Merge Cosine Similarity and L2 Norm computation into single loop

This commit is contained in:
Ed Addario 2025-10-28 21:41:31 +00:00
parent dc4a04b5c5
commit 0b0381c94c
No known key found for this signature in database
GPG Key ID: E7875815A3230993
1 changed files with 66 additions and 78 deletions

View File

@ -278,63 +278,48 @@ static bool compute_vector_statistics(std::vector<tensor_statistics> & tstats, c
static void compute_tensor_statistics(std::vector<tensor_statistics> & tstats) {
static const std::regex pattern(R"(blk\.(\d+)\.)");
// compute the Cosine Similarity between the same tensors in consecutive layers
for (auto & ts : tstats) {
ts.cossim = 0;
if (std::smatch match; std::regex_search(ts.tensor, match, pattern)) {
const int blk = std::stoi(match[1]);
if (blk <= 0) { continue; }
std::string tname(ts.tensor);
tname.replace(match.position(1), match.length(1), std::to_string(blk-1));
auto prev = std::find_if(tstats.begin(), tstats.end(),
[tname](const tensor_statistics & t) { return t.tensor == tname; });
if (prev == tstats.end()) { continue; }
const auto curr_avg = compute_tensor_averages(ts.stats);
const auto prev_avg = compute_tensor_averages(prev->stats);
if (curr_avg.size() == prev_avg.size() && !curr_avg.empty()) {
float dot_prod = 0.0f;
float vec1 = 0.0f;
float vec2 = 0.0f;
for (size_t i = 0; i < curr_avg.size(); ++i) {
dot_prod += curr_avg[i] * prev_avg[i];
vec1 += curr_avg[i] * curr_avg[i];
vec2 += prev_avg[i] * prev_avg[i];
}
if (vec1 > 0 && vec2 > 0) {
float cs = dot_prod / (std::sqrt(vec1) * std::sqrt(vec2));
cs = std::min(cs, 1.0f);
cs = std::max(cs, -1.0f);
ts.cossim = cs;
}
}
}
}
// compute the L2 Norm (Euclidian Distance) between the same tensors in consecutive layers
for (auto & ts : tstats) {
ts.cossim = 0.0f;
ts.l2_norm = 0.0f;
if (ts.stats.activations.empty()) { continue; }
if (std::smatch match; std::regex_search(ts.tensor, match, pattern)) {
const int blk = std::stoi(match[1]);
if (blk <= 0) { continue; }
std::string tname(ts.tensor);
tname.replace(match.position(1), match.length(1), std::to_string(blk - 1));
auto prev = std::find_if(tstats.begin(), tstats.end(),
auto prev_it = std::find_if(tstats.begin(), tstats.end(),
[tname](const tensor_statistics & t) { return t.tensor == tname; });
if (prev == tstats.end()) { continue; }
const auto cur_avg = compute_tensor_averages(ts.stats);
const auto prev_avg = compute_tensor_averages(prev->stats);
if (cur_avg.empty() || prev_avg.empty() || cur_avg.size() != prev_avg.size()) { continue; }
if (prev_it == tstats.end()) { continue; }
float dist = 0.0;
for (size_t i = 0; i < cur_avg.size(); ++i) {
const float act = cur_avg[i] - prev_avg[i];
dist += act * act;
const auto curr_avg = compute_tensor_averages(ts.stats);
const auto prev_avg = compute_tensor_averages(prev_it->stats);
if (curr_avg.empty() || curr_avg.size() != prev_avg.size()) { continue; }
float dot_prod = 0.0f;
float norm1_sq = 0.0f;
float norm2_sq = 0.0f;
float l2_dist_sq = 0.0f;
for (size_t i = 0; i < curr_avg.size(); ++i) {
const float c_val = curr_avg[i];
const float p_val = prev_avg[i];
dot_prod += c_val * p_val;
norm1_sq += c_val * c_val;
norm2_sq += p_val * p_val;
const float diff = c_val - p_val;
l2_dist_sq += diff * diff;
}
ts.l2_norm = std::sqrt(dist);
// Compute Cosine Similarity
if (norm1_sq > 0.0f && norm2_sq > 0.0f) {
float cs = dot_prod / (std::sqrt(norm1_sq) * std::sqrt(norm2_sq));
cs = std::min(cs, 1.0f);
cs = std::max(cs, -1.0f);
ts.cossim = cs;
}
// Compute L2 Norm (Euclidean Distance)
ts.l2_norm = std::sqrt(l2_dist_sq);
}
}
}
@ -347,56 +332,58 @@ static void compute_layer_statistics(const std::vector<tensor_statistics> & tsta
std::vector<float> curr_avg;
std::vector<float> prev_avg;
};
static const std::regex pattern(R"(blk\.(\d+)\.)");
std::unordered_map<std::string, const tensor_statistics*> tidx;
tidx.reserve(tstats.size());
for (const auto & ts : tstats) { tidx[ts.tensor] = &ts; }
std::map<int, layer_aggregation> taggr;
std::map<int, layer_aggregation> agr;
for (const auto & ts : tstats) {
std::smatch match;
if (!std::regex_search(ts.tensor, match, pattern)) continue;
if (!std::regex_search(ts.tensor, match, pattern)) { continue; }
const int blk = std::stoi(match[1]);
if (blk <= 0) continue;
if (blk <= 0) { continue; }
std::string prev_lyr(ts.tensor);
prev_lyr.replace(match.position(1), match.length(1), std::to_string(blk-1));
if (auto it_prev = tidx.find(prev_lyr); it_prev == tidx.end()) continue;
if (auto it_prev = tidx.find(prev_lyr); it_prev == tidx.end()) { continue; }
const auto curr_avg = compute_tensor_averages(stats_map.at(ts.tensor));
const auto prev_avg = compute_tensor_averages(stats_map.at(prev_lyr));
if (curr_avg.empty() || prev_avg.empty() || curr_avg.size() != prev_avg.size()) continue;
auto & [curr, prev] = taggr[blk];
if (curr_avg.empty() || prev_avg.empty() || curr_avg.size() != prev_avg.size()) { continue; }
auto & [curr, prev] = agr[blk];
curr.insert(curr.end(), curr_avg.begin(), curr_avg.end());
prev.insert(prev.end(), prev_avg.begin(), prev_avg.end());
}
// compute the aggregated Cosine Similarity between consecutive layers
for (auto & kv : taggr) {
for (auto & kv : agr) {
const auto & curr = kv.second.curr_avg;
const auto & prev = kv.second.prev_avg;
if (curr.size() != prev.size() || curr.empty()) continue;
float dot_prod = 0.0;
float layer1 = 0.0;
float layer2 = 0.0;
for (size_t i = 0; i < curr.size(); ++i) {
dot_prod += curr[i] * prev[i];
layer1 += curr[i] * curr[i];
layer2 += prev[i] * prev[i];
}
float cossim = 0.0f;
if (layer1 > 0.0 && layer2 > 0.0) cossim = dot_prod / (std::sqrt(layer1) * std::sqrt(layer2));
layer_cossim[kv.first] = cossim;
}
if (curr.size() != prev.size() || curr.empty()) { continue; }
float dot_prod = 0.0f;
float norm1_sq = 0.0f;
float norm2_sq = 0.0f;
float l2_dist_sq = 0.0f;
// compute the aggregated L2 Norm (Euclidian Distance) between consecutive layers
for (auto & kv : taggr) {
const auto & curr = kv.second.curr_avg;
const auto & prev = kv.second.prev_avg;
if (curr.size() != prev.size() || curr.empty()) continue;
float dist = 0.0f;
for (size_t i = 0; i < curr.size(); ++i) {
dist += (curr[i] - prev[i]) * (curr[i] - prev[i]);
const float c_val = curr[i];
const float p_val = prev[i];
dot_prod += c_val * p_val;
norm1_sq += c_val * c_val;
norm2_sq += p_val * p_val;
const float diff = c_val - p_val;
l2_dist_sq += diff * diff;
}
layer_l2_norm[kv.first] = std::sqrt(dist);
// Compute aggregated Cosine Similarity
float cossim = 0.0f;
if (norm1_sq > 0.0f && norm2_sq > 0.0f) {
cossim = dot_prod / (std::sqrt(norm1_sq) * std::sqrt(norm2_sq));
}
layer_cossim[kv.first] = cossim;
// Compute aggregated L2 Norm (Euclidean Distance)
layer_l2_norm[kv.first] = std::sqrt(l2_dist_sq);
}
}
@ -1370,7 +1357,8 @@ static bool show_statistics(const common_params & params) {
const float ecs = 100.0f * std::exp(-0.01f * tstat.l2_norm) * std::pow(std::fabs(tstat.cossim), 10.0f);
LOG_INF("%5s\t%-20s\t%11.2f\t%10.4f\t%10.4f\t%8.2f\t%8.2f\t%7d\t%10.2f%%\t%10.4f\t%6.2f%%\t%10.4f\n",
layer.c_str(), name.c_str(),
layer.c_str(),
name.c_str(),
legacy_mode ? tstat.sum_values : tstat.l2_norm,
tstat.min_values,
tstat.max_values,
@ -1400,8 +1388,8 @@ static bool show_statistics(const common_params & params) {
std::map<int, float> layer_l2_norm;
compute_layer_statistics(ts, layer_cossim, layer_l2_norm, g_collector.get_mstats());
const auto layers = std::count_if(ls.begin(), ls.end(), [](const auto & kv) { return kv.first >= 0; });
LOG_INF("\nComputing layer statistics (%ld layers)\n", layers);
const size_t layers = std::count_if(ls.begin(), ls.end(), [](const auto & kv) { return kv.first >= 0; });
LOG_INF("\nComputing layer statistics (%zu layers)\n", layers);
LOG_INF("\n%6s\t%13s\t%6s\t%11s\t%6s\n",
"Layer",
legacy_mode ? "Σ(Act²)" : "L₂ Norm",