actual) { diff --git a/tests/test-chat.cpp b/tests/test-chat.cpp index 95d5169917..c6d998f101 100644 --- a/tests/test-chat.cpp +++ b/tests/test-chat.cpp @@ -5,21 +5,22 @@ // // cmake -B build && cmake --build build --parallel && ./build/bin/test-chat ../minja/build/tests/*.jinja 2>/dev/null // -#include -#include -#include -#include - #include "chat.h" #include "../src/unicode.h" #include "../src/llama-grammar.h" +#include + +#include +#include +#include + using json = nlohmann::ordered_json; static std::ostream & operator<<(std::ostream & os, const common_chat_msg_diff & diff) { - // os << "reasoning_content_delta: " << diff.reasoning_content_delta << '\n'; os << "{ content_delta: " << diff.content_delta << "; "; + os << "reasoning_content_delta: " << diff.reasoning_content_delta << "; "; if (diff.tool_call_index != std::string::npos) { os << "tool_call_index: " << diff.tool_call_index << "; "; os << "tool_call_delta.name: " << diff.tool_call_delta.name << "; "; @@ -1040,6 +1041,15 @@ static void test_template_output_parsers() { "\n" "{\"name\": \"python\", \"arguments\": {\"code\":\"# This is a program:\\nprint('hey')\"}}\n" ""); + assert_msg_equals( + simple_assist_msg("", /* reasoning_content= */ "nah uhg"), + common_chat_parse( + "nah uhg", + /* is_partial= */ false, + { + /* .format = */ COMMON_CHAT_FORMAT_HERMES_2_PRO, + /* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK, + })); } { auto tmpls = read_templates("models/templates/meta-llama-Llama-3.1-8B-Instruct.jinja"); diff --git a/tests/test-gguf.cpp b/tests/test-gguf.cpp index eaf572c666..3f0c312e2f 100644 --- a/tests/test-gguf.cpp +++ b/tests/test-gguf.cpp @@ -16,6 +16,7 @@ constexpr int offset_has_data = 3000; enum handcrafted_file_type { HANDCRAFTED_HEADER_BAD_MAGIC = 10, + HANDCRAFTED_HEADER_BAD_VERSION_0 = 15, HANDCRAFTED_HEADER_BAD_VERSION_1 = 20, HANDCRAFTED_HEADER_BAD_VERSION_FUTURE = 30, HANDCRAFTED_HEADER_BAD_N_TENSORS = 40, @@ -51,6 +52,7 @@ enum handcrafted_file_type { static std::string handcrafted_file_type_name(const enum handcrafted_file_type hft) { switch (hft) { case HANDCRAFTED_HEADER_BAD_MAGIC: return "HEADER_BAD_MAGIC"; + case HANDCRAFTED_HEADER_BAD_VERSION_0: return "HEADER_BAD_VERSION_0"; case HANDCRAFTED_HEADER_BAD_VERSION_1: return "HEADER_BAD_VERSION_1"; case HANDCRAFTED_HEADER_BAD_VERSION_FUTURE: return "HEADER_BAD_VERSION_FUTURE"; case HANDCRAFTED_HEADER_BAD_N_KV: return "HEADER_BAD_N_KV"; @@ -171,7 +173,10 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft helper_write(file, GGUF_MAGIC, 4); } - if (hft == HANDCRAFTED_HEADER_BAD_VERSION_1) { + if (hft == HANDCRAFTED_HEADER_BAD_VERSION_0) { + const uint32_t version = 0; + helper_write(file, version); + } else if (hft == HANDCRAFTED_HEADER_BAD_VERSION_1) { const uint32_t version = 1; helper_write(file, version); } else if (hft == HANDCRAFTED_HEADER_BAD_VERSION_FUTURE) { @@ -660,6 +665,7 @@ static std::pair test_handcrafted_file(const unsigned int seed) { const std::vector hfts = { HANDCRAFTED_HEADER_BAD_MAGIC, + HANDCRAFTED_HEADER_BAD_VERSION_0, HANDCRAFTED_HEADER_BAD_VERSION_1, HANDCRAFTED_HEADER_BAD_VERSION_FUTURE, HANDCRAFTED_HEADER_BAD_N_KV, diff --git a/tests/test-grammar-integration.cpp b/tests/test-grammar-integration.cpp index 8988c347e3..6d64f07376 100644 --- a/tests/test-grammar-integration.cpp +++ b/tests/test-grammar-integration.cpp @@ -7,6 +7,8 @@ #include "../src/unicode.h" #include "../src/llama-grammar.h" +#include + #include #include #include diff --git a/tests/test-json-schema-to-grammar.cpp b/tests/test-json-schema-to-grammar.cpp index 38cf01d6d8..78ee55e246 100755 --- a/tests/test-json-schema-to-grammar.cpp +++ b/tests/test-json-schema-to-grammar.cpp @@ -6,6 +6,8 @@ #include "../src/llama-grammar.h" +#include + #include #include #include diff --git a/tests/test-sampling.cpp b/tests/test-sampling.cpp index 60ac62b385..6300f25cae 100644 --- a/tests/test-sampling.cpp +++ b/tests/test-sampling.cpp @@ -98,7 +98,7 @@ static void test_top_p(const std::vector & probs, const std::vector & probs, const std::vector & probs, const std::vector & tokens) { - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), true); if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) { fprintf(stderr, "%s : failed to eval\n", __func__); return false; diff --git a/tools/imatrix/imatrix.cpp b/tools/imatrix/imatrix.cpp index 81d0404d68..daad44e595 100644 --- a/tools/imatrix/imatrix.cpp +++ b/tools/imatrix/imatrix.cpp @@ -498,7 +498,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) { const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), true); llama_batch batch = llama_batch_init(n_batch, 0, 1); diff --git a/tools/llama-bench/llama-bench.cpp b/tools/llama-bench/llama-bench.cpp index 06196cf24f..e59d61f195 100644 --- a/tools/llama-bench/llama-bench.cpp +++ b/tools/llama-bench/llama-bench.cpp @@ -315,7 +315,7 @@ static void print_usage(int /* argc */, char ** argv) { printf(" --numa numa mode (default: disabled)\n"); printf(" -r, --repetitions number of times to repeat each test (default: %d)\n", cmd_params_defaults.reps); - printf(" --prio <0|1|2|3> process/thread priority (default: %d)\n", + printf(" --prio <-1|0|1|2|3> process/thread priority (default: %d)\n", cmd_params_defaults.prio); printf(" --delay <0...N> (seconds) delay between each test (default: %d)\n", cmd_params_defaults.delay); @@ -1900,7 +1900,7 @@ int main(int argc, char ** argv) { test t(inst, lmodel, ctx); - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), false); // cool off before the test if (params.delay) { @@ -1948,7 +1948,7 @@ int main(int argc, char ** argv) { } for (int i = 0; i < params.reps; i++) { - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), false); if (t.n_depth > 0) { if (params.progress) { diff --git a/tools/main/main.cpp b/tools/main/main.cpp index 1bd2be2d94..19b247b0d6 100644 --- a/tools/main/main.cpp +++ b/tools/main/main.cpp @@ -147,6 +147,8 @@ int main(int argc, char ** argv) { return 1; } + auto * mem = llama_get_memory(ctx); + const llama_vocab * vocab = llama_model_get_vocab(model); auto chat_templates = common_chat_templates_init(model, params.chat_template); @@ -351,7 +353,7 @@ int main(int argc, char ** argv) { } // remove any "future" tokens that we might have inherited from the previous session - llama_kv_self_seq_rm(ctx, -1, n_matching_session_tokens, -1); + llama_memory_seq_rm(mem, -1, n_matching_session_tokens, -1); } LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n", @@ -599,8 +601,8 @@ int main(int argc, char ** argv) { LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n", n_past, n_left, n_ctx, params.n_keep, n_discard); - llama_kv_self_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard); - llama_kv_self_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard); + llama_memory_seq_rm (mem, 0, params.n_keep , params.n_keep + n_discard); + llama_memory_seq_add(mem, 0, params.n_keep + n_discard, n_past, -n_discard); n_past -= n_discard; @@ -623,9 +625,9 @@ int main(int argc, char ** argv) { LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n); LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd); - llama_kv_self_seq_add(ctx, 0, ga_i, n_past, ib*bd); - llama_kv_self_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n); - llama_kv_self_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd); + llama_memory_seq_add(mem, 0, ga_i, n_past, ib*bd); + llama_memory_seq_div(mem, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n); + llama_memory_seq_add(mem, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd); n_past -= bd; diff --git a/tools/mtmd/CMakeLists.txt b/tools/mtmd/CMakeLists.txt index c3024cec18..4baa15b960 100644 --- a/tools/mtmd/CMakeLists.txt +++ b/tools/mtmd/CMakeLists.txt @@ -1,48 +1,50 @@ # mtmd -# compile mtmd-audio separately to avoid long compile times with miniaudio.h -# TODO @ngxson : move miniaudio.h and stb_image.h to mtmd-helper.cpp, then compile the helper as a separate library -add_library(mtmd_audio STATIC mtmd-audio.cpp mtmd-audio.h) -if (BUILD_SHARED_LIBS) - set_target_properties(mtmd_audio PROPERTIES POSITION_INDEPENDENT_CODE ON) -endif() -target_link_libraries(mtmd_audio PRIVATE ggml ${CMAKE_THREAD_LIBS_INIT}) -target_compile_features(mtmd_audio PRIVATE cxx_std_17) -target_include_directories(mtmd_audio PRIVATE .) +find_package(Threads REQUIRED) -add_library(mtmd OBJECT +add_library(mtmd mtmd.cpp - mtmd-helper.cpp + mtmd-audio.cpp mtmd.h clip.cpp clip.h clip-impl.h + mtmd-helper.cpp + mtmd-helper.h ) -target_link_libraries(mtmd PRIVATE ggml llama mtmd_audio ${CMAKE_THREAD_LIBS_INIT}) - -target_include_directories(mtmd PUBLIC .) +target_link_libraries (mtmd PUBLIC ggml llama) +target_link_libraries (mtmd PRIVATE Threads::Threads) +target_include_directories(mtmd PUBLIC .) target_include_directories(mtmd PRIVATE ../..) -target_include_directories(mtmd PRIVATE ../../common) # for stb_image.h +target_include_directories(mtmd PRIVATE ../../vendor) +target_compile_features (mtmd PRIVATE cxx_std_17) -target_compile_features(mtmd PRIVATE cxx_std_17) - -add_library(mtmd_static STATIC $) if (BUILD_SHARED_LIBS) - set_target_properties(mtmd PROPERTIES POSITION_INDEPENDENT_CODE ON) - target_compile_definitions(mtmd PRIVATE LLAMA_SHARED LLAMA_BUILD) - add_library(mtmd_shared SHARED $) - target_link_libraries(mtmd_shared PRIVATE ggml llama mtmd_audio ${CMAKE_THREAD_LIBS_INIT}) - install(TARGETS mtmd_shared LIBRARY) + set_target_properties (mtmd PROPERTIES POSITION_INDEPENDENT_CODE ON) + target_compile_definitions(mtmd PRIVATE LLAMA_BUILD) + target_compile_definitions(mtmd PUBLIC LLAMA_SHARED) endif() +set(MTMD_PUBLIC_HEADERS + ${CMAKE_CURRENT_SOURCE_DIR}/mtmd.h + ${CMAKE_CURRENT_SOURCE_DIR}/mtmd-helper.h + ) + +set_target_properties(mtmd + PROPERTIES + PUBLIC_HEADER "${MTMD_PUBLIC_HEADERS}") + +install(TARGETS mtmd LIBRARY PUBLIC_HEADER) + if (NOT MSVC) - target_compile_options(mtmd PRIVATE -Wno-cast-qual) # stb_image.h - target_compile_options(mtmd_audio PRIVATE -Wno-cast-qual) # miniaudio.h + # for stb_image.h and miniaudio.h + target_compile_options(mtmd PRIVATE -Wno-cast-qual) endif() -if(TARGET BUILD_INFO) - add_dependencies(mtmd BUILD_INFO) +if (TARGET BUILD_INFO) + add_dependencies(mtmd BUILD_INFO) + add_dependencies(mtmd-helper BUILD_INFO) endif() add_executable(llama-llava-cli deprecation-warning.cpp) @@ -51,8 +53,8 @@ add_executable(llama-minicpmv-cli deprecation-warning.cpp) add_executable(llama-qwen2vl-cli deprecation-warning.cpp) set(TARGET llama-mtmd-cli) -add_executable(${TARGET} mtmd-cli.cpp) -set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-mtmd-cli) -install(TARGETS ${TARGET} RUNTIME) -target_link_libraries(${TARGET} PRIVATE common mtmd ${CMAKE_THREAD_LIBS_INIT}) +add_executable (${TARGET} mtmd-cli.cpp) +set_target_properties (${TARGET} PROPERTIES OUTPUT_NAME llama-mtmd-cli) +install (TARGETS ${TARGET} RUNTIME) +target_link_libraries (${TARGET} PRIVATE common mtmd Threads::Threads) target_compile_features(${TARGET} PRIVATE cxx_std_17) diff --git a/tools/mtmd/clip-impl.h b/tools/mtmd/clip-impl.h index 27ce8c43f6..62c936ed00 100644 --- a/tools/mtmd/clip-impl.h +++ b/tools/mtmd/clip-impl.h @@ -130,6 +130,7 @@ enum projector_type { PROJECTOR_TYPE_INTERNVL, PROJECTOR_TYPE_LLAMA4, PROJECTOR_TYPE_QWEN2A, + PROJECTOR_TYPE_QWEN25O, // will be replaced by QWEN2A or QWEN25VL depending on clip_ctx PROJECTOR_TYPE_UNKNOWN, }; @@ -148,6 +149,7 @@ static std::map PROJECTOR_TYPE_NAMES = { { PROJECTOR_TYPE_INTERNVL, "internvl"}, { PROJECTOR_TYPE_LLAMA4, "llama4"}, { PROJECTOR_TYPE_QWEN2A, "qwen2a"}, + { PROJECTOR_TYPE_QWEN25O, "qwen2.5o"}, }; static projector_type clip_projector_type_from_string(const std::string & str) { diff --git a/tools/mtmd/clip.cpp b/tools/mtmd/clip.cpp index 6205dad5ae..c25bacc177 100644 --- a/tools/mtmd/clip.cpp +++ b/tools/mtmd/clip.cpp @@ -11,9 +11,6 @@ #include "ggml-backend.h" #include "gguf.h" -#define STB_IMAGE_IMPLEMENTATION -#include "stb_image.h" - #include #include #include @@ -166,9 +163,6 @@ enum patch_merge_type { }; struct clip_hparams { - bool has_vision = false; - bool has_audio = false; - int32_t image_size; int32_t patch_size; int32_t n_embd; @@ -178,9 +172,13 @@ struct clip_hparams { int32_t n_layer; int32_t proj_scale_factor = 0; // idefics3 + float image_mean[3]; + float image_std[3]; + // for models using dynamic image size, we need to have a smaller image size to warmup // otherwise, user will get OOM everytime they load the model int32_t warmup_image_size = 0; + int32_t warmup_audio_size = 3000; ffn_op_type ffn_op = FFN_GELU; @@ -199,6 +197,10 @@ struct clip_hparams { // audio int32_t n_mel_bins = 0; // whisper preprocessor int32_t proj_stack_factor = 0; // ultravox + + // legacy + bool has_llava_projector = false; + int minicpmv_version = 0; }; struct clip_layer { @@ -236,8 +238,10 @@ struct clip_layer { ggml_tensor * ls_2_w = nullptr; }; -struct clip_vision_model { - struct clip_hparams hparams; +struct clip_model { + clip_modality modality = CLIP_MODALITY_VISION; + projector_type proj_type = PROJECTOR_TYPE_MLP; + clip_hparams hparams; // embeddings ggml_tensor * class_embedding = nullptr; @@ -353,14 +357,7 @@ struct clip_vision_model { }; struct clip_ctx { - bool has_llava_projector = false; - int minicpmv_version = 0; - - struct clip_vision_model vision_model; - projector_type proj_type = PROJECTOR_TYPE_MLP; - - float image_mean[3]; - float image_std[3]; + clip_model model; gguf_context_ptr ctx_gguf; ggml_context_ptr ctx_data; @@ -414,11 +411,16 @@ struct clip_ctx { ggml_backend_free(backend_cpu); } } + + // this function is added so that we don't change too much of the existing code + projector_type proj_type() const { + return model.proj_type; + } }; struct clip_graph { clip_ctx * ctx; - const clip_vision_model & model; + const clip_model & model; const clip_hparams & hparams; // we only support single image per batch @@ -441,7 +443,7 @@ struct clip_graph { clip_graph(clip_ctx * ctx, const clip_image_f32 & img) : ctx(ctx), - model(ctx->vision_model), + model(ctx->model), hparams(model.hparams), img(img), patch_size(hparams.patch_size), @@ -473,7 +475,7 @@ struct clip_graph { model.position_embeddings, nullptr); - if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { + if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) { const int batch_size = 1; GGML_ASSERT(n_patches_x == n_patches_y); const int patches_per_image = n_patches_x; @@ -496,7 +498,7 @@ struct clip_graph { ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)), cur); - } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) { + } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) { // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578 const int scale_factor = model.hparams.proj_scale_factor; @@ -630,7 +632,7 @@ struct clip_graph { const int n_pos = n_patches; const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position - norm_type norm_t = ctx->proj_type == PROJECTOR_TYPE_QWEN25VL + norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL ? NORM_TYPE_RMS // qwen 2.5 vl : NORM_TYPE_NORMAL; // qwen 2 vl @@ -846,11 +848,11 @@ struct clip_graph { const int d_head = 128; int n_head = n_embd/d_head; int num_query = 96; - if (ctx->minicpmv_version == 2) { + if (ctx->model.hparams.minicpmv_version == 2) { num_query = 96; - } else if (ctx->minicpmv_version == 3) { + } else if (ctx->model.hparams.minicpmv_version == 3) { num_query = 64; - } else if (ctx->minicpmv_version == 4) { + } else if (ctx->model.hparams.minicpmv_version == 4) { num_query = 64; } @@ -1067,7 +1069,7 @@ struct clip_graph { int il_last = hparams.n_layer - 1; int deepest_feature_layer = -1; - if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) { + if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) { il_last += 1; } @@ -1201,7 +1203,7 @@ struct clip_graph { } // llava projector (also used by granite) - if (ctx->has_llava_projector) { + if (ctx->model.hparams.has_llava_projector) { embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]); ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches); @@ -1215,7 +1217,7 @@ struct clip_graph { // print_tensor_info(embeddings, "embeddings"); // llava projector - if (ctx->proj_type == PROJECTOR_TYPE_MLP) { + if (ctx->proj_type() == PROJECTOR_TYPE_MLP) { embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); @@ -1225,7 +1227,7 @@ struct clip_graph { embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); } } - else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { + else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) { embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false); @@ -1246,7 +1248,7 @@ struct clip_graph { embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w), model.mm_4_b); } - else if (ctx->proj_type == PROJECTOR_TYPE_LDP) { + else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) { // MobileVLM projector int n_patch = 24; ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings); @@ -1356,7 +1358,7 @@ struct clip_graph { } embeddings = block_1; } - else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) + else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2) { int n_patch = 24; ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings); @@ -1386,7 +1388,7 @@ struct clip_graph { } // glm projector - else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) { + else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) { size_t gridsz = (size_t)sqrt(embeddings->ne[1]); embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3)); embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]); @@ -1473,7 +1475,7 @@ struct clip_graph { cb(cur, "after_transformer", -1); - if (ctx->proj_type == PROJECTOR_TYPE_ULTRAVOX) { + if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) { // StackAudioFrames // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py { @@ -1518,7 +1520,7 @@ struct clip_graph { cur = ggml_mul_mat(ctx0, model.mm_2_w, cur); } - } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2A) { + } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) { // projector cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur); cur = ggml_add(ctx0, cur, model.mm_fc_b); @@ -1668,7 +1670,7 @@ private: } // TODO @ngxson : find a way to move this outside - if (ctx->proj_type == PROJECTOR_TYPE_QWEN2A) { + if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) { ggml_tensor * cur = inpL; cur = ggml_transpose(ctx0, cur); cur = ggml_cont(ctx0, cur); @@ -1947,7 +1949,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 ggml_cgraph * res; - switch (ctx->proj_type) { + switch (ctx->proj_type()) { case PROJECTOR_TYPE_GEMMA3: case PROJECTOR_TYPE_IDEFICS3: { @@ -1991,13 +1993,15 @@ struct clip_model_loader { ggml_context_ptr ctx_meta; gguf_context_ptr ctx_gguf; - clip_ctx & ctx_clip; std::string fname; size_t model_size = 0; // in bytes - // TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model - clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) { + bool has_vision = false; + bool has_audio = false; + + // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model + clip_model_loader(const char * fname) : fname(fname) { struct ggml_context * meta = nullptr; struct gguf_init_params params = { @@ -2029,6 +2033,19 @@ struct clip_model_loader { LOG_INF("\n"); } + // modalities + { + get_bool(KEY_HAS_VISION_ENC, has_vision, false); + get_bool(KEY_HAS_AUDIO_ENC, has_audio, false); + + if (has_vision) { + LOG_INF("%s: has vision encoder\n", __func__); + } + if (has_audio) { + LOG_INF("%s: has audio encoder\n", __func__); + } + } + // tensors { for (int i = 0; i < n_tensors; ++i) { @@ -2044,28 +2061,44 @@ struct clip_model_loader { } } - void load_hparams() { - auto & hparams = ctx_clip.vision_model.hparams; + void load_hparams(clip_model & model, clip_modality modality) { + auto & hparams = model.hparams; std::string log_ffn_op; // for logging + // sanity check + if (modality == CLIP_MODALITY_VISION) { + GGML_ASSERT(has_vision); + } else if (modality == CLIP_MODALITY_AUDIO) { + GGML_ASSERT(has_audio); + } + model.modality = modality; + + // projector type std::string proj_type; { get_string(KEY_PROJ_TYPE, proj_type, false); if (!proj_type.empty()) { - ctx_clip.proj_type = clip_projector_type_from_string(proj_type); + model.proj_type = clip_projector_type_from_string(proj_type); } - if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) { + if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) { throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str())); } + + // correct arch for multimodal models + if (model.proj_type == PROJECTOR_TYPE_QWEN25O) { + model.proj_type = modality == CLIP_MODALITY_VISION + ? PROJECTOR_TYPE_QWEN25VL + : PROJECTOR_TYPE_QWEN2A; + } } + const bool is_vision = model.modality == CLIP_MODALITY_VISION; + const bool is_audio = model.modality == CLIP_MODALITY_AUDIO; + // other hparams { - get_bool(KEY_HAS_AUDIO_ENC, hparams.has_audio, false); - get_bool(KEY_HAS_VISION_ENC, hparams.has_vision, false); - - const char * prefix = hparams.has_vision ? "vision" : "audio"; + const char * prefix = is_vision ? "vision" : "audio"; get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd); get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head); get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff); @@ -2073,27 +2106,27 @@ struct clip_model_loader { get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim); get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps); - if (hparams.has_vision) { + if (is_vision) { get_u32(KEY_IMAGE_SIZE, hparams.image_size); get_u32(KEY_PATCH_SIZE, hparams.patch_size); get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false); get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false); - get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false); // legacy + get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy - } else if (hparams.has_audio) { + } else if (is_audio) { get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins); } else { - throw std::runtime_error(string_format("%s: neither vision nor audio encoder is present\n", __func__)); + GGML_ASSERT(false && "unknown modality"); } // default warmup value hparams.warmup_image_size = hparams.image_size; - ctx_clip.has_llava_projector = ctx_clip.proj_type == PROJECTOR_TYPE_MLP - || ctx_clip.proj_type == PROJECTOR_TYPE_MLP_NORM - || ctx_clip.proj_type == PROJECTOR_TYPE_LDP - || ctx_clip.proj_type == PROJECTOR_TYPE_LDPV2; + hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP + || model.proj_type == PROJECTOR_TYPE_MLP_NORM + || model.proj_type == PROJECTOR_TYPE_LDP + || model.proj_type == PROJECTOR_TYPE_LDPV2; { bool use_gelu = false; @@ -2123,7 +2156,7 @@ struct clip_model_loader { } } - if (hparams.has_vision) { + if (is_vision) { int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN); int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD); GGML_ASSERT(idx_mean >= 0 && "image_mean not found"); @@ -2131,8 +2164,8 @@ struct clip_model_loader { const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean); const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std); for (int i = 0; i < 3; ++i) { - ctx_clip.image_mean[i] = mean_data[i]; - ctx_clip.image_std[i] = std_data[i]; + hparams.image_mean[i] = mean_data[i]; + hparams.image_std[i] = std_data[i]; } } @@ -2149,11 +2182,11 @@ struct clip_model_loader { } // model-specific params - switch (ctx_clip.proj_type) { + switch (model.proj_type) { case PROJECTOR_TYPE_MINICPMV: { - if (ctx_clip.minicpmv_version == 0) { - ctx_clip.minicpmv_version = 2; // default to 2 if not set + if (hparams.minicpmv_version == 0) { + hparams.minicpmv_version = 2; // default to 2 if not set } } break; case PROJECTOR_TYPE_IDEFICS3: @@ -2212,7 +2245,7 @@ struct clip_model_loader { case PROJECTOR_TYPE_ULTRAVOX: case PROJECTOR_TYPE_QWEN2A: { - bool require_stack = ctx_clip.proj_type == PROJECTOR_TYPE_ULTRAVOX; + bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX; get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack); if (hparams.n_mel_bins != 128) { throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__)); @@ -2225,23 +2258,22 @@ struct clip_model_loader { } LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str()); - LOG_INF("%s: has_vision_encoder: %d\n", __func__, hparams.has_vision); - LOG_INF("%s: has_audio_encoder: %d\n", __func__, hparams.has_audio); LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd); LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head); LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff); LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer); LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str()); LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim); - LOG_INF("\n"); - if (hparams.has_vision) { + if (is_vision) { + LOG_INF("\n--- vision hparams ---\n"); LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size); LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size); - LOG_INF("%s: has_llava_proj: %d\n", __func__, ctx_clip.has_llava_projector); - LOG_INF("%s: minicpmv_version: %d\n", __func__, ctx_clip.minicpmv_version); + LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector); + LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version); LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor); LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern); - } else if (hparams.has_audio) { + } else if (is_audio) { + LOG_INF("\n--- audio hparams ---\n"); LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins); LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor); } @@ -2251,13 +2283,14 @@ struct clip_model_loader { } } - void load_tensors() { - auto & hparams = ctx_clip.vision_model.hparams; + void load_tensors(clip_ctx & ctx_clip) { + auto & model = ctx_clip.model; + auto & hparams = model.hparams; std::map tensor_offset; std::vector tensors_to_load; // TODO @ngxson : support both audio and video in the future - const char * prefix = hparams.has_audio ? "a" : "v"; + const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v"; // get offsets for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) { @@ -2292,26 +2325,24 @@ struct clip_model_loader { return cur; }; - auto & vision_model = ctx_clip.vision_model; // TODO: rename this to just "model" + model.class_embedding = get_tensor(TN_CLASS_EMBD, false); - vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false); + model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false); + model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false); - vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false); - vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false); + model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false); + model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false); - vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false); - vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false); + model.patch_bias = get_tensor(TN_PATCH_BIAS, false); + model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false); + model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false); - vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false); - vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false); - vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false); - - vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false); + model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false); // layers - vision_model.layers.resize(hparams.n_layer); + model.layers.resize(hparams.n_layer); for (int il = 0; il < hparams.n_layer; ++il) { - auto & layer = vision_model.layers[il]; + auto & layer = model.layers[il]; layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight")); layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight")); layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight")); @@ -2352,166 +2383,166 @@ struct clip_model_loader { } } - switch (ctx_clip.proj_type) { + switch (model.proj_type) { case PROJECTOR_TYPE_MLP: case PROJECTOR_TYPE_MLP_NORM: { // LLaVA projection - vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false); - vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false); + model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false); + model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false); // Yi-type llava - vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false); - vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false); + model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false); + model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false); // missing in Yi-type llava - vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false); - vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false); + model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false); + model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false); // Yi-type llava - vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false); - vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false); - vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false); - vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false); - if (vision_model.mm_3_w) { + model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false); + model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false); + model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false); + model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false); + if (model.mm_3_w) { // TODO: this is a hack to support Yi-type llava - ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM; + model.proj_type = PROJECTOR_TYPE_MLP_NORM; } - vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false); + model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false); } break; case PROJECTOR_TYPE_LDP: { // MobileVLM projection - vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight")); - vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias")); - vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight")); - vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias")); - vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight")); - vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight")); - vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias")); - vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight")); - vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias")); - vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight")); - vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias")); - vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight")); - vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight")); - vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias")); - vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight")); - vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight")); - vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias")); - vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight")); - vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias")); - vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight")); - vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias")); - vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight")); - vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight")); - vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias")); + model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight")); + model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias")); + model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight")); + model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias")); + model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight")); + model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight")); + model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias")); + model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight")); + model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias")); + model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight")); + model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias")); + model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight")); + model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight")); + model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias")); + model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight")); + model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight")); + model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias")); + model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight")); + model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias")); + model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight")); + model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias")); + model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight")); + model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight")); + model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias")); } break; case PROJECTOR_TYPE_LDPV2: { // MobilVLM_V2 projection - vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight")); - vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias")); - vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight")); - vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias")); - vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight")); - vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias")); + model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight")); + model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias")); + model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight")); + model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias")); + model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight")); + model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias")); } break; case PROJECTOR_TYPE_MINICPMV: { - // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD); - vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K); - vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY); - vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ); - vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ); - vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight")); - vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight")); - vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight")); - vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias")); - vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias")); - vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias")); - vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight")); - vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias")); - vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight")); - vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias")); - vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight")); - vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias")); - vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight")); - vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias")); + // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD); + model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K); + model.mm_model_query = get_tensor(TN_MINICPMV_QUERY); + model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ); + model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ); + model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight")); + model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight")); + model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight")); + model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias")); + model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias")); + model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias")); + model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight")); + model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias")); + model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight")); + model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias")); + model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight")); + model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias")); + model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight")); + model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias")); } break; case PROJECTOR_TYPE_GLM_EDGE: { - vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight")); - vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias")); - vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight")); - vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight")); - vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias")); - vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight")); - vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight")); - vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight")); - vision_model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight")); - vision_model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight")); + model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight")); + model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias")); + model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight")); + model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight")); + model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias")); + model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight")); + model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight")); + model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight")); + model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight")); + model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight")); } break; case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN25VL: { - vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight")); - vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias")); - vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); - vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias")); + model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight")); + model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias")); + model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); + model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias")); } break; case PROJECTOR_TYPE_GEMMA3: { - vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ); - vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N); + model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ); + model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N); } break; case PROJECTOR_TYPE_IDEFICS3: { - vision_model.projection = get_tensor(TN_MM_PROJECTOR); + model.projection = get_tensor(TN_MM_PROJECTOR); } break; case PROJECTOR_TYPE_PIXTRAL: { - vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight")); - vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false); - vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); - vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false); + model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight")); + model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false); + model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); + model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false); // [IMG_BREAK] token embedding - vision_model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK); + model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK); // for mistral small 3.1 - vision_model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false); - vision_model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false); + model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false); + model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false); } break; case PROJECTOR_TYPE_ULTRAVOX: { - vision_model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight")); - vision_model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias")); - vision_model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight")); - vision_model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias")); - vision_model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight")); - vision_model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight")); - vision_model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight")); - vision_model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight")); + model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight")); + model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias")); + model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight")); + model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias")); + model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight")); + model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight")); + model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight")); + model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight")); } break; case PROJECTOR_TYPE_QWEN2A: { - vision_model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight")); - vision_model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias")); - vision_model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight")); - vision_model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias")); - vision_model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight")); - vision_model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias")); + model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight")); + model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias")); + model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight")); + model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias")); + model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight")); + model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias")); } break; case PROJECTOR_TYPE_INTERNVL: { - vision_model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight")); - vision_model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias")); - vision_model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight")); - vision_model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias")); - vision_model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight")); - vision_model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias")); + model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight")); + model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias")); + model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight")); + model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias")); + model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight")); + model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias")); } break; case PROJECTOR_TYPE_LLAMA4: { - vision_model.mm_model_proj = get_tensor(TN_MM_PROJECTOR); - vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight")); - vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight")); + model.mm_model_proj = get_tensor(TN_MM_PROJECTOR); + model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight")); + model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight")); } break; default: GGML_ASSERT(false && "unknown projector type"); @@ -2554,21 +2585,20 @@ struct clip_model_loader { } } - void alloc_compute_meta() { - const auto & hparams = ctx_clip.vision_model.hparams; + void alloc_compute_meta(clip_ctx & ctx_clip) { + const auto & hparams = ctx_clip.model.hparams; ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead()); // create a fake batch clip_image_f32_batch batch; clip_image_f32_ptr img(clip_image_f32_init()); - if (hparams.has_vision) { + if (ctx_clip.model.modality == CLIP_MODALITY_VISION) { img->nx = hparams.warmup_image_size; img->ny = hparams.warmup_image_size; } else { - img->nx = 1024; // TODO @ngxson : use a better default + img->nx = hparams.warmup_audio_size; img->ny = hparams.n_mel_bins; } - img->buf.resize(img->nx * img->ny * 3); batch.entries.push_back(std::move(img)); ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch); @@ -2646,23 +2676,40 @@ struct clip_model_loader { } }; -struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) { +struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) { g_logger_state.verbosity_thold = ctx_params.verbosity; - clip_ctx * ctx_clip = nullptr; + clip_ctx * ctx_vision = nullptr; + clip_ctx * ctx_audio = nullptr; try { - ctx_clip = new clip_ctx(ctx_params); - clip_model_loader loader(fname, *ctx_clip); - loader.load_hparams(); - loader.load_tensors(); - loader.alloc_compute_meta(); + clip_model_loader loader(fname); + + if (loader.has_vision) { + ctx_vision = new clip_ctx(ctx_params); + loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION); + loader.load_tensors(*ctx_vision); + loader.alloc_compute_meta(*ctx_vision); + } + + if (loader.has_audio) { + ctx_audio = new clip_ctx(ctx_params); + loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO); + loader.load_tensors(*ctx_audio); + loader.alloc_compute_meta(*ctx_audio); + } + } catch (const std::exception & e) { LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what()); - delete ctx_clip; - return nullptr; + if (ctx_vision) { + delete ctx_vision; + } + if (ctx_audio) { + delete ctx_audio; + } + return {nullptr, nullptr}; } - return ctx_clip; + return {ctx_vision, ctx_audio}; } struct clip_image_size * clip_image_size_init() { @@ -2736,30 +2783,6 @@ void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny memcpy(img->buf.data(), rgb_pixels, img->buf.size()); } -bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) { - int nx, ny, nc; - auto * data = stbi_load(fname, &nx, &ny, &nc, 3); - if (!data) { - LOG_ERR("%s: failed to load image '%s'\n", __func__, fname); - return false; - } - clip_build_img_from_pixels(data, nx, ny, img); - stbi_image_free(data); - return true; -} - -bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) { - int nx, ny, nc; - auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3); - if (!data) { - LOG_ERR("%s: failed to decode image bytes\n", __func__); - return false; - } - clip_build_img_from_pixels(data, nx, ny, img); - stbi_image_free(data); - return true; -} - // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) { dst.nx = src.nx; @@ -3023,12 +3046,12 @@ struct llava_uhd { const float ratio = (float)original_width * original_height / (slice_size * slice_size); const int multiple = fmin(ceil(ratio), max_slice_nums); const bool has_slices = (multiple > 1); - const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty(); + const bool has_pinpoints = !ctx->model.hparams.image_grid_pinpoints.empty(); if (has_pinpoints) { // has pinpoints, use them to calculate the grid size (e.g. llava-1.6) auto refine_size = llava_uhd::select_best_resolution( - ctx->vision_model.hparams.image_grid_pinpoints, + ctx->model.hparams.image_grid_pinpoints, original_size); res.overview_size = clip_image_size{slice_size, slice_size}; res.refined_size = refine_size; @@ -3250,7 +3273,7 @@ private: bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) { clip_image_size original_size{img->nx, img->ny}; bool pad_to_square = true; - auto & params = ctx->vision_model.hparams; + auto & params = ctx->model.hparams; // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) { pad_to_square = false; @@ -3263,7 +3286,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str for (size_t i = 0; i < imgs.size(); ++i) { // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp"); clip_image_f32_ptr res(clip_image_f32_init()); - normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std); + normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(res)); } @@ -3271,7 +3294,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str res_imgs->grid_y = inst.grid_size.height; return true; - } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) { + } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) { clip_image_u8 resized; auto patch_size = params.patch_size * 2; auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size); @@ -3279,42 +3302,42 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str clip_image_f32_ptr img_f32(clip_image_f32_init()); // clip_image_f32_ptr res(clip_image_f32_init()); - normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std); + normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std); // res_imgs->data[0] = *res; res_imgs->entries.push_back(std::move(img_f32)); return true; } - else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE - || ctx->proj_type == PROJECTOR_TYPE_GEMMA3 - || ctx->proj_type == PROJECTOR_TYPE_IDEFICS3 - || ctx->proj_type == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution + else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE + || ctx->proj_type() == PROJECTOR_TYPE_GEMMA3 + || ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3 + || ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution ) { clip_image_u8 resized_image; int sz = params.image_size; image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz}); clip_image_f32_ptr img_f32(clip_image_f32_init()); //clip_image_save_to_bmp(resized_image, "resized.bmp"); - normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std); + normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(img_f32)); return true; - } else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) { + } else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL) { clip_image_u8 resized_image; auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size); image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height); clip_image_f32_ptr img_f32(clip_image_f32_init()); - normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std); + normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(img_f32)); return true; - } else if (ctx->proj_type == PROJECTOR_TYPE_LLAMA4) { + } else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) { GGML_ASSERT(!params.image_grid_pinpoints.empty()); auto const inst = llava_uhd::get_slice_instructions(ctx, original_size); std::vector imgs = llava_uhd::slice_image(img, inst); for (size_t i = 0; i < imgs.size(); ++i) { clip_image_f32_ptr res(clip_image_f32_init()); - normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std); + normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(res)); } @@ -3344,7 +3367,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color); clip_image_f32_ptr res(clip_image_f32_init()); - normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std); + normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(res)); return true; @@ -3356,7 +3379,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str for (size_t i = 0; i < imgs.size(); ++i) { // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp"); clip_image_f32_ptr res(clip_image_f32_init()); - normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std); + normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(res)); } @@ -3368,7 +3391,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str } ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) { - return ctx->vision_model.image_newline; + return ctx->model.image_newline; } void clip_free(clip_ctx * ctx) { @@ -3380,8 +3403,8 @@ void clip_free(clip_ctx * ctx) { // deprecated size_t clip_embd_nbytes(const struct clip_ctx * ctx) { - const int32_t nx = ctx->vision_model.hparams.image_size; - const int32_t ny = ctx->vision_model.hparams.image_size; + const int32_t nx = ctx->model.hparams.image_size; + const int32_t ny = ctx->model.hparams.image_size; return clip_embd_nbytes_by_img(ctx, nx, ny); } @@ -3393,105 +3416,135 @@ size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h } int32_t clip_get_image_size(const struct clip_ctx * ctx) { - return ctx->vision_model.hparams.image_size; + return ctx->model.hparams.image_size; } int32_t clip_get_patch_size(const struct clip_ctx * ctx) { - return ctx->vision_model.hparams.patch_size; + return ctx->model.hparams.patch_size; } int32_t clip_get_hidden_size(const struct clip_ctx * ctx) { - return ctx->vision_model.hparams.n_embd; + return ctx->model.hparams.n_embd; } const char * clip_patch_merge_type(const struct clip_ctx * ctx) { - return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat"; + return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat"; } const int32_t * clip_image_grid(const struct clip_ctx * ctx) { - if (ctx->vision_model.hparams.image_grid_pinpoints.size()) { - return &ctx->vision_model.hparams.image_grid_pinpoints.front(); + if (ctx->model.hparams.image_grid_pinpoints.size()) { + return &ctx->model.hparams.image_grid_pinpoints.front(); } return nullptr; } size_t get_clip_image_grid_size(const struct clip_ctx * ctx) { - return ctx->vision_model.hparams.image_grid_pinpoints.size(); + return ctx->model.hparams.image_grid_pinpoints.size(); } int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) { - const auto & params = ctx->vision_model.hparams; + const auto & params = ctx->model.hparams; const int n_total = clip_n_output_tokens(ctx, img); - if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) { + if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) { return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0); } return n_total; } int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) { - const auto & params = ctx->vision_model.hparams; - if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) { + const auto & params = ctx->model.hparams; + if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) { return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0); } return 1; } int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) { - const auto & params = ctx->vision_model.hparams; + const auto & params = ctx->model.hparams; - int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size); - int scale_factor = ctx->vision_model.hparams.proj_scale_factor; + // only for models using fixed size square images + int n_patches_sq = (params.image_size / params.patch_size) * (params.image_size / params.patch_size); - if (ctx->proj_type == PROJECTOR_TYPE_LDP - || ctx->proj_type == PROJECTOR_TYPE_LDPV2 - || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) { - n_patches /= 4; - if (ctx->vision_model.mm_glm_tok_boi) { - n_patches += 2; // for BOI and EOI token embeddings - } - } else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) { - if (ctx->minicpmv_version == 2) { - n_patches = 96; - } - else if (ctx->minicpmv_version == 3) { - n_patches = 64; - } - else if (ctx->minicpmv_version == 4) { - n_patches = 64; - } - else { - GGML_ABORT("Unknown minicpmv version"); - } - } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) { - int patch_size = params.patch_size * 2; - int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0); - int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0); - n_patches = x_patch * y_patch; - } else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { - int n_per_side = params.image_size / params.patch_size; - int n_per_side_2d_pool = n_per_side / params.proj_scale_factor; - n_patches = n_per_side_2d_pool * n_per_side_2d_pool; - } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3 || ctx->proj_type == PROJECTOR_TYPE_INTERNVL) { - // both W and H are divided by proj_scale_factor - n_patches /= (params.proj_scale_factor * params.proj_scale_factor); - } else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) { - int n_merge = params.spatial_merge_size; - int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1); - int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1); - n_patches = n_patches_y*n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row - } else if (ctx->proj_type == PROJECTOR_TYPE_LLAMA4) { - n_patches /= (scale_factor * scale_factor); - } else if (ctx->proj_type == PROJECTOR_TYPE_ULTRAVOX) { - const int proj_stack_factor = ctx->vision_model.hparams.proj_stack_factor; - const int n_len = CLIP_ALIGN(img->nx, proj_stack_factor); - n_patches = n_len / proj_stack_factor / 2; - } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2A) { - // divide by 2 because of whisper - // another divide by 2 because of nn.AvgPool1d(2, stride=2) - n_patches = img->nx / 4; + projector_type proj = ctx->proj_type(); + + switch (proj) { + case PROJECTOR_TYPE_MLP: + case PROJECTOR_TYPE_MLP_NORM: + { + // do nothing + } break; + case PROJECTOR_TYPE_LDP: + case PROJECTOR_TYPE_LDPV2: + case PROJECTOR_TYPE_GLM_EDGE: + { + n_patches_sq /= 4; + if (ctx->model.mm_glm_tok_boi) { + n_patches_sq += 2; // for BOI and EOI token embeddings + } + } break; + case PROJECTOR_TYPE_MINICPMV: + { + if (params.minicpmv_version == 2) { + n_patches_sq = 96; + } else if (params.minicpmv_version == 3) { + n_patches_sq = 64; + } else if (params.minicpmv_version == 4) { + n_patches_sq = 64; + } else { + GGML_ABORT("Unknown minicpmv version"); + } + } break; + case PROJECTOR_TYPE_QWEN2VL: + case PROJECTOR_TYPE_QWEN25VL: + { + // dynamic size + int patch_size = params.patch_size * 2; + int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0); + int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0); + n_patches_sq = x_patch * y_patch; + } break; + case PROJECTOR_TYPE_GEMMA3: + { + int n_per_side = params.image_size / params.patch_size; + int n_per_side_2d_pool = n_per_side / params.proj_scale_factor; + n_patches_sq = n_per_side_2d_pool * n_per_side_2d_pool; + } break; + case PROJECTOR_TYPE_IDEFICS3: + case PROJECTOR_TYPE_INTERNVL: + { + // both W and H are divided by proj_scale_factor + n_patches_sq /= (params.proj_scale_factor * params.proj_scale_factor); + } break; + case PROJECTOR_TYPE_PIXTRAL: + { + // dynamic size + int n_merge = params.spatial_merge_size; + int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1); + int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1); + n_patches_sq = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row + } break; + case PROJECTOR_TYPE_LLAMA4: + { + int scale_factor = ctx->model.hparams.proj_scale_factor; + n_patches_sq /= (scale_factor * scale_factor); + } break; + case PROJECTOR_TYPE_ULTRAVOX: + { + const int proj_stack_factor = ctx->model.hparams.proj_stack_factor; + const int n_len = CLIP_ALIGN(img->nx, proj_stack_factor); + n_patches_sq = n_len / proj_stack_factor / 2; + } break; + case PROJECTOR_TYPE_QWEN2A: + { + // divide by 2 because of whisper + // another divide by 2 because of nn.AvgPool1d(2, stride=2) + n_patches_sq = img->nx / 4; + } break; + default: + GGML_ABORT("unsupported projector type"); } - return n_patches; + return n_patches_sq; } static std::vector>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector> & pos) { @@ -3606,7 +3659,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima ggml_backend_sched_alloc_graph(ctx->sched.get(), gf); // set inputs - const auto & model = ctx->vision_model; + const auto & model = ctx->model; const auto & hparams = model.hparams; const int image_size_width = imgs.entries[0]->nx; @@ -3696,7 +3749,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima } // set input per projector - switch (ctx->proj_type) { + switch (ctx->model.proj_type) { case PROJECTOR_TYPE_MINICPMV: { // inspired from siglip: @@ -3961,80 +4014,83 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima } int clip_n_mmproj_embd(const struct clip_ctx * ctx) { - switch (ctx->proj_type) { + const auto & hparams = ctx->model.hparams; + switch (ctx->model.proj_type) { case PROJECTOR_TYPE_LDP: - return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0]; + return ctx->model.mm_model_block_1_block_2_1_b->ne[0]; case PROJECTOR_TYPE_LDPV2: - return ctx->vision_model.mm_model_peg_0_b->ne[0]; + return ctx->model.mm_model_peg_0_b->ne[0]; case PROJECTOR_TYPE_MLP: case PROJECTOR_TYPE_PIXTRAL: - return ctx->vision_model.mm_2_w->ne[1]; + return ctx->model.mm_2_w->ne[1]; case PROJECTOR_TYPE_MLP_NORM: - return ctx->vision_model.mm_3_b->ne[0]; + return ctx->model.mm_3_b->ne[0]; case PROJECTOR_TYPE_MINICPMV: - if (ctx->minicpmv_version == 2) { + if (hparams.minicpmv_version == 2) { return 4096; - } else if (ctx->minicpmv_version == 3) { + } else if (hparams.minicpmv_version == 3) { return 3584; - } else if (ctx->minicpmv_version == 4) { + } else if (hparams.minicpmv_version == 4) { return 3584; } GGML_ABORT("Unknown minicpmv version"); case PROJECTOR_TYPE_GLM_EDGE: - return ctx->vision_model.mm_model_mlp_3_w->ne[1]; + return ctx->model.mm_model_mlp_3_w->ne[1]; case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN25VL: - return ctx->vision_model.mm_1_b->ne[0]; + return ctx->model.mm_1_b->ne[0]; case PROJECTOR_TYPE_GEMMA3: - return ctx->vision_model.mm_input_proj_w->ne[0]; + return ctx->model.mm_input_proj_w->ne[0]; case PROJECTOR_TYPE_IDEFICS3: - return ctx->vision_model.projection->ne[1]; + return ctx->model.projection->ne[1]; case PROJECTOR_TYPE_ULTRAVOX: - return ctx->vision_model.mm_2_w->ne[1]; + return ctx->model.mm_2_w->ne[1]; case PROJECTOR_TYPE_INTERNVL: - return ctx->vision_model.mm_3_w->ne[1]; + return ctx->model.mm_3_w->ne[1]; case PROJECTOR_TYPE_LLAMA4: - return ctx->vision_model.mm_model_proj->ne[1]; + return ctx->model.mm_model_proj->ne[1]; case PROJECTOR_TYPE_QWEN2A: - return ctx->vision_model.mm_fc_w->ne[1]; + return ctx->model.mm_fc_w->ne[1]; default: GGML_ABORT("Unknown projector type"); } } int clip_is_minicpmv(const struct clip_ctx * ctx) { - if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) { - return ctx->minicpmv_version; + if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) { + return ctx->model.hparams.minicpmv_version; } return 0; } bool clip_is_glm(const struct clip_ctx * ctx) { - return ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE; + return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE; } bool clip_is_qwen2vl(const struct clip_ctx * ctx) { - return ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL; + return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL + || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL; } bool clip_is_llava(const struct clip_ctx * ctx) { - return ctx->has_llava_projector; + return ctx->model.hparams.has_llava_projector; } bool clip_is_gemma3(const struct clip_ctx * ctx) { - return ctx->proj_type == PROJECTOR_TYPE_GEMMA3; + return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3; } bool clip_has_vision_encoder(const struct clip_ctx * ctx) { - return ctx->vision_model.hparams.has_vision; + return ctx->model.modality == CLIP_MODALITY_VISION; } bool clip_has_audio_encoder(const struct clip_ctx * ctx) { - return ctx->vision_model.hparams.has_audio; + return ctx->model.modality == CLIP_MODALITY_AUDIO; } bool clip_has_whisper_encoder(const struct clip_ctx * ctx) { - return ctx->proj_type == PROJECTOR_TYPE_ULTRAVOX || ctx->proj_type == PROJECTOR_TYPE_QWEN2A; + return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX + || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A; } bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) { @@ -4055,7 +4111,7 @@ bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, // projector_type clip_get_projector_type(const struct clip_ctx * ctx) { - return ctx->proj_type; + return ctx->proj_type(); } void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) { diff --git a/tools/mtmd/clip.h b/tools/mtmd/clip.h index 5abfcd1a3c..cb2eb261fe 100644 --- a/tools/mtmd/clip.h +++ b/tools/mtmd/clip.h @@ -17,12 +17,22 @@ struct clip_image_f32; struct clip_image_u8_batch; struct clip_image_f32_batch; +enum clip_modality { + CLIP_MODALITY_VISION, + CLIP_MODALITY_AUDIO, +}; + struct clip_context_params { bool use_gpu; enum ggml_log_level verbosity; }; -struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params); +struct clip_init_result { + struct clip_ctx * ctx_v; // vision context + struct clip_ctx * ctx_a; // audio context +}; + +struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params); void clip_free(struct clip_ctx * ctx); diff --git a/tools/mtmd/mtmd-audio.cpp b/tools/mtmd/mtmd-audio.cpp index ae06a695d9..4d053895cd 100644 --- a/tools/mtmd/mtmd-audio.cpp +++ b/tools/mtmd/mtmd-audio.cpp @@ -1,28 +1,5 @@ -// fix problem with std::min and std::max -#if defined(_WIN32) -#define WIN32_LEAN_AND_MEAN -#ifndef NOMINMAX -# define NOMINMAX -#endif -#include -#endif - #include "mtmd-audio.h" -//#define MTMD_AUDIO_DEBUG - -#define MINIAUDIO_IMPLEMENTATION -#ifndef MTMD_AUDIO_DEBUG -# define MA_NO_ENCODING -#endif -#define MA_NO_DEVICE_IO -#define MA_NO_RESOURCE_MANAGER -#define MA_NO_NODE_GRAPH -#define MA_NO_ENGINE -#define MA_NO_GENERATION -#define MA_API static -#include "miniaudio.h" - #define _USE_MATH_DEFINES // for M_PI #include #include @@ -359,69 +336,6 @@ bool preprocess_audio( } // namespace whisper_preprocessor -namespace audio_helpers { - -bool is_audio_file(const char * buf, size_t len) { - if (len < 12) { - return false; - } - - // RIFF ref: https://en.wikipedia.org/wiki/Resource_Interchange_File_Format - // WAV ref: https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html - bool is_wav = memcmp(buf, "RIFF", 4) == 0 && memcmp(buf + 8, "WAVE", 4) == 0; - bool is_mp3 = len >= 3 && ( - memcmp(buf, "ID3", 3) == 0 || - // Check for MPEG sync word (simplified check) - ((unsigned char)buf[0] == 0xFF && ((unsigned char)buf[1] & 0xE0) == 0xE0) - ); - bool is_flac = memcmp(buf, "fLaC", 4) == 0; - - return is_wav || is_mp3 || is_flac; -} - -// returns true if the buffer is a valid audio file -bool decode_audio_from_buf(const unsigned char * buf_in, size_t len, int target_sampler_rate, std::vector & pcmf32_mono) { - ma_result result; - const int channels = 1; - ma_decoder_config decoder_config = ma_decoder_config_init(ma_format_f32, channels, target_sampler_rate); - ma_decoder decoder; - - result = ma_decoder_init_memory(buf_in, len, &decoder_config, &decoder); - if (result != MA_SUCCESS) { - return false; - } - - ma_uint64 frame_count; - ma_uint64 frames_read; - result = ma_decoder_get_length_in_pcm_frames(&decoder, &frame_count); - if (result != MA_SUCCESS) { - ma_decoder_uninit(&decoder); - return false; - } - - pcmf32_mono.resize(frame_count); - result = ma_decoder_read_pcm_frames(&decoder, pcmf32_mono.data(), frame_count, &frames_read); - if (result != MA_SUCCESS) { - ma_decoder_uninit(&decoder); - return false; - } - -#ifdef MTMD_AUDIO_DEBUG - // save audio to wav file - ma_encoder_config config = ma_encoder_config_init(ma_encoding_format_wav, ma_format_f32, 1, target_sampler_rate); - ma_encoder encoder; - ma_encoder_init_file("output.wav", &config, &encoder); - ma_encoder_write_pcm_frames(&encoder, pcmf32_mono.data(), pcmf32_mono.size(), &frames_read); - ma_encoder_uninit(&encoder); -#endif - - ma_decoder_uninit(&decoder); - return true; -} - -} // namespace wav_utils - - // precalculated mel filter banks // values are multiplied by 1000.0 to save space, and will be divided by 1000.0 in the end of the function // diff --git a/tools/mtmd/mtmd-audio.h b/tools/mtmd/mtmd-audio.h index 348d11dcaf..b7b940affb 100644 --- a/tools/mtmd/mtmd-audio.h +++ b/tools/mtmd/mtmd-audio.h @@ -32,7 +32,7 @@ struct whisper_filters { std::vector data; }; -extern bool preprocess_audio( +bool preprocess_audio( const float * samples, size_t n_samples, const whisper_filters & filters, @@ -40,23 +40,8 @@ extern bool preprocess_audio( } // namespace whisper_preprocessor - -// TODO @ngxson : move this helper to mtmd-helpers.cpp -namespace audio_helpers { - -extern bool is_audio_file(const char * buf, size_t len); - -extern bool decode_audio_from_buf( - const unsigned char * buf_in, - size_t len, - int target_sampler_rate, - std::vector & pcmf32_mono); - -} // namespace audio_helpers - - namespace whisper_precalc_filters { -extern whisper_preprocessor::whisper_filters get_128_bins(); +whisper_preprocessor::whisper_filters get_128_bins(); } // namespace whisper_precalc_filters diff --git a/tools/mtmd/mtmd-cli.cpp b/tools/mtmd/mtmd-cli.cpp index 0f8bb0cdc4..599e682e0f 100644 --- a/tools/mtmd/mtmd-cli.cpp +++ b/tools/mtmd/mtmd-cli.cpp @@ -7,6 +7,7 @@ #include "console.h" #include "chat.h" #include "mtmd.h" +#include "mtmd-helper.h" #include #include @@ -69,6 +70,7 @@ struct mtmd_cli_context { llama_model * model; llama_context * lctx; const llama_vocab * vocab; + common_sampler * smpl; llama_batch batch; int n_batch; @@ -88,8 +90,9 @@ struct mtmd_cli_context { model = llama_init.model.get(); lctx = llama_init.context.get(); vocab = llama_model_get_vocab(model); + smpl = common_sampler_init(model, params.sampling); n_threads = params.cpuparams.n_threads; - batch = llama_batch_init(params.n_batch, 0, 1); + batch = llama_batch_init(1, 0, 1); // batch for next token generation n_batch = params.n_batch; if (!model || !lctx) { @@ -117,6 +120,11 @@ struct mtmd_cli_context { } } + ~mtmd_cli_context() { + llama_batch_free(batch); + common_sampler_free(smpl); + } + void init_vision_context(common_params & params) { const char * clip_path = params.mmproj.path.c_str(); mtmd_context_params mparams = mtmd_context_params_default(); @@ -143,7 +151,7 @@ struct mtmd_cli_context { } bool load_media(const std::string & fname) { - mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_file(fname.c_str())); + mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_file(ctx_vision.get(), fname.c_str())); if (!bmp.ptr) { return false; } @@ -152,7 +160,7 @@ struct mtmd_cli_context { } }; -static int generate_response(mtmd_cli_context & ctx, common_sampler * smpl, int n_predict) { +static int generate_response(mtmd_cli_context & ctx, int n_predict) { llama_tokens generated_tokens; for (int i = 0; i < n_predict; i++) { if (i > n_predict || !g_is_generating || g_is_interrupted) { @@ -160,9 +168,9 @@ static int generate_response(mtmd_cli_context & ctx, common_sampler * smpl, int break; } - llama_token token_id = common_sampler_sample(smpl, ctx.lctx, -1); + llama_token token_id = common_sampler_sample(ctx.smpl, ctx.lctx, -1); generated_tokens.push_back(token_id); - common_sampler_accept(smpl, token_id, true); + common_sampler_accept(ctx.smpl, token_id, true); if (llama_vocab_is_eog(ctx.vocab, token_id) || ctx.check_antiprompt(generated_tokens)) { LOG("\n"); @@ -260,7 +268,6 @@ int main(int argc, char ** argv) { bool is_single_turn = !params.prompt.empty() && !params.image.empty(); - struct common_sampler * smpl = common_sampler_init(ctx.model, params.sampling); int n_predict = params.n_predict < 0 ? INT_MAX : params.n_predict; // Ctrl+C handling @@ -284,7 +291,9 @@ int main(int argc, char ** argv) { if (is_single_turn) { g_is_generating = true; if (params.prompt.find(mtmd_default_marker()) == std::string::npos) { - params.prompt += mtmd_default_marker(); + for (size_t i = 0; i < params.image.size(); i++) { + params.prompt += mtmd_default_marker(); + } } common_chat_msg msg; msg.role = "user"; @@ -297,7 +306,7 @@ int main(int argc, char ** argv) { if (eval_message(ctx, msg, true)) { return 1; } - if (!g_is_interrupted && generate_response(ctx, smpl, n_predict)) { + if (!g_is_interrupted && generate_response(ctx, n_predict)) { return 1; } @@ -333,7 +342,7 @@ int main(int argc, char ** argv) { } if (line == "/clear") { ctx.n_past = 0; - llama_kv_self_seq_rm(ctx.lctx, 0, 1, -1); // keep BOS + llama_memory_seq_rm(llama_get_memory(ctx.lctx), 0, 1, -1); // keep BOS LOG("Chat history cleared\n\n"); continue; } @@ -363,7 +372,7 @@ int main(int argc, char ** argv) { return 1; } if (g_is_interrupted) break; - if (generate_response(ctx, smpl, n_predict)) { + if (generate_response(ctx, n_predict)) { return 1; } content.clear(); diff --git a/tools/mtmd/mtmd-helper.cpp b/tools/mtmd/mtmd-helper.cpp index b79094c0a4..686f42f396 100644 --- a/tools/mtmd/mtmd-helper.cpp +++ b/tools/mtmd/mtmd-helper.cpp @@ -1,10 +1,37 @@ +// fix problem with std::min and std::max +#if defined(_WIN32) +#define WIN32_LEAN_AND_MEAN +#ifndef NOMINMAX +# define NOMINMAX +#endif +#include +#endif + #include "mtmd.h" +#include "mtmd-helper.h" #include "llama.h" #include #include #include +//#define MTMD_AUDIO_DEBUG + +#define MINIAUDIO_IMPLEMENTATION +#ifndef MTMD_AUDIO_DEBUG +# define MA_NO_ENCODING +#endif +#define MA_NO_DEVICE_IO +#define MA_NO_RESOURCE_MANAGER +#define MA_NO_NODE_GRAPH +#define MA_NO_ENGINE +#define MA_NO_GENERATION +#define MA_API static +#include "miniaudio/miniaudio.h" + +#define STB_IMAGE_IMPLEMENTATION +#include "stb/stb_image.h" + #define LOG_INF(...) fprintf(stdout, __VA_ARGS__) #define LOG_ERR(...) fprintf(stderr, __VA_ARGS__) @@ -66,7 +93,8 @@ struct decode_embd_batch { } } - void set_position_mrope(llama_pos pos_0, int nx, int ny, llama_seq_id seq_id) { + // M-RoPE for image + void set_position_mrope_2d(llama_pos pos_0, int nx, int ny, llama_seq_id seq_id) { GGML_ASSERT(n_pos_per_embd == 4); seq_id_0[0] = seq_id; for (int y = 0; y < ny; y++) { @@ -85,6 +113,23 @@ struct decode_embd_batch { } } + // M-RoPE for audio + void set_position_mrope_1d(llama_pos pos_0, llama_seq_id seq_id) { + GGML_ASSERT(n_pos_per_embd == 4); + seq_id_0[0] = seq_id; + for (int i = 0; i < batch.n_tokens; i++) { + pos[i ] = pos_0 + i; + pos[i + batch.n_tokens ] = pos_0 + i; + pos[i + batch.n_tokens * 2] = pos_0 + i; + pos[i + batch.n_tokens * 3] = 0; // last pos dim is unused + } + for (int i = 0; i < batch.n_tokens; i++) { + batch.n_seq_id[i] = 1; + batch.seq_id [i] = seq_id_0.data(); + batch.logits [i] = false; + } + } + llama_batch get_view(int offset, int n_tokens) { llama_pos * pos_ptr; pos_view.clear(); @@ -146,18 +191,20 @@ int32_t mtmd_helper_decode_image_chunk( decode_embd_batch batch_embd(encoded_embd, n_tokens, n_pos_per_embd, n_mmproj_embd); if (mtmd_decode_use_mrope(ctx)) { - const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk); - if (chunk_type != MTMD_INPUT_CHUNK_TYPE_IMAGE) { - LOG_ERR("failed to decode chunk: M-RoPE only accepts image chunk\n"); - return -1; + if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) { + const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk); + if (!image_tokens) { + LOG_ERR("failed to decode chunk: image tokens are null\n"); + return -1; + } + const int nx = mtmd_image_tokens_get_nx(image_tokens); + const int ny = mtmd_image_tokens_get_ny(image_tokens); + batch_embd.set_position_mrope_2d(n_past, nx, ny, seq_id); + } else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_AUDIO) { + batch_embd.set_position_mrope_1d(n_past, seq_id); + } else { + GGML_ABORT("invalid chunk type for M-RoPE"); } - if (!image_tokens) { - LOG_ERR("failed to decode chunk: image tokens are null\n"); - return -1; - } - const int nx = mtmd_image_tokens_get_nx(image_tokens); - const int ny = mtmd_image_tokens_get_ny(image_tokens); - batch_embd.set_position_mrope(n_past, nx, ny, seq_id); } else { batch_embd.set_position_normal(n_past, seq_id); } @@ -264,6 +311,7 @@ int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx, GGML_ABORT("chunk type not supported"); } + llama_batch_free(text_batch); return 0; } @@ -295,3 +343,118 @@ int32_t mtmd_helper_eval_chunks(mtmd_context * ctx, return 0; } + +namespace audio_helpers { + +static bool is_audio_file(const char * buf, size_t len) { + if (len < 12) { + return false; + } + + // RIFF ref: https://en.wikipedia.org/wiki/Resource_Interchange_File_Format + // WAV ref: https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html + bool is_wav = memcmp(buf, "RIFF", 4) == 0 && memcmp(buf + 8, "WAVE", 4) == 0; + bool is_mp3 = len >= 3 && ( + memcmp(buf, "ID3", 3) == 0 || + // Check for MPEG sync word (simplified check) + ((unsigned char)buf[0] == 0xFF && ((unsigned char)buf[1] & 0xE0) == 0xE0) + ); + bool is_flac = memcmp(buf, "fLaC", 4) == 0; + + return is_wav || is_mp3 || is_flac; +} + +// returns true if the buffer is a valid audio file +static bool decode_audio_from_buf(const unsigned char * buf_in, size_t len, int target_sampler_rate, std::vector & pcmf32_mono) { + ma_result result; + const int channels = 1; + ma_decoder_config decoder_config = ma_decoder_config_init(ma_format_f32, channels, target_sampler_rate); + ma_decoder decoder; + + result = ma_decoder_init_memory(buf_in, len, &decoder_config, &decoder); + if (result != MA_SUCCESS) { + return false; + } + + ma_uint64 frame_count; + ma_uint64 frames_read; + result = ma_decoder_get_length_in_pcm_frames(&decoder, &frame_count); + if (result != MA_SUCCESS) { + ma_decoder_uninit(&decoder); + return false; + } + + pcmf32_mono.resize(frame_count); + result = ma_decoder_read_pcm_frames(&decoder, pcmf32_mono.data(), frame_count, &frames_read); + if (result != MA_SUCCESS) { + ma_decoder_uninit(&decoder); + return false; + } + +#ifdef MTMD_AUDIO_DEBUG + // save audio to wav file + ma_encoder_config config = ma_encoder_config_init(ma_encoding_format_wav, ma_format_f32, 1, target_sampler_rate); + ma_encoder encoder; + ma_encoder_init_file("output.wav", &config, &encoder); + ma_encoder_write_pcm_frames(&encoder, pcmf32_mono.data(), pcmf32_mono.size(), &frames_read); + ma_encoder_uninit(&encoder); +#endif + + ma_decoder_uninit(&decoder); + return true; +} + +} // namespace audio_helpers + +mtmd_bitmap * mtmd_helper_bitmap_init_from_buf(mtmd_context * ctx, const unsigned char * buf, size_t len) { + if (audio_helpers::is_audio_file((const char *)buf, len)) { + std::vector pcmf32; + int bitrate = mtmd_get_audio_bitrate(ctx); + if (bitrate < 0) { + LOG_ERR("This model does not support audio input\n"); + return nullptr; + } + if (!audio_helpers::decode_audio_from_buf(buf, len, bitrate, pcmf32)) { + LOG_ERR("Unable to read WAV audio file from buffer\n"); + return nullptr; + } + return mtmd_bitmap_init_from_audio(pcmf32.size(), pcmf32.data()); + } + + // otherwise, we assume it's an image + mtmd_bitmap * result = nullptr; + { + int nx, ny, nc; + auto * data = stbi_load_from_memory(buf, len, &nx, &ny, &nc, 3); + if (!data) { + LOG_ERR("%s: failed to decode image bytes\n", __func__); + return nullptr; + } + result = mtmd_bitmap_init(nx, ny, data); + stbi_image_free(data); + } + return result; +} + +mtmd_bitmap * mtmd_helper_bitmap_init_from_file(mtmd_context * ctx, const char * fname) { + std::vector buf; + FILE * f = fopen(fname, "rb"); + if (!f) { + LOG_ERR("Unable to open file %s: %s\n", fname, strerror(errno)); + return nullptr; + } + + fseek(f, 0, SEEK_END); + long file_size = ftell(f); + fseek(f, 0, SEEK_SET); + buf.resize(file_size); + + size_t n_read = fread(buf.data(), 1, file_size, f); + fclose(f); + if (n_read != (size_t)file_size) { + LOG_ERR("Failed to read entire file %s", fname); + return nullptr; + } + + return mtmd_helper_bitmap_init_from_buf(ctx, buf.data(), buf.size()); +} diff --git a/tools/mtmd/mtmd-helper.h b/tools/mtmd/mtmd-helper.h new file mode 100644 index 0000000000..5c0edc6937 --- /dev/null +++ b/tools/mtmd/mtmd-helper.h @@ -0,0 +1,91 @@ +#ifndef MTMD_HELPER_H +#define MTMD_HELPER_H + +#include "ggml.h" +#include "llama.h" +#include "mtmd.h" + +#include +#include +#include + +#ifdef __cplusplus +extern "C" { +#endif + +// +// libmtmd helper functions +// +// Please note that these helpers are not guaranteed to be stable. +// BREAKING CHANGES are expected. +// + +// helper function to construct a mtmd_bitmap from a file +// it calls mtmd_helper_bitmap_init_from_buf() internally +// returns nullptr on failure +// this function is thread-safe +MTMD_API mtmd_bitmap * mtmd_helper_bitmap_init_from_file(mtmd_context * ctx, const char * fname); + +// helper function to construct a mtmd_bitmap from a buffer containing a file +// supported formats: +// image: formats supported by stb_image: jpg, png, bmp, gif, etc. +// audio: formats supported by miniaudio: wav, mp3, flac +// note: audio files will be auto-detected based on magic bytes +// returns nullptr on failure +// this function is thread-safe +MTMD_API mtmd_bitmap * mtmd_helper_bitmap_init_from_buf(mtmd_context * ctx, const unsigned char * buf, size_t len); + +// helper to count the total number of tokens from a list of chunks, useful to keep track of KV cache +MTMD_API size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks); + +// helper to count the total position of tokens from a list of chunks, useful to keep track of n_past +// normally, n_pos is equal to n_tokens, but for M-RoPE it is different +MTMD_API llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks); + +// helper function that automatically: +// 1. run llama_decode() on text chunks +// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode() +// if any of the mtmd_encode() or llama_decode() calls return non-zero, stop and forward the error +// otherwise, returns 0 on success +// this function is NOT thread-safe +MTMD_API int32_t mtmd_helper_eval_chunks(mtmd_context * ctx, + struct llama_context * lctx, + const mtmd_input_chunks * chunks, + llama_pos n_past, + llama_seq_id seq_id, + int32_t n_batch, + bool logits_last, + llama_pos * new_n_past); + +// works like mtmd_helper_eval_chunks(), but only for a single chunk +// this function is NOT thread-safe +MTMD_API int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx, + struct llama_context * lctx, + const mtmd_input_chunk * chunk, + llama_pos n_past, + llama_seq_id seq_id, + int32_t n_batch, + bool logits_last, + llama_pos * new_n_past); + +// helper function to decode an image whose embeddings have already been calculated +// this helper will handle batching and pre/post decoding setup (for ex. gemma 3 requires non-causal attention) +// ret 0 on success, -1 on chunk not being a valid image chunk, 1 on decode failure +MTMD_API int32_t mtmd_helper_decode_image_chunk(mtmd_context * ctx, + struct llama_context * lctx, + const mtmd_input_chunk * chunk, + float * encoded_embd, + llama_pos n_past, + llama_seq_id seq_id, + int32_t n_batch, + llama_pos * new_n_past); + +#ifdef __cplusplus +} // extern "C" +#endif + +// +// C++ wrappers +// + +#endif diff --git a/tools/mtmd/mtmd.cpp b/tools/mtmd/mtmd.cpp index c3be91265f..8573f11437 100644 --- a/tools/mtmd/mtmd.cpp +++ b/tools/mtmd/mtmd.cpp @@ -95,15 +95,21 @@ mtmd_context_params mtmd_context_params_default() { } struct mtmd_context { - struct clip_ctx * ctx_clip; + struct clip_ctx * ctx_v; // vision + struct clip_ctx * ctx_a; // audio const struct llama_model * text_model; std::vector image_embd_v; // image embedding vector bool print_timings; int n_threads; std::string media_marker; - bool has_vision; - bool has_audio; + const int n_embd_text; + + // these are not token, but strings used to mark the beginning and end of image/audio embeddings + std::string img_beg; + std::string img_end; + std::string aud_beg; + std::string aud_end; // for llava-uhd style models, we need special tokens in-between slices // minicpmv calls them "slices", llama 4 calls them "tiles" @@ -132,33 +138,61 @@ struct mtmd_context { text_model (text_model), print_timings(ctx_params.print_timings), n_threads (ctx_params.n_threads), - media_marker (ctx_params.media_marker) + media_marker (ctx_params.media_marker), + n_embd_text (llama_model_n_embd(text_model)) { if (std::string(ctx_params.image_marker) != MTMD_DEFAULT_IMAGE_MARKER) { throw std::runtime_error("custom image_marker is not supported anymore, use media_marker instead"); } + if (media_marker.empty()) { + throw std::runtime_error("media_marker must not be empty"); + } + clip_context_params ctx_clip_params; ctx_clip_params.use_gpu = ctx_params.use_gpu; ctx_clip_params.verbosity = ctx_params.verbosity; - ctx_clip = clip_init(mmproj_fname, ctx_clip_params); - if (!ctx_clip) { + auto res = clip_init(mmproj_fname, ctx_clip_params); + ctx_v = res.ctx_v; + ctx_a = res.ctx_a; + if (!ctx_v && !ctx_a) { throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname)); } - if (llama_model_n_embd(text_model) != clip_n_mmproj_embd(ctx_clip)) { + // if both vision and audio mmproj are present, we need to validate their n_embd + if (ctx_v && ctx_a) { + int n_embd_v = clip_n_mmproj_embd(ctx_v); + int n_embd_a = clip_n_mmproj_embd(ctx_a); + if (n_embd_v != n_embd_a) { + throw std::runtime_error(string_format( + "mismatch between vision and audio mmproj (n_embd_v = %d, n_embd_a = %d)\n", + n_embd_v, n_embd_a)); + } + } + + // since we already validate n_embd of vision and audio mmproj, + // we can safely assume that they are the same + int n_embd_clip = clip_n_mmproj_embd(ctx_v ? ctx_v : ctx_a); + if (n_embd_text != n_embd_clip) { throw std::runtime_error(string_format( "mismatch between text model (n_embd = %d) and mmproj (n_embd = %d)\n" "hint: you may be using wrong mmproj\n", - llama_model_n_embd(text_model), clip_n_mmproj_embd(ctx_clip))); + n_embd_text, n_embd_clip)); } + if (ctx_v) { + init_vision(); + } + if (ctx_a) { + init_audio(); + } + } - has_vision = clip_has_vision_encoder(ctx_clip); - has_audio = clip_has_audio_encoder(ctx_clip); - use_mrope = clip_is_qwen2vl(ctx_clip); + void init_vision() { + GGML_ASSERT(ctx_v != nullptr); + use_mrope = clip_is_qwen2vl(ctx_v); - projector_type proj = clip_get_projector_type(ctx_clip); - int minicpmv_version = clip_is_minicpmv(ctx_clip); + projector_type proj = clip_get_projector_type(ctx_v); + int minicpmv_version = clip_is_minicpmv(ctx_v); if (minicpmv_version == 2) { // minicpmv 2.5 format: // (overview) (slice) (slice) \n ... @@ -203,24 +237,82 @@ struct mtmd_context { ov_img_first = false; // overview image is last } - if (clip_has_whisper_encoder(ctx_clip)) { + // set boi/eoi + if (proj == PROJECTOR_TYPE_GEMMA3) { + // ... (image embeddings) ... + img_beg = ""; + img_end = ""; + + } else if (proj == PROJECTOR_TYPE_IDEFICS3) { + // https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215 + img_beg = ""; + img_end = ""; + + } else if (proj == PROJECTOR_TYPE_PIXTRAL) { + // https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md + img_end = "[IMG_END]"; + + } else if (proj == PROJECTOR_TYPE_QWEN2VL || proj == PROJECTOR_TYPE_QWEN25VL) { + // <|vision_start|> ... (image embeddings) ... <|vision_end|> + img_beg = "<|vision_start|>"; + img_end = "<|vision_end|>"; + + } else if (proj == PROJECTOR_TYPE_LLAMA4) { + // (more details in mtmd_context constructor) + img_beg = "<|image_start|>"; + img_end = "<|image_end|>"; + LOG_WRN("%s: llama 4 vision is known to have degraded quality:\n" + " https://github.com/ggml-org/llama.cpp/pull/13282\n", __func__); + + } else if (proj == PROJECTOR_TYPE_INTERNVL) { + // ... (image embeddings) ... + img_beg = ""; + img_end = ""; + + } + } + + void init_audio() { + GGML_ASSERT(ctx_a != nullptr); + projector_type proj = clip_get_projector_type(ctx_a); + + if (clip_has_whisper_encoder(ctx_a)) { // TODO @ngxson : check if model n_mel is 128 or 80 w_filters = whisper_precalc_filters::get_128_bins(); } - // warning messages - if (proj == PROJECTOR_TYPE_LLAMA4) { - LOG_WRN("%s: llama 4 vision is known to have degraded quality:\n" - " https://github.com/ggml-org/llama.cpp/pull/13282\n", __func__); - } - if (has_audio) { - LOG_WRN("%s: audio input is in experimental stage and may have reduced quality:\n" - " https://github.com/ggml-org/llama.cpp/discussions/13759\n", __func__); + LOG_WRN("%s: audio input is in experimental stage and may have reduced quality:\n" + " https://github.com/ggml-org/llama.cpp/discussions/13759\n", __func__); + + if (proj == PROJECTOR_TYPE_QWEN2A) { + // <|audio_bos|> ... (embeddings) ... <|audio_eos|> + aud_beg = "<|audio_bos|>"; + aud_end = "<|audio_eos|>"; + } } + // get clip ctx based on chunk type + clip_ctx * get_clip_ctx(const mtmd_input_chunk * chunk) const { + if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) { + return ctx_v; + } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) { + return ctx_a; + } + GGML_ABORT("unknown chunk type"); + } + + projector_type proj_type_v() const { + return ctx_v ? clip_get_projector_type(ctx_v) : PROJECTOR_TYPE_UNKNOWN; + } + + projector_type proj_type_a() const { + return ctx_a ? clip_get_projector_type(ctx_a) : PROJECTOR_TYPE_UNKNOWN; + } + ~mtmd_context() { - clip_free(ctx_clip); + clip_free(ctx_a); + clip_free(ctx_v); } private: @@ -267,107 +359,315 @@ void mtmd_free(mtmd_context * ctx) { } } -// copied from common_tokenize -static std::vector mtmd_tokenize_text_internal( - const struct llama_vocab * vocab, - const std::string & text, - bool add_special, - bool parse_special) { - // upper limit for the number of tokens - int n_tokens = text.length() + 2 * add_special; - std::vector result(n_tokens); - n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); - if (n_tokens < 0) { - result.resize(-n_tokens); - int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); - GGML_ASSERT(check == -n_tokens); - } else { - result.resize(n_tokens); - } - return result; -} +struct mtmd_tokenizer { + mtmd_context * ctx; + std::vector bitmaps; -int32_t mtmd_tokenize(mtmd_context * ctx, - mtmd_input_chunks * output, + std::string input_text; + bool add_special; + bool parse_special; + const llama_vocab * vocab; + + mtmd_input_chunks cur; + + mtmd_tokenizer(mtmd_context * ctx, const mtmd_input_text * text, const mtmd_bitmap ** bitmaps, - size_t n_bitmaps) { - auto vocab = llama_model_get_vocab(ctx->text_model); - - std::string prompt_modified(text->text); - std::string marker_modified(ctx->media_marker); - projector_type proj_type = clip_get_projector_type(ctx->ctx_clip); - - // for compatibility, we convert image marker to media marker - string_replace_all(prompt_modified, MTMD_DEFAULT_IMAGE_MARKER, ctx->media_marker); - - // a bit hacky here, but works for now - // for some models, we need to add prefix and suffix to the image embeddings - if (clip_is_gemma3(ctx->ctx_clip)) { - // gemma 3 - // ... (image embeddings) ... - marker_modified = "" + ctx->media_marker + ""; - string_replace_all(prompt_modified, ctx->media_marker, marker_modified); - - } else if (proj_type == PROJECTOR_TYPE_IDEFICS3) { - // https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215 - marker_modified = "" + ctx->media_marker + ""; - string_replace_all(prompt_modified, ctx->media_marker, marker_modified); - - } else if (proj_type == PROJECTOR_TYPE_PIXTRAL) { - // https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md - marker_modified = ctx->media_marker + "[IMG_END]"; - string_replace_all(prompt_modified, ctx->media_marker, marker_modified); - - } else if (proj_type == PROJECTOR_TYPE_QWEN2VL || proj_type == PROJECTOR_TYPE_QWEN25VL) { - // <|vision_start|> ... (image embeddings) ... <|vision_end|> - marker_modified = "<|vision_start|>" + ctx->media_marker + "<|vision_end|>"; - string_replace_all(prompt_modified, ctx->media_marker, marker_modified); - - } else if (proj_type == PROJECTOR_TYPE_LLAMA4) { - // (more details in mtmd_context constructor) - marker_modified = "<|image_start|>" + ctx->media_marker + "<|image_end|>"; - string_replace_all(prompt_modified, ctx->media_marker, marker_modified); - - } else if (proj_type == PROJECTOR_TYPE_INTERNVL) { - // ... (image embeddings) ... - marker_modified = "" + ctx->media_marker + ""; - string_replace_all(prompt_modified, ctx->media_marker, marker_modified); - - } else if (proj_type == PROJECTOR_TYPE_QWEN2A) { - // <|audio_bos|> ... (embeddings) ... <|audio_eos|> - marker_modified = "<|audio_bos|>" + ctx->media_marker + "<|audio_eos|>"; - string_replace_all(prompt_modified, ctx->media_marker, marker_modified); + size_t n_bitmaps) : ctx(ctx), bitmaps(bitmaps, bitmaps + n_bitmaps) { + add_special = text->add_special; + parse_special = text->parse_special; + input_text = text->text; + vocab = llama_model_get_vocab(ctx->text_model); + // for compatibility, we convert image marker to media marker + string_replace_all(input_text, MTMD_DEFAULT_IMAGE_MARKER, ctx->media_marker); } - // llava-1.5, llava-1.6, Yi-VL, Yi-34B, granite: don't need to add prefix and suffix - // for glm-edge, BOI and EOI token's embeddings are not present in the text model + int32_t tokenize(mtmd_input_chunks * output) { + cur.entries.clear(); + std::vector parts = split_text(input_text, ctx->media_marker); + size_t i_bm = 0; // index of the current bitmap + for (auto & part : parts) { + if (part == ctx->media_marker) { + // this is a marker, we should add the next bitmap + if (i_bm >= bitmaps.size()) { + LOG_ERR("%s: error: number of bitmaps (%zu) does not match number of markers (%zu)\n", + __func__, bitmaps.size(), parts.size() - 1); + return 1; + } + const mtmd_bitmap * bitmap = bitmaps[i_bm++]; + int32_t res = add_media(bitmap); + if (res != 0) { + return res; + } + } else { + // this is a text part, we should add it as text + add_text(part, parse_special); + } + } - std::vector parts = string_split_str(prompt_modified, ctx->media_marker); - output->entries.clear(); - output->entries.reserve(parts.size()); + if (add_special && llama_vocab_get_add_bos(vocab)) { + // if first chunk is text, we add BOS token to first text chunk + // otherwise, create a new text chunk with BOS token + if (!cur.entries.empty() && cur.entries[0].type == MTMD_INPUT_CHUNK_TYPE_TEXT) { + // add BOS token to the beginning of first text chunk + cur.entries[0].tokens_text.insert(cur.entries[0].tokens_text.begin(), llama_vocab_bos(vocab)); + } else { + // create a new text chunk with BOS token at the beginning + mtmd_input_chunk bos_chunk{ + MTMD_INPUT_CHUNK_TYPE_TEXT, + {llama_vocab_bos(vocab)}, + nullptr, // image tokens + nullptr, // audio tokens + }; + cur.entries.insert(cur.entries.begin(), std::move(bos_chunk)); + } + } - size_t i_bm = 0; + if (add_special && llama_vocab_get_add_eos(vocab)) { + // if last chunk is text, we add EOS token to it + add_text({llama_vocab_eos(vocab)}); + } - // utility for adding raw tokens - auto add_text_chunk = [&output](std::vector && tokens) { - mtmd_input_chunk chunk{ - MTMD_INPUT_CHUNK_TYPE_TEXT, - std::move(tokens), - nullptr, // image tokens - nullptr, // audio tokens - }; - output->entries.emplace_back(std::move(chunk)); - }; + if (i_bm != bitmaps.size()) { + LOG_ERR("%s: error: number of bitmaps (%zu) does not match number of markers (%zu)\n", + __func__, bitmaps.size(), parts.size() - 1); + return 1; + } - // utility for splitting batch of multiple images into chunks of batch having single images - auto split_batch_to_chunk = [&ctx](clip_image_f32_batch && batch_f32, const std::string & id) { + *output = std::move(cur); + + return 0; + } + + void add_text(const std::string & txt, bool parse_special) { + LOG_DBG("%s: %s\n", __func__, txt.c_str()); + auto tokens = mtmd_tokenize_text_internal(vocab, txt, /* add_special */ false, parse_special); + add_text(tokens); + } + + void add_text(const std::vector & tokens) { + if (tokens.empty()) { + return; + } + // if last entry is also a text chunk, add tokens to it instead of creating new chunk + if (!cur.entries.empty() && cur.entries.back().type == MTMD_INPUT_CHUNK_TYPE_TEXT) { + cur.entries.back().tokens_text.insert( + cur.entries.back().tokens_text.end(), + tokens.begin(), + tokens.end()); + } else { + mtmd_input_chunk chunk{ + MTMD_INPUT_CHUNK_TYPE_TEXT, + tokens, + nullptr, // image tokens + nullptr, // audio tokens + }; + cur.entries.emplace_back(std::move(chunk)); + } + } + + int32_t add_media(const mtmd_bitmap * bitmap) { + if (!bitmap->is_audio) { + // handle image + + if (!ctx->ctx_v) { + LOG_ERR("%s: error: model does not support vision input\n", __func__); + return 2; + } + + if (!ctx->img_beg.empty()) { + add_text(ctx->img_beg, true); // add image begin token + } + + // convert mtmd_bitmap to clip_image_u8 + clip_image_u8_ptr img_u8(clip_image_u8_init()); + img_u8->nx = bitmap->nx; + img_u8->ny = bitmap->ny; + img_u8->buf.resize(bitmap->data.size()); + std::memcpy(img_u8->buf.data(), bitmap->data.data(), img_u8->nx * img_u8->ny * 3); + + // preprocess image + clip_image_f32_batch batch_f32; + bool ok = clip_image_preprocess(ctx->ctx_v, img_u8.get(), &batch_f32); + if (!ok) { + LOG_ERR("Unable to preprocess image\n"); + return 2; + } + + // handle llava-uhd style preprocessing + if ( + ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5 + || ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6 + || ctx->slice_tmpl == MTMD_SLICE_TMPL_LLAMA4 + ) { + // split batch into chunks of single images + auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmap->id); + GGML_ASSERT(chunks.size() > 0); + + auto ov_chunk = std::move(chunks.front()); + chunks.erase(chunks.begin()); + + // add overview image (first) + if (ctx->ov_img_first) { + if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) { + add_text({ctx->tok_ov_img_start}); + } + cur.entries.emplace_back(std::move(ov_chunk)); + if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) { + add_text({ctx->tok_ov_img_end}); + } + } + + // add slices (or tiles) + if (!chunks.empty()) { + const int n_col = batch_f32.grid_x; + const int n_row = batch_f32.grid_y; + if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) { + add_text({ctx->tok_slices_start}); + } + for (int y = 0; y < n_row; y++) { + for (int x = 0; x < n_col; x++) { + const bool is_last_in_row = (x == n_col - 1); + if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) { + add_text({ctx->tok_sli_img_start}); + } + cur.entries.emplace_back(std::move(chunks[y * n_col + x])); + if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) { + add_text({ctx->tok_sli_img_end}); + } + if (!is_last_in_row && ctx->tok_sli_img_mid != LLAMA_TOKEN_NULL) { + add_text({ctx->tok_sli_img_mid}); + } + } + if ((y != n_row - 1 || ctx->tok_row_end_trail) && ctx->tok_row_end != LLAMA_TOKEN_NULL) { + add_text({ctx->tok_row_end}); + } + } + if (ctx->tok_slices_end != LLAMA_TOKEN_NULL) { + add_text({ctx->tok_slices_end}); + } + } + + // add overview image (last) + if (!ctx->ov_img_first) { + if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) { + add_text({ctx->tok_ov_img_start}); + } + cur.entries.emplace_back(std::move(ov_chunk)); + if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) { + add_text({ctx->tok_ov_img_end}); + } + } + + } else { + size_t n_tokens = 0; + for (const auto & entry : batch_f32.entries) { + n_tokens += clip_n_output_tokens(ctx->ctx_v, entry.get()); + } + + mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens); + if (ctx->use_mrope) { + // for Qwen2VL, we need this information for M-RoPE decoding positions + image_tokens->nx = clip_n_output_tokens_x(ctx->ctx_v, batch_f32.entries[0].get()); + image_tokens->ny = clip_n_output_tokens_y(ctx->ctx_v, batch_f32.entries[0].get()); + image_tokens->use_mrope_pos = true; + } else { + // other models, we only need the total number of tokens + image_tokens->nx = n_tokens; + image_tokens->ny = 1; + } + image_tokens->batch_f32 = std::move(batch_f32); + image_tokens->id = bitmap->id; // optional + + LOG_DBG("image_tokens->nx = %d\n", image_tokens->nx); + LOG_DBG("image_tokens->ny = %d\n", image_tokens->ny); + LOG_DBG("batch_f32 size = %d\n", (int)image_tokens->batch_f32.entries.size()); + + mtmd_input_chunk chunk{ + MTMD_INPUT_CHUNK_TYPE_IMAGE, + {}, // text tokens + std::move(image_tokens), + nullptr, // audio tokens + }; + cur.entries.emplace_back(std::move(chunk)); + } + + if (!ctx->img_end.empty()) { + add_text(ctx->img_end, true); // add image end token + } + + } else { + // handle audio + + if (!ctx->ctx_a) { + LOG_ERR("%s: error: model does not support audio input\n", __func__); + return 2; + } + + if (bitmap->data.size() == 0) { + LOG_ERR("%s: error: empty audio data\n", __func__); + return 2; + } + + if (!ctx->aud_beg.empty()) { + add_text(ctx->aud_beg, true); // add audio begin token + } + + // preprocess audio + GGML_ASSERT(ctx->w_filters.n_mel); // make sure we have filter preloaded + std::vector mel_spec_chunks; + const float * samples = (const float *)bitmap->data.data(); + size_t n_samples = bitmap->data.size() / sizeof(float); + bool ok = whisper_preprocessor::preprocess_audio(samples, n_samples, ctx->w_filters, mel_spec_chunks); + if (!ok) { + LOG_ERR("Unable to preprocess audio\n"); + return 2; + } + + // consider each mel_spec as a separate audio chunk + // TODO: maybe support batching, but this may come with memory cost + for (auto & mel_spec : mel_spec_chunks) { + clip_image_f32_ptr mel_f32(clip_image_f32_init()); + mel_f32->nx = mel_spec.n_len; + mel_f32->ny = mel_spec.n_mel; + mel_f32->buf = std::move(mel_spec.data); + size_t n_tokens = clip_n_output_tokens(ctx->ctx_a, mel_f32.get()); + + clip_image_f32_batch batch_f32; + batch_f32.is_audio = true; + batch_f32.entries.push_back(std::move(mel_f32)); + + mtmd_audio_tokens_ptr audio_tokens(new mtmd_audio_tokens); + audio_tokens->n_tokens = n_tokens; + audio_tokens->batch_f32 = std::move(batch_f32); + audio_tokens->id = bitmap->id; // optional + + LOG_DBG("audio_tokens->n_tokens = %d\n", audio_tokens->n_tokens); + + mtmd_input_chunk chunk{ + MTMD_INPUT_CHUNK_TYPE_AUDIO, + {}, // text tokens + nullptr, // image tokens + std::move(audio_tokens), + }; + cur.entries.emplace_back(std::move(chunk)); + } + + if (!ctx->aud_end.empty()) { + add_text(ctx->aud_end, true); // add audio end token + } + } + + return 0; + } + + std::vector split_batch_to_chunk(clip_image_f32_batch && batch_f32, const std::string & id) { std::vector chunks; for (auto & entry : batch_f32.entries) { mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens); - image_tokens->nx = clip_n_output_tokens(ctx->ctx_clip, entry.get()); + image_tokens->nx = clip_n_output_tokens(ctx->ctx_v, entry.get()); image_tokens->ny = 1; image_tokens->batch_f32.entries.push_back(std::move(entry)); image_tokens->id = id; @@ -382,222 +682,57 @@ int32_t mtmd_tokenize(mtmd_context * ctx, } return chunks; - }; - - for (const auto & part : parts) { - // printf("tokenizing part: %s\n", part.c_str()); - bool add_bos = &parts.front() == ∂ - auto tokens = mtmd_tokenize_text_internal(vocab, part, text->add_special && add_bos, text->parse_special); - if (tokens.empty()) { - continue; - } - mtmd_input_chunk chunk{ - MTMD_INPUT_CHUNK_TYPE_TEXT, - std::move(tokens), - nullptr, // image tokens - nullptr, // audio tokens - }; - output->entries.emplace_back(std::move(chunk)); - - // only add image/audio tokens to middle of 2 parts - // therefore, we skip handling image/audio if this is the last part - if (&parts.back() == &part) { - continue; - } - - if (!bitmaps[i_bm]->is_audio) { - // handle image - - if (i_bm >= n_bitmaps) { - LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size()); - return 1; - } - - if (!ctx->has_vision) { - LOG_ERR("%s: error: model does not support vision input\n", __func__); - return 2; - } - - // convert mtmd_bitmap to clip_image_u8 - clip_image_u8_ptr img_u8(clip_image_u8_init()); - img_u8->nx = bitmaps[i_bm]->nx; - img_u8->ny = bitmaps[i_bm]->ny; - img_u8->buf.resize(bitmaps[i_bm]->data.size()); - std::memcpy(img_u8->buf.data(), bitmaps[i_bm]->data.data(), img_u8->nx * img_u8->ny * 3); - - // preprocess image - clip_image_f32_batch batch_f32; - bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), &batch_f32); - if (!ok) { - LOG_ERR("Unable to preprocess image\n"); - return 2; - } - - // handle llava-uhd style preprocessing - if ( - ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5 - || ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6 - || ctx->slice_tmpl == MTMD_SLICE_TMPL_LLAMA4 - ) { - // split batch into chunks of single images - auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmaps[i_bm]->id); - GGML_ASSERT(chunks.size() > 0); - - auto ov_chunk = std::move(chunks.front()); - chunks.erase(chunks.begin()); - - // add overview image (first) - if (ctx->ov_img_first) { - if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) { - add_text_chunk({ctx->tok_ov_img_start}); - } - output->entries.emplace_back(std::move(ov_chunk)); - if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) { - add_text_chunk({ctx->tok_ov_img_end}); - } - } - - // add slices (or tiles) - if (!chunks.empty()) { - const int n_col = batch_f32.grid_x; - const int n_row = batch_f32.grid_y; - if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) { - add_text_chunk({ctx->tok_slices_start}); - } - for (int y = 0; y < n_row; y++) { - for (int x = 0; x < n_col; x++) { - const bool is_last_in_row = (x == n_col - 1); - if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) { - add_text_chunk({ctx->tok_sli_img_start}); - } - output->entries.emplace_back(std::move(chunks[y * n_col + x])); - if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) { - add_text_chunk({ctx->tok_sli_img_end}); - } - if (!is_last_in_row && ctx->tok_sli_img_mid != LLAMA_TOKEN_NULL) { - add_text_chunk({ctx->tok_sli_img_mid}); - } - } - if ((y != n_row - 1 || ctx->tok_row_end_trail) && ctx->tok_row_end != LLAMA_TOKEN_NULL) { - add_text_chunk({ctx->tok_row_end}); - } - } - if (ctx->tok_slices_end != LLAMA_TOKEN_NULL) { - add_text_chunk({ctx->tok_slices_end}); - } - } - - // add overview image (last) - if (!ctx->ov_img_first) { - if (ctx->tok_ov_img_start != LLAMA_TOKEN_NULL) { - add_text_chunk({ctx->tok_ov_img_start}); - } - output->entries.emplace_back(std::move(ov_chunk)); - if (ctx->tok_ov_img_end != LLAMA_TOKEN_NULL) { - add_text_chunk({ctx->tok_ov_img_end}); - } - } - - } else { - size_t n_tokens = 0; - for (const auto & entry : batch_f32.entries) { - n_tokens += clip_n_output_tokens(ctx->ctx_clip, entry.get()); - } - - mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens); - if (ctx->use_mrope) { - // for Qwen2VL, we need this information for M-RoPE decoding positions - image_tokens->nx = clip_n_output_tokens_x(ctx->ctx_clip, batch_f32.entries[0].get()); - image_tokens->ny = clip_n_output_tokens_y(ctx->ctx_clip, batch_f32.entries[0].get()); - image_tokens->use_mrope_pos = true; - } else { - // other models, we only need the total number of tokens - image_tokens->nx = n_tokens; - image_tokens->ny = 1; - } - image_tokens->batch_f32 = std::move(batch_f32); - image_tokens->id = bitmaps[i_bm]->id; // optional - - LOG_DBG("image_tokens->nx = %d\n", image_tokens->nx); - LOG_DBG("image_tokens->ny = %d\n", image_tokens->ny); - LOG_DBG("batch_f32 size = %d\n", (int)image_tokens->batch_f32.entries.size()); - - mtmd_input_chunk chunk{ - MTMD_INPUT_CHUNK_TYPE_IMAGE, - {}, // text tokens - std::move(image_tokens), - nullptr, // audio tokens - }; - output->entries.emplace_back(std::move(chunk)); - } - - i_bm++; // move to next image - continue; - - } else { - // handle audio - - if (i_bm >= n_bitmaps) { - LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size()); - return 1; - } - - if (!ctx->has_audio) { - LOG_ERR("%s: error: model does not support audio input\n", __func__); - return 2; - } - - if (bitmaps[i_bm]->data.size() == 0) { - LOG_ERR("%s: error: empty audio data\n", __func__); - return 2; - } - - // preprocess audio - GGML_ASSERT(ctx->w_filters.n_mel); // make sure we have filter preloaded - std::vector mel_spec_chunks; - const float * samples = (const float *)bitmaps[i_bm]->data.data(); - size_t n_samples = bitmaps[i_bm]->data.size() / sizeof(float); - bool ok = whisper_preprocessor::preprocess_audio(samples, n_samples, ctx->w_filters, mel_spec_chunks); - if (!ok) { - LOG_ERR("Unable to preprocess audio\n"); - return 2; - } - - // consider each mel_spec as a separate audio chunk - // TODO: maybe support batching, but this may come with memory cost - for (auto & mel_spec : mel_spec_chunks) { - clip_image_f32_ptr mel_f32(clip_image_f32_init()); - mel_f32->nx = mel_spec.n_len; - mel_f32->ny = mel_spec.n_mel; - mel_f32->buf = std::move(mel_spec.data); - size_t n_tokens = clip_n_output_tokens(ctx->ctx_clip, mel_f32.get()); - - clip_image_f32_batch batch_f32; - batch_f32.is_audio = true; - batch_f32.entries.push_back(std::move(mel_f32)); - - mtmd_audio_tokens_ptr audio_tokens(new mtmd_audio_tokens); - audio_tokens->n_tokens = n_tokens; - audio_tokens->batch_f32 = std::move(batch_f32); - audio_tokens->id = bitmaps[i_bm]->id; // optional - - LOG_DBG("audio_tokens->n_tokens = %d\n", audio_tokens->n_tokens); - - mtmd_input_chunk chunk{ - MTMD_INPUT_CHUNK_TYPE_AUDIO, - {}, // text tokens - nullptr, // image tokens - std::move(audio_tokens), - }; - output->entries.emplace_back(std::move(chunk)); - } - - i_bm++; - continue; - } } - return 0; + // for example: "a <__media__> b <__media__> c" --> "a", "<__media__>", "b", "<__media__>", "c" + static std::vector split_text(const std::string & input, const std::string & delimiter) { + std::vector result; + if (input.empty()) { + return result; + } + size_t start = 0; + size_t pos = 0; + while ((pos = input.find(delimiter, start)) != std::string::npos) { + if (pos > start) { + result.push_back(input.substr(start, pos - start)); + } + result.push_back(delimiter); + start = pos + delimiter.length(); + } + if (start < input.length()) { + result.push_back(input.substr(start)); + } + return result; + } + + // copied from common_tokenize + static std::vector mtmd_tokenize_text_internal( + const struct llama_vocab * vocab, + const std::string & text, + bool add_special, + bool parse_special) { + // upper limit for the number of tokens + int n_tokens = text.length() + 2 * add_special; + std::vector result(n_tokens); + n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); + if (n_tokens < 0) { + result.resize(-n_tokens); + int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special); + GGML_ASSERT(check == -n_tokens); + } else { + result.resize(n_tokens); + } + return result; + } +}; + +int32_t mtmd_tokenize(mtmd_context * ctx, + mtmd_input_chunks * output, + const mtmd_input_text * text, + const mtmd_bitmap ** bitmaps, + size_t n_bitmaps) { + mtmd_tokenizer tokenizer(ctx, text, bitmaps, n_bitmaps); + return tokenizer.tokenize(output); } int32_t mtmd_encode_chunk(mtmd_context * ctx, const mtmd_input_chunk * chunk) { @@ -605,41 +740,54 @@ int32_t mtmd_encode_chunk(mtmd_context * ctx, const mtmd_input_chunk * chunk) { LOG_WRN("mtmd_encode_chunk has no effect for text chunks\n"); return 0; } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) { + if (!ctx->ctx_v) { + LOG_ERR("%s: model does not support vision input\n", __func__); + return 1; + } return mtmd_encode(ctx, chunk->tokens_image.get()); } else if (chunk->type == MTMD_INPUT_CHUNK_TYPE_AUDIO) { - int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip); + if (!ctx->ctx_a) { + LOG_ERR("%s: model does not support audio input\n", __func__); + return 1; + } + int n_mmproj_embd = ctx->n_embd_text; ctx->image_embd_v.resize(chunk->tokens_audio->n_tokens * n_mmproj_embd); bool ok = clip_image_batch_encode( - ctx->ctx_clip, + ctx->ctx_a, ctx->n_threads, &chunk->tokens_audio->batch_f32, ctx->image_embd_v.data()); return ok ? 0 : 1; } - LOG_ERR("mtmd_encode_chunk: unknown chunk type %d\n", (int)chunk->type); + LOG_ERR("%s: unknown chunk type %d\n", __func__, (int)chunk->type); return 1; } int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) { - int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip); + clip_ctx * ctx_clip = ctx->ctx_v; + if (!ctx_clip) { + LOG_ERR("%s: this API does not support non-vision input, please use mtmd_encode_chunk instead\n", __func__); + return 1; + } + int n_mmproj_embd = clip_n_mmproj_embd(ctx_clip); ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd); bool ok = false; - if (clip_is_llava(ctx->ctx_clip) || clip_is_minicpmv(ctx->ctx_clip) || clip_is_glm(ctx->ctx_clip)) { + if (clip_is_llava(ctx_clip) || clip_is_minicpmv(ctx_clip) || clip_is_glm(ctx_clip)) { // TODO @ngxson : llava does not support batched encoding ; this should be fixed inside clip_image_batch_encode() const auto & entries = image_tokens->batch_f32.entries; for (size_t i = 0; i < entries.size(); i++) { - int n_tokens_per_image = clip_n_output_tokens(ctx->ctx_clip, entries[i].get()); + int n_tokens_per_image = clip_n_output_tokens(ctx_clip, entries[i].get()); ok = clip_image_encode( - ctx->ctx_clip, + ctx_clip, ctx->n_threads, entries[i].get(), ctx->image_embd_v.data() + i*n_mmproj_embd*n_tokens_per_image); } } else { ok = clip_image_batch_encode( - ctx->ctx_clip, + ctx_clip, ctx->n_threads, &image_tokens->batch_f32, ctx->image_embd_v.data()); @@ -653,8 +801,7 @@ float * mtmd_get_output_embd(mtmd_context * ctx) { } bool mtmd_decode_use_non_causal(mtmd_context * ctx) { - projector_type proj_type = clip_get_projector_type(ctx->ctx_clip); - if (proj_type == PROJECTOR_TYPE_GEMMA3) { + if (ctx->ctx_v && clip_get_projector_type(ctx->ctx_v) == PROJECTOR_TYPE_GEMMA3) { return true; } return false; @@ -665,60 +812,19 @@ bool mtmd_decode_use_mrope(mtmd_context * ctx) { } bool mtmd_support_vision(mtmd_context * ctx) { - return ctx->has_vision; + return ctx->ctx_v != nullptr; } bool mtmd_support_audio(mtmd_context * ctx) { - return ctx->has_audio; + return ctx->ctx_a != nullptr; } -// these 2 helpers below use internal clip_image_u8_ptr, -// so unfortunately they cannot moved to mtmd-helper.h -// however, in theory, user can decode image file to bitmap using -// whichever library they want, and then use mtmd_bitmap_init() to create bitmap - -mtmd_bitmap * mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len) { - if (audio_helpers::is_audio_file((const char *)buf, len)) { - std::vector pcmf32; - if (!audio_helpers::decode_audio_from_buf(buf, len, COMMON_SAMPLE_RATE, pcmf32)) { - LOG_ERR("Unable to read WAV audio file from buffer\n"); - return nullptr; - } - return mtmd_bitmap_init_from_audio(pcmf32.size(), pcmf32.data()); +int mtmd_get_audio_bitrate(mtmd_context * ctx) { + if (!ctx->ctx_a) { + return -1; } - - clip_image_u8_ptr img_u8(clip_image_u8_init()); - bool ok = clip_image_load_from_bytes(buf, len, img_u8.get()); - if (!ok) { - LOG_ERR("Unable to load image from buffer\n"); - return nullptr; - } - uint32_t nx, ny; - unsigned char * data = clip_image_u8_get_data(img_u8.get(), &nx, &ny); - return mtmd_bitmap_init(nx, ny, data); -} - -mtmd_bitmap * mtmd_helper_bitmap_init_from_file(const char * fname) { - std::vector buf; - FILE * f = fopen(fname, "rb"); - if (!f) { - LOG_ERR("Unable to open file %s: %s\n", fname, strerror(errno)); - return nullptr; - } - - fseek(f, 0, SEEK_END); - long file_size = ftell(f); - fseek(f, 0, SEEK_SET); - buf.resize(file_size); - - size_t n_read = fread(buf.data(), 1, file_size, f); - fclose(f); - if (n_read != (size_t)file_size) { - LOG_ERR("Failed to read entire file %s", fname); - return nullptr; - } - - return mtmd_helper_bitmap_init_from_buf(buf.data(), buf.size()); + // for now, we assume that all audio models have the same bitrate + return 16000; // 16kHz } // diff --git a/tools/mtmd/mtmd.h b/tools/mtmd/mtmd.h index b53f215a2f..f4ea07d3ad 100644 --- a/tools/mtmd/mtmd.h +++ b/tools/mtmd/mtmd.h @@ -3,7 +3,6 @@ #include "ggml.h" #include "llama.h" -#include "clip.h" #include #include @@ -109,6 +108,10 @@ MTMD_API bool mtmd_support_vision(mtmd_context * ctx); // whether the current model supports audio input MTMD_API bool mtmd_support_audio(mtmd_context * ctx); +// get audio bitrate in Hz, for example 16000 for Whisper +// return -1 if audio is not supported +MTMD_API int mtmd_get_audio_bitrate(mtmd_context * ctx); + // mtmd_bitmap // // if bitmap is image: @@ -209,75 +212,6 @@ MTMD_API float * mtmd_get_output_embd(mtmd_context * ctx); ///////////////////////////////////////// -// -// Helper functions (can be implemented based on other functions) -// -// Please note that these helpers are not guaranteed to be stable. -// BREAKING CHANGES are expected. -// - -// helper function to construct a mtmd_bitmap from a file -// it calls mtmd_helper_bitmap_init_from_buf() internally -// returns nullptr on failure -// this function is thread-safe -MTMD_API mtmd_bitmap * mtmd_helper_bitmap_init_from_file(const char * fname); - -// helper function to construct a mtmd_bitmap from a buffer containing a file -// supported formats: -// image: formats supported by stb_image: jpg, png, bmp, gif, etc. -// audio: formats supported by miniaudio: wav, mp3, flac -// note: audio files will be auto-detected based on magic bytes -// returns nullptr on failure -// this function is thread-safe -MTMD_API mtmd_bitmap * mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len); - -// helper to count the total number of tokens from a list of chunks, useful to keep track of KV cache -MTMD_API size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks); - -// helper to count the total position of tokens from a list of chunks, useful to keep track of n_past -// normally, n_pos is equal to n_tokens, but for M-RoPE it is different -MTMD_API llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks); - -// helper function that automatically: -// 1. run llama_decode() on text chunks -// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode() -// if any of the mtmd_encode() or llama_decode() calls return non-zero, stop and forward the error -// otherwise, returns 0 on success -// this function is NOT thread-safe -MTMD_API int32_t mtmd_helper_eval_chunks(mtmd_context * ctx, - struct llama_context * lctx, - const mtmd_input_chunks * chunks, - llama_pos n_past, - llama_seq_id seq_id, - int32_t n_batch, - bool logits_last, - llama_pos * new_n_past); - -// works like mtmd_helper_eval_chunks(), but only for a single chunk -// this function is NOT thread-safe -MTMD_API int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx, - struct llama_context * lctx, - const mtmd_input_chunk * chunk, - llama_pos n_past, - llama_seq_id seq_id, - int32_t n_batch, - bool logits_last, - llama_pos * new_n_past); - -// helper function to decode an image whose embeddings have already been calculated -// this helper will handle batching and pre/post decoding setup (for ex. gemma 3 requires non-causal attention) -// ret 0 on success, -1 on chunk not being a valid image chunk, 1 on decode failure -MTMD_API int32_t mtmd_helper_decode_image_chunk(mtmd_context * ctx, - struct llama_context * lctx, - const mtmd_input_chunk * chunk, - float * encoded_embd, - llama_pos n_past, - llama_seq_id seq_id, - int32_t n_batch, - llama_pos * new_n_past); - -///////////////////////////////////////// - // test function, to be used in test-mtmd-c-api.c MTMD_API mtmd_input_chunks * mtmd_test_create_input_chunks(void); diff --git a/tools/mtmd/test-2.mp3 b/tools/mtmd/test-2.mp3 new file mode 100644 index 0000000000..aa9d7ec2c1 Binary files /dev/null and b/tools/mtmd/test-2.mp3 differ diff --git a/tools/mtmd/tests.sh b/tools/mtmd/tests.sh index 15a37b0d22..aa00198932 100755 --- a/tools/mtmd/tests.sh +++ b/tools/mtmd/tests.sh @@ -25,80 +25,99 @@ RUN_HUGE_TESTS=false if [ "${1:-}" = "huge" ]; then RUN_HUGE_TESTS=true RUN_BIG_TESTS=true - echo "Include BIG models..." + echo "Include BIG and HUGE models..." fi ############### -arr_bin=() +arr_prefix=() arr_hf=() arr_tmpl=() # chat template +arr_file=() -add_test() { - local bin=$1 - local hf=$2 - local tmpl=${3:-""} # default to empty string if not provided - arr_bin+=("$bin") +add_test_vision() { + local hf=$1 + local tmpl=${2:-""} # default to empty string if not provided + arr_prefix+=("[vision]") arr_hf+=("$hf") arr_tmpl+=("$tmpl") + arr_file+=("test-1.jpeg") } -add_test "llama-mtmd-cli" "ggml-org/SmolVLM-500M-Instruct-GGUF:Q8_0" -add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-2.2B-Instruct-GGUF:Q4_K_M" -add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF:Q8_0" -add_test "llama-mtmd-cli" "ggml-org/gemma-3-4b-it-GGUF:Q4_K_M" -add_test "llama-mtmd-cli" "THUDM/glm-edge-v-5b-gguf:Q4_K_M" -add_test "llama-mtmd-cli" "second-state/Llava-v1.5-7B-GGUF:Q2_K" "vicuna" -add_test "llama-mtmd-cli" "cjpais/llava-1.6-mistral-7b-gguf:Q3_K_M" "vicuna" -add_test "llama-mtmd-cli" "ibm-research/granite-vision-3.2-2b-GGUF:Q4_K_M" -add_test "llama-mtmd-cli" "second-state/MiniCPM-Llama3-V-2_5-GGUF:Q2_K" # model from openbmb is corrupted -add_test "llama-mtmd-cli" "openbmb/MiniCPM-V-2_6-gguf:Q2_K" -add_test "llama-mtmd-cli" "openbmb/MiniCPM-o-2_6-gguf:Q4_0" -add_test "llama-mtmd-cli" "bartowski/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M" -add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-3B-Instruct-GGUF:Q4_K_M" -add_test "llama-mtmd-cli" "ggml-org/InternVL2_5-1B-GGUF:Q8_0" -add_test "llama-mtmd-cli" "ggml-org/InternVL3-1B-Instruct-GGUF:Q8_0" +add_test_audio() { + local hf=$1 + arr_prefix+=("[audio] ") + arr_hf+=("$hf") + arr_tmpl+=("") # no need for chat tmpl + arr_file+=("test-2.mp3") +} + +add_test_vision "ggml-org/SmolVLM-500M-Instruct-GGUF:Q8_0" +add_test_vision "ggml-org/SmolVLM2-2.2B-Instruct-GGUF:Q4_K_M" +add_test_vision "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF:Q8_0" +add_test_vision "ggml-org/gemma-3-4b-it-GGUF:Q4_K_M" +add_test_vision "THUDM/glm-edge-v-5b-gguf:Q4_K_M" +add_test_vision "second-state/Llava-v1.5-7B-GGUF:Q2_K" "vicuna" +add_test_vision "cjpais/llava-1.6-mistral-7b-gguf:Q3_K_M" "vicuna" +add_test_vision "ibm-research/granite-vision-3.2-2b-GGUF:Q4_K_M" +add_test_vision "second-state/MiniCPM-Llama3-V-2_5-GGUF:Q2_K" # model from openbmb is corrupted +add_test_vision "openbmb/MiniCPM-V-2_6-gguf:Q2_K" +add_test_vision "openbmb/MiniCPM-o-2_6-gguf:Q4_0" +add_test_vision "bartowski/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M" +add_test_vision "ggml-org/Qwen2.5-VL-3B-Instruct-GGUF:Q4_K_M" +add_test_vision "ggml-org/InternVL2_5-1B-GGUF:Q8_0" +add_test_vision "ggml-org/InternVL3-1B-Instruct-GGUF:Q8_0" +add_test_vision "ggml-org/Qwen2.5-Omni-3B-GGUF:Q4_K_M" + +add_test_audio "ggml-org/ultravox-v0_5-llama-3_2-1b-GGUF:Q8_0" +add_test_audio "ggml-org/Qwen2.5-Omni-3B-GGUF:Q4_K_M" # to test the big models, run: ./tests.sh big if [ "$RUN_BIG_TESTS" = true ]; then - add_test "llama-mtmd-cli" "ggml-org/pixtral-12b-GGUF:Q4_K_M" - add_test "llama-mtmd-cli" "ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF" "mistral-v7" - add_test "llama-mtmd-cli" "ggml-org/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M" - add_test "llama-mtmd-cli" "ggml-org/Qwen2-VL-7B-Instruct-GGUF:Q4_K_M" - add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-3B-Instruct-GGUF:Q4_K_M" - add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-7B-Instruct-GGUF:Q4_K_M" - add_test "llama-mtmd-cli" "ggml-org/InternVL3-8B-Instruct-GGUF:Q4_K_M" - add_test "llama-mtmd-cli" "ggml-org/InternVL3-14B-Instruct-GGUF:Q4_K_M" - # add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-32B-Instruct-GGUF:Q4_K_M" # does not work on my mac M3 Ultra + add_test_vision "ggml-org/pixtral-12b-GGUF:Q4_K_M" + add_test_vision "ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF" "mistral-v7" + add_test_vision "ggml-org/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M" + add_test_vision "ggml-org/Qwen2-VL-7B-Instruct-GGUF:Q4_K_M" + add_test_vision "ggml-org/Qwen2.5-VL-3B-Instruct-GGUF:Q4_K_M" + add_test_vision "ggml-org/Qwen2.5-VL-7B-Instruct-GGUF:Q4_K_M" + add_test_vision "ggml-org/InternVL3-8B-Instruct-GGUF:Q4_K_M" + add_test_vision "ggml-org/InternVL3-14B-Instruct-GGUF:Q4_K_M" + add_test_vision "ggml-org/Qwen2.5-Omni-7B-GGUF:Q4_K_M" + # add_test_vision "ggml-org/Qwen2.5-VL-32B-Instruct-GGUF:Q4_K_M" # does not work on my mac M3 Ultra + + add_test_audio "ggml-org/ultravox-v0_5-llama-3_1-8b-GGUF:Q4_K_M" + add_test_audio "ggml-org/Qwen2.5-Omni-7B-GGUF:Q4_K_M" fi # to test the huge models, run: ./tests.sh huge # this will run both the big and huge models # huge models are > 32B parameters if [ "$RUN_HUGE_TESTS" = true ]; then - add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-72B-Instruct-GGUF:Q4_K_M" - add_test "llama-mtmd-cli" "ggml-org/Llama-4-Scout-17B-16E-Instruct-GGUF:IQ1_S" + add_test_vision "ggml-org/Qwen2.5-VL-72B-Instruct-GGUF:Q4_K_M" + add_test_vision "ggml-org/Llama-4-Scout-17B-16E-Instruct-GGUF:IQ1_S" fi # these models always give the wrong answer, not sure why -# add_test "llama-mtmd-cli" "ggml-org/SmolVLM-Instruct-GGUF:Q4_K_M" -# add_test "llama-mtmd-cli" "ggml-org/SmolVLM-256M-Instruct-GGUF:Q8_0" -# add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF:Q8_0" +# add_test_vision "ggml-org/SmolVLM-Instruct-GGUF:Q4_K_M" +# add_test_vision "ggml-org/SmolVLM-256M-Instruct-GGUF:Q8_0" +# add_test_vision "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF:Q8_0" # this model has broken chat template, not usable -# add_test "llama-mtmd-cli" "cmp-nct/Yi-VL-6B-GGUF:Q5_K" -# add_test "llama-mtmd-cli" "guinmoon/MobileVLM-3B-GGUF:Q4_K_M" "deepseek" +# add_test_vision "cmp-nct/Yi-VL-6B-GGUF:Q5_K" +# add_test_vision "guinmoon/MobileVLM-3B-GGUF:Q4_K_M" "deepseek" ############### -cmake --build build -j --target "${arr_bin[@]}" +cmake --build build -j --target llama-mtmd-cli arr_res=() -for i in "${!arr_bin[@]}"; do - bin="${arr_bin[$i]}" +for i in "${!arr_hf[@]}"; do + bin="llama-mtmd-cli" + prefix="${arr_prefix[$i]}" hf="${arr_hf[$i]}" tmpl="${arr_tmpl[$i]}" + inp_file="${arr_file[$i]}" echo "Running test with binary: $bin and HF model: $hf" echo "" @@ -107,7 +126,7 @@ for i in "${!arr_bin[@]}"; do output=$(\ "$PROJ_ROOT/build/bin/$bin" \ -hf "$hf" \ - --image $SCRIPT_DIR/test-1.jpeg \ + --image $SCRIPT_DIR/$inp_file \ -p "what is the publisher name of the newspaper?" \ --temp 0 -n 128 \ ${tmpl:+--chat-template "$tmpl"} \ @@ -116,9 +135,9 @@ for i in "${!arr_bin[@]}"; do echo "$output" > $SCRIPT_DIR/output/$bin-$(echo "$hf" | tr '/' '-').log if echo "$output" | grep -iq "new york"; then - result="\033[32mOK\033[0m: $bin $hf" + result="$prefix \033[32mOK\033[0m: $bin $hf" else - result="\033[31mFAIL\033[0m: $bin $hf" + result="$prefix \033[31mFAIL\033[0m: $bin $hf" fi echo -e "$result" arr_res+=("$result") diff --git a/tools/perplexity/perplexity.cpp b/tools/perplexity/perplexity.cpp index b5cdf5beb1..189dcb3d72 100644 --- a/tools/perplexity/perplexity.cpp +++ b/tools/perplexity/perplexity.cpp @@ -361,7 +361,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), true); llama_batch batch = llama_batch_init(n_batch, 0, 1); @@ -547,7 +547,7 @@ static results_perplexity perplexity(llama_context * ctx, const common_params & const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), true); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; @@ -924,7 +924,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) { return; } - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), true); // decode all tasks [i0, i1) if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { @@ -1217,7 +1217,7 @@ static void winogrande_score(llama_context * ctx, const common_params & params) return; } - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), true); // decode all tasks [i0, i1) if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { @@ -1592,7 +1592,7 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par return; } - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), true); // decode all tasks [i0, i1) if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { @@ -1782,7 +1782,7 @@ static void kl_divergence(llama_context * ctx, const common_params & params) { } // clear the KV cache - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), true); llama_batch batch = llama_batch_init(n_batch, 0, 1); diff --git a/tools/run/run.cpp b/tools/run/run.cpp index 702c307d8b..c65afd61e0 100644 --- a/tools/run/run.cpp +++ b/tools/run/run.cpp @@ -1,3 +1,13 @@ +#include "chat.h" +#include "common.h" +#include "llama-cpp.h" +#include "log.h" + +#include "linenoise.cpp/linenoise.h" + +#define JSON_ASSERT GGML_ASSERT +#include + #if defined(_WIN32) # include # include @@ -24,13 +34,6 @@ #include #include -#include "chat.h" -#include "common.h" -#include "json.hpp" -#include "linenoise.cpp/linenoise.h" -#include "llama-cpp.h" -#include "log.h" - #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || defined(_WIN32) [[noreturn]] static void sigint_handler(int) { printf("\n" LOG_COL_DEFAULT); @@ -936,7 +939,7 @@ static int apply_chat_template(const struct common_chat_templates * tmpls, Llama // Function to tokenize the prompt static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt, std::vector & prompt_tokens, const LlamaData & llama_data) { - const bool is_first = llama_kv_self_seq_pos_max(llama_data.context.get(), 0) == 0; + const bool is_first = llama_memory_seq_pos_max(llama_get_memory(llama_data.context.get()), 0) == 0; const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true); prompt_tokens.resize(n_prompt_tokens); @@ -952,7 +955,7 @@ static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt // Check if we have enough space in the context to evaluate this batch static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) { const int n_ctx = llama_n_ctx(ctx.get()); - const int n_ctx_used = llama_kv_self_seq_pos_max(ctx.get(), 0); + const int n_ctx_used = llama_memory_seq_pos_max(llama_get_memory(ctx.get()), 0); if (n_ctx_used + batch.n_tokens > n_ctx) { printf(LOG_COL_DEFAULT "\n"); printe("context size exceeded\n"); diff --git a/tools/server/CMakeLists.txt b/tools/server/CMakeLists.txt index 17109fddbd..c2a56aaa7f 100644 --- a/tools/server/CMakeLists.txt +++ b/tools/server/CMakeLists.txt @@ -12,7 +12,6 @@ endif() set(TARGET_SRCS server.cpp utils.hpp - httplib.h ) set(PUBLIC_ASSETS index.html.gz diff --git a/tools/server/public/index.html.gz b/tools/server/public/index.html.gz index 8d4e392ff3..f8e3043421 100644 Binary files a/tools/server/public/index.html.gz and b/tools/server/public/index.html.gz differ diff --git a/tools/server/server.cpp b/tools/server/server.cpp index fe6c685ec7..2e78dcd7bf 100644 --- a/tools/server/server.cpp +++ b/tools/server/server.cpp @@ -9,10 +9,8 @@ #include "sampling.h" #include "speculative.h" #include "mtmd.h" +#include "mtmd-helper.h" -// Change JSON_ASSERT from assert() to GGML_ASSERT: -#define JSON_ASSERT GGML_ASSERT -#include "json.hpp" // mime type for sending response #define MIMETYPE_JSON "application/json; charset=utf-8" @@ -362,7 +360,7 @@ struct server_task { params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format; } params.oaicompat_chat_syntax.reasoning_format = params_base.reasoning_format; - params.oaicompat_chat_syntax.reasoning_in_content = params.stream; + params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (params_base.reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY); params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false); params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false); } @@ -2008,7 +2006,7 @@ struct server_context { } } - if (!llama_kv_self_can_shift(ctx)) { + if (!llama_memory_can_shift(llama_get_memory(ctx))) { if (params_base.ctx_shift) { params_base.ctx_shift = false; SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled"); @@ -2226,7 +2224,7 @@ struct server_context { SRV_DBG("%s", "clearing KV cache\n"); // clear the entire KV cache - llama_kv_self_clear(ctx); + llama_memory_clear(llama_get_memory(ctx), true); clean_kv_cache = false; } @@ -2912,7 +2910,7 @@ struct server_context { // Erase token cache const size_t n_erased = slot->cache_tokens.size(); - llama_kv_self_seq_rm(ctx, slot->id, -1, -1); + llama_memory_seq_rm(llama_get_memory(ctx), slot->id, -1, -1); slot->cache_tokens.clear(); auto res = std::make_unique(); @@ -2987,8 +2985,8 @@ struct server_context { SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard); - llama_kv_self_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard); - llama_kv_self_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard); + llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard); + llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.n_past, -n_discard); // add generated tokens to cache { @@ -3191,8 +3189,8 @@ struct server_context { const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c; - llama_kv_self_seq_rm (ctx, slot.id, head_p, head_c); - llama_kv_self_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift); + llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c); + llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift); for (size_t i = 0; i < n_match; i++) { slot.cache_tokens.set_token(head_p + i, slot.cache_tokens[head_c + i]); @@ -3210,13 +3208,19 @@ struct server_context { } } else { // if we don't cache the prompt, we have to remove the entire KV cache - llama_kv_self_seq_rm(ctx, slot.id, 0, -1); slot.n_past = 0; - slot.cache_tokens.clear(); // TODO: not needed, will be cleared later via "keep_first()" } if (slot.n_past > 0 && slot.n_past < (int) slot.cache_tokens.size()) { - if (llama_kv_self_seq_pos_min(ctx, slot.id) > 0) { + const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id); + if (pos_min == -1) { + SLT_ERR(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min); + GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237"); + } + + const auto n_swa = llama_model_n_swa(model); + if (pos_min > slot.n_past - n_swa) { + SLT_WRN(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min, n_swa); SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA, see %s)\n", "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055"); slot.n_past = 0; @@ -3243,9 +3247,9 @@ struct server_context { } // keep only the common part - if (!llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1)) { + if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1)) { // could not partially delete (likely using a non-Transformer model) - llama_kv_self_seq_rm(ctx, slot.id, -1, -1); + llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1); // there is no common part left slot.n_past = 0; @@ -3381,8 +3385,10 @@ struct server_context { } } + int32_t i_next = 0; + // process the created batch of tokens - for (int32_t i = 0; i < batch.n_tokens; i += n_batch) { + for (int32_t i = 0; i < batch.n_tokens; i = i_next) { const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i); llama_batch batch_view = { @@ -3427,13 +3433,18 @@ struct server_context { // retry with half the batch size to try to find a free slot in the KV cache n_batch /= 2; - i -= n_batch; - SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret); + SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret); continue; // continue loop of n_batch } + // move the head of the batch forward with the number of tokens we just processed + i_next = i + n_tokens; + + // on successful decode, restore the original batch size + n_batch = llama_n_batch(ctx); + for (auto & slot : slots) { if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) { continue; // continue loop of slots @@ -3578,7 +3589,7 @@ struct server_context { slot.cache_tokens.push_back(id); slot.cache_tokens.insert({ids.begin(), ids.end() - 1}); - llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1); + llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1); for (size_t i = 0; i < ids.size(); ++i) { completion_token_output result; @@ -4187,7 +4198,7 @@ int main(int argc, char ** argv) { throw std::runtime_error("This server does not support multimodal"); } for (auto & file : files) { - mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(file.data(), file.size())); + mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(ctx_server.mctx, file.data(), file.size())); if (!bmp.ptr) { throw std::runtime_error("Failed to load image or audio file"); } diff --git a/tools/server/tests/unit/test_tool_call.py b/tools/server/tests/unit/test_tool_call.py index 610610749b..20f048c6f6 100755 --- a/tools/server/tests/unit/test_tool_call.py +++ b/tools/server/tests/unit/test_tool_call.py @@ -499,13 +499,12 @@ def do_test_calc_result(server: ServerProcess, result_override: str | None, n_pr @pytest.mark.slow -@pytest.mark.parametrize("n_predict,reasoning_format,stream,expect_reasoning_content,expect_content,hf_repo,template_override", [ - (128, 'deepseek', CompletionMode.NORMAL, None, "^The sum of 102 and 7 is 109[\\s\\S]*", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None), - (128, None, CompletionMode.NORMAL, None, "^The sum of 102 and 7 is 109[\\s\\S]*", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None), - (1024, 'deepseek', CompletionMode.NORMAL, "I need to calculate the sum of 102 and 7[\\s\\S]*", "To find the sum of[\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None), - (1024, 'deepseek', CompletionMode.STREAMED, None, "^I need to calculate [\\s\\S]*?To find the sum of [\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None), - (1024, 'deepseek', CompletionMode.NORMAL, "First, I [\\s\\S]*", "To find the sum of[\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)), - (1024, 'deepseek', CompletionMode.STREAMED, None, "^First, I [\\s\\S]*?To find the sum of[\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)), +@pytest.mark.parametrize("stream", [CompletionMode.NORMAL, CompletionMode.STREAMED]) +@pytest.mark.parametrize("n_predict,reasoning_format,expect_reasoning_content,expect_content,hf_repo,template_override", [ + (128, 'deepseek', None, "^The sum of 102 and 7 is 109[\\s\\S]*", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None), + (128, None, None, "^The sum of 102 and 7 is 109[\\s\\S]*", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None), + (1024, 'deepseek', "I need to calculate the sum of 102 and 7[\\s\\S]*", "To find the sum of[\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None), + (1024, 'deepseek', "First, I [\\s\\S]*", "To find the sum of[\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)), # (1024, 'none', CompletionMode.NORMAL, None, "^(\\s*)?I need[\\s\\S]*?\\s*To find[\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None), # (128, 'deepseek', None, "^Okay, let me figure out the sum of 102 and 7[\\s\\S]*", "bartowski/Qwen_QwQ-32B-GGUF:Q4_K_M", None), ]) diff --git a/tools/server/tests/utils.py b/tools/server/tests/utils.py index f7e1b3b3b7..bc547ca03b 100644 --- a/tools/server/tests/utils.py +++ b/tools/server/tests/utils.py @@ -308,10 +308,12 @@ class ServerProcess: stream = data.get('stream', False) if stream: content: list[str] = [] + reasoning_content: list[str] = [] tool_calls: list[dict] = [] finish_reason: Optional[str] = None content_parts = 0 + reasoning_content_parts = 0 tool_call_parts = 0 arguments_parts = 0 @@ -322,6 +324,10 @@ class ServerProcess: assert len(choice['delta']['content']) > 0, f'Expected non empty content delta!' content.append(choice['delta']['content']) content_parts += 1 + if choice['delta'].get('reasoning_content') is not None: + assert len(choice['delta']['reasoning_content']) > 0, f'Expected non empty reasoning_content delta!' + reasoning_content.append(choice['delta']['reasoning_content']) + reasoning_content_parts += 1 if choice['delta'].get('finish_reason') is not None: finish_reason = choice['delta']['finish_reason'] for tc in choice['delta'].get('tool_calls', []): @@ -349,8 +355,10 @@ class ServerProcess: tool_call['function']['name'] = tool_call['function'].get('name', '') + fct['name'] if fct.get('arguments') is not None: tool_call['function']['arguments'] += fct['arguments'] + arguments_parts += 1 + tool_call_parts += 1 - print(f'Streamed response had {content_parts} content parts, {tool_call_parts} tool call parts incl. {arguments_parts} arguments parts') + print(f'Streamed response had {content_parts} content parts, {reasoning_content_parts} reasoning_content parts, {tool_call_parts} tool call parts incl. {arguments_parts} arguments parts') result = dict( choices=[ dict( @@ -359,6 +367,7 @@ class ServerProcess: message=dict( role='assistant', content=''.join(content) if content else None, + reasoning_content=''.join(reasoning_content) if reasoning_content else None, tool_calls=tool_calls if tool_calls else None, ), ) diff --git a/tools/server/utils.hpp b/tools/server/utils.hpp index 8456a02e6f..f3e0392a4e 100644 --- a/tools/server/utils.hpp +++ b/tools/server/utils.hpp @@ -6,17 +6,17 @@ #include "arg.h" // common_remote_get_content #include "base64.hpp" #include "mtmd.h" +#include "mtmd-helper.h" +#include "chat.h" // increase max payload length to allow use of larger context size #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576 // disable Nagle's algorithm #define CPPHTTPLIB_TCP_NODELAY true -#include "httplib.h" +#include -// Change JSON_ASSERT from assert() to GGML_ASSERT: #define JSON_ASSERT GGML_ASSERT -#include "json.hpp" -#include "chat.h" +#include #include #include @@ -264,13 +264,19 @@ static size_t validate_utf8(const std::string& text) { static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_tokens & query, const llama_tokens & doc) { llama_tokens result; + // Get EOS token - use SEP token as fallback if EOS is not available + llama_token eos_token = llama_vocab_eos(vocab); + if (eos_token == LLAMA_TOKEN_NULL) { + eos_token = llama_vocab_sep(vocab); + } + result.reserve(doc.size() + query.size() + 4); result.push_back(llama_vocab_bos(vocab)); result.insert(result.end(), query.begin(), query.end()); - result.push_back(llama_vocab_eos(vocab)); + result.push_back(eos_token); result.push_back(llama_vocab_sep(vocab)); result.insert(result.end(), doc.begin(), doc.end()); - result.push_back(llama_vocab_eos(vocab)); + result.push_back(eos_token); return result; } @@ -573,7 +579,7 @@ struct oaicompat_parser_options { // used by /chat/completions endpoint static json oaicompat_chat_params_parse( - const json & body, /* openai api json semantics */ + json & body, /* openai api json semantics */ const oaicompat_parser_options & opt, std::vector & out_files) { @@ -624,7 +630,7 @@ static json oaicompat_chat_params_parse( if (!body.contains("messages")) { throw std::runtime_error("'messages' is required"); } - json messages = body.at("messages"); + json & messages = body.at("messages"); if (!messages.is_array()) { throw std::runtime_error("Expected 'messages' to be an array"); } diff --git a/tools/server/webui/src/App.tsx b/tools/server/webui/src/App.tsx index 1b673bbaa1..02f1719d3d 100644 --- a/tools/server/webui/src/App.tsx +++ b/tools/server/webui/src/App.tsx @@ -5,21 +5,24 @@ import { AppContextProvider, useAppContext } from './utils/app.context'; import ChatScreen from './components/ChatScreen'; import SettingDialog from './components/SettingDialog'; import { Toaster } from 'react-hot-toast'; +import { ModalProvider } from './components/ModalProvider'; function App() { return ( - -
- - - }> - } /> - } /> - - - -
-
+ + +
+ + + }> + } /> + } /> + + + +
+
+
); } diff --git a/tools/server/webui/src/components/ModalProvider.tsx b/tools/server/webui/src/components/ModalProvider.tsx new file mode 100644 index 0000000000..f2ebf8e0a7 --- /dev/null +++ b/tools/server/webui/src/components/ModalProvider.tsx @@ -0,0 +1,151 @@ +import React, { createContext, useState, useContext } from 'react'; + +type ModalContextType = { + showConfirm: (message: string) => Promise; + showPrompt: ( + message: string, + defaultValue?: string + ) => Promise; + showAlert: (message: string) => Promise; +}; +const ModalContext = createContext(null!); + +interface ModalState { + isOpen: boolean; + message: string; + defaultValue?: string; + resolve: ((value: T) => void) | null; +} + +export function ModalProvider({ children }: { children: React.ReactNode }) { + const [confirmState, setConfirmState] = useState>({ + isOpen: false, + message: '', + resolve: null, + }); + const [promptState, setPromptState] = useState< + ModalState + >({ isOpen: false, message: '', resolve: null }); + const [alertState, setAlertState] = useState>({ + isOpen: false, + message: '', + resolve: null, + }); + const inputRef = React.useRef(null); + + const showConfirm = (message: string): Promise => { + return new Promise((resolve) => { + setConfirmState({ isOpen: true, message, resolve }); + }); + }; + + const showPrompt = ( + message: string, + defaultValue?: string + ): Promise => { + return new Promise((resolve) => { + setPromptState({ isOpen: true, message, defaultValue, resolve }); + }); + }; + + const showAlert = (message: string): Promise => { + return new Promise((resolve) => { + setAlertState({ isOpen: true, message, resolve }); + }); + }; + + const handleConfirm = (result: boolean) => { + confirmState.resolve?.(result); + setConfirmState({ isOpen: false, message: '', resolve: null }); + }; + + const handlePrompt = (result?: string) => { + promptState.resolve?.(result); + setPromptState({ isOpen: false, message: '', resolve: null }); + }; + + const handleAlertClose = () => { + alertState.resolve?.(); + setAlertState({ isOpen: false, message: '', resolve: null }); + }; + + return ( + + {children} + + {/* Confirm Modal */} + {confirmState.isOpen && ( + +
+

{confirmState.message}

+
+ + +
+
+
+ )} + + {/* Prompt Modal */} + {promptState.isOpen && ( + +
+

{promptState.message}

+ { + if (e.key === 'Enter') { + handlePrompt((e.target as HTMLInputElement).value); + } + }} + /> +
+ + +
+
+
+ )} + + {/* Alert Modal */} + {alertState.isOpen && ( + +
+

{alertState.message}

+
+ +
+
+
+ )} +
+ ); +} + +export function useModals() { + const context = useContext(ModalContext); + if (!context) throw new Error('useModals must be used within ModalProvider'); + return context; +} diff --git a/tools/server/webui/src/components/SettingDialog.tsx b/tools/server/webui/src/components/SettingDialog.tsx index e4684be7e0..45a8d73b00 100644 --- a/tools/server/webui/src/components/SettingDialog.tsx +++ b/tools/server/webui/src/components/SettingDialog.tsx @@ -13,6 +13,7 @@ import { SquaresPlusIcon, } from '@heroicons/react/24/outline'; import { OpenInNewTab } from '../utils/common'; +import { useModals } from './ModalProvider'; type SettKey = keyof typeof CONFIG_DEFAULT; @@ -282,14 +283,15 @@ export default function SettingDialog({ const [localConfig, setLocalConfig] = useState( JSON.parse(JSON.stringify(config)) ); + const { showConfirm, showAlert } = useModals(); - const resetConfig = () => { - if (window.confirm('Are you sure you want to reset all settings?')) { + const resetConfig = async () => { + if (await showConfirm('Are you sure you want to reset all settings?')) { setLocalConfig(CONFIG_DEFAULT); } }; - const handleSave = () => { + const handleSave = async () => { // copy the local config to prevent direct mutation const newConfig: typeof CONFIG_DEFAULT = JSON.parse( JSON.stringify(localConfig) @@ -302,14 +304,14 @@ export default function SettingDialog({ const mustBeNumeric = isNumeric(CONFIG_DEFAULT[key as SettKey]); if (mustBeString) { if (!isString(value)) { - alert(`Value for ${key} must be string`); + await showAlert(`Value for ${key} must be string`); return; } } else if (mustBeNumeric) { const trimmedValue = value.toString().trim(); const numVal = Number(trimmedValue); if (isNaN(numVal) || !isNumeric(numVal) || trimmedValue.length === 0) { - alert(`Value for ${key} must be numeric`); + await showAlert(`Value for ${key} must be numeric`); return; } // force conversion to number @@ -317,7 +319,7 @@ export default function SettingDialog({ newConfig[key] = numVal; } else if (mustBeBoolean) { if (!isBoolean(value)) { - alert(`Value for ${key} must be boolean`); + await showAlert(`Value for ${key} must be boolean`); return; } } else { diff --git a/tools/server/webui/src/components/Sidebar.tsx b/tools/server/webui/src/components/Sidebar.tsx index 8cac52f4c6..a77cb83b45 100644 --- a/tools/server/webui/src/components/Sidebar.tsx +++ b/tools/server/webui/src/components/Sidebar.tsx @@ -14,6 +14,7 @@ import { import { BtnWithTooltips } from '../utils/common'; import { useAppContext } from '../utils/app.context'; import toast from 'react-hot-toast'; +import { useModals } from './ModalProvider'; export default function Sidebar() { const params = useParams(); @@ -38,6 +39,7 @@ export default function Sidebar() { StorageUtils.offConversationChanged(handleConversationChange); }; }, []); + const { showConfirm, showPrompt } = useModals(); const groupedConv = useMemo( () => groupConversationsByDate(conversations), @@ -130,7 +132,7 @@ export default function Sidebar() { onSelect={() => { navigate(`/chat/${conv.id}`); }} - onDelete={() => { + onDelete={async () => { if (isGenerating(conv.id)) { toast.error( 'Cannot delete conversation while generating' @@ -138,7 +140,7 @@ export default function Sidebar() { return; } if ( - window.confirm( + await showConfirm( 'Are you sure to delete this conversation?' ) ) { @@ -167,14 +169,14 @@ export default function Sidebar() { document.body.removeChild(a); URL.revokeObjectURL(url); }} - onRename={() => { + onRename={async () => { if (isGenerating(conv.id)) { toast.error( 'Cannot rename conversation while generating' ); return; } - const newName = window.prompt( + const newName = await showPrompt( 'Enter new name for the conversation', conv.name ); diff --git a/tools/tts/tts.cpp b/tools/tts/tts.cpp index a7c536eea3..a71e9bf5b5 100644 --- a/tools/tts/tts.cpp +++ b/tools/tts/tts.cpp @@ -5,7 +5,9 @@ #include "sampling.h" #include "log.h" #include "llama.h" -#include "json.hpp" + +#define JSON_ASSERT GGML_ASSERT +#include #include #include diff --git a/tools/server/httplib.h b/vendor/cpp-httplib/httplib.h similarity index 99% rename from tools/server/httplib.h rename to vendor/cpp-httplib/httplib.h index 0f981dc895..0aa4e62746 100644 --- a/tools/server/httplib.h +++ b/vendor/cpp-httplib/httplib.h @@ -8,7 +8,7 @@ #ifndef CPPHTTPLIB_HTTPLIB_H #define CPPHTTPLIB_HTTPLIB_H -#define CPPHTTPLIB_VERSION "0.20.0" +#define CPPHTTPLIB_VERSION "0.20.1" /* * Configuration @@ -145,6 +145,10 @@ #define CPPHTTPLIB_LISTEN_BACKLOG 5 #endif +#ifndef CPPHTTPLIB_MAX_LINE_LENGTH +#define CPPHTTPLIB_MAX_LINE_LENGTH 32768 +#endif + /* * Headers */ @@ -3067,6 +3071,11 @@ inline bool stream_line_reader::getline() { #endif for (size_t i = 0;; i++) { + if (size() >= CPPHTTPLIB_MAX_LINE_LENGTH) { + // Treat exceptionally long lines as an error to + // prevent infinite loops/memory exhaustion + return false; + } char byte; auto n = strm_.read(&byte, 1); @@ -6055,6 +6064,8 @@ inline void calc_actual_timeout(time_t max_timeout_msec, time_t duration_msec, auto actual_timeout_msec = (std::min)(max_timeout_msec - duration_msec, timeout_msec); + if (actual_timeout_msec < 0) { actual_timeout_msec = 0; } + actual_timeout_sec = actual_timeout_msec / 1000; actual_timeout_usec = (actual_timeout_msec % 1000) * 1000; } @@ -7327,8 +7338,9 @@ Server::process_request(Stream &strm, const std::string &remote_addr, } // Setup `is_connection_closed` method - req.is_connection_closed = [&]() { - return !detail::is_socket_alive(strm.socket()); + auto sock = strm.socket(); + req.is_connection_closed = [sock]() { + return !detail::is_socket_alive(sock); }; // Routing diff --git a/tools/mtmd/miniaudio.h b/vendor/miniaudio/miniaudio.h similarity index 100% rename from tools/mtmd/miniaudio.h rename to vendor/miniaudio/miniaudio.h diff --git a/common/minja/chat-template.hpp b/vendor/minja/chat-template.hpp similarity index 99% rename from common/minja/chat-template.hpp rename to vendor/minja/chat-template.hpp index c930a587a8..ab5b521dd4 100644 --- a/common/minja/chat-template.hpp +++ b/vendor/minja/chat-template.hpp @@ -22,7 +22,7 @@ #include #include -#include +#include using json = nlohmann::ordered_json; diff --git a/common/minja/minja.hpp b/vendor/minja/minja.hpp similarity index 99% rename from common/minja/minja.hpp rename to vendor/minja/minja.hpp index b3b00547d8..f9658ddc01 100644 --- a/common/minja/minja.hpp +++ b/vendor/minja/minja.hpp @@ -29,7 +29,7 @@ #include #include -#include +#include using json = nlohmann::ordered_json; diff --git a/common/json.hpp b/vendor/nlohmann/json.hpp similarity index 94% rename from common/json.hpp rename to vendor/nlohmann/json.hpp index a858728c4c..82d69f7c5d 100644 --- a/common/json.hpp +++ b/vendor/nlohmann/json.hpp @@ -1,9 +1,9 @@ // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT /****************************************************************************\ @@ -34,10 +34,10 @@ // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -47,10 +47,10 @@ // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -59,20 +59,24 @@ #ifndef JSON_SKIP_LIBRARY_VERSION_CHECK #if defined(NLOHMANN_JSON_VERSION_MAJOR) && defined(NLOHMANN_JSON_VERSION_MINOR) && defined(NLOHMANN_JSON_VERSION_PATCH) - #if NLOHMANN_JSON_VERSION_MAJOR != 3 || NLOHMANN_JSON_VERSION_MINOR != 11 || NLOHMANN_JSON_VERSION_PATCH != 3 + #if NLOHMANN_JSON_VERSION_MAJOR != 3 || NLOHMANN_JSON_VERSION_MINOR != 12 || NLOHMANN_JSON_VERSION_PATCH != 0 #warning "Already included a different version of the library!" #endif #endif #endif #define NLOHMANN_JSON_VERSION_MAJOR 3 // NOLINT(modernize-macro-to-enum) -#define NLOHMANN_JSON_VERSION_MINOR 11 // NOLINT(modernize-macro-to-enum) -#define NLOHMANN_JSON_VERSION_PATCH 3 // NOLINT(modernize-macro-to-enum) +#define NLOHMANN_JSON_VERSION_MINOR 12 // NOLINT(modernize-macro-to-enum) +#define NLOHMANN_JSON_VERSION_PATCH 0 // NOLINT(modernize-macro-to-enum) #ifndef JSON_DIAGNOSTICS #define JSON_DIAGNOSTICS 0 #endif +#ifndef JSON_DIAGNOSTIC_POSITIONS + #define JSON_DIAGNOSTIC_POSITIONS 0 +#endif + #ifndef JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON #define JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON 0 #endif @@ -83,6 +87,12 @@ #define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS #endif +#if JSON_DIAGNOSTIC_POSITIONS + #define NLOHMANN_JSON_ABI_TAG_DIAGNOSTIC_POSITIONS _dp +#else + #define NLOHMANN_JSON_ABI_TAG_DIAGNOSTIC_POSITIONS +#endif + #if JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON #define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON _ldvcmp #else @@ -94,14 +104,15 @@ #endif // Construct the namespace ABI tags component -#define NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b) json_abi ## a ## b -#define NLOHMANN_JSON_ABI_TAGS_CONCAT(a, b) \ - NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b) +#define NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b, c) json_abi ## a ## b ## c +#define NLOHMANN_JSON_ABI_TAGS_CONCAT(a, b, c) \ + NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b, c) #define NLOHMANN_JSON_ABI_TAGS \ NLOHMANN_JSON_ABI_TAGS_CONCAT( \ NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS, \ - NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON) + NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON, \ + NLOHMANN_JSON_ABI_TAG_DIAGNOSTIC_POSITIONS) // Construct the namespace version component #define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch) \ @@ -149,10 +160,10 @@ // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -162,6 +173,9 @@ #include // forward_list #include // inserter, front_inserter, end #include // map +#ifdef JSON_HAS_CPP_17 + #include // optional +#endif #include // string #include // tuple, make_tuple #include // is_arithmetic, is_same, is_enum, underlying_type, is_convertible @@ -172,10 +186,10 @@ // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -192,10 +206,10 @@ // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -208,10 +222,10 @@ // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -220,10 +234,10 @@ // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -233,10 +247,10 @@ // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -320,11 +334,11 @@ NLOHMANN_JSON_NAMESPACE_END // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann -// SPDX-FileCopyrightText: 2016-2021 Evan Nemerson +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann +// SPDX-FileCopyrightText: 2016 - 2021 Evan Nemerson // SPDX-License-Identifier: MIT /* Hedley - https://nemequ.github.io/hedley @@ -2384,15 +2398,20 @@ JSON_HEDLEY_DIAGNOSTIC_POP // C++ language standard detection // if the user manually specified the used c++ version this is skipped -#if !defined(JSON_HAS_CPP_20) && !defined(JSON_HAS_CPP_17) && !defined(JSON_HAS_CPP_14) && !defined(JSON_HAS_CPP_11) - #if (defined(__cplusplus) && __cplusplus >= 202002L) || (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L) +#if !defined(JSON_HAS_CPP_23) && !defined(JSON_HAS_CPP_20) && !defined(JSON_HAS_CPP_17) && !defined(JSON_HAS_CPP_14) && !defined(JSON_HAS_CPP_11) + #if (defined(__cplusplus) && __cplusplus > 202002L) || (defined(_MSVC_LANG) && _MSVC_LANG > 202002L) + #define JSON_HAS_CPP_23 #define JSON_HAS_CPP_20 #define JSON_HAS_CPP_17 #define JSON_HAS_CPP_14 - #elif (defined(__cplusplus) && __cplusplus >= 201703L) || (defined(_HAS_CXX17) && _HAS_CXX17 == 1) // fix for issue #464 + #elif (defined(__cplusplus) && __cplusplus > 201703L) || (defined(_MSVC_LANG) && _MSVC_LANG > 201703L) + #define JSON_HAS_CPP_20 #define JSON_HAS_CPP_17 #define JSON_HAS_CPP_14 - #elif (defined(__cplusplus) && __cplusplus >= 201402L) || (defined(_HAS_CXX14) && _HAS_CXX14 == 1) + #elif (defined(__cplusplus) && __cplusplus > 201402L) || (defined(_HAS_CXX17) && _HAS_CXX17 == 1) // fix for issue #464 + #define JSON_HAS_CPP_17 + #define JSON_HAS_CPP_14 + #elif (defined(__cplusplus) && __cplusplus > 201103L) || (defined(_HAS_CXX14) && _HAS_CXX14 == 1) #define JSON_HAS_CPP_14 #endif // the cpp 11 flag is always specified because it is the minimal required version @@ -2568,7 +2587,9 @@ JSON_HEDLEY_DIAGNOSTIC_POP template \ inline void to_json(BasicJsonType& j, const ENUM_TYPE& e) \ { \ + /* NOLINTNEXTLINE(modernize-type-traits) we use C++11 */ \ static_assert(std::is_enum::value, #ENUM_TYPE " must be an enum!"); \ + /* NOLINTNEXTLINE(modernize-avoid-c-arrays) we don't want to depend on */ \ static const std::pair m[] = __VA_ARGS__; \ auto it = std::find_if(std::begin(m), std::end(m), \ [e](const std::pair& ej_pair) -> bool \ @@ -2580,7 +2601,9 @@ JSON_HEDLEY_DIAGNOSTIC_POP template \ inline void from_json(const BasicJsonType& j, ENUM_TYPE& e) \ { \ + /* NOLINTNEXTLINE(modernize-type-traits) we use C++11 */ \ static_assert(std::is_enum::value, #ENUM_TYPE " must be an enum!"); \ + /* NOLINTNEXTLINE(modernize-avoid-c-arrays) we don't want to depend on */ \ static const std::pair m[] = __VA_ARGS__; \ auto it = std::find_if(std::begin(m), std::end(m), \ [&j](const std::pair& ej_pair) -> bool \ @@ -2743,42 +2766,146 @@ JSON_HEDLEY_DIAGNOSTIC_POP #define NLOHMANN_JSON_TO(v1) nlohmann_json_j[#v1] = nlohmann_json_t.v1; #define NLOHMANN_JSON_FROM(v1) nlohmann_json_j.at(#v1).get_to(nlohmann_json_t.v1); -#define NLOHMANN_JSON_FROM_WITH_DEFAULT(v1) nlohmann_json_t.v1 = nlohmann_json_j.value(#v1, nlohmann_json_default_obj.v1); +#define NLOHMANN_JSON_FROM_WITH_DEFAULT(v1) nlohmann_json_t.v1 = !nlohmann_json_j.is_null() ? nlohmann_json_j.value(#v1, nlohmann_json_default_obj.v1) : nlohmann_json_default_obj.v1; /*! @brief macro @def NLOHMANN_DEFINE_TYPE_INTRUSIVE @since version 3.9.0 +@sa https://json.nlohmann.me/api/macros/nlohmann_define_type_intrusive/ */ #define NLOHMANN_DEFINE_TYPE_INTRUSIVE(Type, ...) \ - friend void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \ - friend void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM, __VA_ARGS__)) } + template::value, int> = 0> \ + friend void to_json(BasicJsonType& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \ + template::value, int> = 0> \ + friend void from_json(const BasicJsonType& nlohmann_json_j, Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM, __VA_ARGS__)) } +/*! +@brief macro +@def NLOHMANN_DEFINE_TYPE_INTRUSIVE_WITH_DEFAULT +@since version 3.11.0 +@sa https://json.nlohmann.me/api/macros/nlohmann_define_type_intrusive/ +*/ #define NLOHMANN_DEFINE_TYPE_INTRUSIVE_WITH_DEFAULT(Type, ...) \ - friend void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \ - friend void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { const Type nlohmann_json_default_obj{}; NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM_WITH_DEFAULT, __VA_ARGS__)) } + template::value, int> = 0> \ + friend void to_json(BasicJsonType& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \ + template::value, int> = 0> \ + friend void from_json(const BasicJsonType& nlohmann_json_j, Type& nlohmann_json_t) { const Type nlohmann_json_default_obj{}; NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM_WITH_DEFAULT, __VA_ARGS__)) } +/*! +@brief macro +@def NLOHMANN_DEFINE_TYPE_INTRUSIVE_ONLY_SERIALIZE +@since version 3.11.3 +@sa https://json.nlohmann.me/api/macros/nlohmann_define_type_intrusive/ +*/ #define NLOHMANN_DEFINE_TYPE_INTRUSIVE_ONLY_SERIALIZE(Type, ...) \ - friend void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } + template::value, int> = 0> \ + friend void to_json(BasicJsonType& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } /*! @brief macro @def NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE @since version 3.9.0 +@sa https://json.nlohmann.me/api/macros/nlohmann_define_type_non_intrusive/ */ #define NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE(Type, ...) \ - inline void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \ - inline void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM, __VA_ARGS__)) } - -#define NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE_ONLY_SERIALIZE(Type, ...) \ - inline void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } + template::value, int> = 0> \ + void to_json(BasicJsonType& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \ + template::value, int> = 0> \ + void from_json(const BasicJsonType& nlohmann_json_j, Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM, __VA_ARGS__)) } +/*! +@brief macro +@def NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE_WITH_DEFAULT +@since version 3.11.0 +@sa https://json.nlohmann.me/api/macros/nlohmann_define_type_non_intrusive/ +*/ #define NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE_WITH_DEFAULT(Type, ...) \ - inline void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \ - inline void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { const Type nlohmann_json_default_obj{}; NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM_WITH_DEFAULT, __VA_ARGS__)) } + template::value, int> = 0> \ + void to_json(BasicJsonType& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \ + template::value, int> = 0> \ + void from_json(const BasicJsonType& nlohmann_json_j, Type& nlohmann_json_t) { const Type nlohmann_json_default_obj{}; NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM_WITH_DEFAULT, __VA_ARGS__)) } + +/*! +@brief macro +@def NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE_ONLY_SERIALIZE +@since version 3.11.3 +@sa https://json.nlohmann.me/api/macros/nlohmann_define_type_non_intrusive/ +*/ +#define NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE_ONLY_SERIALIZE(Type, ...) \ + template::value, int> = 0> \ + void to_json(BasicJsonType& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } + +/*! +@brief macro +@def NLOHMANN_DEFINE_DERIVED_TYPE_INTRUSIVE +@since version 3.12.0 +@sa https://json.nlohmann.me/api/macros/nlohmann_define_derived_type/ +*/ +#define NLOHMANN_DEFINE_DERIVED_TYPE_INTRUSIVE(Type, BaseType, ...) \ + template::value, int> = 0> \ + friend void to_json(BasicJsonType& nlohmann_json_j, const Type& nlohmann_json_t) { nlohmann::to_json(nlohmann_json_j, static_cast(nlohmann_json_t)); NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \ + template::value, int> = 0> \ + friend void from_json(const BasicJsonType& nlohmann_json_j, Type& nlohmann_json_t) { nlohmann::from_json(nlohmann_json_j, static_cast(nlohmann_json_t)); NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM, __VA_ARGS__)) } + +/*! +@brief macro +@def NLOHMANN_DEFINE_DERIVED_TYPE_INTRUSIVE_WITH_DEFAULT +@since version 3.12.0 +@sa https://json.nlohmann.me/api/macros/nlohmann_define_derived_type/ +*/ +#define NLOHMANN_DEFINE_DERIVED_TYPE_INTRUSIVE_WITH_DEFAULT(Type, BaseType, ...) \ + template::value, int> = 0> \ + friend void to_json(BasicJsonType& nlohmann_json_j, const Type& nlohmann_json_t) { nlohmann::to_json(nlohmann_json_j, static_cast(nlohmann_json_t)); NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \ + template::value, int> = 0> \ + friend void from_json(const BasicJsonType& nlohmann_json_j, Type& nlohmann_json_t) { nlohmann::from_json(nlohmann_json_j, static_cast(nlohmann_json_t)); const Type nlohmann_json_default_obj{}; NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM_WITH_DEFAULT, __VA_ARGS__)) } + +/*! +@brief macro +@def NLOHMANN_DEFINE_DERIVED_TYPE_INTRUSIVE_ONLY_SERIALIZE +@since version 3.12.0 +@sa https://json.nlohmann.me/api/macros/nlohmann_define_derived_type/ +*/ +#define NLOHMANN_DEFINE_DERIVED_TYPE_INTRUSIVE_ONLY_SERIALIZE(Type, BaseType, ...) \ + template::value, int> = 0> \ + friend void to_json(BasicJsonType& nlohmann_json_j, const Type& nlohmann_json_t) { nlohmann::to_json(nlohmann_json_j, static_cast(nlohmann_json_t)); NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } + +/*! +@brief macro +@def NLOHMANN_DEFINE_DERIVED_TYPE_NON_INTRUSIVE +@since version 3.12.0 +@sa https://json.nlohmann.me/api/macros/nlohmann_define_derived_type/ +*/ +#define NLOHMANN_DEFINE_DERIVED_TYPE_NON_INTRUSIVE(Type, BaseType, ...) \ + template::value, int> = 0> \ + void to_json(BasicJsonType& nlohmann_json_j, const Type& nlohmann_json_t) { nlohmann::to_json(nlohmann_json_j, static_cast(nlohmann_json_t)); NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \ + template::value, int> = 0> \ + void from_json(const BasicJsonType& nlohmann_json_j, Type& nlohmann_json_t) { nlohmann::from_json(nlohmann_json_j, static_cast(nlohmann_json_t)); NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM, __VA_ARGS__)) } + +/*! +@brief macro +@def NLOHMANN_DEFINE_DERIVED_TYPE_NON_INTRUSIVE_WITH_DEFAULT +@since version 3.12.0 +@sa https://json.nlohmann.me/api/macros/nlohmann_define_derived_type/ +*/ +#define NLOHMANN_DEFINE_DERIVED_TYPE_NON_INTRUSIVE_WITH_DEFAULT(Type, BaseType, ...) \ + template::value, int> = 0> \ + void to_json(BasicJsonType& nlohmann_json_j, const Type& nlohmann_json_t) { nlohmann::to_json(nlohmann_json_j, static_cast(nlohmann_json_t)); NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \ + template::value, int> = 0> \ + void from_json(const BasicJsonType& nlohmann_json_j, Type& nlohmann_json_t) { nlohmann::from_json(nlohmann_json_j, static_cast(nlohmann_json_t)); const Type nlohmann_json_default_obj{}; NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM_WITH_DEFAULT, __VA_ARGS__)) } + +/*! +@brief macro +@def NLOHMANN_DEFINE_DERIVED_TYPE_NON_INTRUSIVE_ONLY_SERIALIZE +@since version 3.12.0 +@sa https://json.nlohmann.me/api/macros/nlohmann_define_derived_type/ +*/ +#define NLOHMANN_DEFINE_DERIVED_TYPE_NON_INTRUSIVE_ONLY_SERIALIZE(Type, BaseType, ...) \ + template::value, int> = 0> \ + void to_json(BasicJsonType& nlohmann_json_j, const Type& nlohmann_json_t) { nlohmann::to_json(nlohmann_json_j, static_cast(nlohmann_json_t)); NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } // inspired from https://stackoverflow.com/a/26745591 -// allows to call any std function as if (e.g. with begin): +// allows calling any std function as if (e.g., with begin): // using std::begin; begin(x); // // it allows using the detected idiom to retrieve the return type @@ -2939,10 +3066,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -3014,10 +3141,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -3056,10 +3183,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-FileCopyrightText: 2018 The Abseil Authors // SPDX-License-Identifier: MIT @@ -3219,7 +3346,7 @@ struct static_const #endif template -inline constexpr std::array make_array(Args&& ... args) +constexpr std::array make_array(Args&& ... args) { return std::array {{static_cast(std::forward(args))...}}; } @@ -3230,27 +3357,27 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT #include // numeric_limits +#include // char_traits +#include // tuple #include // false_type, is_constructible, is_integral, is_same, true_type #include // declval -#include // tuple -#include // char_traits // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -3293,7 +3420,7 @@ struct iterator_traits template struct iterator_traits < T, enable_if_t < !std::is_pointer::value >> - : iterator_types + : iterator_types { }; @@ -3315,10 +3442,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -3335,10 +3462,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -3359,10 +3486,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT #ifndef INCLUDE_NLOHMANN_JSON_FWD_HPP_ @@ -3624,7 +3751,7 @@ struct char_traits : std::char_traits static constexpr int_type eof() noexcept { - return static_cast(EOF); + return static_cast(std::char_traits::eof()); } }; @@ -3648,7 +3775,7 @@ struct char_traits : std::char_traits static constexpr int_type eof() noexcept { - return static_cast(EOF); + return static_cast(std::char_traits::eof()); } }; @@ -3674,19 +3801,19 @@ struct is_default_constructible : std::is_default_constructible {}; template struct is_default_constructible> - : conjunction, is_default_constructible> {}; + : conjunction, is_default_constructible> {}; template struct is_default_constructible> - : conjunction, is_default_constructible> {}; + : conjunction, is_default_constructible> {}; template struct is_default_constructible> - : conjunction...> {}; + : conjunction...> {}; template struct is_default_constructible> - : conjunction...> {}; + : conjunction...> {}; template struct is_constructible : std::is_constructible {}; @@ -3884,8 +4011,8 @@ is_detected::value&& // special case for types like std::filesystem::path whose iterator's value_type are themselves // c.f. https://github.com/nlohmann/json/pull/3073 !std::is_same>::value&& - is_complete_type < - detected_t>::value >> +is_complete_type < +detected_t>::value >> { using value_type = range_value_t; @@ -4008,12 +4135,12 @@ using is_usable_as_key_type = typename std::conditional < template> using is_usable_as_basic_json_key_type = typename std::conditional < - is_usable_as_key_type::value - && !is_json_iterator_of::value, - std::true_type, - std::false_type >::type; + is_usable_as_key_type::value + && !is_json_iterator_of::value, + std::true_type, + std::false_type >::type; template using detect_erase_with_key_type = decltype(std::declval().erase(std::declval())); @@ -4147,7 +4274,7 @@ struct value_in_range_of_impl1 }; template -inline constexpr bool value_in_range_of(T val) +constexpr bool value_in_range_of(T val) { return value_in_range_of_impl1::test(val); } @@ -4163,7 +4290,7 @@ namespace impl { template -inline constexpr bool is_c_string() +constexpr bool is_c_string() { using TUnExt = typename std::remove_extent::type; using TUnCVExt = typename std::remove_cv::type; @@ -4191,7 +4318,7 @@ namespace impl { template -inline constexpr bool is_transparent() +constexpr bool is_transparent() { return is_detected::value; } @@ -4210,10 +4337,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -4358,6 +4485,18 @@ inline OutStringType concat(Args && ... args) NLOHMANN_JSON_NAMESPACE_END +// With -Wweak-vtables, Clang will complain about the exception classes as they +// have no out-of-line virtual method definitions and their vtable will be +// emitted in every translation unit. This issue cannot be fixed with a +// header-only library as there is no implementation file to move these +// functions to. As a result, we suppress this warning here to avoid client +// code to stumble over this. See https://github.com/nlohmann/json/issues/4087 +// for a discussion. +#if defined(__clang__) + #pragma clang diagnostic push + #pragma clang diagnostic ignored "-Wweak-vtables" +#endif + NLOHMANN_JSON_NAMESPACE_BEGIN namespace detail { @@ -4452,16 +4591,34 @@ class exception : public std::exception { return concat(a, '/', detail::escape(b)); }); - return concat('(', str, ") "); + + return concat('(', str, ") ", get_byte_positions(leaf_element)); #else - static_cast(leaf_element); - return ""; + return get_byte_positions(leaf_element); #endif } private: /// an exception object as storage for error messages std::runtime_error m; +#if JSON_DIAGNOSTIC_POSITIONS + template + static std::string get_byte_positions(const BasicJsonType* leaf_element) + { + if ((leaf_element->start_pos() != std::string::npos) && (leaf_element->end_pos() != std::string::npos)) + { + return concat("(bytes ", std::to_string(leaf_element->start_pos()), "-", std::to_string(leaf_element->end_pos()), ") "); + } + return ""; + } +#else + template + static std::string get_byte_positions(const BasicJsonType* leaf_element) + { + static_cast(leaf_element); + return ""; + } +#endif }; /// @brief exception indicating a parse error @@ -4589,6 +4746,10 @@ class other_error : public exception } // namespace detail NLOHMANN_JSON_NAMESPACE_END +#if defined(__clang__) + #pragma clang diagnostic pop +#endif + // #include // #include @@ -4596,10 +4757,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -4620,10 +4781,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -4640,7 +4801,7 @@ namespace std_fs = std::experimental::filesystem; } // namespace detail NLOHMANN_JSON_NAMESPACE_END #elif JSON_HAS_FILESYSTEM -#include +#include // NOLINT(build/c++17) NLOHMANN_JSON_NAMESPACE_BEGIN namespace detail { @@ -4670,6 +4831,24 @@ inline void from_json(const BasicJsonType& j, typename std::nullptr_t& n) n = nullptr; } +#ifdef JSON_HAS_CPP_17 +#ifndef JSON_USE_IMPLICIT_CONVERSIONS +template +void from_json(const BasicJsonType& j, std::optional& opt) +{ + if (j.is_null()) + { + opt = std::nullopt; + } + else + { + opt.emplace(j.template get()); + } +} + +#endif // JSON_USE_IMPLICIT_CONVERSIONS +#endif // JSON_HAS_CPP_17 + // overloads for basic_json template parameters template < typename BasicJsonType, typename ArithmeticType, enable_if_t < std::is_arithmetic::value&& @@ -4817,6 +4996,54 @@ auto from_json(const BasicJsonType& j, T (&arr)[N]) // NOLINT(cppcoreguidelines } } +template +auto from_json(const BasicJsonType& j, T (&arr)[N1][N2]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays) +-> decltype(j.template get(), void()) +{ + for (std::size_t i1 = 0; i1 < N1; ++i1) + { + for (std::size_t i2 = 0; i2 < N2; ++i2) + { + arr[i1][i2] = j.at(i1).at(i2).template get(); + } + } +} + +template +auto from_json(const BasicJsonType& j, T (&arr)[N1][N2][N3]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays) +-> decltype(j.template get(), void()) +{ + for (std::size_t i1 = 0; i1 < N1; ++i1) + { + for (std::size_t i2 = 0; i2 < N2; ++i2) + { + for (std::size_t i3 = 0; i3 < N3; ++i3) + { + arr[i1][i2][i3] = j.at(i1).at(i2).at(i3).template get(); + } + } + } +} + +template +auto from_json(const BasicJsonType& j, T (&arr)[N1][N2][N3][N4]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays) +-> decltype(j.template get(), void()) +{ + for (std::size_t i1 = 0; i1 < N1; ++i1) + { + for (std::size_t i2 = 0; i2 < N2; ++i2) + { + for (std::size_t i3 = 0; i3 < N3; ++i3) + { + for (std::size_t i4 = 0; i4 < N4; ++i4) + { + arr[i1][i2][i3][i4] = j.at(i1).at(i2).at(i3).at(i4).template get(); + } + } + } + } +} + template inline void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/) { @@ -4902,7 +5129,7 @@ void()) template < typename BasicJsonType, typename T, std::size_t... Idx > std::array from_json_inplace_array_impl(BasicJsonType&& j, - identity_tag> /*unused*/, index_sequence /*unused*/) + identity_tag> /*unused*/, index_sequence /*unused*/) { return { { std::forward(j).at(Idx).template get()... } }; } @@ -5006,6 +5233,12 @@ std::tuple from_json_tuple_impl_base(BasicJsonType&& j, index_sequence< return std::make_tuple(std::forward(j).at(Idx).template get()...); } +template +std::tuple<> from_json_tuple_impl_base(BasicJsonType& /*unused*/, index_sequence<> /*unused*/) +{ + return {}; +} + template < typename BasicJsonType, class A1, class A2 > std::pair from_json_tuple_impl(BasicJsonType&& j, identity_tag> /*unused*/, priority_tag<0> /*unused*/) { @@ -5091,7 +5324,12 @@ inline void from_json(const BasicJsonType& j, std_fs::path& p) { JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j)); } - p = *j.template get_ptr(); + const auto& s = *j.template get_ptr(); +#ifdef JSON_HAS_CPP_20 + p = std_fs::path(std::u8string_view(reinterpret_cast(s.data()), s.size())); +#else + p = std_fs::u8path(s); // accepts UTF-8 encoded std::string in C++17, deprecated in C++20 +#endif } #endif @@ -5126,14 +5364,20 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT +// #include +// JSON_HAS_CPP_17 +#ifdef JSON_HAS_CPP_17 + #include // optional +#endif + #include // copy #include // begin, end #include // string @@ -5146,17 +5390,16 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT #include // size_t -#include // input_iterator_tag -#include // string, to_string +#include // forward_iterator_tag #include // tuple_size, get, tuple_element #include // move @@ -5168,6 +5411,46 @@ NLOHMANN_JSON_NAMESPACE_END // #include +// #include +// __ _____ _____ _____ +// __| | __| | | | JSON for Modern C++ +// | | |__ | | | | | | version 3.12.0 +// |_____|_____|_____|_|___| https://github.com/nlohmann/json +// +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann +// SPDX-License-Identifier: MIT + + + +#include // size_t +#include // string, to_string + +// #include + + +NLOHMANN_JSON_NAMESPACE_BEGIN +namespace detail +{ + +template +void int_to_string(StringType& target, std::size_t value) +{ + // For ADL + using std::to_string; + target = to_string(value); +} + +template +StringType to_string(std::size_t value) +{ + StringType result; + int_to_string(result, value); + return result; +} + +} // namespace detail +NLOHMANN_JSON_NAMESPACE_END + // #include @@ -5175,13 +5458,6 @@ NLOHMANN_JSON_NAMESPACE_BEGIN namespace detail { -template -void int_to_string( string_type& target, std::size_t value ) -{ - // For ADL - using std::to_string; - target = to_string(value); -} template class iteration_proxy_value { public: @@ -5189,7 +5465,7 @@ template class iteration_proxy_value using value_type = iteration_proxy_value; using pointer = value_type *; using reference = value_type &; - using iterator_category = std::input_iterator_tag; + using iterator_category = std::forward_iterator_tag; using string_type = typename std::remove_cv< typename std::remove_reference().key() ) >::type >::type; private: @@ -5369,7 +5645,7 @@ namespace std #endif template class tuple_size<::nlohmann::detail::iteration_proxy_value> // NOLINT(cert-dcl58-cpp) - : public std::integral_constant {}; + : public std::integral_constant {}; template class tuple_element> // NOLINT(cert-dcl58-cpp) @@ -5390,8 +5666,6 @@ class tuple_element> inline constexpr bool ::std::ranges::enable_borrowed_range<::nlohmann::detail::iteration_proxy> = true; #endif -// #include - // #include // #include @@ -5637,6 +5911,22 @@ struct external_constructor // to_json // ///////////// +#ifdef JSON_HAS_CPP_17 +template::value, int> = 0> +void to_json(BasicJsonType& j, const std::optional& opt) +{ + if (opt.has_value()) + { + j = *opt; + } + else + { + j = nullptr; + } +} +#endif + template::value, int> = 0> inline void to_json(BasicJsonType& j, T b) noexcept @@ -5783,6 +6073,13 @@ inline void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence< j = { std::get(t)... }; } +template +inline void to_json_tuple_impl(BasicJsonType& j, const Tuple& /*unused*/, index_sequence<> /*unused*/) +{ + using array_t = typename BasicJsonType::array_t; + j = array_t(); +} + template::value, int > = 0> inline void to_json(BasicJsonType& j, const T& t) { @@ -5793,7 +6090,12 @@ inline void to_json(BasicJsonType& j, const T& t) template inline void to_json(BasicJsonType& j, const std_fs::path& p) { - j = p.string(); +#ifdef JSON_HAS_CPP_20 + const std::u8string s = p.u8string(); + j = std::string(s.begin(), s.end()); +#else + j = p.u8string(); // returns std::string in C++17 +#endif } #endif @@ -5868,10 +6170,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -5980,10 +6282,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -6113,10 +6415,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -6133,16 +6435,19 @@ NLOHMANN_JSON_NAMESPACE_END #include // char_traits, string #include // make_pair, move #include // vector +#ifdef __cpp_lib_byteswap + #include //byteswap +#endif // #include // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -6162,6 +6467,8 @@ NLOHMANN_JSON_NAMESPACE_END #include // istream #endif // JSON_NO_IO +// #include + // #include // #include @@ -6209,6 +6516,13 @@ class file_input_adapter return std::fgetc(m_file); } + // returns the number of characters successfully read + template + std::size_t get_elements(T* dest, std::size_t count = 1) + { + return fread(dest, 1, sizeof(T) * count, m_file); + } + private: /// the file pointer to read from std::FILE* m_file; @@ -6268,6 +6582,17 @@ class input_stream_adapter return res; } + template + std::size_t get_elements(T* dest, std::size_t count = 1) + { + auto res = static_cast(sb->sgetn(reinterpret_cast(dest), static_cast(count * sizeof(T)))); + if (JSON_HEDLEY_UNLIKELY(res < count * sizeof(T))) + { + is->clear(is->rdstate() | std::ios::eofbit); + } + return res; + } + private: /// the associated input stream std::istream* is = nullptr; @@ -6299,6 +6624,26 @@ class iterator_input_adapter return char_traits::eof(); } + // for general iterators, we cannot really do something better than falling back to processing the range one-by-one + template + std::size_t get_elements(T* dest, std::size_t count = 1) + { + auto* ptr = reinterpret_cast(dest); + for (std::size_t read_index = 0; read_index < count * sizeof(T); ++read_index) + { + if (JSON_HEDLEY_LIKELY(current != end)) + { + ptr[read_index] = static_cast(*current); + std::advance(current, 1); + } + else + { + return read_index; + } + } + return count * sizeof(T); + } + private: IteratorType current; IteratorType end; @@ -6462,6 +6807,13 @@ class wide_string_input_adapter return utf8_bytes[utf8_bytes_index++]; } + // parsing binary with wchar doesn't make sense, but since the parsing mode can be runtime, we need something here + template + std::size_t get_elements(T* /*dest*/, std::size_t /*count*/ = 1) + { + JSON_THROW(parse_error::create(112, 1, "wide string type cannot be interpreted as binary data", nullptr)); + } + private: BaseInputAdapter base_adapter; @@ -6558,10 +6910,17 @@ typename container_input_adapter_factory_impl::container_input_adapter_factory::create(container); } +// specialization for std::string +using string_input_adapter_type = decltype(input_adapter(std::declval())); + #ifndef JSON_NO_IO // Special cases with fast paths inline file_input_adapter input_adapter(std::FILE* file) { + if (file == nullptr) + { + JSON_THROW(parse_error::create(101, 0, "attempting to parse an empty input; check that your input string or stream contains the expected JSON", nullptr)); + } return file_input_adapter(file); } @@ -6588,9 +6947,13 @@ template < typename CharT, int >::type = 0 > contiguous_bytes_input_adapter input_adapter(CharT b) { + if (b == nullptr) + { + JSON_THROW(parse_error::create(101, 0, "attempting to parse an empty input; check that your input string or stream contains the expected JSON", nullptr)); + } auto length = std::strlen(reinterpret_cast(b)); const auto* ptr = reinterpret_cast(b); - return input_adapter(ptr, ptr + length); + return input_adapter(ptr, ptr + length); // cppcheck-suppress[nullPointerArithmeticRedundantCheck] } template @@ -6636,742 +6999,29 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT #include #include // string +#include // enable_if_t #include // move #include // vector // #include -// #include - -// #include - - -NLOHMANN_JSON_NAMESPACE_BEGIN - -/*! -@brief SAX interface - -This class describes the SAX interface used by @ref nlohmann::json::sax_parse. -Each function is called in different situations while the input is parsed. The -boolean return value informs the parser whether to continue processing the -input. -*/ -template -struct json_sax -{ - using number_integer_t = typename BasicJsonType::number_integer_t; - using number_unsigned_t = typename BasicJsonType::number_unsigned_t; - using number_float_t = typename BasicJsonType::number_float_t; - using string_t = typename BasicJsonType::string_t; - using binary_t = typename BasicJsonType::binary_t; - - /*! - @brief a null value was read - @return whether parsing should proceed - */ - virtual bool null() = 0; - - /*! - @brief a boolean value was read - @param[in] val boolean value - @return whether parsing should proceed - */ - virtual bool boolean(bool val) = 0; - - /*! - @brief an integer number was read - @param[in] val integer value - @return whether parsing should proceed - */ - virtual bool number_integer(number_integer_t val) = 0; - - /*! - @brief an unsigned integer number was read - @param[in] val unsigned integer value - @return whether parsing should proceed - */ - virtual bool number_unsigned(number_unsigned_t val) = 0; - - /*! - @brief a floating-point number was read - @param[in] val floating-point value - @param[in] s raw token value - @return whether parsing should proceed - */ - virtual bool number_float(number_float_t val, const string_t& s) = 0; - - /*! - @brief a string value was read - @param[in] val string value - @return whether parsing should proceed - @note It is safe to move the passed string value. - */ - virtual bool string(string_t& val) = 0; - - /*! - @brief a binary value was read - @param[in] val binary value - @return whether parsing should proceed - @note It is safe to move the passed binary value. - */ - virtual bool binary(binary_t& val) = 0; - - /*! - @brief the beginning of an object was read - @param[in] elements number of object elements or -1 if unknown - @return whether parsing should proceed - @note binary formats may report the number of elements - */ - virtual bool start_object(std::size_t elements) = 0; - - /*! - @brief an object key was read - @param[in] val object key - @return whether parsing should proceed - @note It is safe to move the passed string. - */ - virtual bool key(string_t& val) = 0; - - /*! - @brief the end of an object was read - @return whether parsing should proceed - */ - virtual bool end_object() = 0; - - /*! - @brief the beginning of an array was read - @param[in] elements number of array elements or -1 if unknown - @return whether parsing should proceed - @note binary formats may report the number of elements - */ - virtual bool start_array(std::size_t elements) = 0; - - /*! - @brief the end of an array was read - @return whether parsing should proceed - */ - virtual bool end_array() = 0; - - /*! - @brief a parse error occurred - @param[in] position the position in the input where the error occurs - @param[in] last_token the last read token - @param[in] ex an exception object describing the error - @return whether parsing should proceed (must return false) - */ - virtual bool parse_error(std::size_t position, - const std::string& last_token, - const detail::exception& ex) = 0; - - json_sax() = default; - json_sax(const json_sax&) = default; - json_sax(json_sax&&) noexcept = default; - json_sax& operator=(const json_sax&) = default; - json_sax& operator=(json_sax&&) noexcept = default; - virtual ~json_sax() = default; -}; - -namespace detail -{ -/*! -@brief SAX implementation to create a JSON value from SAX events - -This class implements the @ref json_sax interface and processes the SAX events -to create a JSON value which makes it basically a DOM parser. The structure or -hierarchy of the JSON value is managed by the stack `ref_stack` which contains -a pointer to the respective array or object for each recursion depth. - -After successful parsing, the value that is passed by reference to the -constructor contains the parsed value. - -@tparam BasicJsonType the JSON type -*/ -template -class json_sax_dom_parser -{ - public: - using number_integer_t = typename BasicJsonType::number_integer_t; - using number_unsigned_t = typename BasicJsonType::number_unsigned_t; - using number_float_t = typename BasicJsonType::number_float_t; - using string_t = typename BasicJsonType::string_t; - using binary_t = typename BasicJsonType::binary_t; - - /*! - @param[in,out] r reference to a JSON value that is manipulated while - parsing - @param[in] allow_exceptions_ whether parse errors yield exceptions - */ - explicit json_sax_dom_parser(BasicJsonType& r, const bool allow_exceptions_ = true) - : root(r), allow_exceptions(allow_exceptions_) - {} - - // make class move-only - json_sax_dom_parser(const json_sax_dom_parser&) = delete; - json_sax_dom_parser(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor) - json_sax_dom_parser& operator=(const json_sax_dom_parser&) = delete; - json_sax_dom_parser& operator=(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor) - ~json_sax_dom_parser() = default; - - bool null() - { - handle_value(nullptr); - return true; - } - - bool boolean(bool val) - { - handle_value(val); - return true; - } - - bool number_integer(number_integer_t val) - { - handle_value(val); - return true; - } - - bool number_unsigned(number_unsigned_t val) - { - handle_value(val); - return true; - } - - bool number_float(number_float_t val, const string_t& /*unused*/) - { - handle_value(val); - return true; - } - - bool string(string_t& val) - { - handle_value(val); - return true; - } - - bool binary(binary_t& val) - { - handle_value(std::move(val)); - return true; - } - - bool start_object(std::size_t len) - { - ref_stack.push_back(handle_value(BasicJsonType::value_t::object)); - - if (JSON_HEDLEY_UNLIKELY(len != static_cast(-1) && len > ref_stack.back()->max_size())) - { - JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back())); - } - - return true; - } - - bool key(string_t& val) - { - JSON_ASSERT(!ref_stack.empty()); - JSON_ASSERT(ref_stack.back()->is_object()); - - // add null at given key and store the reference for later - object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val)); - return true; - } - - bool end_object() - { - JSON_ASSERT(!ref_stack.empty()); - JSON_ASSERT(ref_stack.back()->is_object()); - - ref_stack.back()->set_parents(); - ref_stack.pop_back(); - return true; - } - - bool start_array(std::size_t len) - { - ref_stack.push_back(handle_value(BasicJsonType::value_t::array)); - - if (JSON_HEDLEY_UNLIKELY(len != static_cast(-1) && len > ref_stack.back()->max_size())) - { - JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back())); - } - - return true; - } - - bool end_array() - { - JSON_ASSERT(!ref_stack.empty()); - JSON_ASSERT(ref_stack.back()->is_array()); - - ref_stack.back()->set_parents(); - ref_stack.pop_back(); - return true; - } - - template - bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, - const Exception& ex) - { - errored = true; - static_cast(ex); - if (allow_exceptions) - { - JSON_THROW(ex); - } - return false; - } - - constexpr bool is_errored() const - { - return errored; - } - - private: - /*! - @invariant If the ref stack is empty, then the passed value will be the new - root. - @invariant If the ref stack contains a value, then it is an array or an - object to which we can add elements - */ - template - JSON_HEDLEY_RETURNS_NON_NULL - BasicJsonType* handle_value(Value&& v) - { - if (ref_stack.empty()) - { - root = BasicJsonType(std::forward(v)); - return &root; - } - - JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object()); - - if (ref_stack.back()->is_array()) - { - ref_stack.back()->m_data.m_value.array->emplace_back(std::forward(v)); - return &(ref_stack.back()->m_data.m_value.array->back()); - } - - JSON_ASSERT(ref_stack.back()->is_object()); - JSON_ASSERT(object_element); - *object_element = BasicJsonType(std::forward(v)); - return object_element; - } - - /// the parsed JSON value - BasicJsonType& root; - /// stack to model hierarchy of values - std::vector ref_stack {}; - /// helper to hold the reference for the next object element - BasicJsonType* object_element = nullptr; - /// whether a syntax error occurred - bool errored = false; - /// whether to throw exceptions in case of errors - const bool allow_exceptions = true; -}; - -template -class json_sax_dom_callback_parser -{ - public: - using number_integer_t = typename BasicJsonType::number_integer_t; - using number_unsigned_t = typename BasicJsonType::number_unsigned_t; - using number_float_t = typename BasicJsonType::number_float_t; - using string_t = typename BasicJsonType::string_t; - using binary_t = typename BasicJsonType::binary_t; - using parser_callback_t = typename BasicJsonType::parser_callback_t; - using parse_event_t = typename BasicJsonType::parse_event_t; - - json_sax_dom_callback_parser(BasicJsonType& r, - const parser_callback_t cb, - const bool allow_exceptions_ = true) - : root(r), callback(cb), allow_exceptions(allow_exceptions_) - { - keep_stack.push_back(true); - } - - // make class move-only - json_sax_dom_callback_parser(const json_sax_dom_callback_parser&) = delete; - json_sax_dom_callback_parser(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor) - json_sax_dom_callback_parser& operator=(const json_sax_dom_callback_parser&) = delete; - json_sax_dom_callback_parser& operator=(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor) - ~json_sax_dom_callback_parser() = default; - - bool null() - { - handle_value(nullptr); - return true; - } - - bool boolean(bool val) - { - handle_value(val); - return true; - } - - bool number_integer(number_integer_t val) - { - handle_value(val); - return true; - } - - bool number_unsigned(number_unsigned_t val) - { - handle_value(val); - return true; - } - - bool number_float(number_float_t val, const string_t& /*unused*/) - { - handle_value(val); - return true; - } - - bool string(string_t& val) - { - handle_value(val); - return true; - } - - bool binary(binary_t& val) - { - handle_value(std::move(val)); - return true; - } - - bool start_object(std::size_t len) - { - // check callback for object start - const bool keep = callback(static_cast(ref_stack.size()), parse_event_t::object_start, discarded); - keep_stack.push_back(keep); - - auto val = handle_value(BasicJsonType::value_t::object, true); - ref_stack.push_back(val.second); - - // check object limit - if (ref_stack.back() && JSON_HEDLEY_UNLIKELY(len != static_cast(-1) && len > ref_stack.back()->max_size())) - { - JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back())); - } - - return true; - } - - bool key(string_t& val) - { - BasicJsonType k = BasicJsonType(val); - - // check callback for key - const bool keep = callback(static_cast(ref_stack.size()), parse_event_t::key, k); - key_keep_stack.push_back(keep); - - // add discarded value at given key and store the reference for later - if (keep && ref_stack.back()) - { - object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val) = discarded); - } - - return true; - } - - bool end_object() - { - if (ref_stack.back()) - { - if (!callback(static_cast(ref_stack.size()) - 1, parse_event_t::object_end, *ref_stack.back())) - { - // discard object - *ref_stack.back() = discarded; - } - else - { - ref_stack.back()->set_parents(); - } - } - - JSON_ASSERT(!ref_stack.empty()); - JSON_ASSERT(!keep_stack.empty()); - ref_stack.pop_back(); - keep_stack.pop_back(); - - if (!ref_stack.empty() && ref_stack.back() && ref_stack.back()->is_structured()) - { - // remove discarded value - for (auto it = ref_stack.back()->begin(); it != ref_stack.back()->end(); ++it) - { - if (it->is_discarded()) - { - ref_stack.back()->erase(it); - break; - } - } - } - - return true; - } - - bool start_array(std::size_t len) - { - const bool keep = callback(static_cast(ref_stack.size()), parse_event_t::array_start, discarded); - keep_stack.push_back(keep); - - auto val = handle_value(BasicJsonType::value_t::array, true); - ref_stack.push_back(val.second); - - // check array limit - if (ref_stack.back() && JSON_HEDLEY_UNLIKELY(len != static_cast(-1) && len > ref_stack.back()->max_size())) - { - JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back())); - } - - return true; - } - - bool end_array() - { - bool keep = true; - - if (ref_stack.back()) - { - keep = callback(static_cast(ref_stack.size()) - 1, parse_event_t::array_end, *ref_stack.back()); - if (keep) - { - ref_stack.back()->set_parents(); - } - else - { - // discard array - *ref_stack.back() = discarded; - } - } - - JSON_ASSERT(!ref_stack.empty()); - JSON_ASSERT(!keep_stack.empty()); - ref_stack.pop_back(); - keep_stack.pop_back(); - - // remove discarded value - if (!keep && !ref_stack.empty() && ref_stack.back()->is_array()) - { - ref_stack.back()->m_data.m_value.array->pop_back(); - } - - return true; - } - - template - bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, - const Exception& ex) - { - errored = true; - static_cast(ex); - if (allow_exceptions) - { - JSON_THROW(ex); - } - return false; - } - - constexpr bool is_errored() const - { - return errored; - } - - private: - /*! - @param[in] v value to add to the JSON value we build during parsing - @param[in] skip_callback whether we should skip calling the callback - function; this is required after start_array() and - start_object() SAX events, because otherwise we would call the - callback function with an empty array or object, respectively. - - @invariant If the ref stack is empty, then the passed value will be the new - root. - @invariant If the ref stack contains a value, then it is an array or an - object to which we can add elements - - @return pair of boolean (whether value should be kept) and pointer (to the - passed value in the ref_stack hierarchy; nullptr if not kept) - */ - template - std::pair handle_value(Value&& v, const bool skip_callback = false) - { - JSON_ASSERT(!keep_stack.empty()); - - // do not handle this value if we know it would be added to a discarded - // container - if (!keep_stack.back()) - { - return {false, nullptr}; - } - - // create value - auto value = BasicJsonType(std::forward(v)); - - // check callback - const bool keep = skip_callback || callback(static_cast(ref_stack.size()), parse_event_t::value, value); - - // do not handle this value if we just learnt it shall be discarded - if (!keep) - { - return {false, nullptr}; - } - - if (ref_stack.empty()) - { - root = std::move(value); - return {true, & root}; - } - - // skip this value if we already decided to skip the parent - // (https://github.com/nlohmann/json/issues/971#issuecomment-413678360) - if (!ref_stack.back()) - { - return {false, nullptr}; - } - - // we now only expect arrays and objects - JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object()); - - // array - if (ref_stack.back()->is_array()) - { - ref_stack.back()->m_data.m_value.array->emplace_back(std::move(value)); - return {true, & (ref_stack.back()->m_data.m_value.array->back())}; - } - - // object - JSON_ASSERT(ref_stack.back()->is_object()); - // check if we should store an element for the current key - JSON_ASSERT(!key_keep_stack.empty()); - const bool store_element = key_keep_stack.back(); - key_keep_stack.pop_back(); - - if (!store_element) - { - return {false, nullptr}; - } - - JSON_ASSERT(object_element); - *object_element = std::move(value); - return {true, object_element}; - } - - /// the parsed JSON value - BasicJsonType& root; - /// stack to model hierarchy of values - std::vector ref_stack {}; - /// stack to manage which values to keep - std::vector keep_stack {}; // NOLINT(readability-redundant-member-init) - /// stack to manage which object keys to keep - std::vector key_keep_stack {}; // NOLINT(readability-redundant-member-init) - /// helper to hold the reference for the next object element - BasicJsonType* object_element = nullptr; - /// whether a syntax error occurred - bool errored = false; - /// callback function - const parser_callback_t callback = nullptr; - /// whether to throw exceptions in case of errors - const bool allow_exceptions = true; - /// a discarded value for the callback - BasicJsonType discarded = BasicJsonType::value_t::discarded; -}; - -template -class json_sax_acceptor -{ - public: - using number_integer_t = typename BasicJsonType::number_integer_t; - using number_unsigned_t = typename BasicJsonType::number_unsigned_t; - using number_float_t = typename BasicJsonType::number_float_t; - using string_t = typename BasicJsonType::string_t; - using binary_t = typename BasicJsonType::binary_t; - - bool null() - { - return true; - } - - bool boolean(bool /*unused*/) - { - return true; - } - - bool number_integer(number_integer_t /*unused*/) - { - return true; - } - - bool number_unsigned(number_unsigned_t /*unused*/) - { - return true; - } - - bool number_float(number_float_t /*unused*/, const string_t& /*unused*/) - { - return true; - } - - bool string(string_t& /*unused*/) - { - return true; - } - - bool binary(binary_t& /*unused*/) - { - return true; - } - - bool start_object(std::size_t /*unused*/ = static_cast(-1)) - { - return true; - } - - bool key(string_t& /*unused*/) - { - return true; - } - - bool end_object() - { - return true; - } - - bool start_array(std::size_t /*unused*/ = static_cast(-1)) - { - return true; - } - - bool end_array() - { - return true; - } - - bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& /*unused*/) - { - return false; - } -}; - -} // namespace detail -NLOHMANN_JSON_NAMESPACE_END - // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -8339,7 +7989,7 @@ class lexer : public lexer_base locale's decimal point is used instead of `.` to work with the locale-dependent converters. */ - token_type scan_number() // lgtm [cpp/use-of-goto] + token_type scan_number() // lgtm [cpp/use-of-goto] `goto` is used in this function to implement the number-parsing state machine described above. By design, any finite input will eventually reach the "done" state or return token_type::parse_error. In each intermediate state, 1 byte of the input is appended to the token_buffer vector, and only the already initialized variables token_buffer, number_type, and error_message are manipulated. { // reset token_buffer to store the number's bytes reset(); @@ -8421,6 +8071,7 @@ scan_number_zero: case '.': { add(decimal_point_char); + decimal_point_position = token_buffer.size() - 1; goto scan_number_decimal1; } @@ -8457,6 +8108,7 @@ scan_number_any1: case '.': { add(decimal_point_char); + decimal_point_position = token_buffer.size() - 1; goto scan_number_decimal1; } @@ -8617,7 +8269,7 @@ scan_number_done: // we are done scanning a number) unget(); - char* endptr = nullptr; // NOLINT(cppcoreguidelines-pro-type-vararg,hicpp-vararg) + char* endptr = nullptr; // NOLINT(misc-const-correctness,cppcoreguidelines-pro-type-vararg,hicpp-vararg) errno = 0; // try to parse integers first and fall back to floats @@ -8628,7 +8280,7 @@ scan_number_done: // we checked the number format before JSON_ASSERT(endptr == token_buffer.data() + token_buffer.size()); - if (errno == 0) + if (errno != ERANGE) { value_unsigned = static_cast(x); if (value_unsigned == x) @@ -8644,7 +8296,7 @@ scan_number_done: // we checked the number format before JSON_ASSERT(endptr == token_buffer.data() + token_buffer.size()); - if (errno == 0) + if (errno != ERANGE) { value_integer = static_cast(x); if (value_integer == x) @@ -8694,6 +8346,7 @@ scan_number_done: { token_buffer.clear(); token_string.clear(); + decimal_point_position = std::string::npos; token_string.push_back(char_traits::to_char_type(current)); } @@ -8802,6 +8455,11 @@ scan_number_done: /// return current string value (implicitly resets the token; useful only once) string_t& get_string() { + // translate decimal points from locale back to '.' (#4084) + if (decimal_point_char != '.' && decimal_point_position != std::string::npos) + { + token_buffer[decimal_point_position] = '.'; + } return token_buffer; } @@ -8999,6 +8657,8 @@ scan_number_done: /// the decimal point const char_int_type decimal_point_char = '.'; + /// the position of the decimal point in the input + std::size_t decimal_point_position = std::string::npos; }; } // namespace detail @@ -9006,13 +8666,986 @@ NLOHMANN_JSON_NAMESPACE_END // #include +// #include + +NLOHMANN_JSON_NAMESPACE_BEGIN + +/*! +@brief SAX interface + +This class describes the SAX interface used by @ref nlohmann::json::sax_parse. +Each function is called in different situations while the input is parsed. The +boolean return value informs the parser whether to continue processing the +input. +*/ +template +struct json_sax +{ + using number_integer_t = typename BasicJsonType::number_integer_t; + using number_unsigned_t = typename BasicJsonType::number_unsigned_t; + using number_float_t = typename BasicJsonType::number_float_t; + using string_t = typename BasicJsonType::string_t; + using binary_t = typename BasicJsonType::binary_t; + + /*! + @brief a null value was read + @return whether parsing should proceed + */ + virtual bool null() = 0; + + /*! + @brief a boolean value was read + @param[in] val boolean value + @return whether parsing should proceed + */ + virtual bool boolean(bool val) = 0; + + /*! + @brief an integer number was read + @param[in] val integer value + @return whether parsing should proceed + */ + virtual bool number_integer(number_integer_t val) = 0; + + /*! + @brief an unsigned integer number was read + @param[in] val unsigned integer value + @return whether parsing should proceed + */ + virtual bool number_unsigned(number_unsigned_t val) = 0; + + /*! + @brief a floating-point number was read + @param[in] val floating-point value + @param[in] s raw token value + @return whether parsing should proceed + */ + virtual bool number_float(number_float_t val, const string_t& s) = 0; + + /*! + @brief a string value was read + @param[in] val string value + @return whether parsing should proceed + @note It is safe to move the passed string value. + */ + virtual bool string(string_t& val) = 0; + + /*! + @brief a binary value was read + @param[in] val binary value + @return whether parsing should proceed + @note It is safe to move the passed binary value. + */ + virtual bool binary(binary_t& val) = 0; + + /*! + @brief the beginning of an object was read + @param[in] elements number of object elements or -1 if unknown + @return whether parsing should proceed + @note binary formats may report the number of elements + */ + virtual bool start_object(std::size_t elements) = 0; + + /*! + @brief an object key was read + @param[in] val object key + @return whether parsing should proceed + @note It is safe to move the passed string. + */ + virtual bool key(string_t& val) = 0; + + /*! + @brief the end of an object was read + @return whether parsing should proceed + */ + virtual bool end_object() = 0; + + /*! + @brief the beginning of an array was read + @param[in] elements number of array elements or -1 if unknown + @return whether parsing should proceed + @note binary formats may report the number of elements + */ + virtual bool start_array(std::size_t elements) = 0; + + /*! + @brief the end of an array was read + @return whether parsing should proceed + */ + virtual bool end_array() = 0; + + /*! + @brief a parse error occurred + @param[in] position the position in the input where the error occurs + @param[in] last_token the last read token + @param[in] ex an exception object describing the error + @return whether parsing should proceed (must return false) + */ + virtual bool parse_error(std::size_t position, + const std::string& last_token, + const detail::exception& ex) = 0; + + json_sax() = default; + json_sax(const json_sax&) = default; + json_sax(json_sax&&) noexcept = default; + json_sax& operator=(const json_sax&) = default; + json_sax& operator=(json_sax&&) noexcept = default; + virtual ~json_sax() = default; +}; + +namespace detail +{ +constexpr std::size_t unknown_size() +{ + return (std::numeric_limits::max)(); +} + +/*! +@brief SAX implementation to create a JSON value from SAX events + +This class implements the @ref json_sax interface and processes the SAX events +to create a JSON value which makes it basically a DOM parser. The structure or +hierarchy of the JSON value is managed by the stack `ref_stack` which contains +a pointer to the respective array or object for each recursion depth. + +After successful parsing, the value that is passed by reference to the +constructor contains the parsed value. + +@tparam BasicJsonType the JSON type +*/ +template +class json_sax_dom_parser +{ + public: + using number_integer_t = typename BasicJsonType::number_integer_t; + using number_unsigned_t = typename BasicJsonType::number_unsigned_t; + using number_float_t = typename BasicJsonType::number_float_t; + using string_t = typename BasicJsonType::string_t; + using binary_t = typename BasicJsonType::binary_t; + using lexer_t = lexer; + + /*! + @param[in,out] r reference to a JSON value that is manipulated while + parsing + @param[in] allow_exceptions_ whether parse errors yield exceptions + */ + explicit json_sax_dom_parser(BasicJsonType& r, const bool allow_exceptions_ = true, lexer_t* lexer_ = nullptr) + : root(r), allow_exceptions(allow_exceptions_), m_lexer_ref(lexer_) + {} + + // make class move-only + json_sax_dom_parser(const json_sax_dom_parser&) = delete; + json_sax_dom_parser(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor) + json_sax_dom_parser& operator=(const json_sax_dom_parser&) = delete; + json_sax_dom_parser& operator=(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor) + ~json_sax_dom_parser() = default; + + bool null() + { + handle_value(nullptr); + return true; + } + + bool boolean(bool val) + { + handle_value(val); + return true; + } + + bool number_integer(number_integer_t val) + { + handle_value(val); + return true; + } + + bool number_unsigned(number_unsigned_t val) + { + handle_value(val); + return true; + } + + bool number_float(number_float_t val, const string_t& /*unused*/) + { + handle_value(val); + return true; + } + + bool string(string_t& val) + { + handle_value(val); + return true; + } + + bool binary(binary_t& val) + { + handle_value(std::move(val)); + return true; + } + + bool start_object(std::size_t len) + { + ref_stack.push_back(handle_value(BasicJsonType::value_t::object)); + +#if JSON_DIAGNOSTIC_POSITIONS + // Manually set the start position of the object here. + // Ensure this is after the call to handle_value to ensure correct start position. + if (m_lexer_ref) + { + // Lexer has read the first character of the object, so + // subtract 1 from the position to get the correct start position. + ref_stack.back()->start_position = m_lexer_ref->get_position() - 1; + } +#endif + + if (JSON_HEDLEY_UNLIKELY(len != detail::unknown_size() && len > ref_stack.back()->max_size())) + { + JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back())); + } + + return true; + } + + bool key(string_t& val) + { + JSON_ASSERT(!ref_stack.empty()); + JSON_ASSERT(ref_stack.back()->is_object()); + + // add null at given key and store the reference for later + object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val)); + return true; + } + + bool end_object() + { + JSON_ASSERT(!ref_stack.empty()); + JSON_ASSERT(ref_stack.back()->is_object()); + +#if JSON_DIAGNOSTIC_POSITIONS + if (m_lexer_ref) + { + // Lexer's position is past the closing brace, so set that as the end position. + ref_stack.back()->end_position = m_lexer_ref->get_position(); + } +#endif + + ref_stack.back()->set_parents(); + ref_stack.pop_back(); + return true; + } + + bool start_array(std::size_t len) + { + ref_stack.push_back(handle_value(BasicJsonType::value_t::array)); + +#if JSON_DIAGNOSTIC_POSITIONS + // Manually set the start position of the array here. + // Ensure this is after the call to handle_value to ensure correct start position. + if (m_lexer_ref) + { + ref_stack.back()->start_position = m_lexer_ref->get_position() - 1; + } +#endif + + if (JSON_HEDLEY_UNLIKELY(len != detail::unknown_size() && len > ref_stack.back()->max_size())) + { + JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back())); + } + + return true; + } + + bool end_array() + { + JSON_ASSERT(!ref_stack.empty()); + JSON_ASSERT(ref_stack.back()->is_array()); + +#if JSON_DIAGNOSTIC_POSITIONS + if (m_lexer_ref) + { + // Lexer's position is past the closing bracket, so set that as the end position. + ref_stack.back()->end_position = m_lexer_ref->get_position(); + } +#endif + + ref_stack.back()->set_parents(); + ref_stack.pop_back(); + return true; + } + + template + bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, + const Exception& ex) + { + errored = true; + static_cast(ex); + if (allow_exceptions) + { + JSON_THROW(ex); + } + return false; + } + + constexpr bool is_errored() const + { + return errored; + } + + private: + +#if JSON_DIAGNOSTIC_POSITIONS + void handle_diagnostic_positions_for_json_value(BasicJsonType& v) + { + if (m_lexer_ref) + { + // Lexer has read past the current field value, so set the end position to the current position. + // The start position will be set below based on the length of the string representation + // of the value. + v.end_position = m_lexer_ref->get_position(); + + switch (v.type()) + { + case value_t::boolean: + { + // 4 and 5 are the string length of "true" and "false" + v.start_position = v.end_position - (v.m_data.m_value.boolean ? 4 : 5); + break; + } + + case value_t::null: + { + // 4 is the string length of "null" + v.start_position = v.end_position - 4; + break; + } + + case value_t::string: + { + // include the length of the quotes, which is 2 + v.start_position = v.end_position - v.m_data.m_value.string->size() - 2; + break; + } + + // As we handle the start and end positions for values created during parsing, + // we do not expect the following value type to be called. Regardless, set the positions + // in case this is created manually or through a different constructor. Exclude from lcov + // since the exact condition of this switch is esoteric. + // LCOV_EXCL_START + case value_t::discarded: + { + v.end_position = std::string::npos; + v.start_position = v.end_position; + break; + } + // LCOV_EXCL_STOP + case value_t::binary: + case value_t::number_integer: + case value_t::number_unsigned: + case value_t::number_float: + { + v.start_position = v.end_position - m_lexer_ref->get_string().size(); + break; + } + case value_t::object: + case value_t::array: + { + // object and array are handled in start_object() and start_array() handlers + // skip setting the values here. + break; + } + default: // LCOV_EXCL_LINE + // Handle all possible types discretely, default handler should never be reached. + JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert,-warnings-as-errors) LCOV_EXCL_LINE + } + } + } +#endif + + /*! + @invariant If the ref stack is empty, then the passed value will be the new + root. + @invariant If the ref stack contains a value, then it is an array or an + object to which we can add elements + */ + template + JSON_HEDLEY_RETURNS_NON_NULL + BasicJsonType* handle_value(Value&& v) + { + if (ref_stack.empty()) + { + root = BasicJsonType(std::forward(v)); + +#if JSON_DIAGNOSTIC_POSITIONS + handle_diagnostic_positions_for_json_value(root); +#endif + + return &root; + } + + JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object()); + + if (ref_stack.back()->is_array()) + { + ref_stack.back()->m_data.m_value.array->emplace_back(std::forward(v)); + +#if JSON_DIAGNOSTIC_POSITIONS + handle_diagnostic_positions_for_json_value(ref_stack.back()->m_data.m_value.array->back()); +#endif + + return &(ref_stack.back()->m_data.m_value.array->back()); + } + + JSON_ASSERT(ref_stack.back()->is_object()); + JSON_ASSERT(object_element); + *object_element = BasicJsonType(std::forward(v)); + +#if JSON_DIAGNOSTIC_POSITIONS + handle_diagnostic_positions_for_json_value(*object_element); +#endif + + return object_element; + } + + /// the parsed JSON value + BasicJsonType& root; + /// stack to model hierarchy of values + std::vector ref_stack {}; + /// helper to hold the reference for the next object element + BasicJsonType* object_element = nullptr; + /// whether a syntax error occurred + bool errored = false; + /// whether to throw exceptions in case of errors + const bool allow_exceptions = true; + /// the lexer reference to obtain the current position + lexer_t* m_lexer_ref = nullptr; +}; + +template +class json_sax_dom_callback_parser +{ + public: + using number_integer_t = typename BasicJsonType::number_integer_t; + using number_unsigned_t = typename BasicJsonType::number_unsigned_t; + using number_float_t = typename BasicJsonType::number_float_t; + using string_t = typename BasicJsonType::string_t; + using binary_t = typename BasicJsonType::binary_t; + using parser_callback_t = typename BasicJsonType::parser_callback_t; + using parse_event_t = typename BasicJsonType::parse_event_t; + using lexer_t = lexer; + + json_sax_dom_callback_parser(BasicJsonType& r, + parser_callback_t cb, + const bool allow_exceptions_ = true, + lexer_t* lexer_ = nullptr) + : root(r), callback(std::move(cb)), allow_exceptions(allow_exceptions_), m_lexer_ref(lexer_) + { + keep_stack.push_back(true); + } + + // make class move-only + json_sax_dom_callback_parser(const json_sax_dom_callback_parser&) = delete; + json_sax_dom_callback_parser(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor) + json_sax_dom_callback_parser& operator=(const json_sax_dom_callback_parser&) = delete; + json_sax_dom_callback_parser& operator=(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor) + ~json_sax_dom_callback_parser() = default; + + bool null() + { + handle_value(nullptr); + return true; + } + + bool boolean(bool val) + { + handle_value(val); + return true; + } + + bool number_integer(number_integer_t val) + { + handle_value(val); + return true; + } + + bool number_unsigned(number_unsigned_t val) + { + handle_value(val); + return true; + } + + bool number_float(number_float_t val, const string_t& /*unused*/) + { + handle_value(val); + return true; + } + + bool string(string_t& val) + { + handle_value(val); + return true; + } + + bool binary(binary_t& val) + { + handle_value(std::move(val)); + return true; + } + + bool start_object(std::size_t len) + { + // check callback for object start + const bool keep = callback(static_cast(ref_stack.size()), parse_event_t::object_start, discarded); + keep_stack.push_back(keep); + + auto val = handle_value(BasicJsonType::value_t::object, true); + ref_stack.push_back(val.second); + + if (ref_stack.back()) + { + +#if JSON_DIAGNOSTIC_POSITIONS + // Manually set the start position of the object here. + // Ensure this is after the call to handle_value to ensure correct start position. + if (m_lexer_ref) + { + // Lexer has read the first character of the object, so + // subtract 1 from the position to get the correct start position. + ref_stack.back()->start_position = m_lexer_ref->get_position() - 1; + } +#endif + + // check object limit + if (JSON_HEDLEY_UNLIKELY(len != detail::unknown_size() && len > ref_stack.back()->max_size())) + { + JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back())); + } + } + return true; + } + + bool key(string_t& val) + { + BasicJsonType k = BasicJsonType(val); + + // check callback for key + const bool keep = callback(static_cast(ref_stack.size()), parse_event_t::key, k); + key_keep_stack.push_back(keep); + + // add discarded value at given key and store the reference for later + if (keep && ref_stack.back()) + { + object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val) = discarded); + } + + return true; + } + + bool end_object() + { + if (ref_stack.back()) + { + if (!callback(static_cast(ref_stack.size()) - 1, parse_event_t::object_end, *ref_stack.back())) + { + // discard object + *ref_stack.back() = discarded; + +#if JSON_DIAGNOSTIC_POSITIONS + // Set start/end positions for discarded object. + handle_diagnostic_positions_for_json_value(*ref_stack.back()); +#endif + } + else + { + +#if JSON_DIAGNOSTIC_POSITIONS + if (m_lexer_ref) + { + // Lexer's position is past the closing brace, so set that as the end position. + ref_stack.back()->end_position = m_lexer_ref->get_position(); + } +#endif + + ref_stack.back()->set_parents(); + } + } + + JSON_ASSERT(!ref_stack.empty()); + JSON_ASSERT(!keep_stack.empty()); + ref_stack.pop_back(); + keep_stack.pop_back(); + + if (!ref_stack.empty() && ref_stack.back() && ref_stack.back()->is_structured()) + { + // remove discarded value + for (auto it = ref_stack.back()->begin(); it != ref_stack.back()->end(); ++it) + { + if (it->is_discarded()) + { + ref_stack.back()->erase(it); + break; + } + } + } + + return true; + } + + bool start_array(std::size_t len) + { + const bool keep = callback(static_cast(ref_stack.size()), parse_event_t::array_start, discarded); + keep_stack.push_back(keep); + + auto val = handle_value(BasicJsonType::value_t::array, true); + ref_stack.push_back(val.second); + + if (ref_stack.back()) + { + +#if JSON_DIAGNOSTIC_POSITIONS + // Manually set the start position of the array here. + // Ensure this is after the call to handle_value to ensure correct start position. + if (m_lexer_ref) + { + // Lexer has read the first character of the array, so + // subtract 1 from the position to get the correct start position. + ref_stack.back()->start_position = m_lexer_ref->get_position() - 1; + } +#endif + + // check array limit + if (JSON_HEDLEY_UNLIKELY(len != detail::unknown_size() && len > ref_stack.back()->max_size())) + { + JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back())); + } + } + + return true; + } + + bool end_array() + { + bool keep = true; + + if (ref_stack.back()) + { + keep = callback(static_cast(ref_stack.size()) - 1, parse_event_t::array_end, *ref_stack.back()); + if (keep) + { + +#if JSON_DIAGNOSTIC_POSITIONS + if (m_lexer_ref) + { + // Lexer's position is past the closing bracket, so set that as the end position. + ref_stack.back()->end_position = m_lexer_ref->get_position(); + } +#endif + + ref_stack.back()->set_parents(); + } + else + { + // discard array + *ref_stack.back() = discarded; + +#if JSON_DIAGNOSTIC_POSITIONS + // Set start/end positions for discarded array. + handle_diagnostic_positions_for_json_value(*ref_stack.back()); +#endif + } + } + + JSON_ASSERT(!ref_stack.empty()); + JSON_ASSERT(!keep_stack.empty()); + ref_stack.pop_back(); + keep_stack.pop_back(); + + // remove discarded value + if (!keep && !ref_stack.empty() && ref_stack.back()->is_array()) + { + ref_stack.back()->m_data.m_value.array->pop_back(); + } + + return true; + } + + template + bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, + const Exception& ex) + { + errored = true; + static_cast(ex); + if (allow_exceptions) + { + JSON_THROW(ex); + } + return false; + } + + constexpr bool is_errored() const + { + return errored; + } + + private: + +#if JSON_DIAGNOSTIC_POSITIONS + void handle_diagnostic_positions_for_json_value(BasicJsonType& v) + { + if (m_lexer_ref) + { + // Lexer has read past the current field value, so set the end position to the current position. + // The start position will be set below based on the length of the string representation + // of the value. + v.end_position = m_lexer_ref->get_position(); + + switch (v.type()) + { + case value_t::boolean: + { + // 4 and 5 are the string length of "true" and "false" + v.start_position = v.end_position - (v.m_data.m_value.boolean ? 4 : 5); + break; + } + + case value_t::null: + { + // 4 is the string length of "null" + v.start_position = v.end_position - 4; + break; + } + + case value_t::string: + { + // include the length of the quotes, which is 2 + v.start_position = v.end_position - v.m_data.m_value.string->size() - 2; + break; + } + + case value_t::discarded: + { + v.end_position = std::string::npos; + v.start_position = v.end_position; + break; + } + + case value_t::binary: + case value_t::number_integer: + case value_t::number_unsigned: + case value_t::number_float: + { + v.start_position = v.end_position - m_lexer_ref->get_string().size(); + break; + } + + case value_t::object: + case value_t::array: + { + // object and array are handled in start_object() and start_array() handlers + // skip setting the values here. + break; + } + default: // LCOV_EXCL_LINE + // Handle all possible types discretely, default handler should never be reached. + JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert,-warnings-as-errors) LCOV_EXCL_LINE + } + } + } +#endif + + /*! + @param[in] v value to add to the JSON value we build during parsing + @param[in] skip_callback whether we should skip calling the callback + function; this is required after start_array() and + start_object() SAX events, because otherwise we would call the + callback function with an empty array or object, respectively. + + @invariant If the ref stack is empty, then the passed value will be the new + root. + @invariant If the ref stack contains a value, then it is an array or an + object to which we can add elements + + @return pair of boolean (whether value should be kept) and pointer (to the + passed value in the ref_stack hierarchy; nullptr if not kept) + */ + template + std::pair handle_value(Value&& v, const bool skip_callback = false) + { + JSON_ASSERT(!keep_stack.empty()); + + // do not handle this value if we know it would be added to a discarded + // container + if (!keep_stack.back()) + { + return {false, nullptr}; + } + + // create value + auto value = BasicJsonType(std::forward(v)); + +#if JSON_DIAGNOSTIC_POSITIONS + handle_diagnostic_positions_for_json_value(value); +#endif + + // check callback + const bool keep = skip_callback || callback(static_cast(ref_stack.size()), parse_event_t::value, value); + + // do not handle this value if we just learnt it shall be discarded + if (!keep) + { + return {false, nullptr}; + } + + if (ref_stack.empty()) + { + root = std::move(value); + return {true, & root}; + } + + // skip this value if we already decided to skip the parent + // (https://github.com/nlohmann/json/issues/971#issuecomment-413678360) + if (!ref_stack.back()) + { + return {false, nullptr}; + } + + // we now only expect arrays and objects + JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object()); + + // array + if (ref_stack.back()->is_array()) + { + ref_stack.back()->m_data.m_value.array->emplace_back(std::move(value)); + return {true, & (ref_stack.back()->m_data.m_value.array->back())}; + } + + // object + JSON_ASSERT(ref_stack.back()->is_object()); + // check if we should store an element for the current key + JSON_ASSERT(!key_keep_stack.empty()); + const bool store_element = key_keep_stack.back(); + key_keep_stack.pop_back(); + + if (!store_element) + { + return {false, nullptr}; + } + + JSON_ASSERT(object_element); + *object_element = std::move(value); + return {true, object_element}; + } + + /// the parsed JSON value + BasicJsonType& root; + /// stack to model hierarchy of values + std::vector ref_stack {}; + /// stack to manage which values to keep + std::vector keep_stack {}; // NOLINT(readability-redundant-member-init) + /// stack to manage which object keys to keep + std::vector key_keep_stack {}; // NOLINT(readability-redundant-member-init) + /// helper to hold the reference for the next object element + BasicJsonType* object_element = nullptr; + /// whether a syntax error occurred + bool errored = false; + /// callback function + const parser_callback_t callback = nullptr; + /// whether to throw exceptions in case of errors + const bool allow_exceptions = true; + /// a discarded value for the callback + BasicJsonType discarded = BasicJsonType::value_t::discarded; + /// the lexer reference to obtain the current position + lexer_t* m_lexer_ref = nullptr; +}; + +template +class json_sax_acceptor +{ + public: + using number_integer_t = typename BasicJsonType::number_integer_t; + using number_unsigned_t = typename BasicJsonType::number_unsigned_t; + using number_float_t = typename BasicJsonType::number_float_t; + using string_t = typename BasicJsonType::string_t; + using binary_t = typename BasicJsonType::binary_t; + + bool null() + { + return true; + } + + bool boolean(bool /*unused*/) + { + return true; + } + + bool number_integer(number_integer_t /*unused*/) + { + return true; + } + + bool number_unsigned(number_unsigned_t /*unused*/) + { + return true; + } + + bool number_float(number_float_t /*unused*/, const string_t& /*unused*/) + { + return true; + } + + bool string(string_t& /*unused*/) + { + return true; + } + + bool binary(binary_t& /*unused*/) + { + return true; + } + + bool start_object(std::size_t /*unused*/ = detail::unknown_size()) + { + return true; + } + + bool key(string_t& /*unused*/) + { + return true; + } + + bool end_object() + { + return true; + } + + bool start_array(std::size_t /*unused*/ = detail::unknown_size()) + { + return true; + } + + bool end_array() + { + return true; + } + + bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& /*unused*/) + { + return false; + } +}; + +} // namespace detail +NLOHMANN_JSON_NAMESPACE_END + +// #include + +// #include + // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -9208,7 +9841,7 @@ static inline bool little_endianness(int num = 1) noexcept /*! @brief deserialization of CBOR, MessagePack, and UBJSON values */ -template> +template> class binary_reader { using number_integer_t = typename BasicJsonType::number_integer_t; @@ -9315,7 +9948,7 @@ class binary_reader std::int32_t document_size{}; get_number(input_format_t::bson, document_size); - if (JSON_HEDLEY_UNLIKELY(!sax->start_object(static_cast(-1)))) + if (JSON_HEDLEY_UNLIKELY(!sax->start_object(detail::unknown_size()))) { return false; } @@ -9471,6 +10104,12 @@ class binary_reader return get_number(input_format_t::bson, value) && sax->number_integer(value); } + case 0x11: // uint64 + { + std::uint64_t value{}; + return get_number(input_format_t::bson, value) && sax->number_unsigned(value); + } + default: // anything else not supported (yet) { std::array cr{{}}; @@ -9537,7 +10176,7 @@ class binary_reader std::int32_t document_size{}; get_number(input_format_t::bson, document_size); - if (JSON_HEDLEY_UNLIKELY(!sax->start_array(static_cast(-1)))) + if (JSON_HEDLEY_UNLIKELY(!sax->start_array(detail::unknown_size()))) { return false; } @@ -9797,7 +10436,7 @@ class binary_reader } case 0x9F: // array (indefinite length) - return get_cbor_array(static_cast(-1), tag_handler); + return get_cbor_array(detail::unknown_size(), tag_handler); // map (0x00..0x17 pairs of data items follow) case 0xA0: @@ -9851,7 +10490,7 @@ class binary_reader } case 0xBF: // map (indefinite length) - return get_cbor_object(static_cast(-1), tag_handler); + return get_cbor_object(detail::unknown_size(), tag_handler); case 0xC6: // tagged item case 0xC7: @@ -10239,7 +10878,7 @@ class binary_reader } /*! - @param[in] len the length of the array or static_cast(-1) for an + @param[in] len the length of the array or detail::unknown_size() for an array of indefinite size @param[in] tag_handler how CBOR tags should be treated @return whether array creation completed @@ -10252,7 +10891,7 @@ class binary_reader return false; } - if (len != static_cast(-1)) + if (len != detail::unknown_size()) { for (std::size_t i = 0; i < len; ++i) { @@ -10277,7 +10916,7 @@ class binary_reader } /*! - @param[in] len the length of the object or static_cast(-1) for an + @param[in] len the length of the object or detail::unknown_size() for an object of indefinite size @param[in] tag_handler how CBOR tags should be treated @return whether object creation completed @@ -10293,7 +10932,7 @@ class binary_reader if (len != 0) { string_t key; - if (len != static_cast(-1)) + if (len != detail::unknown_size()) { for (std::size_t i = 0; i < len; ++i) { @@ -11456,6 +12095,16 @@ class binary_reader case 'Z': // null return sax->null(); + case 'B': // byte + { + if (input_format != input_format_t::bjdata) + { + break; + } + std::uint8_t number{}; + return get_number(input_format, number) && sax->number_unsigned(number); + } + case 'U': { std::uint8_t number{}; @@ -11656,7 +12305,7 @@ class binary_reader return false; } - if (size_and_type.second == 'C') + if (size_and_type.second == 'C' || size_and_type.second == 'B') { size_and_type.second = 'U'; } @@ -11678,6 +12327,13 @@ class binary_reader return (sax->end_array() && sax->end_object()); } + // If BJData type marker is 'B' decode as binary + if (input_format == input_format_t::bjdata && size_and_type.first != npos && size_and_type.second == 'B') + { + binary_t result; + return get_binary(input_format, size_and_type.first, result) && sax->binary(result); + } + if (size_and_type.first != npos) { if (JSON_HEDLEY_UNLIKELY(!sax->start_array(size_and_type.first))) @@ -11711,7 +12367,7 @@ class binary_reader } else { - if (JSON_HEDLEY_UNLIKELY(!sax->start_array(static_cast(-1)))) + if (JSON_HEDLEY_UNLIKELY(!sax->start_array(detail::unknown_size()))) { return false; } @@ -11789,7 +12445,7 @@ class binary_reader } else { - if (JSON_HEDLEY_UNLIKELY(!sax->start_object(static_cast(-1)))) + if (JSON_HEDLEY_UNLIKELY(!sax->start_object(detail::unknown_size()))) { return false; } @@ -11900,6 +12556,29 @@ class binary_reader return current = ia.get_character(); } + /*! + @brief get_to read into a primitive type + + This function provides the interface to the used input adapter. It does + not throw in case the input reached EOF, but returns false instead + + @return bool, whether the read was successful + */ + template + bool get_to(T& dest, const input_format_t format, const char* context) + { + auto new_chars_read = ia.get_elements(&dest); + chars_read += new_chars_read; + if (JSON_HEDLEY_UNLIKELY(new_chars_read < sizeof(T))) + { + // in case of failure, advance position by 1 to report failing location + ++chars_read; + sax->parse_error(chars_read, "", parse_error::create(110, chars_read, exception_message(format, "unexpected end of input", context), nullptr)); + return false; + } + return true; + } + /*! @return character read from the input after ignoring all 'N' entries */ @@ -11914,6 +12593,28 @@ class binary_reader return current; } + template + static void byte_swap(NumberType& number) + { + constexpr std::size_t sz = sizeof(number); +#ifdef __cpp_lib_byteswap + if constexpr (sz == 1) + { + return; + } + if constexpr(std::is_integral_v) + { + number = std::byteswap(number); + return; + } +#endif + auto* ptr = reinterpret_cast(&number); + for (std::size_t i = 0; i < sz / 2; ++i) + { + std::swap(ptr[i], ptr[sz - i - 1]); + } + } + /* @brief read a number from the input @@ -11932,29 +12633,16 @@ class binary_reader template bool get_number(const input_format_t format, NumberType& result) { - // step 1: read input into array with system's byte order - std::array vec{}; - for (std::size_t i = 0; i < sizeof(NumberType); ++i) + // read in the original format + + if (JSON_HEDLEY_UNLIKELY(!get_to(result, format, "number"))) { - get(); - if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(format, "number"))) - { - return false; - } - - // reverse byte order prior to conversion if necessary - if (is_little_endian != (InputIsLittleEndian || format == input_format_t::bjdata)) - { - vec[sizeof(NumberType) - i - 1] = static_cast(current); - } - else - { - vec[i] = static_cast(current); // LCOV_EXCL_LINE - } + return false; + } + if (is_little_endian != (InputIsLittleEndian || format == input_format_t::bjdata)) + { + byte_swap(result); } - - // step 2: convert array into number of type T and return - std::memcpy(&result, vec.data(), sizeof(NumberType)); return true; } @@ -12093,7 +12781,7 @@ class binary_reader } private: - static JSON_INLINE_VARIABLE constexpr std::size_t npos = static_cast(-1); + static JSON_INLINE_VARIABLE constexpr std::size_t npos = detail::unknown_size(); /// input adapter InputAdapterType ia; @@ -12119,6 +12807,7 @@ class binary_reader #define JSON_BINARY_READER_MAKE_BJD_TYPES_MAP_ \ make_array( \ + bjd_type{'B', "byte"}, \ bjd_type{'C', "char"}, \ bjd_type{'D', "double"}, \ bjd_type{'I', "int16"}, \ @@ -12161,10 +12850,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -12238,10 +12927,10 @@ class parser public: /// a parser reading from an input adapter explicit parser(InputAdapterType&& adapter, - const parser_callback_t cb = nullptr, + parser_callback_t cb = nullptr, const bool allow_exceptions_ = true, const bool skip_comments = false) - : callback(cb) + : callback(std::move(cb)) , m_lexer(std::move(adapter), skip_comments) , allow_exceptions(allow_exceptions_) { @@ -12263,7 +12952,7 @@ class parser { if (callback) { - json_sax_dom_callback_parser sdp(result, callback, allow_exceptions); + json_sax_dom_callback_parser sdp(result, callback, allow_exceptions, &m_lexer); sax_parse_internal(&sdp); // in strict mode, input must be completely read @@ -12291,7 +12980,7 @@ class parser } else { - json_sax_dom_parser sdp(result, allow_exceptions); + json_sax_dom_parser sdp(result, allow_exceptions, &m_lexer); sax_parse_internal(&sdp); // in strict mode, input must be completely read @@ -12363,7 +13052,7 @@ class parser { case token_type::begin_object: { - if (JSON_HEDLEY_UNLIKELY(!sax->start_object(static_cast(-1)))) + if (JSON_HEDLEY_UNLIKELY(!sax->start_object(detail::unknown_size()))) { return false; } @@ -12408,7 +13097,7 @@ class parser case token_type::begin_array: { - if (JSON_HEDLEY_UNLIKELY(!sax->start_array(static_cast(-1)))) + if (JSON_HEDLEY_UNLIKELY(!sax->start_array(detail::unknown_size()))) { return false; } @@ -12690,10 +13379,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -12703,10 +13392,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -12862,10 +13551,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -13332,7 +14021,7 @@ class iter_impl // NOLINT(cppcoreguidelines-special-member-functions,hicpp-speci /*! @brief comparison: equal - @pre The iterator is initialized; i.e. `m_object != nullptr`. + @pre (1) Both iterators are initialized to point to the same object, or (2) both iterators are value-initialized. */ template < typename IterImpl, detail::enable_if_t < (std::is_same::value || std::is_same::value), std::nullptr_t > = nullptr > bool operator==(const IterImpl& other) const @@ -13343,7 +14032,11 @@ class iter_impl // NOLINT(cppcoreguidelines-special-member-functions,hicpp-speci JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers", m_object)); } - JSON_ASSERT(m_object != nullptr); + // value-initialized forward iterators can be compared, and must compare equal to other value-initialized iterators of the same type #4493 + if (m_object == nullptr) + { + return true; + } switch (m_object->m_data.m_type) { @@ -13368,7 +14061,7 @@ class iter_impl // NOLINT(cppcoreguidelines-special-member-functions,hicpp-speci /*! @brief comparison: not equal - @pre The iterator is initialized; i.e. `m_object != nullptr`. + @pre (1) Both iterators are initialized to point to the same object, or (2) both iterators are value-initialized. */ template < typename IterImpl, detail::enable_if_t < (std::is_same::value || std::is_same::value), std::nullptr_t > = nullptr > bool operator!=(const IterImpl& other) const @@ -13378,7 +14071,7 @@ class iter_impl // NOLINT(cppcoreguidelines-special-member-functions,hicpp-speci /*! @brief comparison: smaller - @pre The iterator is initialized; i.e. `m_object != nullptr`. + @pre (1) Both iterators are initialized to point to the same object, or (2) both iterators are value-initialized. */ bool operator<(const iter_impl& other) const { @@ -13388,7 +14081,12 @@ class iter_impl // NOLINT(cppcoreguidelines-special-member-functions,hicpp-speci JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers", m_object)); } - JSON_ASSERT(m_object != nullptr); + // value-initialized forward iterators can be compared, and must compare equal to other value-initialized iterators of the same type #4493 + if (m_object == nullptr) + { + // the iterators are both value-initialized and are to be considered equal, but this function checks for smaller, so we return false + return false; + } switch (m_object->m_data.m_type) { @@ -13413,7 +14111,7 @@ class iter_impl // NOLINT(cppcoreguidelines-special-member-functions,hicpp-speci /*! @brief comparison: less than or equal - @pre The iterator is initialized; i.e. `m_object != nullptr`. + @pre (1) Both iterators are initialized to point to the same object, or (2) both iterators are value-initialized. */ bool operator<=(const iter_impl& other) const { @@ -13422,7 +14120,7 @@ class iter_impl // NOLINT(cppcoreguidelines-special-member-functions,hicpp-speci /*! @brief comparison: greater than - @pre The iterator is initialized; i.e. `m_object != nullptr`. + @pre (1) Both iterators are initialized to point to the same object, or (2) both iterators are value-initialized. */ bool operator>(const iter_impl& other) const { @@ -13431,7 +14129,7 @@ class iter_impl // NOLINT(cppcoreguidelines-special-member-functions,hicpp-speci /*! @brief comparison: greater than or equal - @pre The iterator is initialized; i.e. `m_object != nullptr`. + @pre (1) The iterator is initialized; i.e. `m_object != nullptr`, or (2) both iterators are value-initialized. */ bool operator>=(const iter_impl& other) const { @@ -13624,10 +14322,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -13759,10 +14457,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -13801,10 +14499,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -14034,7 +14732,7 @@ class json_pointer } const char* p = s.c_str(); - char* p_end = nullptr; + char* p_end = nullptr; // NOLINT(misc-const-correctness) errno = 0; // strtoull doesn't reset errno const unsigned long long res = std::strtoull(p, &p_end, 10); // NOLINT(runtime/int) if (p == p_end // invalid input or empty string @@ -14556,7 +15254,7 @@ class json_pointer // iterate array and use index as reference string for (std::size_t i = 0; i < value.m_data.m_value.array->size(); ++i) { - flatten(detail::concat(reference_string, '/', std::to_string(i)), + flatten(detail::concat(reference_string, '/', std::to_string(i)), value.m_data.m_value.array->operator[](i), result); } } @@ -14575,7 +15273,7 @@ class json_pointer // iterate object and use keys as reference string for (const auto& element : *value.m_data.m_value.object) { - flatten(detail::concat(reference_string, '/', detail::escape(element.first)), element.second, result); + flatten(detail::concat(reference_string, '/', detail::escape(element.first)), element.second, result); } } break; @@ -14796,10 +15494,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -14881,6 +15579,8 @@ NLOHMANN_JSON_NAMESPACE_END // #include +// #include + // #include // #include @@ -14888,10 +15588,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -14914,10 +15614,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -15068,6 +15768,13 @@ NLOHMANN_JSON_NAMESPACE_BEGIN namespace detail { +/// how to encode BJData +enum class bjdata_version_t +{ + draft2, + draft3, +}; + /////////////////// // binary writer // /////////////////// @@ -15652,7 +16359,7 @@ class binary_writer case value_t::binary: { // step 0: determine if the binary type has a set subtype to - // determine whether or not to use the ext or fixext types + // determine whether to use the ext or fixext types const bool use_ext = j.m_data.m_value.binary->has_subtype(); // step 1: write control byte and the byte string length @@ -15775,11 +16482,14 @@ class binary_writer @param[in] use_type whether to use '$' prefixes (optimized format) @param[in] add_prefix whether prefixes need to be used for this value @param[in] use_bjdata whether write in BJData format, default is false + @param[in] bjdata_version which BJData version to use, default is draft2 */ void write_ubjson(const BasicJsonType& j, const bool use_count, const bool use_type, const bool add_prefix = true, - const bool use_bjdata = false) + const bool use_bjdata = false, const bjdata_version_t bjdata_version = bjdata_version_t::draft2) { + const bool bjdata_draft3 = use_bjdata && bjdata_version == bjdata_version_t::draft3; + switch (j.type()) { case value_t::null: @@ -15869,7 +16579,7 @@ class binary_writer for (const auto& el : *j.m_data.m_value.array) { - write_ubjson(el, use_count, use_type, prefix_required, use_bjdata); + write_ubjson(el, use_count, use_type, prefix_required, use_bjdata, bjdata_version); } if (!use_count) @@ -15887,11 +16597,11 @@ class binary_writer oa->write_character(to_char_type('[')); } - if (use_type && !j.m_data.m_value.binary->empty()) + if (use_type && (bjdata_draft3 || !j.m_data.m_value.binary->empty())) { JSON_ASSERT(use_count); oa->write_character(to_char_type('$')); - oa->write_character('U'); + oa->write_character(bjdata_draft3 ? 'B' : 'U'); } if (use_count) @@ -15910,7 +16620,7 @@ class binary_writer { for (size_t i = 0; i < j.m_data.m_value.binary->size(); ++i) { - oa->write_character(to_char_type('U')); + oa->write_character(to_char_type(bjdata_draft3 ? 'B' : 'U')); oa->write_character(j.m_data.m_value.binary->data()[i]); } } @@ -15927,7 +16637,7 @@ class binary_writer { if (use_bjdata && j.m_data.m_value.object->size() == 3 && j.m_data.m_value.object->find("_ArrayType_") != j.m_data.m_value.object->end() && j.m_data.m_value.object->find("_ArraySize_") != j.m_data.m_value.object->end() && j.m_data.m_value.object->find("_ArrayData_") != j.m_data.m_value.object->end()) { - if (!write_bjdata_ndarray(*j.m_data.m_value.object, use_count, use_type)) // decode bjdata ndarray in the JData format (https://github.com/NeuroJSON/jdata) + if (!write_bjdata_ndarray(*j.m_data.m_value.object, use_count, use_type, bjdata_version)) // decode bjdata ndarray in the JData format (https://github.com/NeuroJSON/jdata) { break; } @@ -15971,7 +16681,7 @@ class binary_writer oa->write_characters( reinterpret_cast(el.first.c_str()), el.first.size()); - write_ubjson(el.second, use_count, use_type, prefix_required, use_bjdata); + write_ubjson(el.second, use_count, use_type, prefix_required, use_bjdata, bjdata_version); } if (!use_count) @@ -16127,7 +16837,8 @@ class binary_writer } else { - JSON_THROW(out_of_range::create(407, concat("integer number ", std::to_string(j.m_data.m_value.number_unsigned), " cannot be represented by BSON as it does not fit int64"), &j)); + write_bson_entry_header(name, 0x11 /* uint64 */); + write_number(static_cast(j.m_data.m_value.number_unsigned), true); } } @@ -16655,10 +17366,11 @@ class binary_writer /*! @return false if the object is successfully converted to a bjdata ndarray, true if the type or size is invalid */ - bool write_bjdata_ndarray(const typename BasicJsonType::object_t& value, const bool use_count, const bool use_type) + bool write_bjdata_ndarray(const typename BasicJsonType::object_t& value, const bool use_count, const bool use_type, const bjdata_version_t bjdata_version) { std::map bjdtype = {{"uint8", 'U'}, {"int8", 'i'}, {"uint16", 'u'}, {"int16", 'I'}, - {"uint32", 'm'}, {"int32", 'l'}, {"uint64", 'M'}, {"int64", 'L'}, {"single", 'd'}, {"double", 'D'}, {"char", 'C'} + {"uint32", 'm'}, {"int32", 'l'}, {"uint64", 'M'}, {"int64", 'L'}, {"single", 'd'}, {"double", 'D'}, + {"char", 'C'}, {"byte", 'B'} }; string_t key = "_ArrayType_"; @@ -16688,10 +17400,10 @@ class binary_writer oa->write_character('#'); key = "_ArraySize_"; - write_ubjson(value.at(key), use_count, use_type, true, true); + write_ubjson(value.at(key), use_count, use_type, true, true, bjdata_version); key = "_ArrayData_"; - if (dtype == 'U' || dtype == 'C') + if (dtype == 'U' || dtype == 'C' || dtype == 'B') { for (const auto& el : value.at(key)) { @@ -16882,11 +17594,11 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2008-2009 Björn Hoehrmann -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2008 - 2009 Björn Hoehrmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -16907,11 +17619,11 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // // SPDX-FileCopyrightText: 2009 Florian Loitsch -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -17147,10 +17859,10 @@ boundaries compute_boundaries(FloatType value) // v- m- v m+ v+ const bool lower_boundary_is_closer = F == 0 && E > 1; - const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1); + const diyfp m_plus = diyfp((2 * v.f) + 1, v.e - 1); const diyfp m_minus = lower_boundary_is_closer - ? diyfp(4 * v.f - 1, v.e - 2) // (B) - : diyfp(2 * v.f - 1, v.e - 1); // (A) + ? diyfp((4 * v.f) - 1, v.e - 2) // (B) + : diyfp((2 * v.f) - 1, v.e - 1); // (A) // Determine the normalized w+ = m+. const diyfp w_plus = diyfp::normalize(m_plus); @@ -17380,7 +18092,7 @@ inline cached_power get_cached_power_for_binary_exponent(int e) JSON_ASSERT(e >= -1500); JSON_ASSERT(e <= 1500); const int f = kAlpha - e - 1; - const int k = (f * 78913) / (1 << 18) + static_cast(f > 0); + const int k = ((f * 78913) / (1 << 18)) + static_cast(f > 0); const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep; JSON_ASSERT(index >= 0); @@ -17858,15 +18570,15 @@ inline char* append_exponent(char* buf, int e) } else if (k < 100) { - *buf++ = static_cast('0' + k / 10); + *buf++ = static_cast('0' + (k / 10)); k %= 10; *buf++ = static_cast('0' + k); } else { - *buf++ = static_cast('0' + k / 100); + *buf++ = static_cast('0' + (k / 100)); k %= 100; - *buf++ = static_cast('0' + k / 10); + *buf++ = static_cast('0' + (k / 10)); k %= 10; *buf++ = static_cast('0' + k); } @@ -18652,7 +19364,7 @@ class serializer @param[in] x unsigned integer number to count its digits @return number of decimal digits */ - inline unsigned int count_digits(number_unsigned_t x) noexcept + unsigned int count_digits(number_unsigned_t x) noexcept { unsigned int n_digits = 1; for (;;) @@ -18935,7 +19647,7 @@ class serializer ? (byte & 0x3fu) | (codep << 6u) : (0xFFu >> type) & (byte); - const std::size_t index = 256u + static_cast(state) * 16u + static_cast(type); + const std::size_t index = 256u + (static_cast(state) * 16u) + static_cast(type); JSON_ASSERT(index < utf8d.size()); state = utf8d[index]; return state; @@ -18961,7 +19673,7 @@ class serializer * absolute values of INT_MIN and INT_MAX are usually not the same. See * #1708 for details. */ - inline number_unsigned_t remove_sign(number_integer_t x) noexcept + number_unsigned_t remove_sign(number_integer_t x) noexcept { JSON_ASSERT(x < 0 && x < (std::numeric_limits::max)()); // NOLINT(misc-redundant-expression) return static_cast(-(x + 1)) + 1; @@ -19003,10 +19715,10 @@ NLOHMANN_JSON_NAMESPACE_END // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -19031,7 +19743,7 @@ NLOHMANN_JSON_NAMESPACE_BEGIN /// for use within nlohmann::basic_json template , class Allocator = std::allocator>> - struct ordered_map : std::vector, Allocator> + struct ordered_map : std::vector, Allocator> { using key_type = Key; using mapped_type = T; @@ -19346,7 +20058,7 @@ template , template using require_input_iter = typename std::enable_if::iterator_category, - std::input_iterator_tag>::value>::type; + std::input_iterator_tag>::value>::type; template> void insert(InputIt first, InputIt last) @@ -19417,9 +20129,9 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec friend class ::nlohmann::detail::binary_writer; template friend class ::nlohmann::detail::binary_reader; - template + template friend class ::nlohmann::detail::json_sax_dom_parser; - template + template friend class ::nlohmann::detail::json_sax_dom_callback_parser; friend class ::nlohmann::detail::exception; @@ -19440,7 +20152,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec ) { return ::nlohmann::detail::parser(std::move(adapter), - std::move(cb), allow_exceptions, ignore_comments); + std::move(cb), allow_exceptions, ignore_comments); } private: @@ -19473,6 +20185,8 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec using error_handler_t = detail::error_handler_t; /// how to treat CBOR tags using cbor_tag_handler_t = detail::cbor_tag_handler_t; + /// how to encode BJData + using bjdata_version_t = detail::bjdata_version_t; /// helper type for initializer lists of basic_json values using initializer_list_t = std::initializer_list>; @@ -19552,7 +20266,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec { basic_json result; - result["copyright"] = "(C) 2013-2023 Niels Lohmann"; + result["copyright"] = "(C) 2013-2025 Niels Lohmann"; result["name"] = "JSON for Modern C++"; result["url"] = "https://github.com/nlohmann/json"; result["version"]["string"] = @@ -19817,7 +20531,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec object = nullptr; // silence warning, see #821 if (JSON_HEDLEY_UNLIKELY(t == value_t::null)) { - JSON_THROW(other_error::create(500, "961c151d2e87f2686a955a9be24d316f1362bf21 3.11.3", nullptr)); // LCOV_EXCL_LINE + JSON_THROW(other_error::create(500, "961c151d2e87f2686a955a9be24d316f1362bf21 3.12.0", nullptr)); // LCOV_EXCL_LINE } break; } @@ -20053,10 +20767,10 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec return it; } - reference set_parent(reference j, std::size_t old_capacity = static_cast(-1)) + reference set_parent(reference j, std::size_t old_capacity = detail::unknown_size()) { #if JSON_DIAGNOSTICS - if (old_capacity != static_cast(-1)) + if (old_capacity != detail::unknown_size()) { // see https://github.com/nlohmann/json/issues/2838 JSON_ASSERT(type() == value_t::array); @@ -20136,8 +20850,8 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec detail::enable_if_t < !detail::is_basic_json::value && detail::is_compatible_type::value, int > = 0 > basic_json(CompatibleType && val) noexcept(noexcept( // NOLINT(bugprone-forwarding-reference-overload,bugprone-exception-escape) - JSONSerializer::to_json(std::declval(), - std::forward(val)))) + JSONSerializer::to_json(std::declval(), + std::forward(val)))) { JSONSerializer::to_json(*this, std::forward(val)); set_parents(); @@ -20150,6 +20864,10 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec detail::enable_if_t < detail::is_basic_json::value&& !std::is_same::value, int > = 0 > basic_json(const BasicJsonType& val) +#if JSON_DIAGNOSTIC_POSITIONS + : start_position(val.start_pos()), + end_position(val.end_pos()) +#endif { using other_boolean_t = typename BasicJsonType::boolean_t; using other_number_float_t = typename BasicJsonType::number_float_t; @@ -20196,6 +20914,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE } JSON_ASSERT(m_data.m_type == val.type()); + set_parents(); assert_invariant(); } @@ -20332,7 +21051,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec template < class InputIT, typename std::enable_if < std::is_same::value || std::is_same::value, int >::type = 0 > - basic_json(InputIT first, InputIT last) + basic_json(InputIT first, InputIT last) // NOLINT(performance-unnecessary-value-param) { JSON_ASSERT(first.m_object != nullptr); JSON_ASSERT(last.m_object != nullptr); @@ -20447,6 +21166,10 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec /// @sa https://json.nlohmann.me/api/basic_json/basic_json/ basic_json(const basic_json& other) : json_base_class_t(other) +#if JSON_DIAGNOSTIC_POSITIONS + , start_position(other.start_position) + , end_position(other.end_position) +#endif { m_data.m_type = other.m_data.m_type; // check of passed value is valid @@ -20516,15 +21239,24 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec /// @sa https://json.nlohmann.me/api/basic_json/basic_json/ basic_json(basic_json&& other) noexcept : json_base_class_t(std::forward(other)), - m_data(std::move(other.m_data)) + m_data(std::move(other.m_data)) // cppcheck-suppress[accessForwarded] TODO check +#if JSON_DIAGNOSTIC_POSITIONS + , start_position(other.start_position) // cppcheck-suppress[accessForwarded] TODO check + , end_position(other.end_position) // cppcheck-suppress[accessForwarded] TODO check +#endif { // check that passed value is valid - other.assert_invariant(false); + other.assert_invariant(false); // cppcheck-suppress[accessForwarded] // invalidate payload other.m_data.m_type = value_t::null; other.m_data.m_value = {}; +#if JSON_DIAGNOSTIC_POSITIONS + other.start_position = std::string::npos; + other.end_position = std::string::npos; +#endif + set_parents(); assert_invariant(); } @@ -20545,6 +21277,12 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec using std::swap; swap(m_data.m_type, other.m_data.m_type); swap(m_data.m_value, other.m_data.m_value); + +#if JSON_DIAGNOSTIC_POSITIONS + swap(start_position, other.start_position); + swap(end_position, other.end_position); +#endif + json_base_class_t::operator=(std::move(other)); set_parents(); @@ -20766,13 +21504,13 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec /// get a pointer to the value (integer number) number_integer_t* get_impl_ptr(number_integer_t* /*unused*/) noexcept { - return is_number_integer() ? &m_data.m_value.number_integer : nullptr; + return m_data.m_type == value_t::number_integer ? &m_data.m_value.number_integer : nullptr; } /// get a pointer to the value (integer number) constexpr const number_integer_t* get_impl_ptr(const number_integer_t* /*unused*/) const noexcept { - return is_number_integer() ? &m_data.m_value.number_integer : nullptr; + return m_data.m_type == value_t::number_integer ? &m_data.m_value.number_integer : nullptr; } /// get a pointer to the value (unsigned number) @@ -20907,7 +21645,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec detail::has_from_json::value, int > = 0 > ValueType get_impl(detail::priority_tag<0> /*unused*/) const noexcept(noexcept( - JSONSerializer::from_json(std::declval(), std::declval()))) + JSONSerializer::from_json(std::declval(), std::declval()))) { auto ret = ValueType(); JSONSerializer::from_json(*this, ret); @@ -20949,7 +21687,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec detail::has_non_default_from_json::value, int > = 0 > ValueType get_impl(detail::priority_tag<1> /*unused*/) const noexcept(noexcept( - JSONSerializer::from_json(std::declval()))) + JSONSerializer::from_json(std::declval()))) { return JSONSerializer::from_json(*this); } @@ -21099,7 +21837,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec detail::has_from_json::value, int > = 0 > ValueType & get_to(ValueType& v) const noexcept(noexcept( - JSONSerializer::from_json(std::declval(), v))) + JSONSerializer::from_json(std::declval(), v))) { JSONSerializer::from_json(*this, v); return v; @@ -21251,7 +21989,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec { // create better exception explanation JSON_THROW(out_of_range::create(401, detail::concat("array index ", std::to_string(idx), " is out of range"), this)); - } + } // cppcheck-suppress[missingReturn] } else { @@ -21274,7 +22012,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec { // create better exception explanation JSON_THROW(out_of_range::create(401, detail::concat("array index ", std::to_string(idx), " is out of range"), this)); - } + } // cppcheck-suppress[missingReturn] } else { @@ -21419,7 +22157,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec /// @brief access specified object element /// @sa https://json.nlohmann.me/api/basic_json/operator%5B%5D/ - reference operator[](typename object_t::key_type key) + reference operator[](typename object_t::key_type key) // NOLINT(performance-unnecessary-value-param) { // implicitly convert null value to an empty object if (is_null()) @@ -21729,7 +22467,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec template < class IteratorType, detail::enable_if_t < std::is_same::value || std::is_same::value, int > = 0 > - IteratorType erase(IteratorType pos) + IteratorType erase(IteratorType pos) // NOLINT(performance-unnecessary-value-param) { // make sure iterator fits the current value if (JSON_HEDLEY_UNLIKELY(this != pos.m_object)) @@ -21799,7 +22537,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec template < class IteratorType, detail::enable_if_t < std::is_same::value || std::is_same::value, int > = 0 > - IteratorType erase(IteratorType first, IteratorType last) + IteratorType erase(IteratorType first, IteratorType last) // NOLINT(performance-unnecessary-value-param) { // make sure iterator fits the current value if (JSON_HEDLEY_UNLIKELY(this != first.m_object || this != last.m_object)) @@ -22566,7 +23304,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec /// @note: This uses std::distance to support GCC 4.8, /// see https://github.com/nlohmann/json/pull/1257 template - iterator insert_iterator(const_iterator pos, Args&& ... args) + iterator insert_iterator(const_iterator pos, Args&& ... args) // NOLINT(performance-unnecessary-value-param) { iterator result(this); JSON_ASSERT(m_data.m_value.array != nullptr); @@ -22585,7 +23323,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec /// @brief inserts element into array /// @sa https://json.nlohmann.me/api/basic_json/insert/ - iterator insert(const_iterator pos, const basic_json& val) + iterator insert(const_iterator pos, const basic_json& val) // NOLINT(performance-unnecessary-value-param) { // insert only works for arrays if (JSON_HEDLEY_LIKELY(is_array())) @@ -22605,14 +23343,14 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec /// @brief inserts element into array /// @sa https://json.nlohmann.me/api/basic_json/insert/ - iterator insert(const_iterator pos, basic_json&& val) + iterator insert(const_iterator pos, basic_json&& val) // NOLINT(performance-unnecessary-value-param) { return insert(pos, val); } /// @brief inserts copies of element into array /// @sa https://json.nlohmann.me/api/basic_json/insert/ - iterator insert(const_iterator pos, size_type cnt, const basic_json& val) + iterator insert(const_iterator pos, size_type cnt, const basic_json& val) // NOLINT(performance-unnecessary-value-param) { // insert only works for arrays if (JSON_HEDLEY_LIKELY(is_array())) @@ -22632,7 +23370,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec /// @brief inserts range of elements into array /// @sa https://json.nlohmann.me/api/basic_json/insert/ - iterator insert(const_iterator pos, const_iterator first, const_iterator last) + iterator insert(const_iterator pos, const_iterator first, const_iterator last) // NOLINT(performance-unnecessary-value-param) { // insert only works for arrays if (JSON_HEDLEY_UNLIKELY(!is_array())) @@ -22663,7 +23401,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec /// @brief inserts elements from initializer list into array /// @sa https://json.nlohmann.me/api/basic_json/insert/ - iterator insert(const_iterator pos, initializer_list_t ilist) + iterator insert(const_iterator pos, initializer_list_t ilist) // NOLINT(performance-unnecessary-value-param) { // insert only works for arrays if (JSON_HEDLEY_UNLIKELY(!is_array())) @@ -22683,7 +23421,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec /// @brief inserts range of elements into object /// @sa https://json.nlohmann.me/api/basic_json/insert/ - void insert(const_iterator first, const_iterator last) + void insert(const_iterator first, const_iterator last) // NOLINT(performance-unnecessary-value-param) { // insert only works for objects if (JSON_HEDLEY_UNLIKELY(!is_object())) @@ -22704,6 +23442,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec } m_data.m_value.object->insert(first.m_it.object_iterator, last.m_it.object_iterator); + set_parents(); } /// @brief updates a JSON object from another object, overwriting existing keys @@ -22715,7 +23454,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec /// @brief updates a JSON object from another object, overwriting existing keys /// @sa https://json.nlohmann.me/api/basic_json/update/ - void update(const_iterator first, const_iterator last, bool merge_objects = false) + void update(const_iterator first, const_iterator last, bool merge_objects = false) // NOLINT(performance-unnecessary-value-param) { // implicitly convert null value to an empty object if (is_null()) @@ -23316,12 +24055,12 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec template JSON_HEDLEY_WARN_UNUSED_RESULT static basic_json parse(InputType&& i, - const parser_callback_t cb = nullptr, + parser_callback_t cb = nullptr, const bool allow_exceptions = true, const bool ignore_comments = false) { basic_json result; - parser(detail::input_adapter(std::forward(i)), cb, allow_exceptions, ignore_comments).parse(true, result); + parser(detail::input_adapter(std::forward(i)), std::move(cb), allow_exceptions, ignore_comments).parse(true, result); // cppcheck-suppress[accessMoved,accessForwarded] return result; } @@ -23331,24 +24070,24 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec JSON_HEDLEY_WARN_UNUSED_RESULT static basic_json parse(IteratorType first, IteratorType last, - const parser_callback_t cb = nullptr, + parser_callback_t cb = nullptr, const bool allow_exceptions = true, const bool ignore_comments = false) { basic_json result; - parser(detail::input_adapter(std::move(first), std::move(last)), cb, allow_exceptions, ignore_comments).parse(true, result); + parser(detail::input_adapter(std::move(first), std::move(last)), std::move(cb), allow_exceptions, ignore_comments).parse(true, result); // cppcheck-suppress[accessMoved] return result; } JSON_HEDLEY_WARN_UNUSED_RESULT JSON_HEDLEY_DEPRECATED_FOR(3.8.0, parse(ptr, ptr + len)) static basic_json parse(detail::span_input_adapter&& i, - const parser_callback_t cb = nullptr, + parser_callback_t cb = nullptr, const bool allow_exceptions = true, const bool ignore_comments = false) { basic_json result; - parser(i.get(), cb, allow_exceptions, ignore_comments).parse(true, result); + parser(i.get(), std::move(cb), allow_exceptions, ignore_comments).parse(true, result); // cppcheck-suppress[accessMoved] return result; } @@ -23527,6 +24266,23 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec basic_json* m_parent = nullptr; #endif +#if JSON_DIAGNOSTIC_POSITIONS + /// the start position of the value + std::size_t start_position = std::string::npos; + /// the end position of the value + std::size_t end_position = std::string::npos; + public: + constexpr std::size_t start_pos() const noexcept + { + return start_position; + } + + constexpr std::size_t end_pos() const noexcept + { + return end_position; + } +#endif + ////////////////////////////////////////// // binary serialization/deserialization // ////////////////////////////////////////// @@ -23612,27 +24368,30 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec /// @sa https://json.nlohmann.me/api/basic_json/to_bjdata/ static std::vector to_bjdata(const basic_json& j, const bool use_size = false, - const bool use_type = false) + const bool use_type = false, + const bjdata_version_t version = bjdata_version_t::draft2) { std::vector result; - to_bjdata(j, result, use_size, use_type); + to_bjdata(j, result, use_size, use_type, version); return result; } /// @brief create a BJData serialization of a given JSON value /// @sa https://json.nlohmann.me/api/basic_json/to_bjdata/ static void to_bjdata(const basic_json& j, detail::output_adapter o, - const bool use_size = false, const bool use_type = false) + const bool use_size = false, const bool use_type = false, + const bjdata_version_t version = bjdata_version_t::draft2) { - binary_writer(o).write_ubjson(j, use_size, use_type, true, true); + binary_writer(o).write_ubjson(j, use_size, use_type, true, true, version); } /// @brief create a BJData serialization of a given JSON value /// @sa https://json.nlohmann.me/api/basic_json/to_bjdata/ static void to_bjdata(const basic_json& j, detail::output_adapter o, - const bool use_size = false, const bool use_type = false) + const bool use_size = false, const bool use_type = false, + const bjdata_version_t version = bjdata_version_t::draft2) { - binary_writer(o).write_ubjson(j, use_size, use_type, true, true); + binary_writer(o).write_ubjson(j, use_size, use_type, true, true, version); } /// @brief create a BSON serialization of a given JSON value @@ -23668,9 +24427,9 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const cbor_tag_handler_t tag_handler = cbor_tag_handler_t::error) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = detail::input_adapter(std::forward(i)); - const bool res = binary_reader(std::move(ia), input_format_t::cbor).sax_parse(input_format_t::cbor, &sdp, strict, tag_handler); + detail::json_sax_dom_parser sdp(result, allow_exceptions); + const bool res = binary_reader(std::move(ia), input_format_t::cbor).sax_parse(input_format_t::cbor, &sdp, strict, tag_handler); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } @@ -23684,9 +24443,9 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const cbor_tag_handler_t tag_handler = cbor_tag_handler_t::error) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = detail::input_adapter(std::move(first), std::move(last)); - const bool res = binary_reader(std::move(ia), input_format_t::cbor).sax_parse(input_format_t::cbor, &sdp, strict, tag_handler); + detail::json_sax_dom_parser sdp(result, allow_exceptions); + const bool res = binary_reader(std::move(ia), input_format_t::cbor).sax_parse(input_format_t::cbor, &sdp, strict, tag_handler); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } @@ -23709,10 +24468,10 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const cbor_tag_handler_t tag_handler = cbor_tag_handler_t::error) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = i.get(); + detail::json_sax_dom_parser sdp(result, allow_exceptions); // NOLINTNEXTLINE(hicpp-move-const-arg,performance-move-const-arg) - const bool res = binary_reader(std::move(ia), input_format_t::cbor).sax_parse(input_format_t::cbor, &sdp, strict, tag_handler); + const bool res = binary_reader(std::move(ia), input_format_t::cbor).sax_parse(input_format_t::cbor, &sdp, strict, tag_handler); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } @@ -23725,9 +24484,9 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const bool allow_exceptions = true) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = detail::input_adapter(std::forward(i)); - const bool res = binary_reader(std::move(ia), input_format_t::msgpack).sax_parse(input_format_t::msgpack, &sdp, strict); + detail::json_sax_dom_parser sdp(result, allow_exceptions); + const bool res = binary_reader(std::move(ia), input_format_t::msgpack).sax_parse(input_format_t::msgpack, &sdp, strict); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } @@ -23740,9 +24499,9 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const bool allow_exceptions = true) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = detail::input_adapter(std::move(first), std::move(last)); - const bool res = binary_reader(std::move(ia), input_format_t::msgpack).sax_parse(input_format_t::msgpack, &sdp, strict); + detail::json_sax_dom_parser sdp(result, allow_exceptions); + const bool res = binary_reader(std::move(ia), input_format_t::msgpack).sax_parse(input_format_t::msgpack, &sdp, strict); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } @@ -23763,10 +24522,10 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const bool allow_exceptions = true) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = i.get(); + detail::json_sax_dom_parser sdp(result, allow_exceptions); // NOLINTNEXTLINE(hicpp-move-const-arg,performance-move-const-arg) - const bool res = binary_reader(std::move(ia), input_format_t::msgpack).sax_parse(input_format_t::msgpack, &sdp, strict); + const bool res = binary_reader(std::move(ia), input_format_t::msgpack).sax_parse(input_format_t::msgpack, &sdp, strict); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } @@ -23779,9 +24538,9 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const bool allow_exceptions = true) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = detail::input_adapter(std::forward(i)); - const bool res = binary_reader(std::move(ia), input_format_t::ubjson).sax_parse(input_format_t::ubjson, &sdp, strict); + detail::json_sax_dom_parser sdp(result, allow_exceptions); + const bool res = binary_reader(std::move(ia), input_format_t::ubjson).sax_parse(input_format_t::ubjson, &sdp, strict); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } @@ -23794,9 +24553,9 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const bool allow_exceptions = true) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = detail::input_adapter(std::move(first), std::move(last)); - const bool res = binary_reader(std::move(ia), input_format_t::ubjson).sax_parse(input_format_t::ubjson, &sdp, strict); + detail::json_sax_dom_parser sdp(result, allow_exceptions); + const bool res = binary_reader(std::move(ia), input_format_t::ubjson).sax_parse(input_format_t::ubjson, &sdp, strict); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } @@ -23817,10 +24576,10 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const bool allow_exceptions = true) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = i.get(); + detail::json_sax_dom_parser sdp(result, allow_exceptions); // NOLINTNEXTLINE(hicpp-move-const-arg,performance-move-const-arg) - const bool res = binary_reader(std::move(ia), input_format_t::ubjson).sax_parse(input_format_t::ubjson, &sdp, strict); + const bool res = binary_reader(std::move(ia), input_format_t::ubjson).sax_parse(input_format_t::ubjson, &sdp, strict); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } @@ -23833,9 +24592,9 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const bool allow_exceptions = true) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = detail::input_adapter(std::forward(i)); - const bool res = binary_reader(std::move(ia), input_format_t::bjdata).sax_parse(input_format_t::bjdata, &sdp, strict); + detail::json_sax_dom_parser sdp(result, allow_exceptions); + const bool res = binary_reader(std::move(ia), input_format_t::bjdata).sax_parse(input_format_t::bjdata, &sdp, strict); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } @@ -23848,9 +24607,9 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const bool allow_exceptions = true) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = detail::input_adapter(std::move(first), std::move(last)); - const bool res = binary_reader(std::move(ia), input_format_t::bjdata).sax_parse(input_format_t::bjdata, &sdp, strict); + detail::json_sax_dom_parser sdp(result, allow_exceptions); + const bool res = binary_reader(std::move(ia), input_format_t::bjdata).sax_parse(input_format_t::bjdata, &sdp, strict); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } @@ -23863,9 +24622,9 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const bool allow_exceptions = true) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = detail::input_adapter(std::forward(i)); - const bool res = binary_reader(std::move(ia), input_format_t::bson).sax_parse(input_format_t::bson, &sdp, strict); + detail::json_sax_dom_parser sdp(result, allow_exceptions); + const bool res = binary_reader(std::move(ia), input_format_t::bson).sax_parse(input_format_t::bson, &sdp, strict); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } @@ -23878,9 +24637,9 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const bool allow_exceptions = true) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = detail::input_adapter(std::move(first), std::move(last)); - const bool res = binary_reader(std::move(ia), input_format_t::bson).sax_parse(input_format_t::bson, &sdp, strict); + detail::json_sax_dom_parser sdp(result, allow_exceptions); + const bool res = binary_reader(std::move(ia), input_format_t::bson).sax_parse(input_format_t::bson, &sdp, strict); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } @@ -23901,10 +24660,10 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec const bool allow_exceptions = true) { basic_json result; - detail::json_sax_dom_parser sdp(result, allow_exceptions); auto ia = i.get(); + detail::json_sax_dom_parser sdp(result, allow_exceptions); // NOLINTNEXTLINE(hicpp-move-const-arg,performance-move-const-arg) - const bool res = binary_reader(std::move(ia), input_format_t::bson).sax_parse(input_format_t::bson, &sdp, strict); + const bool res = binary_reader(std::move(ia), input_format_t::bson).sax_parse(input_format_t::bson, &sdp, strict); // cppcheck-suppress[accessMoved] return res ? result : basic_json(value_t::discarded); } /// @} @@ -24005,7 +24764,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec // the valid JSON Patch operations enum class patch_operations {add, remove, replace, move, copy, test, invalid}; - const auto get_op = [](const std::string & op) + const auto get_op = [](const string_t& op) { if (op == "add") { @@ -24036,7 +24795,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec }; // wrapper for "add" operation; add value at ptr - const auto operation_add = [&result](json_pointer & ptr, basic_json val) + const auto operation_add = [&result](json_pointer & ptr, const basic_json & val) { // adding to the root of the target document means replacing it if (ptr.empty()) @@ -24142,8 +24901,8 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec for (const auto& val : json_patch) { // wrapper to get a value for an operation - const auto get_value = [&val](const std::string & op, - const std::string & member, + const auto get_value = [&val](const string_t& op, + const string_t& member, bool string_type) -> basic_json & { // find value @@ -24177,8 +24936,8 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec } // collect mandatory members - const auto op = get_value("op", "op", true).template get(); - const auto path = get_value(op, "path", true).template get(); + const auto op = get_value("op", "op", true).template get(); + const auto path = get_value(op, "path", true).template get(); json_pointer ptr(path); switch (get_op(op)) @@ -24204,7 +24963,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec case patch_operations::move: { - const auto from_path = get_value("move", "from", true).template get(); + const auto from_path = get_value("move", "from", true).template get(); json_pointer from_ptr(from_path); // the "from" location must exist - use at() @@ -24221,7 +24980,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec case patch_operations::copy: { - const auto from_path = get_value("copy", "from", true).template get(); + const auto from_path = get_value("copy", "from", true).template get(); const json_pointer from_ptr(from_path); // the "from" location must exist - use at() @@ -24281,7 +25040,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec /// @sa https://json.nlohmann.me/api/basic_json/diff/ JSON_HEDLEY_WARN_UNUSED_RESULT static basic_json diff(const basic_json& source, const basic_json& target, - const std::string& path = "") + const string_t& path = "") { // the patch basic_json result(value_t::array); @@ -24311,7 +25070,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec while (i < source.size() && i < target.size()) { // recursive call to compare array values at index i - auto temp_diff = diff(source[i], target[i], detail::concat(path, '/', std::to_string(i))); + auto temp_diff = diff(source[i], target[i], detail::concat(path, '/', detail::to_string(i))); result.insert(result.end(), temp_diff.begin(), temp_diff.end()); ++i; } @@ -24328,7 +25087,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec result.insert(result.begin() + end_index, object( { {"op", "remove"}, - {"path", detail::concat(path, '/', std::to_string(i))} + {"path", detail::concat(path, '/', detail::to_string(i))} })); ++i; } @@ -24339,7 +25098,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec result.push_back( { {"op", "add"}, - {"path", detail::concat(path, "/-")}, + {"path", detail::concat(path, "/-")}, {"value", target[i]} }); ++i; @@ -24354,7 +25113,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec for (auto it = source.cbegin(); it != source.cend(); ++it) { // escape the key name to be used in a JSON patch - const auto path_key = detail::concat(path, '/', detail::escape(it.key())); + const auto path_key = detail::concat(path, '/', detail::escape(it.key())); if (target.find(it.key()) != target.end()) { @@ -24378,7 +25137,7 @@ class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-spec if (source.find(it.key()) == source.end()) { // found a key that is not in this -> add it - const auto path_key = detail::concat(path, '/', detail::escape(it.key())); + const auto path_key = detail::concat(path, '/', detail::escape(it.key())); result.push_back( { {"op", "add"}, {"path", path_key}, @@ -24559,10 +25318,10 @@ inline void swap(nlohmann::NLOHMANN_BASIC_JSON_TPL& j1, nlohmann::NLOHMANN_BASIC // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT @@ -24593,6 +25352,7 @@ inline void swap(nlohmann::NLOHMANN_BASIC_JSON_TPL& j1, nlohmann::NLOHMANN_BASIC #undef JSON_HAS_CPP_14 #undef JSON_HAS_CPP_17 #undef JSON_HAS_CPP_20 + #undef JSON_HAS_CPP_23 #undef JSON_HAS_FILESYSTEM #undef JSON_HAS_EXPERIMENTAL_FILESYSTEM #undef JSON_HAS_THREE_WAY_COMPARISON @@ -24604,10 +25364,10 @@ inline void swap(nlohmann::NLOHMANN_BASIC_JSON_TPL& j1, nlohmann::NLOHMANN_BASIC // #include // __ _____ _____ _____ // __| | __| | | | JSON for Modern C++ -// | | |__ | | | | | | version 3.11.3 +// | | |__ | | | | | | version 3.12.0 // |_____|_____|_____|_|___| https://github.com/nlohmann/json // -// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann // SPDX-License-Identifier: MIT diff --git a/vendor/nlohmann/json_fwd.hpp b/vendor/nlohmann/json_fwd.hpp new file mode 100644 index 0000000000..9429171390 --- /dev/null +++ b/vendor/nlohmann/json_fwd.hpp @@ -0,0 +1,187 @@ +// __ _____ _____ _____ +// __| | __| | | | JSON for Modern C++ +// | | |__ | | | | | | version 3.12.0 +// |_____|_____|_____|_|___| https://github.com/nlohmann/json +// +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann +// SPDX-License-Identifier: MIT + +#ifndef INCLUDE_NLOHMANN_JSON_FWD_HPP_ +#define INCLUDE_NLOHMANN_JSON_FWD_HPP_ + +#include // int64_t, uint64_t +#include // map +#include // allocator +#include // string +#include // vector + +// #include +// __ _____ _____ _____ +// __| | __| | | | JSON for Modern C++ +// | | |__ | | | | | | version 3.12.0 +// |_____|_____|_____|_|___| https://github.com/nlohmann/json +// +// SPDX-FileCopyrightText: 2013 - 2025 Niels Lohmann +// SPDX-License-Identifier: MIT + + + +// This file contains all macro definitions affecting or depending on the ABI + +#ifndef JSON_SKIP_LIBRARY_VERSION_CHECK + #if defined(NLOHMANN_JSON_VERSION_MAJOR) && defined(NLOHMANN_JSON_VERSION_MINOR) && defined(NLOHMANN_JSON_VERSION_PATCH) + #if NLOHMANN_JSON_VERSION_MAJOR != 3 || NLOHMANN_JSON_VERSION_MINOR != 12 || NLOHMANN_JSON_VERSION_PATCH != 0 + #warning "Already included a different version of the library!" + #endif + #endif +#endif + +#define NLOHMANN_JSON_VERSION_MAJOR 3 // NOLINT(modernize-macro-to-enum) +#define NLOHMANN_JSON_VERSION_MINOR 12 // NOLINT(modernize-macro-to-enum) +#define NLOHMANN_JSON_VERSION_PATCH 0 // NOLINT(modernize-macro-to-enum) + +#ifndef JSON_DIAGNOSTICS + #define JSON_DIAGNOSTICS 0 +#endif + +#ifndef JSON_DIAGNOSTIC_POSITIONS + #define JSON_DIAGNOSTIC_POSITIONS 0 +#endif + +#ifndef JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON + #define JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON 0 +#endif + +#if JSON_DIAGNOSTICS + #define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS _diag +#else + #define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS +#endif + +#if JSON_DIAGNOSTIC_POSITIONS + #define NLOHMANN_JSON_ABI_TAG_DIAGNOSTIC_POSITIONS _dp +#else + #define NLOHMANN_JSON_ABI_TAG_DIAGNOSTIC_POSITIONS +#endif + +#if JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON + #define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON _ldvcmp +#else + #define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON +#endif + +#ifndef NLOHMANN_JSON_NAMESPACE_NO_VERSION + #define NLOHMANN_JSON_NAMESPACE_NO_VERSION 0 +#endif + +// Construct the namespace ABI tags component +#define NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b, c) json_abi ## a ## b ## c +#define NLOHMANN_JSON_ABI_TAGS_CONCAT(a, b, c) \ + NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b, c) + +#define NLOHMANN_JSON_ABI_TAGS \ + NLOHMANN_JSON_ABI_TAGS_CONCAT( \ + NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS, \ + NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON, \ + NLOHMANN_JSON_ABI_TAG_DIAGNOSTIC_POSITIONS) + +// Construct the namespace version component +#define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch) \ + _v ## major ## _ ## minor ## _ ## patch +#define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(major, minor, patch) \ + NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch) + +#if NLOHMANN_JSON_NAMESPACE_NO_VERSION +#define NLOHMANN_JSON_NAMESPACE_VERSION +#else +#define NLOHMANN_JSON_NAMESPACE_VERSION \ + NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(NLOHMANN_JSON_VERSION_MAJOR, \ + NLOHMANN_JSON_VERSION_MINOR, \ + NLOHMANN_JSON_VERSION_PATCH) +#endif + +// Combine namespace components +#define NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b) a ## b +#define NLOHMANN_JSON_NAMESPACE_CONCAT(a, b) \ + NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b) + +#ifndef NLOHMANN_JSON_NAMESPACE +#define NLOHMANN_JSON_NAMESPACE \ + nlohmann::NLOHMANN_JSON_NAMESPACE_CONCAT( \ + NLOHMANN_JSON_ABI_TAGS, \ + NLOHMANN_JSON_NAMESPACE_VERSION) +#endif + +#ifndef NLOHMANN_JSON_NAMESPACE_BEGIN +#define NLOHMANN_JSON_NAMESPACE_BEGIN \ + namespace nlohmann \ + { \ + inline namespace NLOHMANN_JSON_NAMESPACE_CONCAT( \ + NLOHMANN_JSON_ABI_TAGS, \ + NLOHMANN_JSON_NAMESPACE_VERSION) \ + { +#endif + +#ifndef NLOHMANN_JSON_NAMESPACE_END +#define NLOHMANN_JSON_NAMESPACE_END \ + } /* namespace (inline namespace) NOLINT(readability/namespace) */ \ + } // namespace nlohmann +#endif + + +/*! +@brief namespace for Niels Lohmann +@see https://github.com/nlohmann +@since version 1.0.0 +*/ +NLOHMANN_JSON_NAMESPACE_BEGIN + +/*! +@brief default JSONSerializer template argument + +This serializer ignores the template arguments and uses ADL +([argument-dependent lookup](https://en.cppreference.com/w/cpp/language/adl)) +for serialization. +*/ +template +struct adl_serializer; + +/// a class to store JSON values +/// @sa https://json.nlohmann.me/api/basic_json/ +template class ObjectType = + std::map, + template class ArrayType = std::vector, + class StringType = std::string, class BooleanType = bool, + class NumberIntegerType = std::int64_t, + class NumberUnsignedType = std::uint64_t, + class NumberFloatType = double, + template class AllocatorType = std::allocator, + template class JSONSerializer = + adl_serializer, + class BinaryType = std::vector, // cppcheck-suppress syntaxError + class CustomBaseClass = void> +class basic_json; + +/// @brief JSON Pointer defines a string syntax for identifying a specific value within a JSON document +/// @sa https://json.nlohmann.me/api/json_pointer/ +template +class json_pointer; + +/*! +@brief default specialization +@sa https://json.nlohmann.me/api/json/ +*/ +using json = basic_json<>; + +/// @brief a minimal map-like container that preserves insertion order +/// @sa https://json.nlohmann.me/api/ordered_map/ +template +struct ordered_map; + +/// @brief specialization that maintains the insertion order of object keys +/// @sa https://json.nlohmann.me/api/ordered_json/ +using ordered_json = basic_json; + +NLOHMANN_JSON_NAMESPACE_END + +#endif // INCLUDE_NLOHMANN_JSON_FWD_HPP_ diff --git a/common/stb_image.h b/vendor/stb/stb_image.h similarity index 100% rename from common/stb_image.h rename to vendor/stb/stb_image.h