diff --git a/common/chat-parser.cpp b/common/chat-parser.cpp
index 23e23ca8c7..2f073512e0 100644
--- a/common/chat-parser.cpp
+++ b/common/chat-parser.cpp
@@ -1403,6 +1403,118 @@ static void common_chat_parse_solar_open(common_chat_msg_parser & builder) {
builder.add_content(builder.consume_rest());
}
+static void common_chat_parse_exaone_moe_content(common_chat_msg_parser & builder) {
+ // 1) { "name": "...", "arguments": {...} }
+ // 2) { "id": "...", "type": "function", "function": { "name": "...", "arguments": {...} } }
+ static const common_regex tool_call_open(R"(]*>)");
+
+ if (!builder.syntax().parse_tool_calls) {
+ LOG_DBG("%s: not parse_tool_calls\n", __func__);
+ builder.add_content(builder.consume_rest());
+ return;
+ }
+
+ LOG_DBG("%s: parse_tool_calls\n", __func__);
+
+ // Find all blocks
+ while (auto first = builder.try_find_regex(tool_call_open, std::string::npos, /* add_prelude_to_content= */ true)) {
+ builder.move_to(first->groups[0].end);
+ builder.consume_spaces();
+
+ builder.try_consume_literal("```json");
+ builder.try_consume_literal("```");
+ builder.consume_spaces();
+
+ // Consume JSON object
+ auto data = builder.consume_json();
+
+ builder.consume_spaces();
+ builder.try_consume_literal("```");
+ builder.consume_spaces();
+
+ if (!builder.try_consume_literal("")) {
+ throw common_chat_msg_partial_exception("incomplete tool call");
+ }
+ builder.consume_spaces();
+
+ // Extract name and arguments
+ std::string name;
+ std::string id;
+ nlohmann::ordered_json arguments;
+
+ const auto extract_args = [&](const nlohmann::ordered_json & obj) -> bool {
+ if (!obj.contains("name") || !obj.contains("arguments")) {
+ return false;
+ }
+ name = obj.at("name").get();
+ arguments = obj.at("arguments");
+ if (obj.contains("id") && obj.at("id").is_string()) {
+ id = obj.at("id").get();
+ }
+ return true;
+ };
+
+ if (!extract_args(data.json)) {
+ if (data.json.contains("function") && data.json.at("function").is_object()) {
+ auto fn = data.json.at("function");
+ extract_args(fn);
+ if (id.empty() && data.json.contains("id") && data.json.at("id").is_string()) {
+ id = data.json.at("id").get();
+ }
+ }
+ }
+
+ // If name is empty, treat the JSON object as content
+ if (name.empty()) {
+ LOG_DBG("%s: tool call missing name, treating as content\n", __func__);
+ builder.add_content(data.json.dump());
+ continue;
+ }
+
+ std::string args_str = arguments.dump();
+ if (!builder.add_tool_call(name, id, args_str)) {
+ throw common_chat_msg_partial_exception("incomplete tool call");
+ }
+ }
+
+ builder.add_content(builder.consume_rest());
+}
+
+static void common_chat_parse_exaone_moe(common_chat_msg_parser & builder) {
+ LOG_DBG("%s: parsing exaone_moe\n", __func__);
+ // EXAONE MoE outputs reasoning content between "" and "" tags, followed by regular content
+ // First try to parse using the standard reasoning parsing method
+ LOG_DBG("%s: thinking_forced_open: %s\n", __func__, std::to_string(builder.syntax().thinking_forced_open).c_str());
+
+ auto start_pos = builder.pos();
+ auto found_end_think = builder.try_find_literal("");
+ builder.move_to(start_pos);
+
+ if (builder.syntax().thinking_forced_open && !builder.is_partial() && !found_end_think) {
+ LOG_DBG("%s: no end_think, not partial, adding content\n", __func__);
+ common_chat_parse_exaone_moe_content(builder);
+ } else if (builder.try_parse_reasoning("", "")) {
+ // If reasoning was parsed successfully, the remaining content is regular content
+ LOG_DBG("%s: parsed reasoning, adding content\n", __func__);
+ common_chat_parse_exaone_moe_content(builder);
+ } else {
+ if (builder.syntax().reasoning_format == COMMON_REASONING_FORMAT_NONE) {
+ LOG_DBG("%s: reasoning_format none, adding content\n", __func__);
+ common_chat_parse_exaone_moe_content(builder);
+ return;
+ }
+ // If no reasoning tags found, check if we should treat everything as reasoning
+ if (builder.syntax().thinking_forced_open) {
+ // If thinking is forced open but no tags found, treat everything as reasoning
+ LOG_DBG("%s: thinking_forced_open, adding reasoning content\n", __func__);
+ builder.add_reasoning_content(builder.consume_rest());
+ } else {
+ LOG_DBG("%s: no thinking_forced_open, adding content\n", __func__);
+ common_chat_parse_exaone_moe_content(builder);
+ }
+ }
+}
+
static void common_chat_parse_content_only(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("", "");
builder.add_content(builder.consume_rest());
@@ -1490,6 +1602,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_SOLAR_OPEN:
common_chat_parse_solar_open(builder);
break;
+ case COMMON_CHAT_FORMAT_EXAONE_MOE:
+ common_chat_parse_exaone_moe(builder);
+ break;
default:
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
}
diff --git a/common/chat.cpp b/common/chat.cpp
index b98ab21ce1..64b4fabcc2 100644
--- a/common/chat.cpp
+++ b/common/chat.cpp
@@ -670,6 +670,7 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_APRIEL_1_5: return "Apriel 1.5";
case COMMON_CHAT_FORMAT_XIAOMI_MIMO: return "Xiaomi MiMo";
case COMMON_CHAT_FORMAT_SOLAR_OPEN: return "Solar Open";
+ case COMMON_CHAT_FORMAT_EXAONE_MOE: return "EXAONE MoE";
case COMMON_CHAT_FORMAT_PEG_SIMPLE: return "peg-simple";
case COMMON_CHAT_FORMAT_PEG_NATIVE: return "peg-native";
case COMMON_CHAT_FORMAT_PEG_CONSTRUCTED: return "peg-constructed";
@@ -2539,6 +2540,65 @@ static common_chat_params common_chat_params_init_solar_open(const common_chat_t
return data;
}
+static common_chat_params common_chat_params_init_exaone_moe(const common_chat_template & tmpl, const struct templates_params & inputs) {
+ common_chat_params data;
+
+ data.prompt = apply(tmpl, inputs);
+ data.format = COMMON_CHAT_FORMAT_EXAONE_MOE;
+ if (string_ends_with(data.prompt, "\n")) {
+ if (!inputs.enable_thinking) {
+ data.prompt += "\n\n";
+ } else {
+ data.thinking_forced_open = true;
+ }
+ }
+
+ if (inputs.tools.is_array() && !inputs.tools.empty()) {
+ data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED && inputs.json_schema.is_null();
+ data.grammar = build_grammar([&](const common_grammar_builder & builder) {
+ std::vector tool_rules;
+ foreach_function(inputs.tools, [&](const json & tool) {
+ const auto & function = tool.at("function");
+ std::string name = function.at("name");
+ auto parameters = function.at("parameters");
+ builder.resolve_refs(parameters);
+ // Expect: {"name": "", "arguments": {...}}
+ tool_rules.push_back(builder.add_rule(
+ name + "-call",
+ "\"\" space " +
+ builder.add_schema(name + "-obj", json{
+ {"type", "object"},
+ {"properties", {
+ {"name", json{{"const", name}}},
+ {"arguments", parameters},
+ }},
+ {"required", json::array({"name", "arguments"})},
+ }) +
+ " space \"\" space"));
+ });
+
+ auto tool_call = builder.add_rule("tool_call", string_join(tool_rules, " | "));
+ builder.add_rule("root",
+ std::string(data.thinking_forced_open ? "( \"\" space )? " : "") +
+ (inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call));
+
+ data.grammar_triggers.push_back({
+ COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
+ std::string(data.thinking_forced_open ? "[\\s\\S]*?(\\s*)?" : "") +
+ "()[\\s\\S]*"
+ });
+ data.preserved_tokens = {
+ "",
+ "",
+ "",
+ "",
+ };
+ });
+ }
+
+ return data;
+}
+
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
data.prompt = apply(tmpl, inputs);
@@ -2709,6 +2769,13 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_xiaomi_mimo(tmpl, params);
}
+ // EXAONE MoE format detection
+ if (src.find("") != std::string::npos &&
+ src.find("") != std::string::npos &&
+ src.find("<|tool_declare|>") != std::string::npos) {
+ return common_chat_params_init_exaone_moe(tmpl, params);
+ }
+
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
if (src.find("") != std::string::npos && params.json_schema.is_null()) {
return common_chat_params_init_hermes_2_pro(tmpl, params);
diff --git a/common/chat.h b/common/chat.h
index 8bd4a325ff..454085e90e 100644
--- a/common/chat.h
+++ b/common/chat.h
@@ -125,6 +125,7 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_APRIEL_1_5,
COMMON_CHAT_FORMAT_XIAOMI_MIMO,
COMMON_CHAT_FORMAT_SOLAR_OPEN,
+ COMMON_CHAT_FORMAT_EXAONE_MOE,
// These are intended to be parsed by the PEG parser
COMMON_CHAT_FORMAT_PEG_SIMPLE,
diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py
index 7ad20c0869..d985afea2c 100755
--- a/convert_hf_to_gguf.py
+++ b/convert_hf_to_gguf.py
@@ -1230,15 +1230,9 @@ class TextModel(ModelBase):
if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
# ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
res = "minimax-m2"
- if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
- # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
- res = "kormo"
- if chkhsh == "9d70134b369a70e5735009b6de918f7581b5211f7c074d1f89f753aea8248af1":
- # ref: https://huggingface.co/tencent/Youtu-LLM-2B
- res = "youtu"
- if chkhsh == "16389f0a1f51ee53e562ffd51c371dc508639ab0e4261502071836e50e223e91":
- # ref: https://huggingface.co/upstage/Solar-Open-100B
- res = "solar-open"
+ if chkhsh == "6c81ce329e0802883b22eabab0d3fa48357337ef1ecb45443828bf1f6254833f":
+ # ref: https://huggingface.co/LGAI-EXAONE/K-EXAONE-236B-A23B
+ res = "exaone-moe"
if res is None:
logger.warning("\n")
@@ -8486,6 +8480,80 @@ class Exaone4Model(TextModel):
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
+@ModelBase.register("ExaoneMoEForCausalLM")
+class ExaoneMoEModel(Exaone4Model):
+ model_arch = gguf.MODEL_ARCH.EXAONE_MOE
+
+ def set_gguf_parameters(self):
+ super().set_gguf_parameters()
+ # We check whether the layer is MoE or not by referencing MoE module dynamically, not by the layer index
+ self.gguf_writer.add_expert_count(self.hparams["num_experts"])
+ self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
+ moe_intermediate_size = self.hparams["moe_intermediate_size"]
+ num_shared_experts = self.hparams["num_shared_experts"]
+ self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
+ self.gguf_writer.add_expert_shared_count(num_shared_experts)
+ self.gguf_writer.add_expert_shared_feed_forward_length(moe_intermediate_size * num_shared_experts)
+ self.gguf_writer.add_expert_group_count(self.hparams["n_group"]) # 확인 필요
+ self.gguf_writer.add_expert_group_used_count(self.hparams["topk_group"]) # 확인 필요
+ self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
+ self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
+ self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
+
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
+
+ _experts: list[dict[str, Tensor]] | None = None
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ if name.startswith("mtp."):
+ return [] # ignore MTP layers for now
+
+ if name.endswith("e_score_correction_bias"):
+ name = name.replace("e_score_correction_bias", "e_score_correction.bias")
+
+ if name.find("mlp.experts") != -1:
+ n_experts = self.hparams["num_experts"]
+ assert bid is not None
+
+ if self._experts is None:
+ self._experts = [{} for _ in range(self.block_count)]
+
+ self._experts[bid][name] = data_torch
+
+ if len(self._experts[bid]) >= n_experts * 3:
+ tensors: list[tuple[str, Tensor]] = []
+
+ # merge the experts into a single 3d tensor
+ for w_name in ["down_proj", "gate_proj", "up_proj"]:
+ datas: list[Tensor] = []
+
+ for xid in range(n_experts):
+ ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+ datas.append(self._experts[bid][ename])
+ del self._experts[bid][ename]
+
+ data_torch = torch.stack(datas, dim=0)
+
+ merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+
+ new_name = self.map_tensor_name(merged_name)
+
+ tensors.append((new_name, data_torch))
+ return tensors
+ else:
+ return []
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+ def prepare_tensors(self):
+ super().prepare_tensors()
+ if self._experts is not None:
+ # flatten `list[dict[str, Tensor]]` into `list[str]`
+ experts = [k for d in self._experts for k in d.keys()]
+ if len(experts) > 0:
+ raise ValueError(f"Unprocessed experts: {experts}")
+
+
@ModelBase.register("GraniteForCausalLM")
class GraniteModel(LlamaModel):
"""Conversion for IBM's GraniteForCausalLM"""
diff --git a/convert_hf_to_gguf_update.py b/convert_hf_to_gguf_update.py
index 74c67e6a9c..aa9843ea17 100755
--- a/convert_hf_to_gguf_update.py
+++ b/convert_hf_to_gguf_update.py
@@ -147,6 +147,7 @@ models = [
{"name": "kormo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/KORMo-Team/KORMo-tokenizer", },
{"name": "youtu", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Youtu-LLM-2B", },
{"name": "solar-open", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/upstage/Solar-Open-100B", },
+ {"name": "exaone-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/K-EXAONE-236B-A23B", },
]
# some models are known to be broken upstream, so we will skip them as exceptions
diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py
index 0ac512ff36..fdde417f46 100644
--- a/gguf-py/gguf/constants.py
+++ b/gguf-py/gguf/constants.py
@@ -421,6 +421,7 @@ class MODEL_ARCH(IntEnum):
NEMOTRON_H_MOE = auto()
EXAONE = auto()
EXAONE4 = auto()
+ EXAONE_MOE = auto()
GRANITE = auto()
GRANITE_MOE = auto()
GRANITE_HYBRID = auto()
@@ -818,6 +819,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.NEMOTRON_H_MOE: "nemotron_h_moe",
MODEL_ARCH.EXAONE: "exaone",
MODEL_ARCH.EXAONE4: "exaone4",
+ MODEL_ARCH.EXAONE_MOE: "exaone-moe",
MODEL_ARCH.GRANITE: "granite",
MODEL_ARCH.GRANITE_MOE: "granitemoe",
MODEL_ARCH.GRANITE_HYBRID: "granitehybrid",
@@ -2687,6 +2689,31 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_POST_NORM,
],
+ MODEL_ARCH.EXAONE_MOE: [
+ MODEL_TENSOR.TOKEN_EMBD,
+ MODEL_TENSOR.OUTPUT_NORM,
+ MODEL_TENSOR.OUTPUT,
+ MODEL_TENSOR.ROPE_FREQS,
+ MODEL_TENSOR.ATTN_NORM,
+ MODEL_TENSOR.ATTN_Q,
+ MODEL_TENSOR.ATTN_Q_NORM,
+ MODEL_TENSOR.ATTN_K,
+ MODEL_TENSOR.ATTN_K_NORM,
+ MODEL_TENSOR.ATTN_V,
+ MODEL_TENSOR.ATTN_OUT,
+ MODEL_TENSOR.FFN_NORM,
+ MODEL_TENSOR.FFN_GATE,
+ MODEL_TENSOR.FFN_DOWN,
+ MODEL_TENSOR.FFN_UP,
+ MODEL_TENSOR.FFN_GATE_INP,
+ MODEL_TENSOR.FFN_GATE_EXP,
+ MODEL_TENSOR.FFN_DOWN_EXP,
+ MODEL_TENSOR.FFN_UP_EXP,
+ MODEL_TENSOR.FFN_GATE_SHEXP,
+ MODEL_TENSOR.FFN_DOWN_SHEXP,
+ MODEL_TENSOR.FFN_UP_SHEXP,
+ MODEL_TENSOR.FFN_EXP_PROBS_B,
+ ],
MODEL_ARCH.GRANITE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py
index 64dd4ddca5..dbb7ee232f 100644
--- a/gguf-py/gguf/tensor_mapping.py
+++ b/gguf-py/gguf/tensor_mapping.py
@@ -403,6 +403,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
"model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
"backbone.layers.{bid}.mixer.gate.e_score_correction" # nemotron-h-moe
+ "model.layers.{bid}.mlp.e_score_correction", # exaone-moe
),
# Feed-forward up
diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt
index 762ea65c71..43295d7305 100644
--- a/src/CMakeLists.txt
+++ b/src/CMakeLists.txt
@@ -62,6 +62,7 @@ add_library(llama
models/ernie4-5.cpp
models/exaone.cpp
models/exaone4.cpp
+ models/exaone-moe.cpp
models/falcon-h1.cpp
models/falcon.cpp
models/gemma-embedding.cpp
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index 94a6807eac..722212b0c5 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -81,6 +81,7 @@ static const std::map LLM_ARCH_NAMES = {
{ LLM_ARCH_NEMOTRON_H_MOE, "nemotron_h_moe" },
{ LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_EXAONE4, "exaone4" },
+ { LLM_ARCH_EXAONE_MOE, "exaone-moe" },
{ LLM_ARCH_RWKV6, "rwkv6" },
{ LLM_ARCH_RWKV6QWEN2, "rwkv6qwen2" },
{ LLM_ARCH_RWKV7, "rwkv7" },
@@ -1724,6 +1725,32 @@ static std::set llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_POST_NORM,
};
+ case LLM_ARCH_EXAONE_MOE:
+ return {
+ LLM_TENSOR_TOKEN_EMBD,
+ LLM_TENSOR_OUTPUT_NORM,
+ LLM_TENSOR_OUTPUT,
+ LLM_TENSOR_ROPE_FREQS,
+ LLM_TENSOR_ATTN_NORM,
+ LLM_TENSOR_ATTN_Q,
+ LLM_TENSOR_ATTN_Q_NORM,
+ LLM_TENSOR_ATTN_K,
+ LLM_TENSOR_ATTN_K_NORM,
+ LLM_TENSOR_ATTN_V,
+ LLM_TENSOR_ATTN_OUT,
+ LLM_TENSOR_FFN_NORM,
+ LLM_TENSOR_FFN_GATE,
+ LLM_TENSOR_FFN_DOWN,
+ LLM_TENSOR_FFN_UP,
+ LLM_TENSOR_FFN_GATE_INP,
+ LLM_TENSOR_FFN_GATE_EXPS,
+ LLM_TENSOR_FFN_DOWN_EXPS,
+ LLM_TENSOR_FFN_UP_EXPS,
+ LLM_TENSOR_FFN_GATE_SHEXP,
+ LLM_TENSOR_FFN_UP_SHEXP,
+ LLM_TENSOR_FFN_DOWN_SHEXP,
+ LLM_TENSOR_FFN_EXP_PROBS_B,
+ };
case LLM_ARCH_RWKV6:
return {
LLM_TENSOR_TOKEN_EMBD,
diff --git a/src/llama-arch.h b/src/llama-arch.h
index 714ead4025..29f7200a5c 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -85,6 +85,7 @@ enum llm_arch {
LLM_ARCH_NEMOTRON_H_MOE,
LLM_ARCH_EXAONE,
LLM_ARCH_EXAONE4,
+ LLM_ARCH_EXAONE_MOE,
LLM_ARCH_RWKV6,
LLM_ARCH_RWKV6QWEN2,
LLM_ARCH_RWKV7,
diff --git a/src/llama-chat.cpp b/src/llama-chat.cpp
index b54ebbd155..3c7e0afdae 100644
--- a/src/llama-chat.cpp
+++ b/src/llama-chat.cpp
@@ -57,6 +57,7 @@ static const std::map LLM_CHAT_TEMPLATES = {
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
{ "exaone4", LLM_CHAT_TEMPLATE_EXAONE_4 },
+ { "exaone-moe", LLM_CHAT_TEMPLATE_EXAONE_MOE },
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
@@ -137,6 +138,9 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
} else if (tmpl_contains("[gMASK]")) {
return LLM_CHAT_TEMPLATE_CHATGLM_4;
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
+ if (tmpl_contains("<|tool_declare|>")) {
+ return LLM_CHAT_TEMPLATE_EXAONE_MOE;
+ }
return tmpl_contains("") ? LLM_CHAT_TEMPLATE_FALCON_3 : LLM_CHAT_TEMPLATE_GLMEDGE;
} else if (tmpl_contains("<|{{ item['role'] }}|>") && tmpl_contains("<|begin_of_image|>")) {
return LLM_CHAT_TEMPLATE_GLMEDGE;
@@ -576,6 +580,22 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "[|assistant|]";
}
+ } else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_MOE) {
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ ss << "<|system|>\n" << trim(message->content) << "<|endofturn|>\n";
+ } else if (role == "user") {
+ ss << "<|user|>\n" << trim(message->content) << "<|endofturn|>\n";
+ } else if (role == "assistant") {
+ ss << "<|assistant|>\n" << trim(message->content) << "<|endofturn|>\n";
+ } else if (role == "tool") {
+ ss << "<|tool|>\n" << trim(message->content) << "<|endofturn|>\n";
+ }
+ }
+ if (add_ass) {
+ ss << "<|assistant|>\n";
+ }
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
// this template requires the model to have "\n\n" as EOT token
for (size_t i = 0; i < chat.size(); i++) {
diff --git a/src/llama-chat.h b/src/llama-chat.h
index e1f795249c..9ed1db128e 100644
--- a/src/llama-chat.h
+++ b/src/llama-chat.h
@@ -36,6 +36,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_MINICPM,
LLM_CHAT_TEMPLATE_EXAONE_3,
LLM_CHAT_TEMPLATE_EXAONE_4,
+ LLM_CHAT_TEMPLATE_EXAONE_MOE,
LLM_CHAT_TEMPLATE_RWKV_WORLD,
LLM_CHAT_TEMPLATE_GRANITE,
LLM_CHAT_TEMPLATE_GIGACHAT,
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index 0450db6c9f..804297e59c 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -1909,6 +1909,33 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
+ case LLM_ARCH_EXAONE_MOE:
+ {
+ // TODO: implement
+ hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
+ hparams.n_swa = 128;
+ hparams.set_swa_pattern(4);
+ hparams.n_layer_dense_lead = 1;
+
+ ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, true);
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert);
+ ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
+ ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared, false);
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
+ ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
+ ml.get_key(LLM_KV_EXPERT_GROUP_COUNT, hparams.n_expert_groups, false);
+ ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used, false);
+ ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
+
+ switch (hparams.n_layer) {
+ case 32: type = LLM_TYPE_30B_A3B; break;
+ case 48: type = LLM_TYPE_235B_A22B; break;
+ default: type = LLM_TYPE_UNKNOWN;
+ }
+ } break;
case LLM_ARCH_RWKV6:
case LLM_ARCH_RWKV6QWEN2:
{
@@ -5475,6 +5502,66 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
+ case LLM_ARCH_EXAONE_MOE:
+ {
+ const int64_t n_ff_exp = hparams.n_ff_exp;
+ const int64_t n_expert = hparams.n_expert;
+ const int64_t n_expert_used = hparams.n_expert_used;
+ const int64_t n_ff_shexp = hparams.n_ff_shexp;
+ const int64_t head_dim = hparams.n_embd_head_k;
+ const int64_t n_qo_dim = n_head * head_dim;
+ const int64_t n_kv_dim = n_head_kv * head_dim;
+
+ tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+ // output
+ output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+ output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
+
+ if (output == NULL) {
+ output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ auto & layer = layers[i];
+ layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_qo_dim}, 0);
+ layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_kv_dim}, 0);
+ layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_kv_dim}, 0);
+ layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_qo_dim, n_embd}, 0);
+
+ layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
+
+ layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+ layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
+ layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
+
+ layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+
+ if (i < (int) hparams.n_layer_dense_lead) {
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
+ } else {
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
+ layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
+
+ if (n_expert == 0) {
+ throw std::runtime_error("n_expert must be > 0");
+ }
+ if (n_expert_used == 0) {
+ throw std::runtime_error("n_expert_used must be > 0");
+ }
+
+ layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
+
+ layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
+ layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
+ layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
+ }
+ }
+ } break;
case LLM_ARCH_RWKV6:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -7725,6 +7812,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
llm = std::make_unique>(*this, params);
}
} break;
+ case LLM_ARCH_EXAONE_MOE:
+ {
+ llm = std::make_unique(*this, params);
+ } break;
case LLM_ARCH_RWKV6:
{
llm = std::make_unique(*this, params);
@@ -8074,6 +8165,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_NEMOTRON:
case LLM_ARCH_EXAONE:
case LLM_ARCH_EXAONE4:
+ case LLM_ARCH_EXAONE_MOE:
case LLM_ARCH_MINICPM3:
case LLM_ARCH_BAILINGMOE2:
case LLM_ARCH_DOTS1:
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index bd311bea45..4cfebd76c5 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -461,6 +461,11 @@ struct llm_tokenizer_bpe : llm_tokenizer {
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\\r\\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
+ case LLAMA_VOCAB_PRE_TYPE_EXAONE_MOE:
+ regex_exprs = {
+ "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?(?:\\p{L}\\p{M}*(?: \\p{L}\\p{M}*)*)+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]?|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+",
+ };
+ break;
default:
// default regex for BPE tokenization pre-processing
regex_exprs = {
@@ -1965,6 +1970,9 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
} else if (
tokenizer_pre == "exaone4") {
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
+ } else if (
+ tokenizer_pre == "exaone-moe") {
+ pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE_MOE;
} else if (
tokenizer_pre == "chameleon") {
pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;
diff --git a/src/llama-vocab.h b/src/llama-vocab.h
index 2b240a5491..28c3a82b91 100644
--- a/src/llama-vocab.h
+++ b/src/llama-vocab.h
@@ -53,6 +53,7 @@ enum llama_vocab_pre_type {
LLAMA_VOCAB_PRE_TYPE_AFMOE = 42,
LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN = 43,
LLAMA_VOCAB_PRE_TYPE_YOUTU = 44,
+ LLAMA_VOCAB_PRE_TYPE_EXAONE_MOE = 45,
};
struct LLM_KV;
diff --git a/src/models/exaone-moe.cpp b/src/models/exaone-moe.cpp
new file mode 100644
index 0000000000..5b6a956e81
--- /dev/null
+++ b/src/models/exaone-moe.cpp
@@ -0,0 +1,154 @@
+#include "models.h"
+
+
+llm_build_exaone_moe::llm_build_exaone_moe(const llama_model & model, const llm_graph_params & params) :
+ llm_graph_context(params) {
+ const int64_t n_embd_head = hparams.n_embd_head_k;
+
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_v);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ ggml_tensor * cur;
+ ggml_tensor * inpL;
+
+ inpL = build_inp_embd(model.tok_embd);
+
+ // inp_pos - contains the positions
+ ggml_tensor * inp_pos = build_inp_pos();
+
+ auto * inp_attn_iswa = build_attn_inp_kv_iswa();
+ // auto * inp_attn_kv = build_attn_inp_kv();
+
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+ for (int il = 0; il < n_layer; ++il) {
+ ggml_tensor * inpSA = inpL;
+
+ // use RoPE for SWA layers
+ const bool is_local_layer = hparams.is_swa(il);
+
+ // norm
+ cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
+
+ // compute Q and K and RoPE them
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
+ cb(Qcur, "Qcur_normed", il);
+ cb(Kcur, "Kcur_normed", il);
+
+ if (is_local_layer) {
+ Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
+ freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
+
+ Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
+ freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
+ }
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ if (is_local_layer) {
+ cur = build_attn(inp_attn_iswa,
+ model.layers[il].wo, NULL,
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
+ } else {
+ // cur = build_attn(inp_attn_kv,
+ cur = build_attn(inp_attn_iswa,
+ model.layers[il].wo, NULL,
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
+ }
+ cb(cur, "attn_out", il);
+ }
+ if (il == n_layer - 1 && inp_out_ids) {
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // norm
+ cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
+ cb(cur, "ffn_norm", il);
+
+ // feed-forward network
+ if (model.layers[il].ffn_gate_inp == nullptr) {
+ // dense branch
+ cur = build_ffn(cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL, NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
+ cb(cur, "ffn_out", il);
+ } else {
+ // MoE branch
+ ggml_tensor * moe_out = build_moe_ffn(cur,
+ model.layers[il].ffn_gate_inp,
+ model.layers[il].ffn_up_exps,
+ model.layers[il].ffn_gate_exps,
+ model.layers[il].ffn_down_exps,
+ model.layers[il].ffn_exp_probs_b,
+ n_expert, n_expert_used,
+ LLM_FFN_SILU, hparams.expert_weights_norm,
+ true, hparams.expert_weights_scale,
+ (llama_expert_gating_func_type) hparams.expert_gating_func,
+ il);
+ cb(moe_out, "ffn_moe_out", il);
+
+ // FFN shared expert
+ {
+ ggml_tensor * ffn_shexp =
+ build_ffn(cur,
+ model.layers[il].ffn_up_shexp, NULL, NULL,
+ model.layers[il].ffn_gate_shexp, NULL, NULL,
+ model.layers[il].ffn_down_shexp, NULL, NULL,
+ NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
+ cb(ffn_shexp, "ffn_shexp", il);
+
+ cur = ggml_add(ctx0, moe_out, ffn_shexp);
+ cb(cur, "ffn_out", il);
+ }
+ }
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ cur = build_cvec(cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+ cur = inpL;
+
+ // final norm
+ cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
+
+ cb(cur, "result_norm", -1);
+ res->t_embd = cur;
+
+ // lm_head
+ cur = build_lora_mm(model.output, cur);
+
+ cb(cur, "result_output", -1);
+ res->t_logits = cur;
+
+ ggml_build_forward_expand(gf, cur);
+}
\ No newline at end of file
diff --git a/src/models/models.h b/src/models/models.h
index e78a788d4b..0508b28ae2 100644
--- a/src/models/models.h
+++ b/src/models/models.h
@@ -167,6 +167,10 @@ struct llm_build_exaone : public llm_graph_context {
llm_build_exaone(const llama_model & model, const llm_graph_params & params);
};
+struct llm_build_exaone_moe : public llm_graph_context {
+ llm_build_exaone_moe(const llama_model & model, const llm_graph_params & params);
+};
+
struct llm_build_falcon : public llm_graph_context {
llm_build_falcon(const llama_model & model, const llm_graph_params & params);
};
diff --git a/tools/server/server-common.cpp b/tools/server/server-common.cpp
index b02afaefda..7239aecf76 100644
--- a/tools/server/server-common.cpp
+++ b/tools/server/server-common.cpp
@@ -1013,6 +1013,12 @@ json oaicompat_chat_params_parse(
// Apply chat template to the list of messages
auto chat_params = common_chat_templates_apply(opt.tmpls, inputs);
+ SRV_INF("enable_thinking(req/body)=%d kwarg=%s prompt_thinking=%d format=%s\nPROMPT:\n%s",
+ inputs.enable_thinking,
+ json_value(inputs.chat_template_kwargs, "enable_thinking", std::string("")).c_str(),
+ chat_params.thinking_forced_open,
+ common_chat_format_name(chat_params.format),
+ chat_params.prompt.c_str());
/* Append assistant prefilled message */
if (prefill_assistant_message) {