Add EXAONE MoE implementations

Co-authored-by: Junwon Hwang <nuclear1221@gmail.com>
This commit is contained in:
LG-AI-EXAONE 2025-12-27 14:34:32 +00:00 committed by JUNWON.HWANG
parent e86f3c2221
commit c55e457bae
18 changed files with 604 additions and 9 deletions

View File

@ -1403,6 +1403,118 @@ static void common_chat_parse_solar_open(common_chat_msg_parser & builder) {
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_exaone_moe_content(common_chat_msg_parser & builder) {
// 1) <tool_call>{ "name": "...", "arguments": {...} }</tool_call>
// 2) <tool_call>{ "id": "...", "type": "function", "function": { "name": "...", "arguments": {...} } }</tool_call>
static const common_regex tool_call_open(R"(<tool_call[^>]*>)");
if (!builder.syntax().parse_tool_calls) {
LOG_DBG("%s: not parse_tool_calls\n", __func__);
builder.add_content(builder.consume_rest());
return;
}
LOG_DBG("%s: parse_tool_calls\n", __func__);
// Find all <tool_call></tool_call> blocks
while (auto first = builder.try_find_regex(tool_call_open, std::string::npos, /* add_prelude_to_content= */ true)) {
builder.move_to(first->groups[0].end);
builder.consume_spaces();
builder.try_consume_literal("```json");
builder.try_consume_literal("```");
builder.consume_spaces();
// Consume JSON object
auto data = builder.consume_json();
builder.consume_spaces();
builder.try_consume_literal("```");
builder.consume_spaces();
if (!builder.try_consume_literal("</tool_call>")) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
builder.consume_spaces();
// Extract name and arguments
std::string name;
std::string id;
nlohmann::ordered_json arguments;
const auto extract_args = [&](const nlohmann::ordered_json & obj) -> bool {
if (!obj.contains("name") || !obj.contains("arguments")) {
return false;
}
name = obj.at("name").get<std::string>();
arguments = obj.at("arguments");
if (obj.contains("id") && obj.at("id").is_string()) {
id = obj.at("id").get<std::string>();
}
return true;
};
if (!extract_args(data.json)) {
if (data.json.contains("function") && data.json.at("function").is_object()) {
auto fn = data.json.at("function");
extract_args(fn);
if (id.empty() && data.json.contains("id") && data.json.at("id").is_string()) {
id = data.json.at("id").get<std::string>();
}
}
}
// If name is empty, treat the JSON object as content
if (name.empty()) {
LOG_DBG("%s: tool call missing name, treating as content\n", __func__);
builder.add_content(data.json.dump());
continue;
}
std::string args_str = arguments.dump();
if (!builder.add_tool_call(name, id, args_str)) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
}
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_exaone_moe(common_chat_msg_parser & builder) {
LOG_DBG("%s: parsing exaone_moe\n", __func__);
// EXAONE MoE outputs reasoning content between "<think>" and "</think>" tags, followed by regular content
// First try to parse using the standard reasoning parsing method
LOG_DBG("%s: thinking_forced_open: %s\n", __func__, std::to_string(builder.syntax().thinking_forced_open).c_str());
auto start_pos = builder.pos();
auto found_end_think = builder.try_find_literal("</think>");
builder.move_to(start_pos);
if (builder.syntax().thinking_forced_open && !builder.is_partial() && !found_end_think) {
LOG_DBG("%s: no end_think, not partial, adding content\n", __func__);
common_chat_parse_exaone_moe_content(builder);
} else if (builder.try_parse_reasoning("<think>", "</think>")) {
// If reasoning was parsed successfully, the remaining content is regular content
LOG_DBG("%s: parsed reasoning, adding content\n", __func__);
common_chat_parse_exaone_moe_content(builder);
} else {
if (builder.syntax().reasoning_format == COMMON_REASONING_FORMAT_NONE) {
LOG_DBG("%s: reasoning_format none, adding content\n", __func__);
common_chat_parse_exaone_moe_content(builder);
return;
}
// If no reasoning tags found, check if we should treat everything as reasoning
if (builder.syntax().thinking_forced_open) {
// If thinking is forced open but no tags found, treat everything as reasoning
LOG_DBG("%s: thinking_forced_open, adding reasoning content\n", __func__);
builder.add_reasoning_content(builder.consume_rest());
} else {
LOG_DBG("%s: no thinking_forced_open, adding content\n", __func__);
common_chat_parse_exaone_moe_content(builder);
}
}
}
static void common_chat_parse_content_only(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("<think>", "</think>");
builder.add_content(builder.consume_rest());
@ -1490,6 +1602,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_SOLAR_OPEN:
common_chat_parse_solar_open(builder);
break;
case COMMON_CHAT_FORMAT_EXAONE_MOE:
common_chat_parse_exaone_moe(builder);
break;
default:
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
}

View File

@ -670,6 +670,7 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_APRIEL_1_5: return "Apriel 1.5";
case COMMON_CHAT_FORMAT_XIAOMI_MIMO: return "Xiaomi MiMo";
case COMMON_CHAT_FORMAT_SOLAR_OPEN: return "Solar Open";
case COMMON_CHAT_FORMAT_EXAONE_MOE: return "EXAONE MoE";
case COMMON_CHAT_FORMAT_PEG_SIMPLE: return "peg-simple";
case COMMON_CHAT_FORMAT_PEG_NATIVE: return "peg-native";
case COMMON_CHAT_FORMAT_PEG_CONSTRUCTED: return "peg-constructed";
@ -2539,6 +2540,65 @@ static common_chat_params common_chat_params_init_solar_open(const common_chat_t
return data;
}
static common_chat_params common_chat_params_init_exaone_moe(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_EXAONE_MOE;
if (string_ends_with(data.prompt, "<think>\n")) {
if (!inputs.enable_thinking) {
data.prompt += "</think>\n\n";
} else {
data.thinking_forced_open = true;
}
}
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED && inputs.json_schema.is_null();
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
std::string name = function.at("name");
auto parameters = function.at("parameters");
builder.resolve_refs(parameters);
// Expect: <tool_call>{"name": "<name>", "arguments": {...}}</tool_call>
tool_rules.push_back(builder.add_rule(
name + "-call",
"\"<tool_call>\" space " +
builder.add_schema(name + "-obj", json{
{"type", "object"},
{"properties", {
{"name", json{{"const", name}}},
{"arguments", parameters},
}},
{"required", json::array({"name", "arguments"})},
}) +
" space \"</tool_call>\" space"));
});
auto tool_call = builder.add_rule("tool_call", string_join(tool_rules, " | "));
builder.add_rule("root",
std::string(data.thinking_forced_open ? "( \"</think>\" space )? " : "") +
(inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call));
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
std::string(data.thinking_forced_open ? "[\\s\\S]*?(</think>\\s*)?" : "") +
"(<tool_call>)[\\s\\S]*"
});
data.preserved_tokens = {
"<think>",
"</think>",
"<tool_call>",
"</tool_call>",
};
});
}
return data;
}
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
data.prompt = apply(tmpl, inputs);
@ -2709,6 +2769,13 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_xiaomi_mimo(tmpl, params);
}
// EXAONE MoE format detection
if (src.find("<tool_call>") != std::string::npos &&
src.find("<tool_result>") != std::string::npos &&
src.find("<|tool_declare|>") != std::string::npos) {
return common_chat_params_init_exaone_moe(tmpl, params);
}
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null()) {
return common_chat_params_init_hermes_2_pro(tmpl, params);

View File

@ -125,6 +125,7 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_APRIEL_1_5,
COMMON_CHAT_FORMAT_XIAOMI_MIMO,
COMMON_CHAT_FORMAT_SOLAR_OPEN,
COMMON_CHAT_FORMAT_EXAONE_MOE,
// These are intended to be parsed by the PEG parser
COMMON_CHAT_FORMAT_PEG_SIMPLE,

View File

@ -1230,15 +1230,9 @@ class TextModel(ModelBase):
if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
# ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
res = "minimax-m2"
if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
# ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
res = "kormo"
if chkhsh == "9d70134b369a70e5735009b6de918f7581b5211f7c074d1f89f753aea8248af1":
# ref: https://huggingface.co/tencent/Youtu-LLM-2B
res = "youtu"
if chkhsh == "16389f0a1f51ee53e562ffd51c371dc508639ab0e4261502071836e50e223e91":
# ref: https://huggingface.co/upstage/Solar-Open-100B
res = "solar-open"
if chkhsh == "6c81ce329e0802883b22eabab0d3fa48357337ef1ecb45443828bf1f6254833f":
# ref: https://huggingface.co/LGAI-EXAONE/K-EXAONE-236B-A23B
res = "exaone-moe"
if res is None:
logger.warning("\n")
@ -8486,6 +8480,80 @@ class Exaone4Model(TextModel):
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
@ModelBase.register("ExaoneMoEForCausalLM")
class ExaoneMoEModel(Exaone4Model):
model_arch = gguf.MODEL_ARCH.EXAONE_MOE
def set_gguf_parameters(self):
super().set_gguf_parameters()
# We check whether the layer is MoE or not by referencing MoE module dynamically, not by the layer index
self.gguf_writer.add_expert_count(self.hparams["num_experts"])
self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
moe_intermediate_size = self.hparams["moe_intermediate_size"]
num_shared_experts = self.hparams["num_shared_experts"]
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
self.gguf_writer.add_expert_shared_count(num_shared_experts)
self.gguf_writer.add_expert_shared_feed_forward_length(moe_intermediate_size * num_shared_experts)
self.gguf_writer.add_expert_group_count(self.hparams["n_group"]) # 확인 필요
self.gguf_writer.add_expert_group_used_count(self.hparams["topk_group"]) # 확인 필요
self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.startswith("mtp."):
return [] # ignore MTP layers for now
if name.endswith("e_score_correction_bias"):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
if name.find("mlp.experts") != -1:
n_experts = self.hparams["num_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("GraniteForCausalLM")
class GraniteModel(LlamaModel):
"""Conversion for IBM's GraniteForCausalLM"""

View File

@ -147,6 +147,7 @@ models = [
{"name": "kormo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/KORMo-Team/KORMo-tokenizer", },
{"name": "youtu", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Youtu-LLM-2B", },
{"name": "solar-open", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/upstage/Solar-Open-100B", },
{"name": "exaone-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/K-EXAONE-236B-A23B", },
]
# some models are known to be broken upstream, so we will skip them as exceptions

View File

@ -421,6 +421,7 @@ class MODEL_ARCH(IntEnum):
NEMOTRON_H_MOE = auto()
EXAONE = auto()
EXAONE4 = auto()
EXAONE_MOE = auto()
GRANITE = auto()
GRANITE_MOE = auto()
GRANITE_HYBRID = auto()
@ -818,6 +819,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.NEMOTRON_H_MOE: "nemotron_h_moe",
MODEL_ARCH.EXAONE: "exaone",
MODEL_ARCH.EXAONE4: "exaone4",
MODEL_ARCH.EXAONE_MOE: "exaone-moe",
MODEL_ARCH.GRANITE: "granite",
MODEL_ARCH.GRANITE_MOE: "granitemoe",
MODEL_ARCH.GRANITE_HYBRID: "granitehybrid",
@ -2687,6 +2689,31 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_POST_NORM,
],
MODEL_ARCH.EXAONE_MOE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
],
MODEL_ARCH.GRANITE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,

View File

@ -403,6 +403,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
"model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
"backbone.layers.{bid}.mixer.gate.e_score_correction" # nemotron-h-moe
"model.layers.{bid}.mlp.e_score_correction", # exaone-moe
),
# Feed-forward up

View File

@ -62,6 +62,7 @@ add_library(llama
models/ernie4-5.cpp
models/exaone.cpp
models/exaone4.cpp
models/exaone-moe.cpp
models/falcon-h1.cpp
models/falcon.cpp
models/gemma-embedding.cpp

View File

@ -81,6 +81,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_NEMOTRON_H_MOE, "nemotron_h_moe" },
{ LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_EXAONE4, "exaone4" },
{ LLM_ARCH_EXAONE_MOE, "exaone-moe" },
{ LLM_ARCH_RWKV6, "rwkv6" },
{ LLM_ARCH_RWKV6QWEN2, "rwkv6qwen2" },
{ LLM_ARCH_RWKV7, "rwkv7" },
@ -1724,6 +1725,32 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_POST_NORM,
};
case LLM_ARCH_EXAONE_MOE:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_ROPE_FREQS,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_EXP_PROBS_B,
};
case LLM_ARCH_RWKV6:
return {
LLM_TENSOR_TOKEN_EMBD,

View File

@ -85,6 +85,7 @@ enum llm_arch {
LLM_ARCH_NEMOTRON_H_MOE,
LLM_ARCH_EXAONE,
LLM_ARCH_EXAONE4,
LLM_ARCH_EXAONE_MOE,
LLM_ARCH_RWKV6,
LLM_ARCH_RWKV6QWEN2,
LLM_ARCH_RWKV7,

View File

@ -57,6 +57,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
{ "exaone4", LLM_CHAT_TEMPLATE_EXAONE_4 },
{ "exaone-moe", LLM_CHAT_TEMPLATE_EXAONE_MOE },
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
@ -137,6 +138,9 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
} else if (tmpl_contains("[gMASK]<sop>")) {
return LLM_CHAT_TEMPLATE_CHATGLM_4;
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
if (tmpl_contains("<|tool_declare|>")) {
return LLM_CHAT_TEMPLATE_EXAONE_MOE;
}
return tmpl_contains("</s>") ? LLM_CHAT_TEMPLATE_FALCON_3 : LLM_CHAT_TEMPLATE_GLMEDGE;
} else if (tmpl_contains("<|{{ item['role'] }}|>") && tmpl_contains("<|begin_of_image|>")) {
return LLM_CHAT_TEMPLATE_GLMEDGE;
@ -576,6 +580,22 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "[|assistant|]";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_MOE) {
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "<|system|>\n" << trim(message->content) << "<|endofturn|>\n";
} else if (role == "user") {
ss << "<|user|>\n" << trim(message->content) << "<|endofturn|>\n";
} else if (role == "assistant") {
ss << "<|assistant|>\n" << trim(message->content) << "<|endofturn|>\n";
} else if (role == "tool") {
ss << "<|tool|>\n" << trim(message->content) << "<|endofturn|>\n";
}
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
// this template requires the model to have "\n\n" as EOT token
for (size_t i = 0; i < chat.size(); i++) {

View File

@ -36,6 +36,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_MINICPM,
LLM_CHAT_TEMPLATE_EXAONE_3,
LLM_CHAT_TEMPLATE_EXAONE_4,
LLM_CHAT_TEMPLATE_EXAONE_MOE,
LLM_CHAT_TEMPLATE_RWKV_WORLD,
LLM_CHAT_TEMPLATE_GRANITE,
LLM_CHAT_TEMPLATE_GIGACHAT,

View File

@ -1909,6 +1909,33 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_EXAONE_MOE:
{
// TODO: implement
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
hparams.n_swa = 128;
hparams.set_swa_pattern(4);
hparams.n_layer_dense_lead = 1;
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, true);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert);
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared, false);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
ml.get_key(LLM_KV_EXPERT_GROUP_COUNT, hparams.n_expert_groups, false);
ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used, false);
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
switch (hparams.n_layer) {
case 32: type = LLM_TYPE_30B_A3B; break;
case 48: type = LLM_TYPE_235B_A22B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_RWKV6:
case LLM_ARCH_RWKV6QWEN2:
{
@ -5475,6 +5502,66 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
case LLM_ARCH_EXAONE_MOE:
{
const int64_t n_ff_exp = hparams.n_ff_exp;
const int64_t n_expert = hparams.n_expert;
const int64_t n_expert_used = hparams.n_expert_used;
const int64_t n_ff_shexp = hparams.n_ff_shexp;
const int64_t head_dim = hparams.n_embd_head_k;
const int64_t n_qo_dim = n_head * head_dim;
const int64_t n_kv_dim = n_head_kv * head_dim;
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_qo_dim}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_kv_dim}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_kv_dim}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_qo_dim, n_embd}, 0);
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
if (i < (int) hparams.n_layer_dense_lead) {
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
} else {
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
if (n_expert == 0) {
throw std::runtime_error("n_expert must be > 0");
}
if (n_expert_used == 0) {
throw std::runtime_error("n_expert_used must be > 0");
}
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
}
}
} break;
case LLM_ARCH_RWKV6:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -7725,6 +7812,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
llm = std::make_unique<llm_build_exaone4<false>>(*this, params);
}
} break;
case LLM_ARCH_EXAONE_MOE:
{
llm = std::make_unique<llm_build_exaone_moe>(*this, params);
} break;
case LLM_ARCH_RWKV6:
{
llm = std::make_unique<llm_build_rwkv6>(*this, params);
@ -8074,6 +8165,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_NEMOTRON:
case LLM_ARCH_EXAONE:
case LLM_ARCH_EXAONE4:
case LLM_ARCH_EXAONE_MOE:
case LLM_ARCH_MINICPM3:
case LLM_ARCH_BAILINGMOE2:
case LLM_ARCH_DOTS1:

View File

@ -461,6 +461,11 @@ struct llm_tokenizer_bpe : llm_tokenizer {
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\\r\\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_EXAONE_MOE:
regex_exprs = {
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?(?:\\p{L}\\p{M}*(?: \\p{L}\\p{M}*)*)+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]?|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+",
};
break;
default:
// default regex for BPE tokenization pre-processing
regex_exprs = {
@ -1965,6 +1970,9 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
} else if (
tokenizer_pre == "exaone4") {
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
} else if (
tokenizer_pre == "exaone-moe") {
pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE_MOE;
} else if (
tokenizer_pre == "chameleon") {
pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;

View File

@ -53,6 +53,7 @@ enum llama_vocab_pre_type {
LLAMA_VOCAB_PRE_TYPE_AFMOE = 42,
LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN = 43,
LLAMA_VOCAB_PRE_TYPE_YOUTU = 44,
LLAMA_VOCAB_PRE_TYPE_EXAONE_MOE = 45,
};
struct LLM_KV;

154
src/models/exaone-moe.cpp Normal file
View File

@ -0,0 +1,154 @@
#include "models.h"
llm_build_exaone_moe::llm_build_exaone_moe(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_v);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn_iswa = build_attn_inp_kv_iswa();
// auto * inp_attn_kv = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// use RoPE for SWA layers
const bool is_local_layer = hparams.is_swa(il);
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
if (is_local_layer) {
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
if (is_local_layer) {
cur = build_attn(inp_attn_iswa,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
} else {
// cur = build_attn(inp_attn_kv,
cur = build_attn(inp_attn_iswa,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// norm
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
// dense branch
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL, NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
{
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
// final norm
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -167,6 +167,10 @@ struct llm_build_exaone : public llm_graph_context {
llm_build_exaone(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_exaone_moe : public llm_graph_context {
llm_build_exaone_moe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_falcon : public llm_graph_context {
llm_build_falcon(const llama_model & model, const llm_graph_params & params);
};

View File

@ -1013,6 +1013,12 @@ json oaicompat_chat_params_parse(
// Apply chat template to the list of messages
auto chat_params = common_chat_templates_apply(opt.tmpls, inputs);
SRV_INF("enable_thinking(req/body)=%d kwarg=%s prompt_thinking=%d format=%s\nPROMPT:\n%s",
inputs.enable_thinking,
json_value(inputs.chat_template_kwargs, "enable_thinking", std::string("")).c_str(),
chat_params.thinking_forced_open,
common_chat_format_name(chat_params.format),
chat_params.prompt.c_str());
/* Append assistant prefilled message */
if (prefill_assistant_message) {