diff --git a/docs/backend/hexagon/CMakeUserPresets.json b/docs/backend/hexagon/CMakeUserPresets.json index e0b19db0f5..98d7221b3a 100644 --- a/docs/backend/hexagon/CMakeUserPresets.json +++ b/docs/backend/hexagon/CMakeUserPresets.json @@ -22,6 +22,7 @@ "GGML_LLAMAFILE": "OFF", "GGML_OPENCL": "ON", "GGML_HEXAGON": "ON", + "GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE": "128", "LLAMA_CURL": "OFF" } }, @@ -36,6 +37,7 @@ "GGML_LLAMAFILE": "OFF", "GGML_OPENCL": "ON", "GGML_HEXAGON": "ON", + "GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE": "128", "LLAMA_CURL": "OFF" } }, diff --git a/ggml/CMakeLists.txt b/ggml/CMakeLists.txt index a65dcfbe1e..18d117f7cc 100644 --- a/ggml/CMakeLists.txt +++ b/ggml/CMakeLists.txt @@ -254,6 +254,7 @@ set (GGML_OPENCL_TARGET_VERSION "300" CACHE STRING "gmml: OpenCL API version to target") option(GGML_HEXAGON "ggml: enable Hexagon backend" OFF) +set(GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE 128 CACHE STRING "ggml: quantize group size (32, 64, or 128)") # toolchain for vulkan-shaders-gen set (GGML_VULKAN_SHADERS_GEN_TOOLCHAIN "" CACHE FILEPATH "ggml: toolchain file for vulkan-shaders-gen") diff --git a/ggml/src/ggml-hexagon/CMakeLists.txt b/ggml/src/ggml-hexagon/CMakeLists.txt index ac422027b9..d58e287823 100644 --- a/ggml/src/ggml-hexagon/CMakeLists.txt +++ b/ggml/src/ggml-hexagon/CMakeLists.txt @@ -2,6 +2,7 @@ include(${HEXAGON_SDK_ROOT}/build/cmake/hexagon_fun.cmake) include(ExternalProject) option(GGML_HEXAGON_HTP_DEBUG "ggml-hexagon: enable HTP debug output" OFF) +set(GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE 128 CACHE STRING "ggml-hexagon: quantize group size (32, 64, or 128)") add_library(htp_iface OBJECT ${CMAKE_CURRENT_BINARY_DIR}/htp_iface_stub.c) @@ -41,7 +42,8 @@ set(HTP_CMAKE_ARGS -DCMAKE_INSTALL_LIBDIR=${CMAKE_CURRENT_BINARY_DIR} -DHEXAGON_SDK_ROOT=$ENV{HEXAGON_SDK_ROOT} -DHEXAGON_TOOLS_ROOT=$ENV{HEXAGON_TOOLS_ROOT} - -DHEXAGON_HTP_DEBUG=${GGML_HEXAGON_HTP_DEBUG}) + -DHEXAGON_HTP_DEBUG=${GGML_HEXAGON_HTP_DEBUG} + -DGGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE=${GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE}) ExternalProject_Add(htp-v68 SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON diff --git a/ggml/src/ggml-hexagon/htp/CMakeLists.txt b/ggml/src/ggml-hexagon/htp/CMakeLists.txt index 22e3fea11d..2cf8aaa42a 100644 --- a/ggml/src/ggml-hexagon/htp/CMakeLists.txt +++ b/ggml/src/ggml-hexagon/htp/CMakeLists.txt @@ -31,7 +31,8 @@ add_library(${HTP_LIB} SHARED ) target_compile_definitions(${HTP_LIB} PRIVATE - $,HTP_DEBUG=1,NDEBUG=1>) + $,HTP_DEBUG=1,NDEBUG=1> + FP32_QUANTIZE_GROUP_SIZE=${GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE}) build_idl(htp_iface.idl ${HTP_LIB}) diff --git a/ggml/src/ggml-hexagon/htp/matmul-ops.c b/ggml/src/ggml-hexagon/htp/matmul-ops.c index 346f0bd339..0c9188244d 100644 --- a/ggml/src/ggml-hexagon/htp/matmul-ops.c +++ b/ggml/src/ggml-hexagon/htp/matmul-ops.c @@ -92,6 +92,18 @@ static const uint8_t __attribute__((aligned(128))) repl_1x_fp16[128] = { 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, }; +// vdelta control to replicate first fp16 value across all elements +static const uint8_t __attribute__((aligned(128))) repl_2x_fp16[128] = { + 0x00, 0x00, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, + 0x10, 0x10, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, + 0x20, 0x20, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, + 0x10, 0x10, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, + 0x00, 0x00, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, + 0x10, 0x10, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, + 0x20, 0x20, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, + 0x10, 0x10, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, 0x08, 0x08, 0x02, 0x02, 0x04, 0x04, 0x02, 0x02, +}; + // vdelta control to expand first 32 e8m0 values into 32 uint32 elements static const uint8_t __attribute__((aligned(128))) expand_x32_e8m0[128] = { 0x00, 0x00, 0x00, 0x00, 0x01, 0x04, 0x00, 0x00, 0x02, 0x00, 0x08, 0x08, 0x01, 0x02, 0x00, 0x04, 0x04, 0x00, 0x00, @@ -1594,6 +1606,118 @@ static void matmul_f16_f32(struct htp_tensor * restrict src0, // *** dynamic quant +static inline void quantize_block_fp32_q8x1(float * restrict x, uint8_t * restrict y_q, uint8_t * restrict y_d) { + assert((unsigned long) x % 128 == 0); + assert((unsigned long) y_q % 128 == 0); + + HVX_Vector * vx = (HVX_Vector *) x; + HVX_Vector zero = Q6_V_vsplat_R(0); + + // Use reduce max fp32 to find max(abs(e)) first + HVX_Vector vmax0_sf = hvx_vec_reduce_max_fp32(hvx_vec_abs_fp32(vx[0])); + HVX_Vector vmax1_sf = hvx_vec_reduce_max_fp32(hvx_vec_abs_fp32(vx[1])); + HVX_Vector vmax2_sf = hvx_vec_reduce_max_fp32(hvx_vec_abs_fp32(vx[2])); + HVX_Vector vmax3_sf = hvx_vec_reduce_max_fp32(hvx_vec_abs_fp32(vx[3])); + // Load and convert into QF32 + HVX_Vector vx0_qf = Q6_Vqf32_vsub_VsfVsf(vx[0], zero); // 32 elements + HVX_Vector vx1_qf = Q6_Vqf32_vsub_VsfVsf(vx[1], zero); // 32 elements + HVX_Vector vx2_qf = Q6_Vqf32_vsub_VsfVsf(vx[2], zero); // 32 elements + HVX_Vector vx3_qf = Q6_Vqf32_vsub_VsfVsf(vx[3], zero); // 32 elements + + // Convert to QF32 + HVX_Vector vmax0_qf = Q6_Vqf32_vsub_VsfVsf(vmax0_sf, zero); + HVX_Vector vmax1_qf = Q6_Vqf32_vsub_VsfVsf(vmax1_sf, zero); + HVX_Vector vmax2_qf = Q6_Vqf32_vsub_VsfVsf(vmax2_sf, zero); + HVX_Vector vmax3_qf = Q6_Vqf32_vsub_VsfVsf(vmax3_sf, zero); + + // Combine and convert to fp16 + HVX_Vector vmax01_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(vmax1_qf, vmax0_qf))); + HVX_Vector vmax23_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(vmax3_qf, vmax2_qf))); + + // Convert into fp16 + HVX_Vector vx01_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(vx1_qf, vx0_qf))); + HVX_Vector vx23_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(vx3_qf, vx2_qf))); + + // Replicate first fp16 scale across all lanes + HVX_Vector ctrl = *(const HVX_Vector *) repl_2x_fp16; + vmax01_hf = Q6_V_vdelta_VV(vmax01_hf, ctrl); + vmax23_hf = Q6_V_vdelta_VV(vmax23_hf, ctrl); + + HVX_Vector vd01_qf16 = Q6_Vqf16_vmpy_VhfVhf(vmax01_hf, Q6_Vh_vsplat_R(0x2008)); // 1.0 / 127.0 + HVX_Vector vd23_qf16 = Q6_Vqf16_vmpy_VhfVhf(vmax23_hf, Q6_Vh_vsplat_R(0x2008)); // 1.0 / 127.0 + HVX_Vector vd01_hf = Q6_Vhf_equals_Vqf16(vd01_qf16); + HVX_Vector vd23_hf = Q6_Vhf_equals_Vqf16(vd23_qf16); + + hvx_vec_store_u(y_d + 0, 2, vd01_hf); + HVX_Vector rotated_vd_hf = Q6_V_vror_VR(vd01_hf, 64); + hvx_vec_store_u(y_d + 2, 2, rotated_vd_hf); + + hvx_vec_store_u(y_d + 4, 2, vd23_hf); + rotated_vd_hf = Q6_V_vror_VR(vd23_hf, 64); + hvx_vec_store_u(y_d + 6, 2, rotated_vd_hf); + + // Divide input by the scale + HVX_Vector vd01_inv_hf = hvx_vec_inverse_fp16(vd01_hf); + HVX_Vector vd23_inv_hf = hvx_vec_inverse_fp16(vd23_hf); + vx01_hf = Q6_Vhf_equals_Vqf16(Q6_Vqf16_vmpy_VhfVhf(vx01_hf, vd01_inv_hf)); + vx23_hf = Q6_Vhf_equals_Vqf16(Q6_Vqf16_vmpy_VhfVhf(vx23_hf, vd23_inv_hf)); + + // Convert to int8 + HVX_Vector vx01_i16 = hvx_vec_i16_from_hf_rnd_sat(vx01_hf); + HVX_Vector vx23_i16 = hvx_vec_i16_from_hf_rnd_sat(vx23_hf); + HVX_Vector vx_i8 = Q6_Vb_vpack_VhVh_sat(vx23_i16, vx01_i16); + + *(HVX_Vector *) y_q = vx_i8; +} + +static inline void quantize_block_fp32_q8x2(float * restrict x, uint8_t * restrict y_q, uint8_t * restrict y_d) { + assert((unsigned long) x % 128 == 0); + assert((unsigned long) y_q % 128 == 0); + + HVX_Vector * vx = (HVX_Vector *) x; + + // Load and convert into QF32 + HVX_Vector zero = Q6_V_vsplat_R(0); + HVX_Vector vx0_qf = Q6_Vqf32_vsub_VsfVsf(vx[0], zero); // 32 elements + HVX_Vector vx1_qf = Q6_Vqf32_vsub_VsfVsf(vx[1], zero); // 32 elements + HVX_Vector vx2_qf = Q6_Vqf32_vsub_VsfVsf(vx[2], zero); // 32 elements + HVX_Vector vx3_qf = Q6_Vqf32_vsub_VsfVsf(vx[3], zero); // 32 elements + + // Convert into fp16 + HVX_Vector vx01_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(vx1_qf, vx0_qf))); + HVX_Vector vx23_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(vx3_qf, vx2_qf))); + + // Compute max and scale + HVX_Vector vmax01_hf = hvx_vec_reduce_max_fp16(hvx_vec_abs_fp16(vx01_hf)); + HVX_Vector vmax23_hf = hvx_vec_reduce_max_fp16(hvx_vec_abs_fp16(vx23_hf)); + + // Replicate first fp16 scale across all lanes + HVX_Vector ctrl = *(const HVX_Vector *) repl_1x_fp16; + vmax01_hf = Q6_V_vdelta_VV(vmax01_hf, ctrl); + vmax23_hf = Q6_V_vdelta_VV(vmax23_hf, ctrl); + + HVX_Vector vd01_qf16 = Q6_Vqf16_vmpy_VhfVhf(vmax01_hf, Q6_Vh_vsplat_R(0x2008)); // 1.0 / 127.0 + HVX_Vector vd23_qf16 = Q6_Vqf16_vmpy_VhfVhf(vmax23_hf, Q6_Vh_vsplat_R(0x2008)); // 1.0 / 127.0 + HVX_Vector vd01_hf = Q6_Vhf_equals_Vqf16(vd01_qf16); + HVX_Vector vd23_hf = Q6_Vhf_equals_Vqf16(vd23_qf16); + + hvx_vec_store_u(y_d + 0, 4, vd01_hf); + hvx_vec_store_u(y_d + 4, 4, vd23_hf); + + // Divide input by the scale + HVX_Vector vd01_inv_hf = hvx_vec_inverse_fp16(vd01_hf); + HVX_Vector vd23_inv_hf = hvx_vec_inverse_fp16(vd23_hf); + vx01_hf = Q6_Vhf_equals_Vqf16(Q6_Vqf16_vmpy_VhfVhf(vx01_hf, vd01_inv_hf)); + vx23_hf = Q6_Vhf_equals_Vqf16(Q6_Vqf16_vmpy_VhfVhf(vx23_hf, vd23_inv_hf)); + + // Convert to int8 + HVX_Vector vx01_i16 = hvx_vec_i16_from_hf_rnd_sat(vx01_hf); + HVX_Vector vx23_i16 = hvx_vec_i16_from_hf_rnd_sat(vx23_hf); + HVX_Vector vx_i8 = Q6_Vb_vpack_VhVh_sat(vx23_i16, vx01_i16); + + *(HVX_Vector *) y_q = vx_i8; +} + static inline void quantize_block_fp32_q8x4(float * restrict x, uint8_t * restrict y_q, uint8_t * restrict y_d) { assert((unsigned long) x % 128 == 0); assert((unsigned long) y_q % 128 == 0); @@ -1655,10 +1779,24 @@ static void quantize_row_fp32_q8x4x2(float * restrict x, uint8_t * restrict y, u uint8_t * restrict t_d = (uint8_t *) x; for (uint32_t i = 0; i < nb; i++) { +#if FP32_QUANTIZE_GROUP_SIZE == 32 + quantize_block_fp32_q8x1(x + (i * 2 + 0) * qk / 2, y_q + (i * 2 + 0) * qblk_size / 2, + t_d + (i * 2 + 0) * dblk_size / 2); + quantize_block_fp32_q8x1(x + (i * 2 + 1) * qk / 2, y_q + (i * 2 + 1) * qblk_size / 2, + t_d + (i * 2 + 1) * dblk_size / 2); +#elif FP32_QUANTIZE_GROUP_SIZE == 64 + quantize_block_fp32_q8x2(x + (i * 2 + 0) * qk / 2, y_q + (i * 2 + 0) * qblk_size / 2, + t_d + (i * 2 + 0) * dblk_size / 2); + quantize_block_fp32_q8x2(x + (i * 2 + 1) * qk / 2, y_q + (i * 2 + 1) * qblk_size / 2, + t_d + (i * 2 + 1) * dblk_size / 2); +#elif FP32_QUANTIZE_GROUP_SIZE == 128 quantize_block_fp32_q8x4(x + (i * 2 + 0) * qk / 2, y_q + (i * 2 + 0) * qblk_size / 2, t_d + (i * 2 + 0) * dblk_size / 2); quantize_block_fp32_q8x4(x + (i * 2 + 1) * qk / 2, y_q + (i * 2 + 1) * qblk_size / 2, t_d + (i * 2 + 1) * dblk_size / 2); +#else +#error "FP32_QUANTIZE_GROUP_SIZE must be 32, 64, or 128" +#endif } // now copy the scales into final location @@ -1671,6 +1809,7 @@ static void quantize_fp32_q8x4x2(const struct htp_tensor * src, uint32_t nth, uint32_t ith, uint32_t nrows_per_thread) { + uint64_t t1 = HAP_perf_get_qtimer_count(); const uint32_t ne0 = src->ne[0];