fix compiling error
This commit is contained in:
parent
ee6326aeb3
commit
aed9b4f5bb
|
|
@ -1,8 +1,6 @@
|
|||
|
||||
#include "backend-ops.hpp"
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "graph.hpp"
|
||||
#include "logger.hpp"
|
||||
|
|
@ -10,6 +8,8 @@
|
|||
#include "tensor.hpp"
|
||||
#include "utils.hpp"
|
||||
|
||||
#include <memory>
|
||||
|
||||
namespace {
|
||||
|
||||
qnn::qnn_graph * get_qnn_graph_from_cache(qnn::ggml_backend_qnn_device_context * ctx, const ggml_cgraph * cgraph) {
|
||||
|
|
@ -17,8 +17,10 @@ qnn::qnn_graph * get_qnn_graph_from_cache(qnn::ggml_backend_qnn_device_context *
|
|||
std::string graph_key;
|
||||
auto op_data_type = qnn::qnn_graph::get_graph_key_from_cgraph(cgraph, graph_key);
|
||||
if (graph_key.empty()) {
|
||||
QNN_LOG_DEBUG("[%s]empty graph key for cgraph: %p, size: %d\n", qnn::get_backend_name(ctx->device),
|
||||
(const void *) cgraph, (int) cgraph->n_nodes);
|
||||
QNN_LOG_DEBUG("[%s]empty graph key for cgraph: %p, size: %d\n",
|
||||
qnn::get_backend_name(ctx->device),
|
||||
(const void *) cgraph,
|
||||
(int) cgraph->n_nodes);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
|
|
@ -26,19 +28,21 @@ qnn::qnn_graph * get_qnn_graph_from_cache(qnn::ggml_backend_qnn_device_context *
|
|||
qnn::qnn_graph * graph_ptr = nullptr;
|
||||
if (it != graph_cache.end()) {
|
||||
auto it = graph_cache.find(graph_key);
|
||||
QNN_LOG_DEBUG("[%s]found graph %s in cache, cache size: %d\n", qnn::get_backend_name(ctx->device),
|
||||
graph_key.c_str(), (int) graph_cache.size());
|
||||
QNN_LOG_DEBUG("[%s]found graph %s in cache, cache size: %d\n",
|
||||
qnn::get_backend_name(ctx->device),
|
||||
graph_key.c_str(),
|
||||
(int) graph_cache.size());
|
||||
graph_ptr = it->second.get();
|
||||
} else {
|
||||
auto precision = qnn::qnn_graph::kHtpDefault;
|
||||
if (op_data_type == GGML_TYPE_F16) {
|
||||
QNN_LOG_DEBUG("[%s][%s]set graph precision to FP16\n", qnn::get_backend_name(ctx->device),
|
||||
graph_key.c_str());
|
||||
QNN_LOG_DEBUG(
|
||||
"[%s][%s]set graph precision to FP16\n", qnn::get_backend_name(ctx->device), graph_key.c_str());
|
||||
precision = qnn::qnn_graph::kHtpFp16;
|
||||
}
|
||||
|
||||
auto graph = std::make_unique<qnn::qnn_graph>(graph_key, ctx->device, ctx->instance, precision,
|
||||
ctx->socinfo.vtcm_size_in_mb);
|
||||
auto graph = std::make_unique<qnn::qnn_graph>(
|
||||
graph_key, ctx->device, ctx->instance, precision, ctx->socinfo.vtcm_size_in_mb);
|
||||
if (!graph->is_valid()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
|
@ -50,8 +54,10 @@ qnn::qnn_graph * get_qnn_graph_from_cache(qnn::ggml_backend_qnn_device_context *
|
|||
|
||||
graph_ptr = graph.get();
|
||||
graph_cache[graph_key] = std::move(graph);
|
||||
QNN_LOG_DEBUG("[%s]add graph %s to cache, cache size: %d\n", qnn::get_backend_name(ctx->device),
|
||||
graph_key.c_str(), (int) graph_cache.size());
|
||||
QNN_LOG_DEBUG("[%s]add graph %s to cache, cache size: %d\n",
|
||||
qnn::get_backend_name(ctx->device),
|
||||
graph_key.c_str(),
|
||||
(int) graph_cache.size());
|
||||
}
|
||||
|
||||
return graph_ptr;
|
||||
|
|
@ -62,6 +68,7 @@ constexpr const bool kQnnSupportedOps[] = {
|
|||
true, // GGML_OP_NONE
|
||||
false, // GGML_OP_DUP
|
||||
true, // GGML_OP_ADD
|
||||
false, // GGML_OP_ADD_ID
|
||||
false, // GGML_OP_ADD1
|
||||
false, // GGML_OP_ACC
|
||||
true, // GGML_OP_SUB
|
||||
|
|
@ -197,8 +204,13 @@ inline bool is_tensor_size_valid(qnn::ggml_backend_qnn_device_context * ctx, con
|
|||
const auto tensor_size = get_tensor_size_in_bytes(tensor, type);
|
||||
if (ctx->max_tensor_size_in_bytes && tensor_size >= ctx->max_tensor_size_in_bytes) {
|
||||
QNN_LOG_DEBUG("[%s]tensor(%s_%dx%dx%dx%d) size(%lld) exceeds the limit(%lld)\n",
|
||||
qnn::get_backend_name(ctx->device), ggml_get_name(tensor), (int) tensor->ne[0],
|
||||
(int) tensor->ne[1], (int) tensor->ne[2], (int) tensor->ne[3], (long long int) tensor_size,
|
||||
qnn::get_backend_name(ctx->device),
|
||||
ggml_get_name(tensor),
|
||||
(int) tensor->ne[0],
|
||||
(int) tensor->ne[1],
|
||||
(int) tensor->ne[2],
|
||||
(int) tensor->ne[3],
|
||||
(long long int) tensor_size,
|
||||
(long long int) ctx->max_tensor_size_in_bytes);
|
||||
return false;
|
||||
}
|
||||
|
|
@ -215,10 +227,18 @@ bool is_tensor_type_valid(qnn::ggml_backend_qnn_device_context * ctx, const ggml
|
|||
#ifndef NDEBUG
|
||||
if (tensor->view_src) {
|
||||
auto * src_tensor = tensor->view_src;
|
||||
QNN_LOG_DEBUG("[%s]tensor(%s_%dx%dx%dx%d) is a view, src: %s_%dx%dx%dx%d\n", qnn::get_backend_name(ctx->device),
|
||||
ggml_get_name(tensor), (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2],
|
||||
(int) tensor->ne[3], ggml_get_name(src_tensor), (int) src_tensor->ne[0], (int) src_tensor->ne[1],
|
||||
(int) src_tensor->ne[2], (int) src_tensor->ne[3]);
|
||||
QNN_LOG_DEBUG("[%s]tensor(%s_%dx%dx%dx%d) is a view, src: %s_%dx%dx%dx%d\n",
|
||||
qnn::get_backend_name(ctx->device),
|
||||
ggml_get_name(tensor),
|
||||
(int) tensor->ne[0],
|
||||
(int) tensor->ne[1],
|
||||
(int) tensor->ne[2],
|
||||
(int) tensor->ne[3],
|
||||
ggml_get_name(src_tensor),
|
||||
(int) src_tensor->ne[0],
|
||||
(int) src_tensor->ne[1],
|
||||
(int) src_tensor->ne[2],
|
||||
(int) src_tensor->ne[3]);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
@ -227,14 +247,15 @@ bool is_tensor_type_valid(qnn::ggml_backend_qnn_device_context * ctx, const ggml
|
|||
case GGML_TYPE_F16:
|
||||
if (!is_type_bit_enabled(ctx->supported_types, tensor->type)) {
|
||||
QNN_LOG_DEBUG("[%s]unsupported data type %s, supported_types: 0x%x\n",
|
||||
qnn::get_backend_name(ctx->device), ggml_type_name(tensor->type),
|
||||
qnn::get_backend_name(ctx->device),
|
||||
ggml_type_name(tensor->type),
|
||||
(unsigned int) ctx->supported_types);
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
QNN_LOG_DEBUG("[%s]unsupported data type %s\n", qnn::get_backend_name(ctx->device),
|
||||
ggml_type_name(tensor->type));
|
||||
QNN_LOG_DEBUG(
|
||||
"[%s]unsupported data type %s\n", qnn::get_backend_name(ctx->device), ggml_type_name(tensor->type));
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
@ -277,14 +298,20 @@ bool ggml_qnn_have_same_tensor_types(qnn::ggml_backend_qnn_device_context * ctx,
|
|||
if (src1) {
|
||||
if (src0->type != op->type || src1->type != op->type) {
|
||||
QNN_LOG_DEBUG("[%s][%s]type src0(%s), src1(%s) and op(%s) are not equal\n",
|
||||
qnn::get_backend_name(ctx->device), ggml_op_name(op->op), ggml_type_name(src0->type),
|
||||
ggml_type_name(src1->type), ggml_type_name(op->type));
|
||||
qnn::get_backend_name(ctx->device),
|
||||
ggml_op_name(op->op),
|
||||
ggml_type_name(src0->type),
|
||||
ggml_type_name(src1->type),
|
||||
ggml_type_name(op->type));
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (src0->type != op->type) {
|
||||
QNN_LOG_DEBUG("[%s][%s]type src0(%s) and op(%s) are not equal\n", qnn::get_backend_name(ctx->device),
|
||||
ggml_op_name(op->op), ggml_type_name(src0->type), ggml_type_name(op->type));
|
||||
QNN_LOG_DEBUG("[%s][%s]type src0(%s) and op(%s) are not equal\n",
|
||||
qnn::get_backend_name(ctx->device),
|
||||
ggml_op_name(op->op),
|
||||
ggml_type_name(src0->type),
|
||||
ggml_type_name(op->type));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
|
@ -303,7 +330,9 @@ bool ggml_qnn_supports_matmul_op(qnn::ggml_backend_qnn_device_context * ctx, con
|
|||
if (is_data_reinterpretation_op(src0->op) || is_data_reinterpretation_op(src1->op)) {
|
||||
// TODO: remove the blocker here when we support permute op
|
||||
QNN_LOG_DEBUG("[%s][MUL_MAT]data reorganization op is not supported, (%s, %s)\n",
|
||||
qnn::get_backend_name(ctx->device), ggml_op_name(src0->op), ggml_op_name(src1->op));
|
||||
qnn::get_backend_name(ctx->device),
|
||||
ggml_op_name(src0->op),
|
||||
ggml_op_name(src1->op));
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
@ -330,7 +359,8 @@ bool ggml_qnn_supports_matmul_op(qnn::ggml_backend_qnn_device_context * ctx, con
|
|||
!is_type_bit_enabled(ctx->cpu_preprocess_types, src0->type)) {
|
||||
// for such cases that src0 is quantized and op is float32, check if the quant type is enabled
|
||||
QNN_LOG_DEBUG("[%s][MUL_MAT]quantized src0 type %s is not enabled\n",
|
||||
qnn::get_backend_name(ctx->device), ggml_type_name(src0->type));
|
||||
qnn::get_backend_name(ctx->device),
|
||||
ggml_type_name(src0->type));
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
|
|
@ -354,8 +384,12 @@ void print_tensor_info(qnn::ggml_backend_qnn_device_context * ctx, const ggml_te
|
|||
std::string op_key;
|
||||
qnn::get_qnn_op_desc(op, true, GGML_TYPE_COUNT, op_key);
|
||||
|
||||
QNN_LOG_DEBUG("[%s][%s]op was %s, support/unsupported: %d/%d\n", qnn::get_backend_name(ctx->device), op_key.c_str(),
|
||||
supported, ctx->supported_op_count.load(), ctx->unsupported_op_count.load());
|
||||
QNN_LOG_DEBUG("[%s][%s]op was %s, support/unsupported: %d/%d\n",
|
||||
qnn::get_backend_name(ctx->device),
|
||||
op_key.c_str(),
|
||||
supported,
|
||||
ctx->supported_op_count.load(),
|
||||
ctx->unsupported_op_count.load());
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
@ -402,7 +436,9 @@ bool device_supports_op(qnn::ggml_backend_qnn_device_context * ctx, const ggml_t
|
|||
// TODO: fix this when we have the support for mul with rms_norm
|
||||
if (ctx->enable_cpu_dequantize && (src0->op == GGML_OP_RMS_NORM || src1->op == GGML_OP_RMS_NORM)) {
|
||||
QNN_LOG_DEBUG("[%s][%s]skip unsupported mul with rms norm, (%s, %s)\n",
|
||||
qnn::get_backend_name(ctx->device), ggml_op_desc(op), ggml_op_desc(src0),
|
||||
qnn::get_backend_name(ctx->device),
|
||||
ggml_op_desc(op),
|
||||
ggml_op_desc(src0),
|
||||
ggml_op_desc(src1));
|
||||
is_op_supported = false;
|
||||
break;
|
||||
|
|
@ -414,7 +450,8 @@ bool device_supports_op(qnn::ggml_backend_qnn_device_context * ctx, const ggml_t
|
|||
// TODO: move to op caps array?
|
||||
if (!ggml_are_same_shape(src0, src1)) {
|
||||
QNN_LOG_DEBUG("[%s][%s] src0 and src1 dimensions are not equal\n",
|
||||
qnn::get_backend_name(ctx->device), ggml_op_desc(op));
|
||||
qnn::get_backend_name(ctx->device),
|
||||
ggml_op_desc(op));
|
||||
is_op_supported = false;
|
||||
}
|
||||
break;
|
||||
|
|
@ -442,8 +479,8 @@ bool device_supports_op(qnn::ggml_backend_qnn_device_context * ctx, const ggml_t
|
|||
}
|
||||
|
||||
bool device_compute_graph(qnn::ggml_backend_qnn_device_context * ctx, ggml_cgraph * cgraph) {
|
||||
QNN_LOG_DEBUG("[%s]compute graph start, nodes count: %d\n", qnn::get_backend_name(ctx->device),
|
||||
(int) cgraph->n_nodes);
|
||||
QNN_LOG_DEBUG(
|
||||
"[%s]compute graph start, nodes count: %d\n", qnn::get_backend_name(ctx->device), (int) cgraph->n_nodes);
|
||||
|
||||
auto qnn_graph = get_qnn_graph_from_cache(ctx, cgraph);
|
||||
bool success = qnn_graph && qnn_graph->execute(cgraph, ctx->convert_context);
|
||||
|
|
|
|||
|
|
@ -3,11 +3,14 @@
|
|||
|
||||
namespace {
|
||||
|
||||
using op_constructor_t = std::shared_ptr<qnn::ggml_qnn_op_config> (*)(const ggml_tensor *, const std::string &,
|
||||
using op_constructor_t = std::shared_ptr<qnn::ggml_qnn_op_config> (*)(const ggml_tensor *,
|
||||
const std::string &,
|
||||
std::shared_ptr<qnn::qnn_instance>);
|
||||
|
||||
using op_description_generator_t = void (*)(const ggml_tensor * op, bool append_dimensions,
|
||||
ggml_type override_data_type, std::string & output);
|
||||
using op_description_generator_t = void (*)(const ggml_tensor * op,
|
||||
bool append_dimensions,
|
||||
ggml_type override_data_type,
|
||||
std::string & output);
|
||||
|
||||
void append_tensor_shape_and_type_impl(const ggml_tensor * tensor, ggml_type override_data_type, std::string & output) {
|
||||
char buffer[256] = {};
|
||||
|
|
@ -21,13 +24,24 @@ void append_tensor_shape_and_type_impl(const ggml_tensor * tensor, ggml_type ove
|
|||
len = snprintf(buffer, sizeof(buffer), "%ldx%ld%s", (long) tensor->ne[0], (long) tensor->ne[1], type_name);
|
||||
break;
|
||||
case 3:
|
||||
len = snprintf(buffer, sizeof(buffer), "%ldx%ldx%ld%s", (long) tensor->ne[0], (long) tensor->ne[1],
|
||||
(long) tensor->ne[2], type_name);
|
||||
len = snprintf(buffer,
|
||||
sizeof(buffer),
|
||||
"%ldx%ldx%ld%s",
|
||||
(long) tensor->ne[0],
|
||||
(long) tensor->ne[1],
|
||||
(long) tensor->ne[2],
|
||||
type_name);
|
||||
break;
|
||||
case 4:
|
||||
default:
|
||||
len = snprintf(buffer, sizeof(buffer), "%ldx%ldx%ldx%ld%s", (long) tensor->ne[0], (long) tensor->ne[1],
|
||||
(long) tensor->ne[2], (long) tensor->ne[3], type_name);
|
||||
len = snprintf(buffer,
|
||||
sizeof(buffer),
|
||||
"%ldx%ldx%ldx%ld%s",
|
||||
(long) tensor->ne[0],
|
||||
(long) tensor->ne[1],
|
||||
(long) tensor->ne[2],
|
||||
(long) tensor->ne[3],
|
||||
type_name);
|
||||
break;
|
||||
}
|
||||
GGML_ASSERT(len > 0 && len < (int) sizeof(buffer));
|
||||
|
|
@ -61,8 +75,10 @@ void get_op_key_with_src_op_desc(const ggml_tensor * op, std::string & output) {
|
|||
output += ')';
|
||||
}
|
||||
|
||||
void generic_get_op_desc(const ggml_tensor * op, bool append_dimensions, ggml_type override_data_type,
|
||||
std::string & output) {
|
||||
void generic_get_op_desc(const ggml_tensor * op,
|
||||
bool append_dimensions,
|
||||
ggml_type override_data_type,
|
||||
std::string & output) {
|
||||
if (append_dimensions) {
|
||||
get_graph_key_from_op(op, override_data_type, output);
|
||||
} else {
|
||||
|
|
@ -83,6 +99,7 @@ constexpr const qnn_op_caps_t kOpCaps[] = {
|
|||
// GGML_OP_ADD
|
||||
QNN_OP_ELEMENT_WISE_ADD, // qnn_op_name
|
||||
},
|
||||
{}, // GGML_OP_ADD_ID
|
||||
{}, // GGML_OP_ADD1
|
||||
{}, // GGML_OP_ACC
|
||||
{
|
||||
|
|
@ -235,8 +252,8 @@ std::shared_ptr<qnn::ggml_qnn_op_config> mat_mul_op_constructor(const ggml_tenso
|
|||
qnn::qnn_instance_ptr qnn_instance) {
|
||||
if (qnn_instance->has_custom_op_package() && ggml_n_dims(op) == 2) {
|
||||
QNN_LOG_DEBUG("create GgmlMulMat, name %s, use GgmlOpPackage\n", instance_name.c_str());
|
||||
return std::make_shared<qnn::ggml_qnn_single_op_config>(instance_name, "GgmlOpPackage", "GgmlMulMat",
|
||||
qnn_instance);
|
||||
return std::make_shared<qnn::ggml_qnn_single_op_config>(
|
||||
instance_name, "GgmlOpPackage", "GgmlMulMat", qnn_instance);
|
||||
}
|
||||
|
||||
QNN_LOG_DEBUG("create QNN_OP_MAT_MUL, name %s\n", instance_name.c_str());
|
||||
|
|
@ -250,8 +267,8 @@ std::shared_ptr<qnn::ggml_qnn_op_config> generic_op_constructor(const ggml_tenso
|
|||
GGML_UNUSED(op);
|
||||
static_assert(_op < std::size(kOpCaps));
|
||||
static_assert(kOpCaps[_op].qnn_op_name != nullptr);
|
||||
return std::make_shared<qnn::ggml_qnn_single_op_config>(instance_name, QNN_OP_PACKAGE_NAME_QTI_AISW,
|
||||
kOpCaps[_op].qnn_op_name, qnn_instance);
|
||||
return std::make_shared<qnn::ggml_qnn_single_op_config>(
|
||||
instance_name, QNN_OP_PACKAGE_NAME_QTI_AISW, kOpCaps[_op].qnn_op_name, qnn_instance);
|
||||
}
|
||||
|
||||
void add_type_parameters(std::shared_ptr<qnn::ggml_qnn_op_config_base> op, const char * name, float value) {
|
||||
|
|
@ -273,8 +290,8 @@ std::shared_ptr<qnn::ggml_qnn_op_config> op_constructor_with_type_param(const gg
|
|||
|
||||
_ggml_op_param_type op_param;
|
||||
memcpy(&op_param, op->op_params, sizeof(op_param));
|
||||
auto qnn_op = std::make_shared<_qnn_op_type_name>(instance_name, QNN_OP_PACKAGE_NAME_QTI_AISW, op_caps.qnn_op_name,
|
||||
qnn_instance);
|
||||
auto qnn_op = std::make_shared<_qnn_op_type_name>(
|
||||
instance_name, QNN_OP_PACKAGE_NAME_QTI_AISW, op_caps.qnn_op_name, qnn_instance);
|
||||
if (op_caps.qnn_param_name) {
|
||||
add_type_parameters(qnn_op, op_caps.qnn_param_name, op_param);
|
||||
}
|
||||
|
|
@ -285,6 +302,7 @@ constexpr const op_constructor_t kOpConstructors[] = {
|
|||
nullptr, // GGML_OP_NONE
|
||||
nullptr, // GGML_OP_DUP
|
||||
generic_op_constructor<GGML_OP_ADD>, // GGML_OP_ADD
|
||||
nullptr, // GGML_OP_ADD_ID
|
||||
nullptr, // GGML_OP_ADD1
|
||||
nullptr, // GGML_OP_ACC
|
||||
generic_op_constructor<GGML_OP_SUB>, // GGML_OP_SUB
|
||||
|
|
@ -425,8 +443,10 @@ const char * get_qnn_op_name(const ggml_tensor * op) {
|
|||
return kOpCaps[op_index].qnn_op_name;
|
||||
}
|
||||
|
||||
void get_qnn_op_desc(const ggml_tensor * op, bool append_dimensions, ggml_type override_data_type,
|
||||
std::string & output) {
|
||||
void get_qnn_op_desc(const ggml_tensor * op,
|
||||
bool append_dimensions,
|
||||
ggml_type override_data_type,
|
||||
std::string & output) {
|
||||
auto op_index = get_qnn_op_index(op);
|
||||
GGML_ASSERT(op_index < std::size(kOpCaps));
|
||||
auto get_desc = kOpCaps[op_index].get_desc;
|
||||
|
|
@ -437,8 +457,9 @@ void get_qnn_op_desc(const ggml_tensor * op, bool append_dimensions, ggml_type o
|
|||
}
|
||||
}
|
||||
|
||||
std::shared_ptr<ggml_qnn_op_config> create_op(const ggml_tensor * op, const std::string & name,
|
||||
qnn_instance_ptr qnn_instance) {
|
||||
std::shared_ptr<ggml_qnn_op_config> create_op(const ggml_tensor * op,
|
||||
const std::string & name,
|
||||
qnn_instance_ptr qnn_instance) {
|
||||
auto op_index = get_qnn_op_index(op);
|
||||
GGML_ASSERT(op_index < std::size(kOpCaps));
|
||||
auto op_constructor = kOpConstructors[op_index];
|
||||
|
|
|
|||
Loading…
Reference in New Issue