Minor refactoring
This commit is contained in:
parent
0b0381c94c
commit
b5068df804
|
|
@ -128,41 +128,35 @@ static void process_tensor_name(const std::string & input, std::string & layer,
|
||||||
}
|
}
|
||||||
|
|
||||||
static std::vector<float> compute_tensor_averages(const Stats & tstats) {
|
static std::vector<float> compute_tensor_averages(const Stats & tstats) {
|
||||||
if (tstats.counts.empty()) return {};
|
if (tstats.counts.empty()) { return {}; }
|
||||||
const size_t n_mat = tstats.counts.size();
|
const size_t n_mat = tstats.counts.size();
|
||||||
const size_t len = !tstats.activations.empty() ? tstats.activations.size() : tstats.values.size();
|
const size_t len = !tstats.activations.empty() ? tstats.activations.size() : tstats.values.size();
|
||||||
|
|
||||||
if (len == 0 || n_mat == 0 || len % n_mat != 0) { return {}; }
|
if (len == 0 || n_mat == 0 || len % n_mat != 0) { return {}; }
|
||||||
|
|
||||||
const size_t row = len / n_mat;
|
const size_t row = len / n_mat;
|
||||||
std::vector<float> vec;
|
std::vector<float> vec;
|
||||||
vec.reserve(len);
|
vec.reserve(len);
|
||||||
|
|
||||||
if (tstats.activations.empty()) {
|
if (tstats.activations.empty()) {
|
||||||
// Use mean of squares; fill zeros for experts with zero counts to preserve shape
|
// Mean of squares
|
||||||
for (size_t m = 0; m < n_mat; ++m) {
|
for (size_t m = 0; m < n_mat; ++m) {
|
||||||
const float c = (float)tstats.counts[m];
|
const auto c = (float)tstats.counts[m];
|
||||||
const size_t off = m * row;
|
const size_t off = m * row;
|
||||||
if (c <= 0.0f) {
|
if (c <= 0.0f) {
|
||||||
vec.insert(vec.end(), row, 0.0f);
|
vec.insert(vec.end(), row, 0.0f); // zero-fill rows for experts with zero count to preserve shape
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
for (size_t j = 0; j < row; ++j) {
|
for (size_t j = 0; j < row; ++j) { vec.push_back(tstats.values[off + j] / c); }
|
||||||
vec.push_back(tstats.values[off + j] / c);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
// Use mean; fill zeros for experts with zero counts to preserve shape
|
// Mean
|
||||||
for (size_t m = 0; m < n_mat; ++m) {
|
for (size_t m = 0; m < n_mat; ++m) {
|
||||||
const float c = (float)tstats.counts[m];
|
const float c = (float) tstats.counts[m];
|
||||||
const size_t off = m * row;
|
const size_t off = m * row;
|
||||||
if (c <= 0.0f) {
|
if (c <= 0.0f) {
|
||||||
vec.insert(vec.end(), row, 0.0f);
|
vec.insert(vec.end(), row, 0.0f); // zero-fill rows for experts with zero count to preserve shape
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
for (size_t j = 0; j < row; ++j) {
|
for (size_t j = 0; j < row; ++j) { vec.push_back(tstats.activations[off + j] / c); }
|
||||||
vec.push_back(tstats.activations[off + j] / c);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue