ggml-hexagon: Implement true Q8_0 quantization on Hexagon NPU for more accurate mixed-precision matmul operations (#17977)

* feat: implement real Q8_0

* feat: adding cmake option for configuring FP32 quantize group size

* typo: set() shall be used

---------

Co-authored-by: ngdxzy <zhenyu_xu@uri.edu>
This commit is contained in:
Alfred 2025-12-19 12:42:28 -05:00 committed by GitHub
parent 14931a826e
commit ce734a8a2f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 147 additions and 2 deletions

View File

@ -22,6 +22,7 @@
"GGML_LLAMAFILE": "OFF",
"GGML_OPENCL": "ON",
"GGML_HEXAGON": "ON",
"GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE": "128",
"LLAMA_CURL": "OFF"
}
},
@ -36,6 +37,7 @@
"GGML_LLAMAFILE": "OFF",
"GGML_OPENCL": "ON",
"GGML_HEXAGON": "ON",
"GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE": "128",
"LLAMA_CURL": "OFF"
}
},

View File

@ -254,6 +254,7 @@ set (GGML_OPENCL_TARGET_VERSION "300" CACHE STRING
"gmml: OpenCL API version to target")
option(GGML_HEXAGON "ggml: enable Hexagon backend" OFF)
set(GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE 128 CACHE STRING "ggml: quantize group size (32, 64, or 128)")
# toolchain for vulkan-shaders-gen
set (GGML_VULKAN_SHADERS_GEN_TOOLCHAIN "" CACHE FILEPATH "ggml: toolchain file for vulkan-shaders-gen")

View File

@ -2,6 +2,7 @@ include(${HEXAGON_SDK_ROOT}/build/cmake/hexagon_fun.cmake)
include(ExternalProject)
option(GGML_HEXAGON_HTP_DEBUG "ggml-hexagon: enable HTP debug output" OFF)
set(GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE 128 CACHE STRING "ggml-hexagon: quantize group size (32, 64, or 128)")
add_library(htp_iface OBJECT
${CMAKE_CURRENT_BINARY_DIR}/htp_iface_stub.c)
@ -41,7 +42,8 @@ set(HTP_CMAKE_ARGS
-DCMAKE_INSTALL_LIBDIR=${CMAKE_CURRENT_BINARY_DIR}
-DHEXAGON_SDK_ROOT=$ENV{HEXAGON_SDK_ROOT}
-DHEXAGON_TOOLS_ROOT=$ENV{HEXAGON_TOOLS_ROOT}
-DHEXAGON_HTP_DEBUG=${GGML_HEXAGON_HTP_DEBUG})
-DHEXAGON_HTP_DEBUG=${GGML_HEXAGON_HTP_DEBUG}
-DGGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE=${GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE})
ExternalProject_Add(htp-v68
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON

View File

@ -31,7 +31,8 @@ add_library(${HTP_LIB} SHARED
)
target_compile_definitions(${HTP_LIB} PRIVATE
$<IF:$<BOOL:${HEXAGON_HTP_DEBUG}>,HTP_DEBUG=1,NDEBUG=1>)
$<IF:$<BOOL:${HEXAGON_HTP_DEBUG}>,HTP_DEBUG=1,NDEBUG=1>
FP32_QUANTIZE_GROUP_SIZE=${GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE})
build_idl(htp_iface.idl ${HTP_LIB})

View File

@ -92,6 +92,18 @@ static const uint8_t __attribute__((aligned(128))) repl_1x_fp16[128] = {
0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02,
};
// vdelta control to replicate first fp16 value across all elements
static const uint8_t __attribute__((aligned(128))) repl_2x_fp16[128] = {
0x00, 0x00, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02,
0x10, 0x10, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02,
0x20, 0x20, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02,
0x10, 0x10, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02,
0x00, 0x00, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02,
0x10, 0x10, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02,
0x20, 0x20, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02,
0x10, 0x10, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02,
};
// vdelta control to expand first 32 e8m0 values into 32 uint32 elements
static const uint8_t __attribute__((aligned(128))) expand_x32_e8m0[128] = {
0x00, 0x00, 0x00, 0x00, 0x01, 0x04, 0x00, 0x00, 0x02, 0x00, 0x08, 0x08, 0x01, 0x02, 0x00, 0x04, 0x04, 0x00, 0x00,
@ -1594,6 +1606,118 @@ static void matmul_f16_f32(struct htp_tensor * restrict src0,
// *** dynamic quant
static inline void quantize_block_fp32_q8x1(float * restrict x, uint8_t * restrict y_q, uint8_t * restrict y_d) {
assert((unsigned long) x % 128 == 0);
assert((unsigned long) y_q % 128 == 0);
HVX_Vector * vx = (HVX_Vector *) x;
HVX_Vector zero = Q6_V_vsplat_R(0);
// Use reduce max fp32 to find max(abs(e)) first
HVX_Vector vmax0_sf = hvx_vec_reduce_max_fp32(hvx_vec_abs_fp32(vx[0]));
HVX_Vector vmax1_sf = hvx_vec_reduce_max_fp32(hvx_vec_abs_fp32(vx[1]));
HVX_Vector vmax2_sf = hvx_vec_reduce_max_fp32(hvx_vec_abs_fp32(vx[2]));
HVX_Vector vmax3_sf = hvx_vec_reduce_max_fp32(hvx_vec_abs_fp32(vx[3]));
// Load and convert into QF32
HVX_Vector vx0_qf = Q6_Vqf32_vsub_VsfVsf(vx[0], zero); // 32 elements
HVX_Vector vx1_qf = Q6_Vqf32_vsub_VsfVsf(vx[1], zero); // 32 elements
HVX_Vector vx2_qf = Q6_Vqf32_vsub_VsfVsf(vx[2], zero); // 32 elements
HVX_Vector vx3_qf = Q6_Vqf32_vsub_VsfVsf(vx[3], zero); // 32 elements
// Convert to QF32
HVX_Vector vmax0_qf = Q6_Vqf32_vsub_VsfVsf(vmax0_sf, zero);
HVX_Vector vmax1_qf = Q6_Vqf32_vsub_VsfVsf(vmax1_sf, zero);
HVX_Vector vmax2_qf = Q6_Vqf32_vsub_VsfVsf(vmax2_sf, zero);
HVX_Vector vmax3_qf = Q6_Vqf32_vsub_VsfVsf(vmax3_sf, zero);
// Combine and convert to fp16
HVX_Vector vmax01_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(vmax1_qf, vmax0_qf)));
HVX_Vector vmax23_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(vmax3_qf, vmax2_qf)));
// Convert into fp16
HVX_Vector vx01_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(vx1_qf, vx0_qf)));
HVX_Vector vx23_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(vx3_qf, vx2_qf)));
// Replicate first fp16 scale across all lanes
HVX_Vector ctrl = *(const HVX_Vector *) repl_2x_fp16;
vmax01_hf = Q6_V_vdelta_VV(vmax01_hf, ctrl);
vmax23_hf = Q6_V_vdelta_VV(vmax23_hf, ctrl);
HVX_Vector vd01_qf16 = Q6_Vqf16_vmpy_VhfVhf(vmax01_hf, Q6_Vh_vsplat_R(0x2008)); // 1.0 / 127.0
HVX_Vector vd23_qf16 = Q6_Vqf16_vmpy_VhfVhf(vmax23_hf, Q6_Vh_vsplat_R(0x2008)); // 1.0 / 127.0
HVX_Vector vd01_hf = Q6_Vhf_equals_Vqf16(vd01_qf16);
HVX_Vector vd23_hf = Q6_Vhf_equals_Vqf16(vd23_qf16);
hvx_vec_store_u(y_d + 0, 2, vd01_hf);
HVX_Vector rotated_vd_hf = Q6_V_vror_VR(vd01_hf, 64);
hvx_vec_store_u(y_d + 2, 2, rotated_vd_hf);
hvx_vec_store_u(y_d + 4, 2, vd23_hf);
rotated_vd_hf = Q6_V_vror_VR(vd23_hf, 64);
hvx_vec_store_u(y_d + 6, 2, rotated_vd_hf);
// Divide input by the scale
HVX_Vector vd01_inv_hf = hvx_vec_inverse_fp16(vd01_hf);
HVX_Vector vd23_inv_hf = hvx_vec_inverse_fp16(vd23_hf);
vx01_hf = Q6_Vhf_equals_Vqf16(Q6_Vqf16_vmpy_VhfVhf(vx01_hf, vd01_inv_hf));
vx23_hf = Q6_Vhf_equals_Vqf16(Q6_Vqf16_vmpy_VhfVhf(vx23_hf, vd23_inv_hf));
// Convert to int8
HVX_Vector vx01_i16 = hvx_vec_i16_from_hf_rnd_sat(vx01_hf);
HVX_Vector vx23_i16 = hvx_vec_i16_from_hf_rnd_sat(vx23_hf);
HVX_Vector vx_i8 = Q6_Vb_vpack_VhVh_sat(vx23_i16, vx01_i16);
*(HVX_Vector *) y_q = vx_i8;
}
static inline void quantize_block_fp32_q8x2(float * restrict x, uint8_t * restrict y_q, uint8_t * restrict y_d) {
assert((unsigned long) x % 128 == 0);
assert((unsigned long) y_q % 128 == 0);
HVX_Vector * vx = (HVX_Vector *) x;
// Load and convert into QF32
HVX_Vector zero = Q6_V_vsplat_R(0);
HVX_Vector vx0_qf = Q6_Vqf32_vsub_VsfVsf(vx[0], zero); // 32 elements
HVX_Vector vx1_qf = Q6_Vqf32_vsub_VsfVsf(vx[1], zero); // 32 elements
HVX_Vector vx2_qf = Q6_Vqf32_vsub_VsfVsf(vx[2], zero); // 32 elements
HVX_Vector vx3_qf = Q6_Vqf32_vsub_VsfVsf(vx[3], zero); // 32 elements
// Convert into fp16
HVX_Vector vx01_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(vx1_qf, vx0_qf)));
HVX_Vector vx23_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(vx3_qf, vx2_qf)));
// Compute max and scale
HVX_Vector vmax01_hf = hvx_vec_reduce_max_fp16(hvx_vec_abs_fp16(vx01_hf));
HVX_Vector vmax23_hf = hvx_vec_reduce_max_fp16(hvx_vec_abs_fp16(vx23_hf));
// Replicate first fp16 scale across all lanes
HVX_Vector ctrl = *(const HVX_Vector *) repl_1x_fp16;
vmax01_hf = Q6_V_vdelta_VV(vmax01_hf, ctrl);
vmax23_hf = Q6_V_vdelta_VV(vmax23_hf, ctrl);
HVX_Vector vd01_qf16 = Q6_Vqf16_vmpy_VhfVhf(vmax01_hf, Q6_Vh_vsplat_R(0x2008)); // 1.0 / 127.0
HVX_Vector vd23_qf16 = Q6_Vqf16_vmpy_VhfVhf(vmax23_hf, Q6_Vh_vsplat_R(0x2008)); // 1.0 / 127.0
HVX_Vector vd01_hf = Q6_Vhf_equals_Vqf16(vd01_qf16);
HVX_Vector vd23_hf = Q6_Vhf_equals_Vqf16(vd23_qf16);
hvx_vec_store_u(y_d + 0, 4, vd01_hf);
hvx_vec_store_u(y_d + 4, 4, vd23_hf);
// Divide input by the scale
HVX_Vector vd01_inv_hf = hvx_vec_inverse_fp16(vd01_hf);
HVX_Vector vd23_inv_hf = hvx_vec_inverse_fp16(vd23_hf);
vx01_hf = Q6_Vhf_equals_Vqf16(Q6_Vqf16_vmpy_VhfVhf(vx01_hf, vd01_inv_hf));
vx23_hf = Q6_Vhf_equals_Vqf16(Q6_Vqf16_vmpy_VhfVhf(vx23_hf, vd23_inv_hf));
// Convert to int8
HVX_Vector vx01_i16 = hvx_vec_i16_from_hf_rnd_sat(vx01_hf);
HVX_Vector vx23_i16 = hvx_vec_i16_from_hf_rnd_sat(vx23_hf);
HVX_Vector vx_i8 = Q6_Vb_vpack_VhVh_sat(vx23_i16, vx01_i16);
*(HVX_Vector *) y_q = vx_i8;
}
static inline void quantize_block_fp32_q8x4(float * restrict x, uint8_t * restrict y_q, uint8_t * restrict y_d) {
assert((unsigned long) x % 128 == 0);
assert((unsigned long) y_q % 128 == 0);
@ -1655,10 +1779,24 @@ static void quantize_row_fp32_q8x4x2(float * restrict x, uint8_t * restrict y, u
uint8_t * restrict t_d = (uint8_t *) x;
for (uint32_t i = 0; i < nb; i++) {
#if FP32_QUANTIZE_GROUP_SIZE == 32
quantize_block_fp32_q8x1(x + (i * 2 + 0) * qk / 2, y_q + (i * 2 + 0) * qblk_size / 2,
t_d + (i * 2 + 0) * dblk_size / 2);
quantize_block_fp32_q8x1(x + (i * 2 + 1) * qk / 2, y_q + (i * 2 + 1) * qblk_size / 2,
t_d + (i * 2 + 1) * dblk_size / 2);
#elif FP32_QUANTIZE_GROUP_SIZE == 64
quantize_block_fp32_q8x2(x + (i * 2 + 0) * qk / 2, y_q + (i * 2 + 0) * qblk_size / 2,
t_d + (i * 2 + 0) * dblk_size / 2);
quantize_block_fp32_q8x2(x + (i * 2 + 1) * qk / 2, y_q + (i * 2 + 1) * qblk_size / 2,
t_d + (i * 2 + 1) * dblk_size / 2);
#elif FP32_QUANTIZE_GROUP_SIZE == 128
quantize_block_fp32_q8x4(x + (i * 2 + 0) * qk / 2, y_q + (i * 2 + 0) * qblk_size / 2,
t_d + (i * 2 + 0) * dblk_size / 2);
quantize_block_fp32_q8x4(x + (i * 2 + 1) * qk / 2, y_q + (i * 2 + 1) * qblk_size / 2,
t_d + (i * 2 + 1) * dblk_size / 2);
#else
#error "FP32_QUANTIZE_GROUP_SIZE must be 32, 64, or 128"
#endif
}
// now copy the scales into final location
@ -1671,6 +1809,7 @@ static void quantize_fp32_q8x4x2(const struct htp_tensor * src,
uint32_t nth,
uint32_t ith,
uint32_t nrows_per_thread) {
uint64_t t1 = HAP_perf_get_qtimer_count();
const uint32_t ne0 = src->ne[0];