Merge branch 'master' into dev-refactoring

This commit is contained in:
hongruichen 2025-08-09 00:12:30 +08:00
commit ee6326aeb3
148 changed files with 7109 additions and 1417 deletions

View File

@ -159,31 +159,15 @@ jobs:
- name: Dawn Dependency
id: dawn-depends
run: |
ARTIFACTS_JSON=$(curl -s -L \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
"https://api.github.com/repos/google/dawn/actions/artifacts")
echo "Finding latest macos-latest-Release artifact..."
DOWNLOAD_URL=$(echo "$ARTIFACTS_JSON" | jq -r '.artifacts
| sort_by(.created_at)
| reverse
| map(select(.name | test("macos-latest-Release$")))
| .[0].archive_download_url')
if [ "$DOWNLOAD_URL" = "null" ] || [ -z "$DOWNLOAD_URL" ]; then
echo "No suitable Dawn artifact found!"
exit 1
fi
echo "Downloading from: $DOWNLOAD_URL"
curl -L \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
-o artifact.zip "$DOWNLOAD_URL"
unzip artifact.zip
DAWN_VERSION="v1.0.0"
DAWN_OWNER="reeselevine"
DAWN_REPO="dawn"
DAWN_ASSET_NAME="Dawn-a1a6b45cced25a3b7f4fb491e0ae70796cc7f22b-macos-latest-Release.tar.gz"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
curl -L -o artifact.tar.gz \
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
mkdir dawn
tar_file=$(find . -name '*.tar.gz' | head -n 1)
echo "Extracting: $tar_file"
tar -xvf "$tar_file" -C dawn --strip-components=1
tar -xvf artifact.tar.gz -C dawn --strip-components=1
- name: Build
id: cmake_build
@ -433,31 +417,15 @@ jobs:
id: dawn-depends
run: |
sudo apt-get install -y libxrandr-dev libxinerama-dev libxcursor-dev mesa-common-dev libx11-xcb-dev libxi-dev
ARTIFACTS_JSON=$(curl -s -L \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
"https://api.github.com/repos/google/dawn/actions/artifacts")
echo "Finding latest ubuntu-latest-Release artifact..."
DOWNLOAD_URL=$(echo "$ARTIFACTS_JSON" | jq -r '.artifacts
| sort_by(.created_at)
| reverse
| map(select(.name | test("ubuntu-latest-Release$")))
| .[0].archive_download_url')
if [ "$DOWNLOAD_URL" = "null" ] || [ -z "$DOWNLOAD_URL" ]; then
echo "No suitable Dawn artifact found!"
exit 1
fi
echo "Downloading from: $DOWNLOAD_URL"
curl -L \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
-o artifact.zip "$DOWNLOAD_URL"
unzip artifact.zip
DAWN_VERSION="v1.0.0"
DAWN_OWNER="reeselevine"
DAWN_REPO="dawn"
DAWN_ASSET_NAME="Dawn-a1a6b45cced25a3b7f4fb491e0ae70796cc7f22b-ubuntu-latest-Release.tar.gz"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
curl -L -o artifact.tar.gz \
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
mkdir dawn
tar_file=$(find . -name '*.tar.gz' | head -n 1)
echo "Extracting: $tar_file"
tar -xvf "$tar_file" -C dawn --strip-components=1
tar -xvf artifact.tar.gz -C dawn --strip-components=1
- name: Build
id: cmake_build

View File

@ -0,0 +1,45 @@
name: Check Pre-Tokenizer Hashes
on:
push:
paths:
- 'convert_hf_to_gguf.py'
- 'convert_hf_to_gguf_update.py'
pull_request:
paths:
- 'convert_hf_to_gguf.py'
- 'convert_hf_to_gguf_update.py'
jobs:
pre-tokenizer-hashes:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Install Python dependencies
run: |
python3 -m venv .venv
.venv/bin/pip install -r requirements/requirements-convert_hf_to_gguf_update.txt
- name: Update pre-tokenizer hashes
run: |
cp convert_hf_to_gguf.py /tmp
.venv/bin/python convert_hf_to_gguf_update.py --check-missing
- name: Check if committed pre-tokenizer hashes matches generated version
run: |
if ! diff -q convert_hf_to_gguf.py /tmp/convert_hf_to_gguf.py; then
echo "Model pre-tokenizer hashes (in convert_hf_to_gguf.py) do not match generated hashes (from convert_hf_to_gguf_update.py)."
echo "To fix: run ./convert_hf_to_gguf_update.py and commit the updated convert_hf_to_gguf.py along with your changes"
echo "Differences found:"
diff convert_hf_to_gguf.py /tmp/convert_hf_to_gguf.py || true
exit 1
fi
echo "Model pre-tokenizer hashes are up to date."

View File

@ -17,6 +17,7 @@ LLM inference in C/C++
## Hot topics
- Support for the `gpt-oss` model with native MXFP4 format has been added | [PR](https://github.com/ggml-org/llama.cpp/pull/15091) | [Collaboration with NVIDIA](https://blogs.nvidia.com/blog/rtx-ai-garage-openai-oss) | [Comment](https://github.com/ggml-org/llama.cpp/discussions/15095)
- Hot PRs: [All](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+) | [Open](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+is%3Aopen)
- Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode

View File

@ -24,6 +24,7 @@
#include <cstdarg>
#include <filesystem>
#include <fstream>
#include <list>
#include <regex>
#include <set>
#include <string>
@ -2375,20 +2376,35 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
throw std::invalid_argument("unknown buffer type");
}
// FIXME: this leaks memory
params.tensor_buft_overrides.push_back({strdup(tensor_name.c_str()), buft_list.at(buffer_type)});
// keep strings alive and avoid leaking memory by storing them in a static vector
static std::list<std::string> buft_overrides;
buft_overrides.push_back(tensor_name);
params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
}
}
));
add_opt(common_arg(
{"--cpu-moe"},
"use CPU for Mixture of Experts (MoE) weights",
{"--cpu-moe", "-cmoe"},
"keep all Mixture of Experts (MoE) weights in the CPU",
[](common_params & params) {
params.tensor_buft_overrides.push_back({"\\.ffn_up_exps\\.weight$", ggml_backend_cpu_buffer_type()});
params.tensor_buft_overrides.push_back({"\\.ffn_down_exps\\.weight$", ggml_backend_cpu_buffer_type()});
params.tensor_buft_overrides.push_back({"\\.ffn_gate_exps\\.weight$", ggml_backend_cpu_buffer_type()});
params.tensor_buft_overrides.push_back({"\\.ffn_(up|down|gate)_exps", ggml_backend_cpu_buffer_type()});
}
).set_env("LLAMA_ARG_CPU_MOE"));
add_opt(common_arg(
{"--n-cpu-moe", "-ncmoe"}, "N",
"keep the Mixture of Experts (MoE) weights of the first N layers in the CPU",
[](common_params & params, int value) {
if (value < 0) {
throw std::invalid_argument("invalid value");
}
for (int i = 0; i < value; ++i) {
// keep strings alive and avoid leaking memory by storing them in a static vector
static std::list<std::string> buft_overrides;
buft_overrides.push_back(string_format("blk\\.%d\\.ffn_(up|down|gate)_exps", i));
params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), ggml_backend_cpu_buffer_type()});
}
}
).set_env("LLAMA_ARG_N_CPU_MOE"));
add_opt(common_arg(
{"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
"number of layers to store in VRAM",
@ -2647,6 +2663,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.n_out_freq = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
add_opt(common_arg(
{"--output-format"}, "{gguf,dat}",
string_format("output format for imatrix file (default: %s)", params.imat_dat > 0 ? "dat" : "gguf"),
[](common_params & params, const std::string & value) {
/**/ if (value == "gguf") { params.imat_dat = -1; }
else if (value == "dat") { params.imat_dat = 1; }
else { throw std::invalid_argument("invalid output format"); }
}
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
add_opt(common_arg(
{"--save-frequency"}, "N",
string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
@ -2922,11 +2947,12 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
"- none: leaves thoughts unparsed in `message.content`\n"
"- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)\n"
"(default: deepseek)",
"(default: auto)",
[](common_params & params, const std::string & value) {
/**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
else if (value == "deepseek-legacy") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY; }
else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
else if (value == "auto") { params.reasoning_format = COMMON_REASONING_FORMAT_AUTO; }
else { throw std::invalid_argument("invalid value"); }
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));

View File

@ -55,7 +55,15 @@ bool common_chat_msg_parser::add_tool_call(const std::string & name, const std::
bool common_chat_msg_parser::add_tool_call(const json & tool_call) {
std::string name = tool_call.contains("name") ? tool_call.at("name") : "";
std::string id = tool_call.contains("id") ? tool_call.at("id") : "";
std::string arguments = tool_call.contains("arguments") ? tool_call.at("arguments") : "";
std::string arguments = "";
if (tool_call.contains("arguments")) {
if (tool_call.at("arguments").is_object()) {
arguments = tool_call.at("arguments").dump();
} else {
arguments = tool_call.at("arguments");
}
}
return add_tool_call(name, id, arguments);
}

View File

@ -126,6 +126,8 @@ std::vector<common_chat_msg_diff> common_chat_msg_diff::compute_diffs(const comm
typedef minja::chat_template common_chat_template;
struct common_chat_templates {
bool add_bos;
bool add_eos;
bool has_explicit_template; // Model had builtin template or template overridde was specified.
std::unique_ptr<common_chat_template> template_default; // always set (defaults to chatml)
std::unique_ptr<common_chat_template> template_tool_use;
@ -143,6 +145,8 @@ struct templates_params {
bool enable_thinking = true;
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
json extra_context;
bool add_bos;
bool add_eos;
};
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice) {
@ -445,6 +449,8 @@ std::string common_chat_format_single(
common_chat_templates_inputs inputs;
inputs.use_jinja = use_jinja;
inputs.add_bos = tmpls->add_bos;
inputs.add_eos = tmpls->add_eos;
std::string fmt_past_msg;
if (!past_msg.empty()) {
@ -469,6 +475,8 @@ std::string common_chat_format_single(
std::string common_chat_format_example(const struct common_chat_templates * tmpls, bool use_jinja) {
common_chat_templates_inputs inputs;
inputs.use_jinja = use_jinja;
inputs.add_bos = tmpls->add_bos;
inputs.add_eos = tmpls->add_eos;
auto add_simple_msg = [&](auto role, auto content) {
common_chat_msg msg;
msg.role = role;
@ -546,6 +554,8 @@ common_chat_templates_ptr common_chat_templates_init(
}
std::string token_bos = bos_token_override;
std::string token_eos = eos_token_override;
bool add_bos = false;
bool add_eos = false;
if (model) {
const auto * vocab = llama_model_get_vocab(model);
const auto get_token = [&](llama_token token, const char * name, const char * jinja_variable_name) {
@ -560,9 +570,13 @@ common_chat_templates_ptr common_chat_templates_init(
};
token_bos = get_token(llama_vocab_bos(vocab), "BOS", "bos_token");
token_eos = get_token(llama_vocab_eos(vocab), "EOS", "eos_token");
add_bos = llama_vocab_get_add_bos(vocab);
add_eos = llama_vocab_get_add_eos(vocab);
}
common_chat_templates_ptr tmpls(new common_chat_templates());
tmpls->has_explicit_template = has_explicit_template;
tmpls->add_bos = add_bos;
tmpls->add_eos = add_eos;
try {
tmpls->template_default = std::make_unique<minja::chat_template>(default_template_src, token_bos, token_eos);
} catch (const std::exception & e) {
@ -592,6 +606,8 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1: return "Functionary v3.1 Llama 3.1";
case COMMON_CHAT_FORMAT_HERMES_2_PRO: return "Hermes 2 Pro";
case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B";
case COMMON_CHAT_FORMAT_GRANITE: return "Granite";
case COMMON_CHAT_FORMAT_GPT_OSS: return "GPT-OSS";
default:
throw std::runtime_error("Unknown chat format");
}
@ -600,8 +616,10 @@ const char * common_chat_format_name(common_chat_format format) {
const char * common_reasoning_format_name(common_reasoning_format format) {
switch (format) {
case COMMON_REASONING_FORMAT_NONE: return "none";
case COMMON_REASONING_FORMAT_AUTO: return "auto";
case COMMON_REASONING_FORMAT_DEEPSEEK: return "deepseek";
case COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY: return "deepseek-legacy";
case COMMON_REASONING_FORMAT_GRANITE: return "granite";
default:
throw std::runtime_error("Unknown reasoning format");
}
@ -748,10 +766,10 @@ static std::string apply(
// instead of using `chat_template_options.use_bos_token = false`, since these tokens
// may be needed inside the template / between messages too.
auto result = tmpl.apply(tmpl_inputs, tmpl_opts);
if (string_starts_with(result, tmpl.bos_token())) {
if (inputs.add_bos && string_starts_with(result, tmpl.bos_token())) {
result = result.substr(tmpl.bos_token().size());
}
if (string_ends_with(result, tmpl.eos_token())) {
if (inputs.add_eos && string_ends_with(result, tmpl.eos_token())) {
result = result.substr(0, result.size() - tmpl.eos_token().size());
}
return result;
@ -1289,6 +1307,26 @@ static void common_chat_parse_deepseek_r1(common_chat_msg_parser & builder) {
tool_calls_end);
}
static common_chat_params common_chat_params_init_gpt_oss(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
auto prompt = apply(tmpl, inputs);
data.prompt = prompt;
data.format = COMMON_CHAT_FORMAT_GPT_OSS;
// TODO: support tool calls in GPT-OSS?
return data;
}
static void common_chat_parse_gpt_oss(common_chat_msg_parser & builder) {
// TODO @ngxson : this won't work with --special enabled, we should fix that
builder.try_parse_reasoning("<|channel|>analysis<|message|>", "<|start|>assistant<|channel|>final<|message|>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
}
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
LOG_DBG("%s\n", __func__);
common_chat_params data;
@ -1646,7 +1684,7 @@ static void common_chat_parse_hermes_2_pro(common_chat_msg_parser & builder) {
"|<function name=\"([^\"]+)\">" // match 5 (function name again)
);
if (auto res = builder.try_find_regex(open_regex)) {
while (auto res = builder.try_find_regex(open_regex)) {
const auto & block_start = res->groups[1];
std::string block_end = block_start.empty() ? "" : "```";
@ -1668,7 +1706,6 @@ static void common_chat_parse_hermes_2_pro(common_chat_msg_parser & builder) {
builder.consume_literal(block_end);
builder.consume_spaces();
}
builder.add_content(builder.consume_rest());
} else {
throw common_chat_msg_partial_exception("failed to parse tool call");
}
@ -1693,7 +1730,124 @@ static void common_chat_parse_hermes_2_pro(common_chat_msg_parser & builder) {
builder.consume_spaces();
}
}
builder.add_content(builder.consume_rest());
}
}
builder.add_content(builder.consume_rest());
}
static common_chat_params common_chat_params_init_granite(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
// Pass thinking context for Granite template
json additional_context = {
{"thinking", inputs.enable_thinking},
};
data.prompt = apply(tmpl, inputs, /* messages_override= */ std::nullopt, /* tools_override= */ std::nullopt, additional_context);
data.format = COMMON_CHAT_FORMAT_GRANITE;
if (string_ends_with(data.prompt, "<think>\n") || string_ends_with(data.prompt, "<think>")) {
if (!inputs.enable_thinking) {
data.prompt += "</think>";
} else {
data.thinking_forced_open = true;
}
}
if (!inputs.tools.is_null()) {
// Granite uses <|tool_call|> followed by JSON list
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
std::vector<std::string> tool_rules;
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
std::string name = function.at("name");
auto parameters = function.at("parameters");
builder.resolve_refs(parameters);
tool_rules.push_back(builder.add_rule(name + "-call", builder.add_schema(name +
"-args", {
{"type", "object"},
{"properties", {
{"name", {{"const", name}}},
{"arguments", parameters},
}},
{"required", json::array({"name", "arguments"})},
})));
});
auto tool_call = builder.add_rule("tool_call", string_join(tool_rules, " | "));
auto tool_list = builder.add_rule("tool_list", "\"[\" space " + tool_call + " (\",\" space " + tool_call + ")* space \"]\"");
if (data.thinking_forced_open) {
builder.add_rule("root", "\"</think>\" space \"<response>\" space [^<]* \"</response>\" space \"<|tool_call|>\" space " + tool_list);
} else {
builder.add_rule("root", "\"<|tool_call|>\" space " + tool_list);
}
data.grammar_triggers.push_back({
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
"<|tool_call|>"
});
data.preserved_tokens = {
"<think>",
"</think>",
"<response>",
"</response>",
"<|tool_call|>",
};
});
} else {
// Handle thinking tags for non-tool responses
if (data.thinking_forced_open && inputs.enable_thinking) {
data.grammar_lazy = false;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
builder.add_rule("root", "\"</think>\" space \"<response>\" space .* \"</response>\" space");
});
data.preserved_tokens = {
"<think>",
"</think>",
"<response>",
"</response>",
};
}
}
return data;
}
static void common_chat_parse_granite(common_chat_msg_parser & builder) {
// Parse thinking tags
builder.try_parse_reasoning("<think>", "</think>");
// Parse response tags using regex
static const common_regex response_regex("<response>([\\s\\S]*?)</response>");
if (auto res = builder.try_find_regex(response_regex)) {
// Extract the content between the tags (capture group 1)
auto content = builder.str(res->groups[1]);
builder.add_content(content);
builder.move_to(res->groups[0].end);
}
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Look for tool calls
static const common_regex tool_call_regex(regex_escape("<|tool_call|>"));
if (auto res = builder.try_find_regex(tool_call_regex)) {
builder.move_to(res->groups[0].end);
// Expect JSON array of tool calls
auto tool_calls_data = builder.consume_json();
if (tool_calls_data.json.is_array()) {
if (!builder.add_tool_calls(tool_calls_data.json)) {
builder.add_content("<|tool_call|>" + tool_calls_data.json.dump());
}
} else {
builder.add_content("<|tool_call|>" + tool_calls_data.json.dump());
}
} else {
builder.add_content(builder.consume_rest());
@ -1733,6 +1887,8 @@ static common_chat_params common_chat_templates_apply_jinja(
params.enable_thinking = inputs.enable_thinking;
params.grammar = inputs.grammar;
params.now = inputs.now;
params.add_bos = inputs.add_bos;
params.add_eos = inputs.add_eos;
params.extra_context = json::object();
for (auto el : inputs.chat_template_kwargs) {
@ -1769,11 +1925,21 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_command_r7b(tmpl, params);
}
// Granite (IBM) - detects thinking / tools support
if (src.find("elif thinking") != std::string::npos && src.find("<|tool_call|>") != std::string::npos) {
return common_chat_params_init_granite(tmpl, params);
}
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null()) {
return common_chat_params_init_hermes_2_pro(tmpl, params);
}
// GPT-OSS
if (src.find("<|channel|>") != std::string::npos && params.json_schema.is_null()) {
return common_chat_params_init_gpt_oss(tmpl, params);
}
// Use generic handler when mixing tools + JSON schema.
// TODO: support that mix in handlers below.
if ((params.tools.is_array() && params.json_schema.is_object())) {
@ -1824,6 +1990,7 @@ static common_chat_params common_chat_templates_apply_legacy(
int alloc_size = 0;
std::vector<llama_chat_message> chat;
std::vector<std::string> contents;
for (const auto & msg : inputs.messages) {
auto content = msg.content;
for (const auto & part : msg.content_parts) {
@ -1925,6 +2092,12 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_COMMAND_R7B:
common_chat_parse_command_r7b(builder);
break;
case COMMON_CHAT_FORMAT_GRANITE:
common_chat_parse_granite(builder);
break;
case COMMON_CHAT_FORMAT_GPT_OSS:
common_chat_parse_gpt_oss(builder);
break;
default:
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
}

View File

@ -109,6 +109,8 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
COMMON_CHAT_FORMAT_HERMES_2_PRO,
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_GRANITE,
COMMON_CHAT_FORMAT_GPT_OSS,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
@ -127,6 +129,8 @@ struct common_chat_templates_inputs {
bool enable_thinking = true;
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
std::map<std::string, std::string> chat_template_kwargs;
bool add_bos = false;
bool add_eos = false;
};
struct common_chat_params {

View File

@ -236,8 +236,10 @@ struct common_params_diffusion {
enum common_reasoning_format {
COMMON_REASONING_FORMAT_NONE,
COMMON_REASONING_FORMAT_AUTO,
COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
COMMON_REASONING_FORMAT_GRANITE, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
};
struct common_params {
@ -394,7 +396,7 @@ struct common_params {
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool enable_chat_template = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_AUTO;
int reasoning_budget = -1;
bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response
@ -439,6 +441,7 @@ struct common_params {
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
int32_t i_chunk = 0; // start processing from this chunk
int8_t imat_dat = 0; // whether the legacy imatrix.dat format should be output (gguf <= 0 < dat)
bool process_output = false; // collect data for the output tensor
bool compute_ppl = true; // whether to compute perplexity

View File

@ -678,6 +678,9 @@ class TextModel(ModelBase):
if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
# ref: https://huggingface.co/THUDM/glm-4-9b-hf
res = "glm4"
if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
# ref: https://huggingface.co/zai-org/GLM-4.5-Air
res = "glm4"
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
res = "minerva-7b"
@ -702,6 +705,9 @@ class TextModel(ModelBase):
if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
# ref: https://huggingface.co/moonshotai/Kimi-K2-Base
res = "kimi-k2"
if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
# ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
res = "qwen2"
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
res = "llama-bpe"
@ -849,6 +855,9 @@ class TextModel(ModelBase):
if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
# ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
res = "exaone4"
if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
# ref: https://huggingface.co/JetBrains/Mellum-4b-base
res = "mellum"
if res is None:
logger.warning("\n")
@ -3319,7 +3328,13 @@ class Qwen25OmniModel(Qwen2VLVisionModel):
@ModelBase.register("InternVisionModel")
class InternVisionModel(MmprojModel):
def set_gguf_parameters(self):
assert self.hparams_vision is not None
if isinstance(self.hparams_vision['image_size'], list):
self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
if isinstance(self.hparams_vision['patch_size'], list):
self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
@ -3343,14 +3358,30 @@ class InternVisionModel(MmprojModel):
return gguf.GGMLQuantizationType.F32
return False
def _mapping_interns1_name(self, name):
names_map = {
"model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
"model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
"model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
"model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
"model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
"model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
}
if name in names_map:
name = names_map[name]
return name
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if name.startswith("vision_model") or name.startswith("mlp"):
vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
# deal with intern-s1 special case
name = self._mapping_interns1_name(name)
if any([name.startswith(prefix) for prefix in vision_prefix]):
# process visual tensors
# correct name
if name.startswith("vision_model"):
name = "vision_tower." + name
if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
name += ".weight"
# split QKV tensors if needed
if ".qkv." in name:
@ -3436,6 +3467,10 @@ class Qwen2MoeModel(TextModel):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# process the experts separately
name = name.replace("language_model.", "") # InternVL
if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
# skip visual tensors
return []
if name.find("experts") != -1:
n_experts = self.hparams["num_experts"]
assert bid is not None
@ -3489,6 +3524,85 @@ class Qwen3Model(Qwen2Model):
class Qwen3MoeModel(Qwen2MoeModel):
model_arch = gguf.MODEL_ARCH.QWEN3MOE
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
hparams = ModelBase.load_hparams(self.dir_model)
self.origin_hf_arch = hparams.get('architectures', [None])[0]
def set_vocab(self):
# deal with intern-s1
if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
self._set_vocab_interns1()
return
try:
self._set_vocab_sentencepiece()
except FileNotFoundError:
self._set_vocab_gpt2()
def _set_vocab_interns1(self):
tokens: list[str] = []
toktypes: list[int] = []
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
vocab_size = self.hparams.get("vocab_size", len(vocab))
assert max(vocab.values()) < vocab_size
tokpre = self.get_vocab_base_pre(tokenizer)
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
added_vocab = tokenizer.get_added_vocab()
added_tokens_decoder = tokenizer.added_tokens_decoder
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
else:
token: str = reverse_vocab[i]
if token in added_vocab:
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
if not added_tokens_decoder[i].normalized:
previous_token = token
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
if previous_token != token:
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
if added_tokens_decoder[i].special or self.does_token_look_special(token):
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
toktypes.append(gguf.TokenType.NORMAL)
tokens.append(token)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
special_tokens_map_file = self.dir_model / 'special_tokens_map.json'
additional_special_tokens = []
if special_tokens_map_file.is_file():
with open(special_tokens_map_file, encoding = 'utf-8') as f:
additional_special_tokens = json.load(f).get('additional_special_tokens', [])
tokenizer_cfg_file = self.dir_model / 'special_tokens_map.json'
if tokenizer_cfg_file.is_file():
with open(tokenizer_cfg_file, encoding = 'utf-8') as f:
added_tokens_decoder = json.load(f).get('added_tokens_decoder', {})
token2ids_map = {data['content'] : int(token) for token, data in added_tokens_decoder.items() if data['special']}
for token in additional_special_tokens:
if token in token2ids_map:
special_vocab._set_special_token(token, token2ids_map[token])
special_vocab._set_special_token('eos', 151645)
special_vocab._set_special_token("bos", 151643)
special_vocab.add_to_gguf(self.gguf_writer)
@ModelBase.register("GPT2LMHeadModel")
class GPT2Model(TextModel):
@ -6056,6 +6170,7 @@ class DeepseekModel(TextModel):
@ModelBase.register("DeepseekV2ForCausalLM")
@ModelBase.register("DeepseekV3ForCausalLM")
@ModelBase.register("KimiVLForConditionalGeneration")
class DeepseekV2Model(TextModel):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
@ -6158,6 +6273,13 @@ class DeepseekV2Model(TextModel):
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# skip vision tensors and remove "language_model." for Kimi-VL
if "vision_tower" in name or "multi_modal_projector" in name:
return []
if name.startswith("language_model."):
name = name.replace("language_model.", "")
# rename e_score_correction_bias tensors
if name.endswith("e_score_correction_bias"):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
@ -6682,6 +6804,139 @@ class Glm4Model(TextModel):
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Glm4MoeForCausalLM")
class Glm4MoeModel(TextModel):
model_arch = gguf.MODEL_ARCH.GLM4_MOE
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
def set_vocab(self):
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
# Special tokens
# Note: Using <|endoftext|> (151329) for eot causes endless generation
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
# Patch broken chat template
if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
special_vocab.chat_template = special_vocab.chat_template.replace(
"""{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
"""{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
super().set_gguf_parameters()
if (rope_dim := self.hparams.get("head_dim")) is None:
rope_dim = (
self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
)
self.gguf_writer.add_rope_dimension_count(
int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
)
# MoE parameters - Use only routed expert count (shared experts handled separately)
if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
self.gguf_writer.add_expert_count(n_routed_experts)
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
self.gguf_writer.add_expert_shared_count(n_shared_experts)
if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
# Expert gating function (sigmoid for GLM4_MOE)
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
# Routed scaling factor
if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
# Normalise topk probabilities
if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
# NextN/MTP prediction layers
if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(
self, data_torch: Tensor, name: str, bid: int | None
) -> Iterable[tuple[str, Tensor]]:
if name.startswith("model.visual."): # ignore visual part
return []
elif name.startswith("model.language_model."):
name = name.replace("language_model.", "") # for multimodal variants
# Handle main token embedding (but not layer-specific NextN embeddings)
if name == "model.embed_tokens.weight" and ".layers." not in name:
return [(self.map_tensor_name("token_embd.weight"), data_torch)]
# Handle routed experts
if name.find("mlp.experts") != -1:
n_experts = self.hparams["n_routed_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
if name.endswith("e_score_correction_bias"):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
new_name = self.map_tensor_name(name)
return [(new_name, data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
class ChatGLMModel(TextModel):
model_arch = gguf.MODEL_ARCH.CHATGLM
@ -7800,6 +8055,130 @@ class SmolLM3Model(LlamaModel):
self.gguf_writer.add_chat_template(chat_template)
@ModelBase.register("GptOssForCausalLM")
class GptOssModel(TextModel):
model_arch = gguf.MODEL_ARCH.GPT_OSS
def transform_nibble_layout(self, tensor):
assert tensor.dtype == torch.uint8
assert tensor.shape[-1] == 16
# swap nibbles
t_lo = tensor & 0x0F
t_hi = tensor & 0xF0
t_swapped = (t_lo << 4) | (t_hi >> 4)
tensor = t_swapped
# transform aaaa...bbbb... to abababab...
blk_a, blk_b = tensor.chunk(2, dim=-1)
# get a_
blk_a0 = (blk_a & 0xF0).view(-1, 1)
blk_a1 = (blk_a << 4).view(-1, 1)
blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
# get _b
blk_b0 = (blk_b >> 4).view(-1, 1)
blk_b1 = (blk_b & 0x0F).view(-1, 1)
blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
# swap once more
out = blk_a | blk_b
out_h = out & 0xF0
out_l = out & 0x0F
out = (out_h >> 4) | (out_l << 4)
return out
def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
assert blocks.dtype == torch.uint8
assert scales.dtype == torch.uint8
scales = scales.unsqueeze(-1)
assert len(blocks.shape) == 4
assert len(scales.shape) == 4
blocks = self.transform_nibble_layout(blocks)
new_data = torch.concat((scales, blocks), dim=-1)
new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
# flatten last dim
new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
new_data = new_data.numpy()
self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
blocks0: Tensor = torch.zeros(1)
blocks1: Tensor = torch.zeros(1)
# we assume that tensors are loaded in the correct order
for name, data_torch in self.get_tensors():
if "mlp.experts.down_proj_blocks" in name:
blocks0 = data_torch
elif "mlp.experts.down_proj_scales" in name:
new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
self.repack_mxfp4(new_name, blocks0, data_torch)
elif "mlp.experts.gate_up_proj_blocks" in name:
blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
elif "mlp.experts.gate_up_proj_scales" in name:
scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
self.repack_mxfp4(new_name_gate, blocks0, scales0)
self.repack_mxfp4(new_name_up, blocks1, scales1)
return []
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if "sinks" in name:
name += ".weight"
# correct naming for down_proj
if "down_proj" in name:
if name.endswith("_bias"):
name = name.replace("down_proj_bias", "down_proj.bias")
elif "_blocks" not in name and "_scales" not in name:
logger.warning(f"{name} is not in MXFP4, performance may be degraded")
name = name.replace("down_proj", "down_proj.weight")
data_torch = data_torch.transpose(-1, -2)
else:
# otherwise, it should already be repacked to ggml MXFP4 format
return []
# split the gate_up into gate and up
if "gate_up_proj" in name:
if name.endswith("_bias"):
name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
return [
(self.map_tensor_name(name_gate), gate_proj_bias),
(self.map_tensor_name(name_up), up_proj_bias)
]
elif "_blocks" not in name and "_scales" not in name:
logger.warning(f"{name} is not in MXFP4, performance may be degraded")
name_up = name.replace("gate_up_proj", "up_proj.weight")
name_gate = name.replace("gate_up_proj", "gate_proj.weight")
data_torch = data_torch.transpose(-1, -2)
gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
return [
(self.map_tensor_name(name_gate), gate_proj_weight),
(self.map_tensor_name(name_up), up_proj_weight)
]
else:
# otherwise, it should already be repacked to ggml MXFP4 format
return []
return [(self.map_tensor_name(name), data_torch)]
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
rope_scaling = self.hparams.get("rope_scaling") or {}
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
@ModelBase.register("Lfm2ForCausalLM")
@ModelBase.register("LFM2ForCausalLM")
class LFM2Model(TextModel):
@ -7939,6 +8318,7 @@ class LazyTorchTensor(gguf.LazyBase):
_dtype_map: dict[torch.dtype, type] = {
torch.float16: np.float16,
torch.float32: np.float32,
torch.uint8: np.uint8,
}
# used for safetensors slices

View File

@ -59,6 +59,10 @@ parser.add_argument(
"--full", action="store_true",
help="download full list of models - make sure you have access to all of them",
)
parser.add_argument(
"--check-missing", action="store_true",
help="only check for missing pre-tokenizer hashes",
)
parser.add_argument(
"hf_token",
help="optional HF token",
@ -70,6 +74,10 @@ hf_token = args.hf_token if args.hf_token is not None else hf_token
if hf_token is None:
logger.warning("HF token not found. You can provide it as an argument or set it in ~/.cache/huggingface/token")
if args.check_missing and args.full:
logger.warning("Downloading full list of models requested, ignoring --check-missing!")
args.check_missing = False
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
# will be updated with time - contributions welcome
CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
@ -130,6 +138,7 @@ models = [
{"name": "midm-2.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct", },
{"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
{"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
{"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
]
# some models are known to be broken upstream, so we will skip them as exceptions
@ -138,6 +147,7 @@ pre_computed_hashes = [
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b"},
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/zai-org/GLM-4.5-Air", "chkhsh": "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902"},
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
{"name": "hunyuan", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-A13B-Instruct", "chkhsh": "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664"},
{"name": "hunyuan-dense", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-4B-Instruct", "chkhsh": "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6"},
@ -147,6 +157,7 @@ pre_computed_hashes = [
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-7B-Base", "chkhsh": "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896"},
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-34B-Base", "chkhsh": "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b"},
{"name": "kimi-k2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/moonshotai/Kimi-K2-Base", "chkhsh": "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890"},
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen3-Embedding-0.6B", "chkhsh": "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c"},
]
@ -221,12 +232,13 @@ if not args.full:
all_models = models.copy()
models = [model for model in all_models if model["name"] not in existing_models]
logging.info(f"Downloading {len(models)} models...")
for model in models:
try:
download_model(model)
except Exception as e:
logger.error(f"Failed to download model {model['name']}. Error: {e}")
if not args.check_missing:
logging.info(f"Downloading {len(models)} models...")
for model in models:
try:
download_model(model)
except Exception as e:
logger.error(f"Failed to download model {model['name']}. Error: {e}")
# generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function:

View File

@ -39,8 +39,9 @@ if (WIN32)
set(CMAKE_SHARED_MODULE_PREFIX "")
endif()
option(BUILD_SHARED_LIBS "ggml: build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
option(GGML_BACKEND_DL "ggml: build backends as dynamic libraries (requires BUILD_SHARED_LIBS)" OFF)
option(BUILD_SHARED_LIBS "ggml: build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
option(GGML_BACKEND_DL "ggml: build backends as dynamic libraries (requires BUILD_SHARED_LIBS)" OFF)
set(GGML_BACKEND_DIR "" CACHE PATH "ggml: directory to load dynamic backends from (requires GGML_BACKEND_DL")
#
# option list
@ -175,6 +176,7 @@ option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM"
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
option(GGML_HIP_MMQ_MFMA "ggml: enable MFMA MMA for CDNA in MMQ" ON)
option(GGML_HIP_EXPORT_METRICS "ggml: enable kernel perf metrics output" OFF)
option(GGML_MUSA_GRAPHS "ggml: use MUSA graph, experimental, unstable" OFF)
option(GGML_MUSA_MUDNN_COPY "ggml: enable muDNN for accelerated copy" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)

View File

@ -125,54 +125,56 @@ if(NOT TARGET ggml::ggml)
IMPORTED_LOCATION "${GGML_BASE_LIBRARY}")
set(_ggml_all_targets "")
foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
string(REPLACE "-" "_" _ggml_backend_pfx "${_ggml_backend}")
string(TOUPPER "${_ggml_backend_pfx}" _ggml_backend_pfx)
if (NOT GGML_BACKEND_DL)
foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
string(REPLACE "-" "_" _ggml_backend_pfx "${_ggml_backend}")
string(TOUPPER "${_ggml_backend_pfx}" _ggml_backend_pfx)
find_library(${_ggml_backend_pfx}_LIBRARY ${_ggml_backend}
REQUIRED
HINTS ${GGML_LIB_DIR}
NO_CMAKE_FIND_ROOT_PATH)
find_library(${_ggml_backend_pfx}_LIBRARY ${_ggml_backend}
REQUIRED
HINTS ${GGML_LIB_DIR}
NO_CMAKE_FIND_ROOT_PATH)
message(STATUS "Found ${${_ggml_backend_pfx}_LIBRARY}")
message(STATUS "Found ${${_ggml_backend_pfx}_LIBRARY}")
add_library(ggml::${_ggml_backend} UNKNOWN IMPORTED)
set_target_properties(ggml::${_ggml_backend}
PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES "${GGML_INCLUDE_DIR}"
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
IMPORTED_LOCATION "${${_ggml_backend_pfx}_LIBRARY}"
INTERFACE_COMPILE_FEATURES c_std_90
POSITION_INDEPENDENT_CODE ON)
string(REGEX MATCH "^ggml-cpu" is_cpu_variant "${_ggml_backend}")
if(is_cpu_variant)
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
set_target_properties(ggml::${_ggml_backend}
PROPERTIES
INTERFACE_LINK_LIBRARIES "${GGML_CPU_INTERFACE_LINK_LIBRARIES}")
if(GGML_CPU_INTERFACE_LINK_OPTIONS)
set_target_properties(ggml::${_ggml_backend}
PROPERTIES
INTERFACE_LINK_OPTIONS "${GGML_CPU_INTERFACE_LINK_OPTIONS}")
endif()
else()
list(APPEND ${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
add_library(ggml::${_ggml_backend} UNKNOWN IMPORTED)
set_target_properties(ggml::${_ggml_backend}
PROPERTIES
INTERFACE_LINK_LIBRARIES "${${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES}")
INTERFACE_INCLUDE_DIRECTORIES "${GGML_INCLUDE_DIR}"
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
IMPORTED_LOCATION "${${_ggml_backend_pfx}_LIBRARY}"
INTERFACE_COMPILE_FEATURES c_std_90
POSITION_INDEPENDENT_CODE ON)
if(${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS)
string(REGEX MATCH "^ggml-cpu" is_cpu_variant "${_ggml_backend}")
if(is_cpu_variant)
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
set_target_properties(ggml::${_ggml_backend}
PROPERTIES
INTERFACE_LINK_LIBRARIES "${GGML_CPU_INTERFACE_LINK_LIBRARIES}")
if(GGML_CPU_INTERFACE_LINK_OPTIONS)
set_target_properties(ggml::${_ggml_backend}
PROPERTIES
INTERFACE_LINK_OPTIONS "${GGML_CPU_INTERFACE_LINK_OPTIONS}")
endif()
else()
list(APPEND ${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
set_target_properties(ggml::${_ggml_backend}
PROPERTIES
INTERFACE_LINK_OPTIONS "${${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS}")
endif()
endif()
INTERFACE_LINK_LIBRARIES "${${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES}")
list(APPEND _ggml_all_targets ggml::${_ggml_backend})
endforeach()
if(${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS)
set_target_properties(ggml::${_ggml_backend}
PROPERTIES
INTERFACE_LINK_OPTIONS "${${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS}")
endif()
endif()
list(APPEND _ggml_all_targets ggml::${_ggml_backend})
endforeach()
endif()
list(APPEND GGML_INTERFACE_LINK_LIBRARIES ggml::ggml-base "${_ggml_all_targets}")
set_target_properties(ggml::ggml

View File

@ -304,6 +304,16 @@
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
#define GGML_TENSOR_TERNARY_OP_LOCALS \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
GGML_TENSOR_LOCALS(int64_t, ne2, src2, ne) \
GGML_TENSOR_LOCALS(size_t, nb2, src2, nb) \
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
#define GGML_TENSOR_BINARY_OP_LOCALS01 \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
@ -395,7 +405,8 @@ extern "C" {
// GGML_TYPE_IQ4_NL_4_4 = 36,
// GGML_TYPE_IQ4_NL_4_8 = 37,
// GGML_TYPE_IQ4_NL_8_8 = 38,
GGML_TYPE_COUNT = 39,
GGML_TYPE_MXFP4 = 39, // MXFP4 (1 block)
GGML_TYPE_COUNT = 40,
};
// precision
@ -430,6 +441,7 @@ extern "C" {
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
GGML_FTYPE_MOSTLY_MXFP4 = 25, // except 1d tensors
};
// available tensor operations:
@ -438,6 +450,7 @@ extern "C" {
GGML_OP_DUP,
GGML_OP_ADD,
GGML_OP_ADD_ID,
GGML_OP_ADD1,
GGML_OP_ACC,
GGML_OP_SUB,
@ -557,6 +570,7 @@ extern "C" {
GGML_GLU_OP_REGLU,
GGML_GLU_OP_GEGLU,
GGML_GLU_OP_SWIGLU,
GGML_GLU_OP_SWIGLU_OAI,
GGML_GLU_OP_GEGLU_ERF,
GGML_GLU_OP_GEGLU_QUICK,
@ -831,6 +845,13 @@ extern "C" {
struct ggml_tensor * b,
enum ggml_type type);
// dst[i0, i1, i2] = a[i0, i1, i2] + b[i0, ids[i1, i2]]
GGML_API struct ggml_tensor * ggml_add_id(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * ids);
GGML_API struct ggml_tensor * ggml_add1(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -1198,6 +1219,13 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_swiglu_oai(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
float alpha,
float limit);
// normalize along rows
GGML_API struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
@ -1570,6 +1598,10 @@ extern "C" {
float scale,
float max_bias);
GGML_API void ggml_soft_max_add_sinks(
struct ggml_tensor * a,
struct ggml_tensor * sinks);
GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -2052,6 +2084,10 @@ extern "C" {
GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
const struct ggml_tensor * a);
GGML_API void ggml_flash_attn_ext_add_sinks(
struct ggml_tensor * a,
struct ggml_tensor * sinks);
// TODO: needs to be adapted to ggml_flash_attn_ext
GGML_API struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx,

View File

@ -214,6 +214,13 @@ add_library(ggml
ggml-backend-reg.cpp)
add_library(ggml::ggml ALIAS ggml)
if (GGML_BACKEND_DIR)
if (NOT GGML_BACKEND_DL)
message(FATAL_ERROR "GGML_BACKEND_DIR requires GGML_BACKEND_DL")
endif()
target_compile_definitions(ggml PUBLIC GGML_BACKEND_DIR="${GGML_BACKEND_DIR}")
endif()
target_link_libraries(ggml PUBLIC ggml-base)
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
@ -227,7 +234,11 @@ function(ggml_add_backend_library backend)
set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL)
add_dependencies(ggml ${backend})
install(TARGETS ${backend} LIBRARY DESTINATION ${CMAKE_INSTALL_BINDIR})
if (GGML_BACKEND_DIR)
install(TARGETS ${backend} LIBRARY DESTINATION ${GGML_BACKEND_DIR})
else()
install(TARGETS ${backend} LIBRARY DESTINATION ${CMAKE_INSTALL_BINDIR})
endif()
else()
add_library(${backend} ${ARGN})
target_link_libraries(ggml PUBLIC ${backend})

View File

@ -29,6 +29,7 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
case GGML_OP_DIAG_MASK_ZERO:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_ADD:
case GGML_OP_ADD_ID:
case GGML_OP_ADD1:
case GGML_OP_SUB:
case GGML_OP_MUL:

View File

@ -505,6 +505,9 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
std::vector<fs::path> search_paths;
if (user_search_path == nullptr) {
#ifdef GGML_BACKEND_DIR
search_paths.push_back(fs::u8path(GGML_BACKEND_DIR));
#endif
// default search paths: executable directory, current directory
search_paths.push_back(get_executable_path());
search_paths.push_back(fs::current_path());

View File

@ -1071,6 +1071,11 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
}
}
}
// if the node is still unassigned, assign it to the first backend that supports it
for (int b = 0; b < sched->n_backends && *cur_backend_id == -1; b++) {
ggml_backend_sched_set_if_supported(sched, node, b, cur_backend_id);
}
GGML_ASSERT(*cur_backend_id != -1);
}
// pass 5: split graph, find tensors that need to be copied
@ -1098,7 +1103,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
const int node_backend_id = tensor_backend_id(node);
assert(node_backend_id != -1); // all nodes should be assigned by now, this can happen if there is no CPU fallback
GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now, this can happen if there is no CPU fallback
// check if we should start a new split based on the sources of the current node
bool need_new_split = false;
@ -1156,7 +1161,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
size_t src_id = hash_id(src);
const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
assert(src_backend_id != -1); // all inputs should be assigned by now
GGML_ASSERT(src_backend_id != -1); // all inputs should be assigned by now
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {

View File

@ -281,10 +281,10 @@ ggml_backend_t ggml_backend_blas_init(void) {
ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_blas_guid(),
/* .interface = */ blas_backend_i,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_blas_reg(), 0),
/* .context = */ ctx,
/* .guid = */ ggml_backend_blas_guid(),
/* .iface = */ blas_backend_i,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_blas_reg(), 0),
/* .context = */ ctx,
};
#if defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)

View File

@ -31,6 +31,13 @@ string(REGEX MATCH "[0-9]+[a-zA-Z]" SOC_TYPE_MAJOR_SN "${SOC_VERSION}")
set(SOC_TYPE_COMPILE_OPTION "ASCEND_${SOC_TYPE_MAJOR_SN}")
string(TOUPPER ${SOC_TYPE_COMPILE_OPTION} SOC_TYPE_COMPILE_OPTION)
message(STATUS "CANN: SOC_VERSION = ${SOC_VERSION}")
option(USE_ACL_GRAPH "Enable CANN graph execution (ACL graph mode)" OFF)
if(USE_ACL_GRAPH AND (SOC_TYPE_MAJOR_SN STREQUAL "310P" OR SOC_TYPE_COMPILE_OPTION STREQUAL "ASCEND_310P"))
message(FATAL_ERROR
"CANN Graph (ACL graph mode) is not supported on 310P devices. "
"Please build with -DUSE_ACL_GRAPH=OFF or use a supported SOC.")
endif()
if (CANN_INSTALL_DIR)
# Only Support Linux.
@ -68,6 +75,13 @@ if (CANN_INSTALL_DIR)
target_compile_definitions(ggml-cann PRIVATE "-D${SOC_TYPE_COMPILE_OPTION}")
if (USE_ACL_GRAPH)
target_compile_definitions(ggml-cann PRIVATE USE_ACL_GRAPH)
message(STATUS "CANN: USE_ACL_GRAPH is enabled.")
else()
message(STATUS "CANN: USE_ACL_GRAPH is disabled.")
endif()
message(STATUS "CANN: CANN_INCLUDE_DIRS = ${CANN_INCLUDE_DIRS}")
message(STATUS "CANN: CANN_LIBRARIES = ${CANN_LIBRARIES}")
else()

View File

@ -337,6 +337,29 @@ private:
int32_t device_;
};
#ifdef USE_ACL_GRAPH
struct ggml_graph_node_properties {
void * node_address;
ggml_op node_op;
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
void * src_address[GGML_MAX_SRC];
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
};
struct ggml_cann_graph {
~ggml_cann_graph() {
if (graph != nullptr) {
aclmdlRIDestroy(graph);
}
}
aclmdlRI graph = nullptr;
std::vector<ggml_graph_node_properties> ggml_graph_properties;
};
#endif // USE_ACL_GRAPH
/**
* @brief Context for managing CANN backend operations.
*/
@ -345,8 +368,13 @@ struct ggml_backend_cann_context {
std::string name; /**< Name of the device. */
std::string description; /**< Description of the device. */
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
#ifdef USE_ACL_GRAPH
/// Cached CANN ACL graph used for executing the current ggml computation graph.
std::unique_ptr<ggml_cann_graph> cann_graph;
#endif
cann_task_queue task_queue;
bool async_mode;
bool support_set_rows;
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
@ -362,6 +390,14 @@ struct ggml_backend_cann_context {
async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
device, async_mode ? "ON" : "OFF");
support_set_rows = parse_bool(get_env("LLAMA_SET_ROWS").value_or(""));
GGML_LOG_INFO("%s: LLAMA_SET_ROWS is %s\n", __func__, support_set_rows ? "ON" : "OFF");
if (!support_set_rows) {
GGML_LOG_INFO("%s: CANN Graph currently only supports execution when LLAMA_SET_ROWS is ON. "
"Falling back to eager mode.\n", __func__);
}
}
/**

View File

@ -2075,6 +2075,160 @@ static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream()));
}
#ifdef USE_ACL_GRAPH
/**
* @brief Populate the internal CANN graph node properties from the ggml computation graph.
*
* This function copies all node attributes (operation type, dimensions, strides, input sources,
* and operation parameters) into the cached CANN graph structure for later reuse or comparison.
*
* @param cann_ctx The CANN backend context.
* @param cgraph The ggml computational graph.
*/
static void set_ggml_graph_node_properties(ggml_backend_cann_context * cann_ctx, ggml_cgraph * cgraph) {
for (int node_idx = 0; node_idx < cgraph->n_nodes; node_idx++) {
ggml_tensor * node = cgraph->nodes[node_idx];
cann_ctx->cann_graph->ggml_graph_properties[node_idx].node_address = node->data;
cann_ctx->cann_graph->ggml_graph_properties[node_idx].node_op = node->op;
for (int dim = 0; dim < GGML_MAX_DIMS; dim++) {
cann_ctx->cann_graph->ggml_graph_properties[node_idx].ne[dim] = node->ne[dim];
cann_ctx->cann_graph->ggml_graph_properties[node_idx].nb[dim] = node->nb[dim];
}
for (int src = 0; src < GGML_MAX_SRC; src++) {
cann_ctx->cann_graph->ggml_graph_properties[node_idx].src_address[src] =
node->src[src] ? node->src[src]->data : nullptr;
}
memcpy(cann_ctx->cann_graph->ggml_graph_properties[node_idx].op_params, node->op_params, GGML_MAX_OP_PARAMS);
}
}
/**
* @brief Check if a ggml tensor node matches a previously captured CANN graph node.
*
* This function compares all relevant fields (address, op type, shape, source inputs, op params)
* to determine whether the current node matches a previously recorded version.
*
* @param node The current ggml tensor node.
* @param graph_node_properties The stored properties of a CANN graph node.
* @return true if all fields match (excluding GGML_OP_VIEW); false otherwise.
*/
static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
if (node->data != graph_node_properties->node_address &&
node->op != GGML_OP_VIEW) {
return false;
}
if (node->op != graph_node_properties->node_op) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (node->ne[i] != graph_node_properties->ne[i]) {
return false;
}
if (node->nb[i] != graph_node_properties->nb[i]) {
return false;
}
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (node->src[i] &&
node->src[i]->data != graph_node_properties->src_address[i] &&
node->op != GGML_OP_VIEW
) {
return false;
}
}
if (node->op == GGML_OP_SCALE &&
memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
return false;
}
return true;
}
/**
* @brief Determine if the CANN graph needs to be rebuilt due to graph changes.
*
* This checks whether the number or properties of ggml graph nodes have changed
* compared to the last captured CANN graph. If so, the CANN graph must be re-captured.
*
* @param cann_ctx The CANN backend context.
* @param cgraph The current ggml computation graph.
* @return true if an update is required; false otherwise.
*/
static bool is_cann_graph_update_required(ggml_backend_cann_context * cann_ctx, ggml_cgraph * cgraph) {
// The number of nodes is different, so the graph needs to be reconstructed.
if (cann_ctx->cann_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
cann_ctx->cann_graph->ggml_graph_properties.resize(cgraph->n_nodes);
return true;
}
// The number of nodes is the same; iterate over each node to check whether they match.
for (int i = 0; i < cgraph->n_nodes; i++) {
bool has_matching_properties = ggml_graph_node_has_matching_properties(
cgraph->nodes[i], &cann_ctx->cann_graph->ggml_graph_properties[i]);
if(!has_matching_properties) {
return true;
}
}
return false;
}
#endif // USE_ACL_GRAPH
/**
* @brief Evaluate the computation graph and optionally capture or execute it using CANN graph API.
*
* If CANN graph execution is enabled and graph capture is required, this function begins
* graph capture, runs the graph, ends capture, and stores the captured graph.
*
* Otherwise, it falls back to op-by-op execution using the CANN compute kernel dispatcher.
*
* @param cann_ctx The CANN backend context.
* @param cgraph The ggml computation graph.
* @param use_cann_graph Whether to use CANN graph execution.
* @param cann_graph_update_required Whether graph capture is needed due to graph changes.
*/
static void evaluate_and_capture_cann_graph(ggml_backend_cann_context * cann_ctx, ggml_cgraph * cgraph,
bool & use_cann_graph, bool & cann_graph_update_required) {
#ifdef USE_ACL_GRAPH
if (use_cann_graph && cann_graph_update_required) {
if (cann_ctx->cann_graph->graph != nullptr) {
ACL_CHECK(aclmdlRIDestroy(cann_ctx->cann_graph->graph));
cann_ctx->cann_graph->graph = nullptr;
}
ACL_CHECK(aclmdlRICaptureBegin(cann_ctx->stream(), ACL_MODEL_RI_CAPTURE_MODE_GLOBAL));
}
#endif // USE_ACL_GRAPH
// Only perform the graph execution if CANN graphs are not enabled, or we are capturing the graph.
// With the use of CANN graphs, the execution will be performed by the graph launch.
if (!use_cann_graph || cann_graph_update_required) {
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
}
bool ok = ggml_cann_compute_forward(*cann_ctx, node);
if (!ok) {
GGML_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
}
GGML_ASSERT(ok);
}
}
#ifdef USE_ACL_GRAPH
if (use_cann_graph && cann_graph_update_required) { // End CANN graph capture
ACL_CHECK(aclmdlRICaptureEnd(cann_ctx->stream(), &cann_ctx->cann_graph->graph));
}
if (use_cann_graph) {
// Execute graph
ACL_CHECK(aclmdlRIExecuteAsync(cann_ctx->cann_graph->graph, cann_ctx->stream()));
}
#endif // USE_ACL_GRAPH
}
/**
* @brief Computes a computational graph using a CANN backend.
*
@ -2091,27 +2245,38 @@ static enum ggml_status ggml_backend_cann_graph_compute(
ggml_backend_t backend, ggml_cgraph* cgraph) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
ggml_cann_set_device(cann_ctx->device);
//release temp buffer create by set tensor.
release_nz_workspace();
#ifdef USE_ACL_GRAPH
bool use_cann_graph = true;
bool cann_graph_update_required = false;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor* node = cgraph->nodes[i];
if (ggml_is_empty(node) || node->op == GGML_OP_NONE) {
continue;
}
bool ok = ggml_cann_compute_forward(*cann_ctx, node);
if (!ok) {
GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__,
node->name, ggml_op_name(node->op));
}
GGML_ASSERT(ok);
// check environment LLAMA_SET_ROWS
if (!cann_ctx->support_set_rows) {
use_cann_graph = false;
}
if (use_cann_graph) {
if (cann_ctx->cann_graph == nullptr) {
cann_ctx->cann_graph.reset(new ggml_cann_graph());
cann_graph_update_required = true;
}
cann_graph_update_required = is_cann_graph_update_required(cann_ctx, cgraph);
set_ggml_graph_node_properties(cann_ctx, cgraph);
}
#else
bool use_cann_graph = false;
bool cann_graph_update_required = false;
#endif // USE_ACL_GRAPH
evaluate_and_capture_cann_graph(
cann_ctx,
cgraph,
use_cann_graph,
cann_graph_update_required
);
return GGML_STATUS_SUCCESS;
}
@ -2226,12 +2391,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
// only support F32 and F16.
return false;
}
if (!ggml_are_same_shape(op, src) && !ggml_is_contiguous(op)) {
// unsupport dst is not contiguous.
return false;
}
return true;
} break;
case GGML_OP_CONT: {
@ -2340,6 +2499,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
memcpy(&bias, (float*)op->op_params + 1, sizeof(float));
return bias == 0.0f; // TODO: support bias != 0.0f
case GGML_OP_SOFT_MAX:
// TODO: support attention sinks [TAG_ATTN_SINKS]
if (op->src[2]) {
return false;
}
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
@ -2354,6 +2517,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
if(op->type != GGML_TYPE_F16 && op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_BF16){
return false;
}
// TODO: support attention sinks [TAG_ATTN_SINKS]
if (op->src[4]) {
return false;
}
if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
// different head sizes of K and V are not supported yet
return false;

View File

@ -99,6 +99,9 @@ typedef sycl::half2 ggml_half2;
#define QI4_1 (QK4_1 / (4 * QR4_1))
#define QR4_1 2
#define QI_MXFP4 (QK_MXFP4 / (4 * QR_MXFP4))
#define QR_MXFP4 2
#define QI5_0 (QK5_0 / (4 * QR5_0))
#define QR5_0 2
@ -184,6 +187,13 @@ typedef struct {
} block_q4_1;
static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_half) + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK_MXFP4 32
typedef struct {
uint8_t e; // E8M0
uint8_t qs[QK_MXFP4/2];
} block_mxfp4;
static_assert(sizeof(block_mxfp4) == sizeof(uint8_t) + QK_MXFP4/2, "wrong mxfp4 block size/padding");
#define QK5_0 32
typedef struct {
ggml_half d; // delta
@ -1074,10 +1084,17 @@ GGML_TABLE_BEGIN(uint32_t, iq3s_grid, 512)
0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101,
GGML_TABLE_END()
// TODO: fix name to kvalues_iq4_nl
GGML_TABLE_BEGIN(int8_t, kvalues_iq4nl, 16)
-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113,
GGML_TABLE_END()
// e2m1 values (doubled)
// ref: https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
GGML_TABLE_BEGIN(int8_t, kvalues_mxfp4, 16)
0, 1, 2, 3, 4, 6, 8, 12, 0, -1, -2, -3, -4, -6, -8, -12,
GGML_TABLE_END()
#define NGRID_IQ1S 2048
#define IQ1S_DELTA 0.125f
#define IQ1M_DELTA 0.125f

View File

@ -13,6 +13,7 @@
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
#define ggml_vec_dot_q8_0_q8_0_generic ggml_vec_dot_q8_0_q8_0
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
@ -68,6 +69,7 @@
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
@ -90,6 +92,7 @@
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
@ -120,6 +123,7 @@
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
@ -149,6 +153,7 @@
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
@ -179,6 +184,7 @@
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8

View File

@ -589,6 +589,67 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
}
void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
assert(n % QK_MXFP4 == 0);
static_assert(QK_MXFP4 == QK8_0, "QK_MXFP4 and QK8_0 must be the same");
const block_mxfp4 * GGML_RESTRICT x = vx;
const block_q8_0 * GGML_RESTRICT y = vy;
const int nb = n / QK_MXFP4;
int ib = 0;
float sumf = 0;
#if defined __ARM_NEON
const int8x16_t values = vld1q_s8(kvalues_mxfp4);
const uint8x16_t m4b = vdupq_n_u8(0x0f);
uint8x16x2_t q4bits;
int8x16x4_t q4b;
int8x16x4_t q8b;
int32x4_t prod_1;
int32x4_t prod_2;
for (; ib + 1 < nb; ib += 2) {
q4bits.val[0] = vld1q_u8(x[ib + 0].qs);
q4bits.val[1] = vld1q_u8(x[ib + 1].qs);
q8b.val[0] = vld1q_s8(y[ib + 0].qs);
q8b.val[1] = vld1q_s8(y[ib + 0].qs + 16);
q8b.val[2] = vld1q_s8(y[ib + 1].qs);
q8b.val[3] = vld1q_s8(y[ib + 1].qs + 16);
q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
sumf +=
GGML_E8M0_TO_FP32_HALF(x[ib + 0].e) * GGML_CPU_FP16_TO_FP32(y[ib + 0].d) * vaddvq_s32(prod_1) +
GGML_E8M0_TO_FP32_HALF(x[ib + 1].e) * GGML_CPU_FP16_TO_FP32(y[ib + 1].d) * vaddvq_s32(prod_2);
}
#endif
for (; ib < nb; ++ib) {
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e);
int sumi1 = 0;
int sumi2 = 0;
for (int j = 0; j < QK_MXFP4/2; ++j) {
sumi1 += y[ib].qs[j + 0] * kvalues_mxfp4[x[ib].qs[j] & 0xf];
sumi2 += y[ib].qs[j + QK_MXFP4/2] * kvalues_mxfp4[x[ib].qs[j] >> 4];
}
sumf += d * (sumi1 + sumi2);
}
*s = sumf;
}
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
const int qk = QK8_0;
const int nb = n / qk;

View File

@ -66,6 +66,12 @@ static inline int hsum_i32_4(const __m128i a) {
}
#if defined(__AVX2__) || defined(__AVX512F__)
static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
const __m256i ax = _mm256_sign_epi8(x, x);
const __m256i sy = _mm256_sign_epi8(y, x);
return _mm256_maddubs_epi16(ax, sy);
}
// spread 32 bits to 32 bytes { 0x00, 0xFF }
static inline __m256i bytes_from_bits_32(const uint8_t * x) {
uint32_t x32;
@ -261,6 +267,11 @@ static inline __m256 quad_fp16_delta_float(const float x0, const float y0, const
return _mm256_set_m128(_mm_set1_ps(GGML_CPU_FP16_TO_FP32(x1) * GGML_CPU_FP16_TO_FP32(y1)),
_mm_set1_ps(GGML_CPU_FP16_TO_FP32(x0) * GGML_CPU_FP16_TO_FP32(y0)));
}
static inline __m256 quad_mx_delta_float(const int8_t x0, const float y0, const int8_t x1, const float y1) {
return _mm256_set_m128(_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x1) * GGML_CPU_FP16_TO_FP32(y1)),
_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x0) * GGML_CPU_FP16_TO_FP32(y0)));
}
#endif
#elif defined(__SSSE3__)
// horizontally add 4x4 floats
@ -746,6 +757,91 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
#endif
}
void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
assert(n % QK_MXFP4 == 0);
static_assert(QK_MXFP4 == QK8_0, "QK_MXFP4 and QK8_0 must be the same");
const block_mxfp4 * GGML_RESTRICT x = vx;
const block_q8_0 * GGML_RESTRICT y = vy;
const int nb = n / QK_MXFP4;
int ib = 0;
float sumf = 0;
#if defined __AVX2__
const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_mxfp4);
const __m128i m4b = _mm_set1_epi8(0x0f);
const __m256i mone = _mm256_set1_epi16(1);
__m256 accum1 = _mm256_setzero_ps();
__m256 accum2 = _mm256_setzero_ps();
for (; ib + 1 < nb; ib += 2) {
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[ib + 0].qs);
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[ib + 1].qs);
const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[ib + 0].qs);
const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[ib + 1].qs);
const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
_mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
_mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 0].e)),
_mm256_cvtepi32_ps(p_1), accum1);
accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 1].e)),
_mm256_cvtepi32_ps(p_2), accum2);
}
sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
#elif defined __AVX__
const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_mxfp4);
const __m128i m4b = _mm_set1_epi8(0x0f);
__m256 accum = _mm256_setzero_ps();
for (; ib + 1 < nb; ib += 2) {
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
const __m256 p = mul_sum_i8_quad_float(q4b_1_0, q4b_1_1, q4b_2_0, q4b_2_1, q8b_1_0, q8b_1_1, q8b_2_0, q8b_2_1);
const __m256 deltas = quad_mx_delta_float(x[ib].e, y[ib].d, x[ib + 1].e, y[ib + 1].d);
accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
}
sumf = hsum_float_8(accum);
#endif
for (; ib < nb; ++ib) {
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e);
int sumi1 = 0;
int sumi2 = 0;
for (int j = 0; j < QK_MXFP4/2; ++j) {
sumi1 += y[ib].qs[j + 0] * kvalues_mxfp4[x[ib].qs[j] & 0xf];
sumi2 += y[ib].qs[j + QK_MXFP4/2] * kvalues_mxfp4[x[ib].qs[j] >> 4];
}
sumf += d * (sumi1 + sumi2);
}
*s = sumf;
}
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
const int qk = QK8_0;
const int nb = n / qk;
@ -3206,14 +3302,6 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
#endif
}
#if defined(__AVX2__)
static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
const __m256i ax = _mm256_sign_epi8(x, x);
const __m256i sy = _mm256_sign_epi8(y, x);
return _mm256_maddubs_epi16(ax, sy);
}
#endif
void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
assert(n % QK_K == 0);
assert(nrc == 1);

View File

@ -253,6 +253,12 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_1,
.nrows = 1,
},
[GGML_TYPE_MXFP4] = {
.from_float = quantize_row_mxfp4,
.vec_dot = ggml_vec_dot_mxfp4_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
.nrows = 1,
},
[GGML_TYPE_Q2_K] = {
.from_float = quantize_row_q2_K,
.vec_dot = ggml_vec_dot_q2_K_q8_K,
@ -1670,6 +1676,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_add(params, tensor);
} break;
case GGML_OP_ADD_ID:
{
ggml_compute_forward_add_id(params, tensor);
} break;
case GGML_OP_ADD1:
{
ggml_compute_forward_add1(params, tensor);
@ -1924,7 +1934,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
} break;
case GGML_OP_FLASH_ATTN_EXT:
{
ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
ggml_compute_forward_flash_attn_ext(params, tensor);
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
@ -2111,6 +2121,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_DUP:
case GGML_OP_CONT:
case GGML_OP_ADD:
case GGML_OP_ADD_ID:
case GGML_OP_ADD1:
case GGML_OP_ACC:
{
@ -2172,6 +2183,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
{
@ -2673,6 +2685,7 @@ struct ggml_cplan ggml_graph_plan(
}
} break;
case GGML_OP_ADD:
case GGML_OP_ADD_ID:
case GGML_OP_ADD1:
{
if (ggml_is_quantized(node->src[0]->type)) {

View File

@ -35,7 +35,7 @@
// ggml-backend interface
std::vector<ggml_backend_buffer_type_t>& ggml_backend_cpu_get_extra_buffers_type() {
std::vector<ggml_backend_buffer_type_t> & ggml_backend_cpu_get_extra_buffer_types() {
static std::vector<ggml_backend_buffer_type_t> bufts = []() {
std::vector<ggml_backend_buffer_type_t> bufts;
@ -57,8 +57,6 @@ std::vector<ggml_backend_buffer_type_t>& ggml_backend_cpu_get_extra_buffers_type
}
#endif
bufts.push_back(NULL);
return bufts;
}();
@ -66,14 +64,20 @@ std::vector<ggml_backend_buffer_type_t>& ggml_backend_cpu_get_extra_buffers_type
}
static ggml_backend_buffer_type_t * ggml_backend_cpu_device_get_extra_buffers_type(ggml_backend_dev_t device) {
return ggml_backend_cpu_get_extra_buffers_type().data();
static std::vector<ggml_backend_buffer_type_t> extra_bufts = [] {
std::vector<ggml_backend_buffer_type_t> bufts = ggml_backend_cpu_get_extra_buffer_types();
bufts.push_back(nullptr);
return bufts;
}();
return extra_bufts.data();
GGML_UNUSED(device);
}
static bool ggml_backend_cpu_is_extra_buffer_type(ggml_backend_buffer_type_t buft) {
for (auto * extra : ggml_backend_cpu_get_extra_buffers_type()) {
if (extra && extra == buft) {
for (auto * extra : ggml_backend_cpu_get_extra_buffer_types()) {
if (extra == buft) {
return true;
}
}
@ -210,10 +214,10 @@ ggml_backend_t ggml_backend_cpu_init(void) {
ctx->abort_callback_data = NULL;
ggml_backend_t cpu_backend = new ggml_backend {
/* .guid = */ ggml_backend_cpu_guid(),
/* .interface = */ ggml_backend_cpu_i,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
/* .context = */ ctx,
/* .guid = */ ggml_backend_cpu_guid(),
/* .iface = */ ggml_backend_cpu_i,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
/* .context = */ ctx,
};
if (cpu_backend == NULL) {
@ -397,20 +401,13 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
return true;
}
// extra_buffer_op?
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
if (extra) {
auto buf_extra = (ggml::cpu::extra_buffer_type*) extra->context;
if (buf_extra && buf_extra->supports_op(dev, op)) {
return true;
}
}
}
// the other case need host buffer.
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (op->src[i] && op->src[i]->buffer && !ggml_backend_buft_is_host(op->src[i]->buffer->buft)) {
return false;
// check extra buffer types
// note: only the first sources are checked for extra buffer types to reduce overhead, increase if necessary
for (int i = 0; i < 4; i++) {
if (op->src[i] && op->src[i]->buffer &&
ggml_backend_cpu_is_extra_buffer_type(op->src[i]->buffer->buft)) {
auto * buf_extra = (ggml::cpu::extra_buffer_type *) op->src[i]->buffer->buft->context;
return buf_extra->supports_op(dev, op);
}
}

View File

@ -8,6 +8,7 @@
#include "vec.h"
#include <float.h>
#include <algorithm>
// ggml_compute_forward_dup
@ -1283,6 +1284,7 @@ void ggml_compute_forward_add(
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@ -1309,6 +1311,77 @@ void ggml_compute_forward_add(
}
}
// ggml_compute_forward_add_id
static void ggml_compute_forward_add_id_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(src2->type == GGML_TYPE_I32);
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_TERNARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
// src1 indices
const int i11 = *(int32_t *) ((char *) src2->data + i1*nb20 + i2*nb21);
GGML_ASSERT(i11 >= 0 && i11 < ne11);
ggml_vec_add_f32(ne0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
(float *) ((char *) src1->data + i11*nb11));
}
}
void ggml_compute_forward_add_id(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_add_id_f32(params, dst);
} break;
default:
{
GGML_ABORT("unsupported type for ggml_compute_forward_add_id: %s", ggml_type_name(src0->type));
}
}
}
// ggml_compute_forward_add1
static void ggml_compute_forward_add1_f32(
@ -1660,6 +1733,7 @@ void ggml_compute_forward_add1(
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@ -1787,6 +1861,7 @@ void ggml_compute_forward_acc(
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@ -3614,6 +3689,93 @@ static void ggml_compute_forward_swiglu(
}
}
// ggml_compute_forward_swiglu_oai
static void ggml_compute_forward_swiglu_oai_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
const float alpha = ggml_get_op_params_f32(dst, 2);
const float limit = ggml_get_op_params_f32(dst, 3);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * src0_p = (float *) (src0_d + i1*src0_o);
float * src1_p = (float *) (src1_d + i1*src1_o);
float * dst_p = (float *) ((char *) dst->data + i1*(dst->nb[1]));
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
for (int k = 0; k < nc; k++) {
const float x = std::min(src0_p[k], limit);
const float y = std::clamp(src1_p[k], -limit, limit);
const float out_glu = x / (1.f + expf(alpha * (-x)));
dst_p[k] = out_glu * (y + 1.f);
}
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = dst_p[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_swiglu_oai(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_swiglu_oai_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_geglu_erf
static void ggml_compute_forward_geglu_erf_f32(
@ -4599,6 +4761,7 @@ void ggml_compute_forward_out_prod(
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@ -4873,6 +5036,7 @@ void ggml_compute_forward_set(
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@ -5134,6 +5298,7 @@ void ggml_compute_forward_get_rows(
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@ -5523,6 +5688,7 @@ static void ggml_compute_forward_soft_max_f32(
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
assert(ggml_is_contiguous(dst));
assert(ggml_are_same_shape(src0, dst));
@ -5557,6 +5723,9 @@ static void ggml_compute_forward_soft_max_f32(
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
// sinks
const float * sk = src2 ? (float *)((char *) src2->data) : nullptr;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
@ -5599,9 +5768,18 @@ static void ggml_compute_forward_soft_max_f32(
float max = -INFINITY;
ggml_vec_max_f32(ne00, &max, wp);
// if we have sinks, make a correction as if they were included in the softmax
if (sk) {
max = MAX(max, sk[i02]);
}
ggml_float sum = ggml_vec_soft_max_f32(ne00, dp, wp, max);
assert(sum > 0.0);
if (sk) {
sum += (ggml_float) expf(sk[i02] - max);
}
sum = 1.0/sum;
ggml_vec_scale_f32(ne00, dp, sum);
@ -5836,6 +6014,7 @@ void ggml_compute_forward_clamp(
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@ -7989,12 +8168,14 @@ void ggml_compute_forward_argsort(
static void ggml_compute_forward_flash_attn_ext_f16(
const ggml_compute_params * params,
const ggml_tensor * q,
const ggml_tensor * k,
const ggml_tensor * v,
const ggml_tensor * mask,
ggml_tensor * dst) {
const ggml_tensor * q = dst->src[0];
const ggml_tensor * k = dst->src[1];
const ggml_tensor * v = dst->src[2];
const ggml_tensor * mask = dst->src[3];
const ggml_tensor * sinks = dst->src[4];
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
@ -8189,6 +8370,23 @@ static void ggml_compute_forward_flash_attn_ext_f16(
}
}
// sinks
if (sinks) {
const float s = ((float *)((char *) sinks->data))[h];
float ms = 1.0f;
float vs = 1.0f;
if (s > M) {
ms = expf(M - s);
ggml_vec_scale_f32(DV, VKQ32, ms);
} else {
vs = expf(s - M);
}
S = S*ms + vs;
}
// V /= S
const float S_inv = 1.0f/S;
ggml_vec_scale_f32(DV, VKQ32, S_inv);
@ -8208,17 +8406,13 @@ static void ggml_compute_forward_flash_attn_ext_f16(
void ggml_compute_forward_flash_attn_ext(
const ggml_compute_params * params,
const ggml_tensor * q,
const ggml_tensor * k,
const ggml_tensor * v,
const ggml_tensor * mask,
ggml_tensor * dst) {
switch (dst->op_params[3]) {
case GGML_PREC_DEFAULT:
case GGML_PREC_F32:
{
// uses F32 accumulators
ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
ggml_compute_forward_flash_attn_ext_f16(params, dst);
} break;
default:
{
@ -9080,6 +9274,10 @@ void ggml_compute_forward_glu(
{
ggml_compute_forward_swiglu(params, dst);
} break;
case GGML_GLU_OP_SWIGLU_OAI:
{
ggml_compute_forward_swiglu_oai(params, dst);
} break;
case GGML_GLU_OP_GEGLU_ERF:
{
ggml_compute_forward_geglu_erf(params, dst);

View File

@ -29,6 +29,7 @@ extern "C" {
void ggml_compute_forward_dup(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_add(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_add_id(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_add1(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_acc(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_sum(const struct ggml_compute_params * params, struct ggml_tensor * dst);
@ -82,13 +83,7 @@ void ggml_compute_forward_arange(const struct ggml_compute_params * params, stru
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_leaky_relu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_flash_attn_ext(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const struct ggml_tensor * mask,
struct ggml_tensor * dst);
void ggml_compute_forward_flash_attn_ext(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_flash_attn_back(
const struct ggml_compute_params * params,
const bool masked,

View File

@ -46,6 +46,10 @@ void quantize_row_q8_1_generic(const float * GGML_RESTRICT x, void * GGML_RESTRI
quantize_row_q8_1_ref(x, y, k);
}
void quantize_row_mxfp4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k) {
quantize_row_mxfp4_ref(x, y, k);
}
//
// 2-6 bit quantization in super-blocks
//
@ -181,6 +185,37 @@ void ggml_vec_dot_q4_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, c
*s = sumf;
}
void ggml_vec_dot_mxfp4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
assert(n % QK_MXFP4 == 0);
static_assert(QK_MXFP4 == QK8_0, "QK_MXFP4 and QK8_0 must be the same");
const block_mxfp4 * GGML_RESTRICT x = vx;
const block_q8_0 * GGML_RESTRICT y = vy;
const int nb = n / QK_MXFP4;
int ib = 0;
float sumf = 0;
for (; ib < nb; ++ib) {
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e);
int sumi1 = 0;
int sumi2 = 0;
for (int j = 0; j < QK_MXFP4/2; ++j) {
sumi1 += y[ib].qs[j + 0] * kvalues_mxfp4[x[ib].qs[j] & 0xf];
sumi2 += y[ib].qs[j + QK_MXFP4/2] * kvalues_mxfp4[x[ib].qs[j] >> 4];
}
sumf += d * (sumi1 + sumi2);
}
*s = sumf;
}
void ggml_vec_dot_q5_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
const int qk = QK8_0;
const int nb = n / qk;

View File

@ -19,6 +19,8 @@ void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_mxfp4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
@ -39,6 +41,8 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
@ -67,8 +71,12 @@ void ggml_vec_dot_q4_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, c
void ggml_vec_dot_q5_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q8_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_mxfp4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_tq1_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_tq2_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q2_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q3_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q4_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);

View File

@ -10,7 +10,7 @@ extra_buffer_type::~extra_buffer_type() {}
} // namespace ggml::cpu
bool ggml_cpu_extra_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) {
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
for (auto extra : ggml_backend_cpu_get_extra_buffer_types()) {
if (extra && extra->context) {
auto buf_extra = (ggml::cpu::extra_buffer_type *) extra->context;
auto tensor_traits = buf_extra->get_tensor_traits(op);
@ -23,7 +23,7 @@ bool ggml_cpu_extra_compute_forward(struct ggml_compute_params * params, struct
}
bool ggml_cpu_extra_work_size(int n_threads, const struct ggml_tensor * op, size_t * size) {
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
for (auto extra : ggml_backend_cpu_get_extra_buffer_types()) {
if (extra && extra->context) {
auto buf_extra = (ggml::cpu::extra_buffer_type *) extra->context;
auto tensor_traits = buf_extra->get_tensor_traits(op);

View File

@ -33,6 +33,6 @@ class extra_buffer_type {
} // namespace ggml::cpu
// implemented in ggml-cpu.cpp.
std::vector<ggml_backend_buffer_type_t> & ggml_backend_cpu_get_extra_buffers_type();
std::vector<ggml_backend_buffer_type_t> & ggml_backend_cpu_get_extra_buffer_types();
#endif

View File

@ -55,7 +55,22 @@ inline static void ggml_vec_cpy_i32(const int n, int32_t * y, const int32_t * x)
inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const ggml_fp16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) {
int i = 0;
#if defined(__AVX2__)
for (; i + 7 < n; i += 8) {
__m256 vx = _mm256_loadu_ps(x + i);
__m256 vy = _mm256_loadu_ps(y + i);
__m256 vz = _mm256_add_ps(vx, vy);
_mm256_storeu_ps(z + i, vz);
}
#endif
for (; i < n; ++i) {
z[i] = x[i] + y[i];
}
}
inline static void ggml_vec_add_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
for (int i = 0; i < n; ++i) {
z[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(x[i]) + GGML_CPU_FP16_TO_FP32(y[i]));
@ -992,9 +1007,9 @@ void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float *
inline static void ggml_vec_swiglu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const ggml_fp16_t * g) {
for (int i = 0; i < n; ++i) {
float v = GGML_CPU_FP16_TO_FP32(x[i]);
float w = GGML_CPU_FP16_TO_FP32(g[i]);
y[i] = GGML_CPU_FP32_TO_FP16((v/(1.0f + expf(-v))) * w);
float xi = GGML_CPU_FP16_TO_FP32(x[i]);
float gi = GGML_CPU_FP16_TO_FP32(g[i]);
y[i] = GGML_CPU_FP32_TO_FP16((xi/(1.0f + expf(-xi))) * gi);
}
}

View File

@ -0,0 +1,58 @@
#include "add-id.cuh"
static __global__ void add_id_kernel(
const float * src0, const float * src1, const int32_t * src2, float * dst,
int64_t ne0, int64_t ne1,
size_t nb01, size_t nb02,
size_t nb11,
size_t nb21
) {
const int64_t i1 = blockIdx.x;
const int64_t i2 = blockIdx.y;
const int i11 = *(int32_t *) ((char *) src2 + i1*sizeof(int32_t) + i2*nb21);
const size_t nb1 = ne0 * sizeof(float);
const size_t nb2 = ne1 * nb1;
float * dst_row = (float *)((char *)dst + i1*nb1 + i2*nb2);
const float * src0_row = (const float *)((char *)src0 + i1*nb01 + i2*nb02);
const float * src1_row = (const float *)((char *)src1 + i11*nb11);
for (int64_t i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
dst_row[i0] = src0_row[i0] + src1_row[i0];
}
}
void ggml_cuda_op_add_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
GGML_TENSOR_TERNARY_OP_LOCALS
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(src2->type == GGML_TYPE_I32);
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
GGML_ASSERT(nb20 == sizeof(int32_t));
const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data;
const int32_t * src2_d = (const int32_t *)src2->data;
float * dst_d = (float *)dst->data;
int threads = std::min((int)ne00, 768); // cols
dim3 blocks(ne01, ne02); // n_experts_used, n_tokens
add_id_kernel<<<blocks, threads, 0, ctx.stream()>>>(
src0_d, src1_d, src2_d, dst_d,
ne0, ne1,
nb01, nb02,
nb11,
nb21
);
}

View File

@ -0,0 +1,3 @@
#include "common.cuh"
void ggml_cuda_op_add_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -1,6 +1,7 @@
#pragma once
#include "ggml.h"
#include "ggml-impl.h"
#include "ggml-cuda.h"
#include <cstdint>
@ -232,9 +233,13 @@ typedef float2 dfloat2;
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#define NEW_MMA_AVAILABLE
#define TURING_MMA_AVAILABLE
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#define AMPERE_MMA_AVAILABLE
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#define CP_ASYNC_AVAILABLE
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
@ -302,10 +307,14 @@ static bool amd_mfma_available(const int cc) {
}
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
static bool new_mma_available(const int cc) {
static bool turing_mma_available(const int cc) {
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_TURING;
}
static bool ampere_mma_available(const int cc) {
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
}
static bool cp_async_available(const int cc) {
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
}
@ -549,6 +558,24 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#endif // defined(GGML_USE_HIP)
}
static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {
#if CUDART_VERSION >= 12080
const nv_bfloat16 e = __nv_cvt_e8m0_to_bf16raw(x);
return (float) e;
#else
uint32_t bits;
if (x == 0) {
bits = 0x00400000;
} else {
bits = (uint32_t) x << 23;
}
float result;
memcpy(&result, &bits, sizeof(float));
return result;
#endif // CUDART_VERSION >= 12050
}
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
static __device__ __forceinline__ float get_alibi_slope(
@ -607,6 +634,13 @@ struct ggml_cuda_type_traits<GGML_TYPE_Q8_0> {
static constexpr int qi = QI8_0;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_MXFP4> {
static constexpr int qk = QK_MXFP4;
static constexpr int qr = QR_MXFP4;
static constexpr int qi = QI_MXFP4;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q2_K> {
static constexpr int qk = QK_K;

View File

@ -465,6 +465,24 @@ static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst
}
}
template<typename dst_t>
static __global__ void dequantize_block_mxfp4(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int64_t i = blockIdx.x;
const block_mxfp4 * x = (const block_mxfp4 *) vx + i*(QK_K/QK_MXFP4);
const int64_t tid = threadIdx.x;
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
const uint8_t * q4 = x[ib].qs + 4*il;
const float d = ggml_cuda_e8m0_to_fp32(x[ib].e);
for (int j = 0; j < 4; ++j) {
y[j+ 0] = d * kvalues_mxfp4[q4[j] & 0xf]*0.5f;
y[j+16] = d * kvalues_mxfp4[q4[j] >> 4]*0.5f;
}
}
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static void dequantize_block_cuda(const void * vx, dst_t * y,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
@ -588,6 +606,12 @@ static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t
dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
}
template<typename dst_t>
static void dequantize_row_mxfp4_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
const int nb = (k + QK_K - 1) / QK_K;
dequantize_block_mxfp4<<<nb, 32, 0, stream>>>(vx, y);
}
template <typename src_t, typename dst_t>
static __global__ void convert_unary(
const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t ne00, const int64_t ne01, const int64_t ne02,
@ -677,6 +701,8 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
return dequantize_row_iq4_xs_cuda;
case GGML_TYPE_IQ3_S:
return dequantize_row_iq3_s_cuda;
case GGML_TYPE_MXFP4:
return dequantize_row_mxfp4_cuda;
case GGML_TYPE_F32:
return convert_unary_cont_cuda<float>;
case GGML_TYPE_BF16:
@ -726,6 +752,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
return dequantize_row_iq4_xs_cuda;
case GGML_TYPE_IQ3_S:
return dequantize_row_iq3_s_cuda;
case GGML_TYPE_MXFP4:
return dequantize_row_mxfp4_cuda;
case GGML_TYPE_F16:
return convert_unary_cont_cuda<half>;
case GGML_TYPE_BF16:

View File

@ -15,6 +15,7 @@ typedef void (* fattn_kernel_t)(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@ -736,7 +737,8 @@ void launch_fattn(
GGML_ASSERT(V || is_mla);
const ggml_tensor * mask = dst->src[3];
const ggml_tensor * mask = dst->src[3];
const ggml_tensor * sinks = dst->src[4];
ggml_tensor * KQV = dst;
@ -940,6 +942,7 @@ void launch_fattn(
K_data,
V_data,
mask ? ((const char *) mask->data) : nullptr,
sinks ? ((const char *) sinks->data) : nullptr,
KV_max.ptr,
!stream_k && parallel_blocks > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr,
scale, max_bias, m0, m1, n_head_log2, logit_softcap,

View File

@ -418,7 +418,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
float * const __restrict__ KQ_max,
float * const __restrict__ KQ_rowsum,
const int kb0) {
#ifdef NEW_MMA_AVAILABLE
#ifdef TURING_MMA_AVAILABLE
typedef fattn_mma_f16_config<DKQ, DV> c;
#ifdef CP_ASYNC_AVAILABLE
@ -776,7 +776,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
GGML_UNUSED(VKQ_C); GGML_UNUSED(KQ_max); GGML_UNUSED(KQ_rowsum);
GGML_UNUSED(kb0); GGML_UNUSED(tile_Q);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
#endif // TURING_MMA_AVAILABLE
}
template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool mla, bool needs_fixup, bool is_fixup>
@ -785,6 +785,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
const half2 * const __restrict__ K_h2,
const half2 * const __restrict__ V_h2,
const half2 * const __restrict__ mask_h2,
const float * const __restrict__ sinks_f,
float2 * const __restrict__ dstk,
float2 * const __restrict__ dstk_fixup,
const float scale,
@ -800,7 +801,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
const int jt,
const int kb0_start,
const int kb0_stop) {
#ifdef NEW_MMA_AVAILABLE
#ifdef TURING_MMA_AVAILABLE
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
typedef fattn_mma_f16_config<DKQ, DV> c;
@ -957,6 +958,52 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
}
}
// If attention sinks are used, potentially re-scale if KQ_max is small.
// Also add the sink as a value to KQ_rowsum, this is done after synchonization of KQ_rowsum
// so it's being done unconditionally for every thread.
if (!is_fixup && (np == 1 || threadIdx.y % np == 0) && sinks_f) {
float KQ_max_scale[cols_per_thread];
#pragma unroll
for (int col = 0; col < cols_per_thread; ++col) {
static_assert(ntiles == 1 || ntiles == 2, "ntiles > 2 not implemented");
const int jc = ntiles == 1 ? 2*tile_C_VKQ::get_j(col/2) + col % 2 : tile_C_VKQ_16::get_i(col);
const float sink = sinks_f[jc % ncols2];
const float KQ_max_new = fmaxf(KQ_max[col], sink);
const float KQ_max_diff = KQ_max[col] - KQ_max_new;
KQ_max_scale[col] = expf(KQ_max_diff);
KQ_max[col] = KQ_max_new;
*((uint32_t *) &KQ_max_scale[col]) *= KQ_max_diff >= SOFTMAX_FTZ_THRESHOLD;
const float KQ_max_add = expf(sink - KQ_max_new);
KQ_rowsum[col] = KQ_max_scale[col]*KQ_rowsum[col] + KQ_max_add;
}
if (ntiles == 1) {
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale[0], KQ_max_scale[1]);
#pragma unroll
for (int i = 0; i < DV/tile_C_VKQ::I; ++i) {
#pragma unroll
for (int l = 0; l < tile_C_VKQ::ne; ++l) {
VKQ_C[i].x[l] *= KQ_max_scale_h2;
}
}
} else {
#pragma unroll
for (int col = 0; col < cols_per_thread; ++col) {
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale[col], KQ_max_scale[col]);
#pragma unroll
for (int i = 0; i < DV/tile_C_VKQ_16::J; ++i) {
#pragma unroll
for (int l0 = 0; l0 < tile_C_VKQ_16::ne; l0 += 2) {
VKQ_C_16[i*ntiles/2 + col/2].x[l0 + col % 2] *= KQ_max_scale_h2;
}
}
}
}
}
// Combine VKQ accumulator values if np > 1.
// It's also faster to do small writes to shared memory, then large write to VRAM than to do small writes to VRAM.
// So also write VKQ accumulators to shared memory in column-major format if np == 1.
@ -1196,7 +1243,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
GGML_UNUSED(stride_Q2); GGML_UNUSED(stride_K); GGML_UNUSED(stride_V); GGML_UNUSED(stride_mask);
GGML_UNUSED(jt); GGML_UNUSED(kb0_start); GGML_UNUSED(kb0_stop);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
#endif // TURING_MMA_AVAILABLE
}
template<int DKQ, int DV, int ncols1, int ncols2, int nwarps, int ntiles, bool use_logit_softcap, bool mla>
@ -1206,6 +1253,7 @@ static __global__ void flash_attn_ext_f16(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@ -1222,7 +1270,7 @@ static __global__ void flash_attn_ext_f16(
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#if defined(FLASH_ATTN_AVAILABLE) && defined(NEW_MMA_AVAILABLE)
#if defined(FLASH_ATTN_AVAILABLE) && defined(TURING_MMA_AVAILABLE)
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(DKQ == 128 || DKQ == 256)) {
@ -1267,20 +1315,24 @@ static __global__ void flash_attn_ext_f16(
// kb0 == k start index when in the output tile.
int kb0_start = kbc % iter_k;
int kb0_stop = min(iter_k, kb0_start + kbc_stop - kbc);
while (kbc < kbc_stop && kb0_stop == iter_k) {
const int sequence = kbc / (iter_k*iter_j*(ne02/ncols2));
const int head = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence) / (iter_k*iter_j);
const int jt = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence - iter_k*iter_j*head) / iter_k; // j index of current tile.
const int zt = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence) / (iter_k*iter_j); // head in units of ncols2
const int jt = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence - iter_k*iter_j*zt) / iter_k; // j index of current tile.
const float2 * Q_f2 = (const float2 *) (Q + nb03*sequence + nb02*(head*ncols2));
const half2 * K_h2 = (const half2 *) (K + nb13*sequence + nb12*(head*ncols2 / gqa_ratio));
const int head0 = zt * ncols2;
const float2 * Q_f2 = (const float2 *) (Q + nb03*sequence + nb02* head0);
const half2 * K_h2 = (const half2 *) (K + nb13*sequence + nb12*(head0 / gqa_ratio));
const half2 * mask_h2 = ncols2 == 1 && !mask ? nullptr :
(const half2 *) (mask + nb33*(sequence % ne33) + nb31*jt*ncols1);
float2 * dstk = ((float2 *) dst) + (sequence*ne01*ne02 + head*ncols2) * (DV/2);
float2 * dstk = ((float2 *) dst) + (sequence*ne01*ne02 + head0) * (DV/2);
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb23*sequence + nb22*(head*ncols2 / gqa_ratio));
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb23*sequence + nb22*(head0 / gqa_ratio));
const float * sinks_f = sinks ? (const float *) sinks + head0 : nullptr;
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f;
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head0, n_head_log2, m0, m1) : 1.0f;
const int kb0_start_kernel = kb0_start * kb_niter;
int kb0_stop_kernel = kb0_stop * kb_niter;
@ -1293,12 +1345,12 @@ static __global__ void flash_attn_ext_f16(
if (kb0_start == 0) {
constexpr bool needs_fixup = false; // CUDA block is working on an entire tile.
flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup>
(Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap,
(Q_f2, K_h2, V_h2, mask_h2, sinks_f, dstk, dst_meta, scale, slope, logit_softcap,
ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel);
} else {
constexpr bool needs_fixup = true; // CUDA block is working on the beginning of a tile.
flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup>
(Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap,
(Q_f2, K_h2, V_h2, mask_h2, sinks_f, dstk, dst_meta, scale, slope, logit_softcap,
ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel);
}
@ -1314,18 +1366,21 @@ static __global__ void flash_attn_ext_f16(
}
const int sequence = kbc / (iter_k*iter_j*(ne02/ncols2));
const int head = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence) / (iter_k*iter_j);
const int jt = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence - iter_k*iter_j*head) / iter_k; // j index of current tile.
const int zt = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence) / (iter_k*iter_j); // head in units of ncols2
const int jt = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence - iter_k*iter_j*zt) / iter_k; // j index of current tile.
const float2 * Q_f2 = (const float2 *) (Q + nb03*sequence + nb02*(head*ncols2));
const half2 * K_h2 = (const half2 *) (K + nb13*sequence + nb12*(head*ncols2 / gqa_ratio));
const int head0 = zt * ncols2;
const float2 * Q_f2 = (const float2 *) (Q + nb03*sequence + nb02* head0);
const half2 * K_h2 = (const half2 *) (K + nb13*sequence + nb12*(head0 / gqa_ratio));
const half2 * mask_h2 = ncols2 == 1 && !mask ? nullptr :
(const half2 *) (mask + nb33*(sequence % ne33) + nb31*jt*ncols1);
float2 * dstk = ((float2 *) dst) + (sequence*ne01*ne02 + head*ncols2) * (DV/2);
float2 * dstk = ((float2 *) dst) + (sequence*ne01*ne02 + head0) * (DV/2);
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb23*sequence + nb22*(head*ncols2 / gqa_ratio));
const half2 * V_h2 = mla ? K_h2 + (DKQ/2 - DV/2) : (const half2 *) (V + nb23*sequence + nb22*(head0 / gqa_ratio));
const float * sinks_f = sinks ? (const float *) sinks + head0 : nullptr;
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head, n_head_log2, m0, m1) : 1.0f;
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head0, n_head_log2, m0, m1) : 1.0f;
const int kb0_start_kernel = kb0_start * kb_niter;
int kb0_stop_kernel = kb0_stop * kb_niter;
@ -1337,10 +1392,10 @@ static __global__ void flash_attn_ext_f16(
constexpr bool is_fixup = true; // Last index writes its data to fixup buffer to avoid data races with other blocks.
constexpr bool needs_fixup = false;
flash_attn_ext_f16_process_tile<DKQ, DV, ncols1, ncols2, nwarps, ntiles, use_logit_softcap, mla, needs_fixup, is_fixup>
(Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap,
(Q_f2, K_h2, V_h2, mask_h2, sinks_f, dstk, dst_meta, scale, slope, logit_softcap,
ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel);
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
GGML_UNUSED(dst); GGML_UNUSED(dst_meta);
GGML_UNUSED(scale); GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
@ -1352,7 +1407,7 @@ static __global__ void flash_attn_ext_f16(
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33);
NO_DEVICE_CODE;
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(NEW_MMA_AVAILABLE)
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(TURING_MMA_AVAILABLE)
}
template <int DKQ, int DV, int ncols1, int ncols2>

View File

@ -13,6 +13,7 @@ static __global__ void flash_attn_tile_ext_f16(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@ -272,7 +273,7 @@ static __global__ void flash_attn_tile_ext_f16(
}
}
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);

View File

@ -13,6 +13,7 @@ static __global__ void flash_attn_tile_ext_f32(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@ -37,7 +38,7 @@ static __global__ void flash_attn_tile_ext_f32(
return;
#endif // FP16_MMA_AVAILABLE
if (use_logit_softcap && !(D == 128 || D == 256)) {
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
GGML_UNUSED(dst); GGML_UNUSED(dst_meta);
GGML_UNUSED(scale); GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);

View File

@ -16,6 +16,7 @@ static __global__ void flash_attn_vec_ext_f16(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@ -61,7 +62,8 @@ static __global__ void flash_attn_vec_ext_f16(
K += nb13*sequence + nb12*(head / gqa_ratio);
V += nb23*sequence + nb22*(head / gqa_ratio);
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float * sinksf = (const float *) (sinks);
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
@ -75,11 +77,12 @@ static __global__ void flash_attn_vec_ext_f16(
half2 * KQ2 = (half2 *) KQ;
half kqmax[ncols];
half kqsum[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqmax[j] = -HALF_MAX_HALF;
kqsum[j] = 0.0f;
}
half kqsum[ncols] = {0.0f};
__shared__ half kqmax_shared[ncols][WARP_SIZE];
__shared__ half kqsum_shared[ncols][WARP_SIZE];
@ -283,6 +286,39 @@ static __global__ void flash_attn_vec_ext_f16(
__syncthreads();
}
if (sinksf && blockIdx.y == 0) {
const half sink = __float2half(sinksf[head]);
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (threadIdx.x == 0) {
kqmax_shared[j][threadIdx.y] = fmaxf(kqmax[j], sink);
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
kqmax[j] = kqmax_new_j;
const half val = hexp(sink - kqmax[j]);
kqsum[j] = kqsum[j]*KQ_max_scale;
if (tid == 0) {
kqsum[j] += val;
}
VKQ[j] *= __half2half2(KQ_max_scale);
}
__syncthreads();
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqsum[j] = warp_reduce_sum((float)kqsum[j]);
@ -313,7 +349,7 @@ static __global__ void flash_attn_vec_ext_f16(
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
}
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
GGML_UNUSED(dst); GGML_UNUSED(dst_meta);
GGML_UNUSED(scale); GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);

View File

@ -16,6 +16,7 @@ static __global__ void flash_attn_vec_ext_f32(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@ -72,7 +73,8 @@ static __global__ void flash_attn_vec_ext_f32(
K += nb13*sequence + nb12*(head / gqa_ratio);
V += nb23*sequence + nb22*(head / gqa_ratio);
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float * sinksf = (const float *) (sinks);
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
@ -88,11 +90,12 @@ static __global__ void flash_attn_vec_ext_f32(
}
float kqmax[ncols];
float kqsum[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqmax[j] = -FLT_MAX/2.0f;
kqsum[j] = 0.0f;
}
float kqsum[ncols] = {0.0f};
__shared__ float kqmax_shared[ncols][WARP_SIZE];
__shared__ float kqsum_shared[ncols][WARP_SIZE];
@ -279,6 +282,39 @@ static __global__ void flash_attn_vec_ext_f32(
__syncthreads();
}
if (sinksf && blockIdx.y == 0) {
const float sink = sinksf[head];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (threadIdx.x == 0) {
kqmax_shared[j][threadIdx.y] = fmaxf(kqmax[j], sink);
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
kqmax[j] = kqmax_new_j;
const float val = expf(sink - kqmax[j]);
kqsum[j] = kqsum[j]*KQ_max_scale;
if (tid == 0) {
kqsum[j] += val;
}
VKQ[j] *= KQ_max_scale;
}
__syncthreads();
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqsum[j] = warp_reduce_sum(kqsum[j]);

View File

@ -29,6 +29,7 @@ static __global__ void flash_attn_ext_f16(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@ -423,7 +424,7 @@ static __global__ void flash_attn_ext_f16(
dst_meta[j_dst_unrolled] = dst_meta_val;
}
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);

View File

@ -269,17 +269,28 @@ static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, gg
}
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
const ggml_tensor * mask = dst->src[3];
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
const ggml_tensor * mask = dst->src[3];
const ggml_tensor * sinks = dst->src[4];
ggml_cuda_set_device(ctx.device);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int warp_size = ggml_cuda_info().devices[ggml_cuda_get_device()].warp_size;
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
// TODO: currently only vec implementation for sinks is supported [TAG_ATTN_SINKS]
if (sinks && !fp16_mma_available(cc)) {
if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
} else {
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
}
return;
}
#if defined(GGML_HIP_ROCWMMA_FATTN)
if (GGML_CUDA_CC_IS_AMD(cc) && fp16_mma_available(cc)) {
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
@ -315,8 +326,9 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
const bool gqa_opt_applies = ((Q->ne[2] / K->ne[2]) % 2 == 0) && mask; // The mma-based kernels have GQA-specific optimizations
const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16;
const bool mma_faster_for_bs1 = new_mma_available(cc) && gqa_opt_applies &&
(Q->ne[3] > 1 || cc < GGML_CUDA_CC_ADA_LOVELACE) && !mma_needs_data_conversion;
const bool mma_faster_for_rtx4000 = Q->ne[3] > 1 || (Q->ne[2] > 4*K->ne[2] && K->ne[1] >= 8192);
const bool mma_faster_for_bs1 = turing_mma_available(cc) && gqa_opt_applies && !mma_needs_data_conversion &&
(cc < GGML_CUDA_CC_ADA_LOVELACE || mma_faster_for_rtx4000);
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % (2*warp_size) == 0;
if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) {
if (prec == GGML_PREC_DEFAULT) {
@ -328,7 +340,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
}
// The MMA implementation needs Turing or newer, use the old WMMA code for Volta:
if (fp16_mma_available(cc) && !new_mma_available(cc)) {
if (fp16_mma_available(cc) && !turing_mma_available(cc)) {
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
return;
}

View File

@ -4,6 +4,7 @@
#include "ggml-cuda/common.cuh"
#include "ggml-cuda/acc.cuh"
#include "ggml-cuda/add-id.cuh"
#include "ggml-cuda/arange.cuh"
#include "ggml-cuda/argmax.cuh"
#include "ggml-cuda/argsort.cuh"
@ -21,8 +22,9 @@
#include "ggml-cuda/fattn.cuh"
#include "ggml-cuda/getrows.cuh"
#include "ggml-cuda/im2col.cuh"
#include "ggml-cuda/mmf.cuh"
#include "ggml-cuda/mmq.cuh"
#include "ggml-cuda/mmv.cuh"
#include "ggml-cuda/mmvf.cuh"
#include "ggml-cuda/mmvq.cuh"
#include "ggml-cuda/norm.cuh"
#include "ggml-cuda/opt-step-adamw.cuh"
@ -1852,6 +1854,9 @@ static void ggml_cuda_mul_mat_batched_cublas_impl(ggml_backend_cuda_context & ct
ggml_cuda_pool_alloc<cuda_t> src0_alloc(ctx.pool());
ggml_cuda_pool_alloc<cuda_t> src1_alloc(ctx.pool());
bool is_src0_cont_2 = ggml_is_contiguous_2(src0);
bool is_src1_cont_2 = ggml_is_contiguous_2(src1);
// Handle src0
src0_ptr = (const cuda_t *) src0->data;
@ -1870,6 +1875,8 @@ static void ggml_cuda_mul_mat_batched_cublas_impl(ggml_backend_cuda_context & ct
s11 = ne10;
s12 = ne11*s11;
s13 = ne12*s12;
is_src1_cont_2 = true;
}
// Setup destination buffer
@ -1918,15 +1925,19 @@ static void ggml_cuda_mul_mat_batched_cublas_impl(ggml_backend_cuda_context & ct
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
if (r2 == 1 && r3 == 1 && is_src0_cont_2 && is_src1_cont_2) {
// with a [0, 2, 1, 3] perm. and ne02==1 the matrix strides need to be determined from dim 3:
const int64_t sma = ne02 == 1 ? nb03/nb00 : nb02/nb00;
const int64_t smb = ne12 == 1 ? s13 : s12;
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
// use cublasGemmStridedBatchedEx
CUBLAS_CHECK(
cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
alpha, src0_ptr, cu_data_type_a, nb01/nb00, nb02/nb00, // strideA
src1_ptr, cu_data_type_b, s11, s12, // strideB
beta, dst_t, cu_data_type, ne0, ne1*ne0, // strideC
alpha, src0_ptr, cu_data_type_a, nb01/nb00, sma, // strideA
src1_ptr, cu_data_type_b, s11, smb, // strideB
beta, dst_t, cu_data_type, ne0, ne1*ne0, // strideC
ne12*ne13,
cu_compute_type,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
@ -1998,7 +2009,9 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
const bool bad_padding_clear = ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE
&& ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) && src0->view_src;
bool use_mul_mat_vec = (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16)
bool use_mul_mat_vec_f = (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
bool use_mul_mat_f = !ggml_is_quantized(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
@ -2018,14 +2031,18 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
}
const int cc = ggml_cuda_info().devices[id].cc;
const int warp_size = ggml_cuda_info().devices[id].warp_size;
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
use_mul_mat_vec = use_mul_mat_vec && ggml_cuda_should_use_mmv(src0->type, cc, src0->ne, src1->ne[1]);
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1]);
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src1->ne[1]);
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
}
} else {
const int cc = ggml_cuda_info().devices[ctx.device].cc;
const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size;
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
use_mul_mat_vec = use_mul_mat_vec && ggml_cuda_should_use_mmv(src0->type, cc, src0->ne, src1->ne[1]);
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1]);
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src1->ne[1]);
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
}
@ -2038,15 +2055,17 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
//TODO update for generic tensor parallelism
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
bool use_batched_cublas_f16 = src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16);
bool use_batched_cublas_bf16 = src0->type == GGML_TYPE_BF16 && bf16_mma_hardware_available(cc);
bool use_batched_cublas_f32 = src0->type == GGML_TYPE_F32;
if (!split && use_mul_mat_vec) {
if (!split && use_mul_mat_vec_f) {
// the custom F16 vector kernel can be used over batched cuBLAS GEMM
// but this is only faster for GPUs without tensor cores or with a thin src0 matrix (particularly KQV in attention)
ggml_cuda_mul_mat_vec(ctx, src0, src1, nullptr, dst);
ggml_cuda_mul_mat_vec_f(ctx, src0, src1, nullptr, dst);
} else if (!split && use_mul_mat_f) {
ggml_cuda_mul_mat_f(ctx, src0, src1, nullptr, dst);
} else if (!split && use_mul_mat_vec_q) {
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, nullptr, dst);
} else if (!split && use_mul_mat_q) {
@ -2055,8 +2074,8 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
&& !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
// general KQ + KQV multi-batch without FlashAttention
ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
} else if (use_mul_mat_vec) {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec, nullptr);
} else if (use_mul_mat_vec_f) {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_f, nullptr);
} else if (use_mul_mat_vec_q) {
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, quantize_row_q8_1_cuda);
} else if (use_mul_mat_q) {
@ -2084,7 +2103,7 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
if (ggml_is_quantized(src0->type)) {
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst);
} else {
ggml_cuda_mul_mat_vec(ctx, src0, src1, ids, dst);
ggml_cuda_mul_mat_vec_f(ctx, src0, src1, ids, dst);
}
return;
}
@ -2250,6 +2269,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_ADD1: // TODO: more efficient implementation
ggml_cuda_op_add(ctx, dst);
break;
case GGML_OP_ADD_ID:
ggml_cuda_op_add_id(ctx, dst);
break;
case GGML_OP_SUB:
ggml_cuda_op_sub(ctx, dst);
break;
@ -2324,6 +2346,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_GLU_OP_SWIGLU:
ggml_cuda_op_swiglu(ctx, dst);
break;
case GGML_GLU_OP_SWIGLU_OAI:
ggml_cuda_op_swiglu_oai(ctx, dst);
break;
case GGML_GLU_OP_GEGLU_ERF:
ggml_cuda_op_geglu_erf(ctx, dst);
break;
@ -2598,6 +2623,9 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
const std::string gemma3n_per_layer_proj_src0_name = "inp_per_layer_selected";
const std::string gemma3n_per_layer_proj_src1_name = "per_layer_proj";
const std::string ffn_moe_gate_bias_prefix = "ffn_moe_gate_biased";
const std::string ffn_moe_up_bias_prefix = "ffn_moe_up_biased";
const std::string ffn_moe_down_bias_prefix = "ffn_moe_down_biased";
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
@ -2620,7 +2648,13 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
#endif
}
if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1 && (node->src[0] ? node->src[0]->name != gemma3n_per_layer_proj_src0_name : true) && (node->src[1] ? node->src[1]->name != gemma3n_per_layer_proj_src1_name : true)) {
if (node->op == GGML_OP_ADD &&
node->src[1] && node->src[1]->ne[1] > 1 &&
(node->src[0] ? node->src[0]->name != gemma3n_per_layer_proj_src0_name : true) &&
(node->src[1] ? node->src[1]->name != gemma3n_per_layer_proj_src1_name : true) &&
strncmp(node->name, ffn_moe_gate_bias_prefix.c_str(), ffn_moe_gate_bias_prefix.size()) != 0 &&
strncmp(node->name, ffn_moe_up_bias_prefix.c_str(), ffn_moe_up_bias_prefix.size()) != 0 &&
strncmp(node->name, ffn_moe_down_bias_prefix.c_str(), ffn_moe_down_bias_prefix.size()) != 0) {
// disable CUDA graphs for batch size > 1 for now while excluding the matrix-matrix addition as part of Gemma3n's `project_per_layer_input` operation
// by means of matching node names. See
// https://github.com/ggml-org/llama.cpp/blob/f9a31eea06a859e34cecb88b4d020c7f03d86cc4/src/llama-model.cpp#L10199-L10241 and
@ -3218,6 +3252,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return ggml_is_contiguous_1(op->src[0]);
@ -3268,6 +3303,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@ -3414,6 +3450,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_ADD:
case GGML_OP_ADD_ID:
case GGML_OP_ADD1:
case GGML_OP_SUB:
case GGML_OP_MUL:
@ -3488,12 +3525,17 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
#endif // FLASH_ATTN_AVAILABLE
if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
if (!new_mma_available(cc)) {
if (!turing_mma_available(cc)) {
return false;
}
const int gqa_ratio = op->src[0]->ne[2] / op->src[1]->ne[2];
return op->src[1]->ne[0] == 576 && op->src[2]->ne[0] == 512 && op->src[3] && gqa_ratio % 16 == 0;
}
// TODO: more general-purpose attention sink support [TAG_ATTN_SINKS]
if (op->src[4] && !fp16_mma_available(ggml_cuda_info().devices[dev_ctx->device].cc)
&& op->src[0]->ne[0] != 64 && op->src[0]->ne[0] != 128) {
return false;
}
if (op->src[0]->ne[0] == 192) {
return false;
}
@ -3757,10 +3799,10 @@ ggml_backend_t ggml_backend_cuda_init(int device) {
}
ggml_backend_t cuda_backend = new ggml_backend {
/* .guid = */ ggml_backend_cuda_guid(),
/* .interface = */ ggml_backend_cuda_interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), device),
/* .context = */ ctx,
/* .guid = */ ggml_backend_cuda_guid(),
/* .iface = */ ggml_backend_cuda_interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), device),
/* .context = */ ctx,
};
return cuda_backend;

View File

@ -1,65 +1,76 @@
#include "im2col.cuh"
#define MAX_GRIDDIM_Z 65535
template <typename T>
static __global__ void im2col_kernel(
const float * x, T * dst, int64_t batch_offset,
int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
const float * x, T * dst,
int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH,
int64_t IC_IH_IW, int64_t IH_IW, int64_t N_OH, int64_t KH_KW, int64_t IC_KH_KW,
int s0, int s1, int p0, int p1, int d0, int d1) {
const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= pelements) {
if (i >= IC_KH_KW) {
return;
}
const int64_t ksize = OW * KH;
const int64_t kx = i / ksize;
const int64_t kd = kx * ksize;
const int64_t ky = (i - kd) / OW;
const int64_t ix = i % OW;
const int64_t iic = i / (KH_KW);
const int64_t rem = i - iic * KH_KW;
const int64_t ikh = rem / KW;
const int64_t ikw = rem - ikh * KW;
const int64_t oh = blockIdx.y;
const int64_t batch = blockIdx.z / IC;
const int64_t ic = blockIdx.z % IC;
const int64_t iow = blockIdx.y;
for (int64_t iz = blockIdx.z; iz < N_OH; iz+=MAX_GRIDDIM_Z) {
const int64_t in = iz / OH;
const int64_t ioh = iz - in * OH;
const int64_t iiw = ix * s0 + kx * d0 - p0;
const int64_t iih = oh * s1 + ky * d1 - p1;
const int64_t iiw = iow * s0 + ikw * d0 - p0;
const int64_t iih = ioh * s1 + ikh * d1 - p1;
const int64_t offset_dst =
((batch * OH + oh) * OW + ix) * CHW +
(ic * (KW * KH) + ky * KW + kx);
const int64_t offset_dst =
((in * OH + ioh) * OW + iow) * IC_KH_KW + iic * KH_KW + ikh * KW + ikw;
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst[offset_dst] = 0.0f;
} else {
const int64_t offset_src = ic * offset_delta + batch * batch_offset;
dst[offset_dst] = x[offset_src + iih * IW + iiw];
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst[offset_dst] = 0.0f;
} else {
const int64_t offset_src = iic * IC_IH_IW + in * IH_IW;
dst[offset_dst] = x[offset_src + iih * IW + iiw];
}
}
GGML_UNUSED(IC);
GGML_UNUSED(KH);
}
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
template <typename T>
static void im2col_cuda(const float * x, T* dst,
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
int64_t batch, int64_t batch_offset, int64_t offset_delta,
int64_t N, int64_t IC_IH_IW, int64_t IH_IW,
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
const int parallel_elements = OW * KW * KH;
const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
dim3 block_nums(num_blocks, OH, batch * IC);
im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
const int64_t IC_KH_KW = IC * KH * KW;
const int64_t num_blocks = (IC_KH_KW + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
const int64_t N_OH = N * OH;
const int64_t KH_KW = KW*KH;
dim3 block_nums(num_blocks, OW, MIN(N_OH, MAX_GRIDDIM_Z));
im2col_kernel<<<block_nums, MIN(IC_KH_KW, CUDA_IM2COL_BLOCK_SIZE) , 0, stream>>>(x, dst, IC, IW, IH, OH, OW, KW, KH,
IC_IH_IW, IH_IW, N_OH, KH_KW, IC_KH_KW,
s0, s1, p0, p1, d0, d1);
}
static void im2col_cuda_f16(const float * x, half * dst,
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
int64_t batch, int64_t batch_offset, int64_t offset_delta,
int64_t N, int64_t IC_IH_IW, int64_t IH_IW,
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
im2col_cuda<half>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
im2col_cuda<half>(x, dst, IW, IH, OW, OH, KW, KH, IC, N, IC_IH_IW, IH_IW, s0, s1, p0, p1, d0, d1, stream);
}
static void im2col_cuda_f32(const float * x, float * dst,
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
int64_t batch, int64_t batch_offset, int64_t offset_delta,
int64_t N, int64_t IC_IH_IW, int64_t IH_IW,
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
im2col_cuda<float>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
im2col_cuda<float>(x, dst, IW, IH, OW, OH, KW, KH, IC, N, IC_IH_IW, IH_IW, s0, s1, p0, p1, d0, d1, stream);
}
void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
@ -91,13 +102,13 @@ void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const int64_t OH = is_2D ? dst->ne[2] : 1;
const int64_t OW = dst->ne[1];
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
const int64_t batch = src1->ne[is_2D ? 3 : 2];
const size_t batch_offset = src1->nb[is_2D ? 3 : 2] / 4; // nb is byte offset, src is type float32
const int64_t IC_IH_IW = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
const int64_t N = src1->ne[is_2D ? 3 : 2];
const int64_t IH_IW = src1->nb[is_2D ? 3 : 2] / 4; // nb is byte offset, src is type float32
if(dst->type == GGML_TYPE_F16) {
im2col_cuda_f16(src1_d, (half *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
im2col_cuda_f16(src1_d, (half *) dst_d, IW, IH, OW, OH, KW, KH, IC, N, IC_IH_IW, IH_IW, s0, s1, p0, p1, d0, d1, stream);
} else {
im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, N, IC_IH_IW, IH_IW, s0, s1, p0, p1, d0, d1, stream);
}
}

View File

@ -23,13 +23,13 @@
static __device__ __forceinline__ int ggml_cuda_movmatrix(const int x) {
int ret = 0;
#ifdef NEW_MMA_AVAILABLE
#ifdef TURING_MMA_AVAILABLE
asm("movmatrix.sync.aligned.m8n8.trans.b16 %0, %1;"
: "=r"(ret) : "r"(x));
#else
GGML_UNUSED(x);
NO_DEVICE_CODE;
#endif // defined(NEW_MMA_AVAILABLE)
#endif // defined(TURING_MMA_AVAILABLE)
return ret;
}
@ -167,6 +167,38 @@ namespace ggml_cuda_mma {
}
};
template <int I_, int J_>
struct tile<I_, J_, nv_bfloat162> {
static constexpr int I = I_;
static constexpr int J = J_;
static constexpr int ne = I * J / WARP_SIZE;
nv_bfloat162 x[ne] = {{0.0f, 0.0f}};
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 8 && J == 8) {
return threadIdx.x / 4;
} else if constexpr (I == 16 && J == 4) {
return l * 8 + threadIdx.x / 4;
} else if constexpr (I == 16 && J == 8) {
return (l % 2) * 8 + threadIdx.x / 4;
} else {
static_assert(I == -1 && J == -1, "template specialization not implemented");
}
}
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 8 && J == 8) {
return l * 4 + threadIdx.x % 4;
} else if constexpr (I == 16 && J == 4) {
return threadIdx.x % 4;
} else if constexpr (I == 16 && J == 8) {
return (l / 2) * 4 + threadIdx.x % 4;
} else {
static_assert(I == -1 && J == -1, "template specialization not implemented");
}
}
};
template <int I, int J>
static __device__ __forceinline__ tile<I, J/2, half2> get_half2(const tile<I, J, float> & tile_float) {
tile<I, J/2, half2> ret;
@ -209,7 +241,7 @@ namespace ggml_cuda_mma {
template <typename T>
static __device__ __forceinline__ void load_ldmatrix(
tile<8, 8, T> & t, const T * __restrict__ xs0, const int stride) {
#ifdef NEW_MMA_AVAILABLE
#ifdef TURING_MMA_AVAILABLE
int * xi = (int *) t.x;
const int * xs = (const int *) xs0 + (threadIdx.x % t.I) * stride + ((threadIdx.x / t.I) * (t.J / 2)) % t.J;
asm volatile("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
@ -217,13 +249,13 @@ namespace ggml_cuda_mma {
: "l"(xs));
#else
load_generic(t, xs0, stride);
#endif // NEW_MMA_AVAILABLE
#endif // TURING_MMA_AVAILABLE
}
template <typename T>
static __device__ __forceinline__ void load_ldmatrix(
tile<16, 4, T> & t, const T * __restrict__ xs0, const int stride) {
#ifdef NEW_MMA_AVAILABLE
#ifdef TURING_MMA_AVAILABLE
int * xi = (int *) t.x;
const int * xs = (const int *) xs0 + (threadIdx.x % t.I) * stride;
asm volatile("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
@ -232,13 +264,13 @@ namespace ggml_cuda_mma {
#else
load_generic(xs0, stride);
GGML_UNUSED(t);
#endif // NEW_MMA_AVAILABLE
#endif // TURING_MMA_AVAILABLE
}
template <typename T>
static __device__ __forceinline__ void load_ldmatrix(
tile<16, 8, T> & t, const T * __restrict__ xs0, const int stride) {
#if defined(NEW_MMA_AVAILABLE)
#if defined(TURING_MMA_AVAILABLE)
int * xi = (int * ) t.x;
const int * xs = (const int *) xs0 + (threadIdx.x % t.I) * stride + (threadIdx.x / t.I) * (t.J / 2);
asm volatile("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];"
@ -246,13 +278,13 @@ namespace ggml_cuda_mma {
: "l"(xs));
#else
load_generic(t, xs0, stride);
#endif // NEW_MMA_AVAILABLE
#endif // TURING_MMA_AVAILABLE
}
template <typename T>
static __device__ __forceinline__ void load_ldmatrix_trans(
tile<16, 8, T> & t, const T * __restrict__ xs0, const int stride) {
#ifdef NEW_MMA_AVAILABLE
#ifdef TURING_MMA_AVAILABLE
int * xi = (int * ) t.x;
const int * xs = (const int *) xs0 + (threadIdx.x % t.I) * stride + (threadIdx.x / t.I) * (t.J / 2);
asm volatile("ldmatrix.sync.aligned.m8n8.x4.trans.b16 {%0, %1, %2, %3}, [%4];"
@ -263,12 +295,12 @@ namespace ggml_cuda_mma {
GGML_UNUSED(xs0);
GGML_UNUSED(stride);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
#endif // TURING_MMA_AVAILABLE
}
static __device__ __forceinline__ void mma(
tile<16, 8, int> & D, const tile<16, 4, int> & A, const tile<8, 4, int> & B) {
#ifdef NEW_MMA_AVAILABLE
#ifdef TURING_MMA_AVAILABLE
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
asm("mma.sync.aligned.m16n8k16.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
: "+r"(D.x[0]), "+r"(D.x[1]), "+r"(D.x[2]), "+r"(D.x[3])
@ -287,12 +319,12 @@ namespace ggml_cuda_mma {
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
#endif // TURING_MMA_AVAILABLE
}
static __device__ __forceinline__ void mma(
tile<16, 8, int> & D, const tile<16, 8, int> & A, const tile<8, 8, int> & B) {
#ifdef NEW_MMA_AVAILABLE
#ifdef TURING_MMA_AVAILABLE
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
asm("mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
: "+r"(D.x[0]), "+r"(D.x[1]), "+r"(D.x[2]), "+r"(D.x[3])
@ -317,12 +349,12 @@ namespace ggml_cuda_mma {
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
#endif // TURING_MMA_AVAILABLE
}
static __device__ __forceinline__ void mma(
tile<16, 4, half2> & D, const tile<16, 8, half2> & A, const tile<8, 8, half2> & B) {
#ifdef NEW_MMA_AVAILABLE
#ifdef TURING_MMA_AVAILABLE
const int * Axi = (const int *) A.x;
const int * Bxi = (const int *) B.x;
int * Dxi = (int *) D.x;
@ -344,12 +376,12 @@ namespace ggml_cuda_mma {
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
#endif // TURING_MMA_AVAILABLE
}
static __device__ __forceinline__ void mma(
tile<16, 8, half2> & D, const tile<16, 8, half2> & A, const tile<16, 8, half2> & B) {
#ifdef NEW_MMA_AVAILABLE
#ifdef TURING_MMA_AVAILABLE
const int * Axi = (const int *) A.x;
const int * Bxi = (const int *) B.x;
int * Dxi = (int *) D.x;
@ -380,12 +412,29 @@ namespace ggml_cuda_mma {
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
#endif // TURING_MMA_AVAILABLE
}
static __device__ __forceinline__ void mma(
tile<16, 8, float> & D, const tile<16, 8, float> & A, const tile<8, 8, float> & B) {
#ifdef AMPERE_MMA_AVAILABLE
const int * Axi = (const int *) A.x;
const int * Bxi = (const int *) B.x;
int * Dxi = (int *) D.x;
asm("mma.sync.aligned.m16n8k8.row.col.f32.tf32.tf32.f32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3])
: "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1]));
#else
GGML_UNUSED(D);
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif // AMPERE_MMA_AVAILABLE
}
static __device__ __forceinline__ void mma(
tile<16, 8, float> & D, const tile<16, 8, half2> & A, const tile<8, 8, half2> & B) {
#ifdef NEW_MMA_AVAILABLE
#ifdef TURING_MMA_AVAILABLE
const int * Axi = (const int *) A.x;
const int * Bxi = (const int *) B.x;
int * Dxi = (int *) D.x;
@ -407,12 +456,29 @@ namespace ggml_cuda_mma {
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
#endif // TURING_MMA_AVAILABLE
}
static __device__ __forceinline__ void mma(
tile<16, 8, float> & D, const tile<16, 8, nv_bfloat162> & A, const tile<8, 8, nv_bfloat162> & B) {
#ifdef AMPERE_MMA_AVAILABLE
const int * Axi = (const int *) A.x;
const int * Bxi = (const int *) B.x;
int * Dxi = (int *) D.x;
asm("mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3])
: "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1]));
#else
GGML_UNUSED(D);
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif // AMPERE_MMA_AVAILABLE
}
static __device__ __forceinline__ void mma(
tile<16, 16, float> & D, const tile<16, 8, half2> & A, const tile<16, 8, half2> & B) {
#ifdef NEW_MMA_AVAILABLE
#ifdef TURING_MMA_AVAILABLE
const int * Axi = (const int *) A.x;
const int * Bxi = (const int *) B.x;
int * Dxi = (int *) D.x;
@ -443,7 +509,7 @@ namespace ggml_cuda_mma {
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
#endif // TURING_MMA_AVAILABLE
}
static __device__ __forceinline__ void mma(

431
ggml/src/ggml-cuda/mmf.cu Normal file
View File

@ -0,0 +1,431 @@
#include "ggml.h"
#include "common.cuh"
#include "mma.cuh"
#include "mmf.cuh"
using namespace ggml_cuda_mma;
#define MMF_ROWS_PER_BLOCK 32
template <typename T, int rows_per_block, int cols_per_block, int nwarps>
__launch_bounds__(ggml_cuda_get_physical_warp_size()*nwarps, 1)
static __global__ void mul_mat_f(
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst,
const int ncols, const int nchannels_y, const int stride_row, const int stride_col_y, const int stride_col_dst,
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
typedef tile<16, 8, T> tile_A;
typedef tile< 8, 8, T> tile_B;
typedef tile<16, 8, float> tile_C;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr int tile_k_padded = warp_size + 4;
constexpr int ntA = rows_per_block / tile_A::I;
constexpr int ntB = (cols_per_block + tile_B::I - 1) / tile_B::I;
const int row0 = blockIdx.x * rows_per_block;
const int channel_dst = blockIdx.y;
const int channel_x = channel_dst / channel_ratio;
const int channel_y = channel_dst;
const int sample_dst = blockIdx.z;
const int sample_x = sample_dst / sample_ratio;
const int sample_y = sample_dst;
x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row0*stride_row ;
y += int64_t(sample_y) *stride_sample_y + channel_y *stride_channel_y;
dst += int64_t(sample_dst)*stride_sample_dst + channel_dst*stride_channel_dst;
const float2 * y2 = (const float2 *) y;
extern __shared__ char data_mmv[];
tile_C C[ntA][ntB];
T * tile_xy = (T *) data_mmv + threadIdx.y*(tile_A::I * tile_k_padded);
for (int col = threadIdx.y*warp_size + threadIdx.x; col < ncols; col += nwarps*warp_size) {
tile_A A[ntA][warp_size / tile_A::J];
#pragma unroll
for (int itA = 0; itA < ntA; ++itA) {
#pragma unroll
for (int i = 0; i < tile_A::I; ++i) {
tile_xy[i*tile_k_padded + threadIdx.x] = x[(itA*tile_A::I + i)*stride_row + col];
}
#pragma unroll
for (int k0 = 0; k0 < warp_size; k0 += tile_A::J) {
load_ldmatrix(A[itA][k0/tile_A::J], tile_xy + k0, tile_k_padded);
}
}
#pragma unroll
for (int itB = 0; itB < ntB; ++itB) {
if constexpr (std::is_same_v<T, float>) {
#pragma unroll
for (int j0 = 0; j0 < tile_B::I; ++j0) {
const int j = j0 + itB*tile_B::I;
tile_xy[j0*tile_k_padded + threadIdx.x] = j < cols_per_block ? y[j*stride_col_y + col] : 0.0f;
}
} else if constexpr (std::is_same_v<T, half2> || std::is_same_v<T, nv_bfloat162>) {
#pragma unroll
for (int j0 = 0; j0 < tile_B::I; ++j0) {
const int j = j0 + itB*tile_B::I;
const float2 tmp = j < cols_per_block ? y2[j*stride_col_y + col] : make_float2(0.0f, 0.0f);
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y};
}
} else {
static_assert(std::is_same_v<T, void>, "unsupported type");
}
#pragma unroll
for (int k0 = 0; k0 < warp_size; k0 += tile_B::J) {
tile_B B;
load_ldmatrix(B, tile_xy + k0, tile_k_padded);
#pragma unroll
for (int itA = 0; itA < ntA; ++itA) {
mma(C[itA][itB], A[itA][k0/tile_B::J], B);
}
}
}
}
float * buf_iw = (float *) data_mmv;
constexpr int kiw = nwarps*rows_per_block + 4;
if (nwarps > 1) {
__syncthreads();
}
#pragma unroll
for (int itB = 0; itB < ntB; ++itB) {
#pragma unroll
for (int itA = 0; itA < ntA; ++itA) {
#pragma unroll
for (int l = 0; l < tile_C::ne; ++l) {
const int i = threadIdx.y*rows_per_block + itA*tile_C::I + tile_C::get_i(l);
const int j = itB*tile_C::J + tile_C::get_j(l);
buf_iw[j*kiw + i] = C[itA][itB].x[l];
}
}
}
if (nwarps > 1) {
__syncthreads();
}
#pragma unroll
for (int j0 = 0; j0 < cols_per_block; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (j0 + nwarps > cols_per_block && j >= cols_per_block) {
return;
}
float sum = 0.0f;
static_assert(rows_per_block == warp_size, "need loop/check");
#pragma unroll
for (int i0 = 0; i0 < nwarps*rows_per_block; i0 += rows_per_block) {
const int i = i0 + threadIdx.x;
sum += buf_iw[j*kiw + i];
}
dst[j*stride_col_dst + row0 + threadIdx.x] = sum;
}
#else
NO_DEVICE_CODE;
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(ids); GGML_UNUSED(dst);
GGML_UNUSED(ncols); GGML_UNUSED(nchannels_y); GGML_UNUSED(stride_row); GGML_UNUSED(stride_col_y); GGML_UNUSED(stride_col_dst);
GGML_UNUSED(channel_ratio); GGML_UNUSED(stride_channel_x); GGML_UNUSED(stride_channel_y); GGML_UNUSED(stride_channel_dst);
GGML_UNUSED(sample_ratio); GGML_UNUSED(stride_sample_x); GGML_UNUSED(stride_sample_y); GGML_UNUSED(stride_sample_dst);
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
}
template <typename T, int cols_per_block>
static void mul_mat_f_cuda(
const T * x, const float * y, const int32_t * ids, float * dst,
const int64_t ncols_x, const int64_t nrows_x,
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
cudaStream_t stream) {
typedef tile<16, 8, T> tile_A;
typedef tile< 8, 8, T> tile_B;
typedef tile<16, 8, float> tile_C;
GGML_ASSERT(!ids && "mul_mat_id not implemented");
GGML_ASSERT(ncols_x % 2 == 0);
GGML_ASSERT(stride_row % 2 == 0);
GGML_ASSERT(stride_col_y % 2 == 0);
GGML_ASSERT(ids || nchannels_dst % nchannels_x == 0);
GGML_ASSERT( nsamples_dst % nsamples_x == 0);
const int64_t channel_ratio = nchannels_dst / nchannels_x;
const int64_t sample_ratio = nsamples_dst / nsamples_x;
const int device = ggml_cuda_get_device();
const int warp_size = ggml_cuda_info().devices[device].warp_size;
int64_t nwarps_best = 1;
int64_t niter_best = (ncols_x + warp_size*2 - 1) / (warp_size*2);
int64_t max_block_size = 256;
for (int64_t nwarps = 2; nwarps <= max_block_size/warp_size; nwarps++) {
const int64_t niter = (ncols_x + nwarps*warp_size*2 - 1) / (nwarps*warp_size*2);
if (niter < niter_best) {
niter_best = niter;
nwarps_best = nwarps;
}
}
constexpr int rows_per_block = MMF_ROWS_PER_BLOCK;
const int nbytes_shared_iter = nwarps_best * tile_A::I * (warp_size + 4) * 4;
const int nbytes_shared_combine = GGML_PAD(cols_per_block, tile_B::I) * (nwarps_best*rows_per_block + 4) * 4;
const int nbytes_shared = std::max(nbytes_shared_iter, nbytes_shared_combine);
const dim3 block_nums(nrows_x/rows_per_block, nchannels_dst, nsamples_dst);
const dim3 block_dims(warp_size, nwarps_best, 1);
switch (nwarps_best) {
case 1: {
mul_mat_f<T, rows_per_block, cols_per_block, 1><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 2: {
mul_mat_f<T, rows_per_block, cols_per_block, 2><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 3: {
mul_mat_f<T, rows_per_block, cols_per_block, 3><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 4: {
mul_mat_f<T, rows_per_block, cols_per_block, 4><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 5: {
mul_mat_f<T, rows_per_block, cols_per_block, 5><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 6: {
mul_mat_f<T, rows_per_block, cols_per_block, 6><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 7: {
mul_mat_f<T, rows_per_block, cols_per_block, 7><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 8: {
mul_mat_f<T, rows_per_block, cols_per_block, 8><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
default: {
GGML_ABORT("fatal error");
} break;
}
}
template <typename T>
static void mul_mat_f_switch_cols_per_block(
const T * x, const float * y, const int32_t * ids, float * dst,
const int64_t ncols_x, const int64_t nrows_x, const int64_t ncols_dst,
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
cudaStream_t stream) {
switch (ncols_dst) {
case 1: {
mul_mat_f_cuda<T, 1>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 2: {
mul_mat_f_cuda<T, 2>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 3: {
mul_mat_f_cuda<T, 3>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 4: {
mul_mat_f_cuda<T, 4>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 5: {
mul_mat_f_cuda<T, 5>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 6: {
mul_mat_f_cuda<T, 6>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 7: {
mul_mat_f_cuda<T, 7>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 8: {
mul_mat_f_cuda<T, 8>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 9: {
mul_mat_f_cuda<T, 9>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 10: {
mul_mat_f_cuda<T, 10>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 11: {
mul_mat_f_cuda<T, 11>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 12: {
mul_mat_f_cuda<T, 12>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 13: {
mul_mat_f_cuda<T, 13>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 14: {
mul_mat_f_cuda<T, 14>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 15: {
mul_mat_f_cuda<T, 15>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 16: {
mul_mat_f_cuda<T, 16>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
default: {
GGML_ABORT("fatal error");
} break;
}
}
void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
GGML_ASSERT( src1->type == GGML_TYPE_F32);
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_TENSOR_BINARY_OP_LOCALS;
const size_t ts_src0 = ggml_type_size(src0->type);
const size_t ts_src1 = ggml_type_size(src1->type);
const size_t ts_dst = ggml_type_size(dst->type);
GGML_ASSERT(ne13 == ne3);
GGML_ASSERT( nb00 == ts_src0);
GGML_ASSERT( nb10 == ts_src1);
GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type));
GGML_ASSERT( nb0 == ts_dst);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;
const float * src1_d = (const float *) src1->data;
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
float * dst_d = (float *) dst->data;
const int64_t s01 = src0->nb[1] / ts_src0;
const int64_t s11 = src1->nb[1] / ts_src1;
const int64_t s1 = dst->nb[1] / ts_dst;
const int64_t s02 = src0->nb[2] / ts_src0;
const int64_t s12 = src1->nb[2] / ts_src1;
const int64_t s2 = dst->nb[2] / ts_dst;
const int64_t s03 = src0->nb[3] / ts_src0;
const int64_t s13 = src1->nb[3] / ts_src1;
const int64_t s3 = dst->nb[3] / ts_dst;
// For MUL_MAT_ID the memory layout is different than for MUL_MAT:
const int64_t ncols_dst = ids ? ne2 : ne1;
const int64_t nchannels_y = ids ? ne11 : ne12;
const int64_t nchannels_dst = ids ? ne1 : ne2;
const int64_t stride_channel_dst = ids ? s1 : s2;
const int64_t stride_channel_y = ids ? s11 : s12;
GGML_ASSERT(!ids || ncols_dst == 1);
switch (src0->type) {
case GGML_TYPE_F32: {
const float * src0_d = (const float *) src0->data;
constexpr int vals_per_T = 1;
mul_mat_f_switch_cols_per_block(
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, s11/vals_per_T, s1,
ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
} break;
case GGML_TYPE_F16: {
const half2 * src0_d = (const half2 *) src0->data;
constexpr int vals_per_T = 2;
mul_mat_f_switch_cols_per_block(
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, s11/vals_per_T, s1,
ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
} break;
case GGML_TYPE_BF16: {
const nv_bfloat162 * src0_d = (const nv_bfloat162 *) src0->data;
constexpr int vals_per_T = 2;
mul_mat_f_switch_cols_per_block(
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, s11/vals_per_T, s1,
ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
} break;
default:
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
}
}
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * src0_ne, int64_t ne11) {
if (src0_ne[0] % (warp_size * (4/ggml_type_size(type))) != 0) {
return false;
}
if (src0_ne[1] % MMF_ROWS_PER_BLOCK != 0) {
return false;
}
if (ne11 > 16) {
return false;
}
switch (type) {
case GGML_TYPE_F32:
return ampere_mma_available(cc);
case GGML_TYPE_F16:
return turing_mma_available(cc);
case GGML_TYPE_BF16:
return ampere_mma_available(cc);
default:
return false;
}
}

View File

@ -0,0 +1,5 @@
#include "common.cuh"
void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * scr0_ne, int64_t ne11);

View File

@ -20,6 +20,9 @@ static void ggml_cuda_mul_mat_q_switch_type(ggml_backend_cuda_context & ctx, con
case GGML_TYPE_Q8_0:
mul_mat_q_case<GGML_TYPE_Q8_0>(ctx, args, stream);
break;
case GGML_TYPE_MXFP4:
mul_mat_q_case<GGML_TYPE_MXFP4>(ctx, args, stream);
break;
case GGML_TYPE_Q2_K:
mul_mat_q_case<GGML_TYPE_Q2_K>(ctx, args, stream);
break;
@ -282,6 +285,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@ -306,7 +310,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return false;
}
if (new_mma_available(cc)) {
if (turing_mma_available(cc)) {
return true;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,9 +1,9 @@
#include "ggml.h"
#include "common.cuh"
#include "mmv.cuh"
#include "mmvf.cuh"
template <typename T, typename type_acc, int ncols_dst, int block_size>
static __global__ void mul_mat_vec(
static __global__ void mul_mat_vec_f(
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst,
const int ncols2, const int nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst,
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
@ -37,7 +37,7 @@ static __global__ void mul_mat_vec(
float sumf[ncols_dst] = {0.0f};
if constexpr (std::is_same<T, float>::value) {
if constexpr (std::is_same_v<T, float>) {
const float2 * x2 = (const float2 *) x;
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
@ -50,10 +50,10 @@ static __global__ void mul_mat_vec(
sumf[j] += tmpx.y*tmpy.y;
}
}
} else if constexpr (std::is_same<T, half>::value) {
} else if constexpr (std::is_same_v<T, half>) {
const half2 * x2 = (const half2 *) x;
if (std::is_same<type_acc, float>::value) {
if (std::is_same_v<type_acc, float>) {
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const float2 tmpx = __half22float2(x2[col2]);
@ -86,7 +86,7 @@ static __global__ void mul_mat_vec(
NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
}
} else if constexpr (std::is_same<T, nv_bfloat16>::value) {
} else if constexpr (std::is_same_v<T, nv_bfloat16>) {
const int * x2 = (const int *) x;
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const int tmpx = x2[col2];
@ -98,7 +98,7 @@ static __global__ void mul_mat_vec(
}
}
} else {
static_assert(std::is_same<T, void>::value, "unsupported type");
static_assert(std::is_same_v<T, void>, "unsupported type");
}
#pragma unroll
@ -126,7 +126,7 @@ static __global__ void mul_mat_vec(
}
template <typename T, typename type_acc, int ncols_dst>
static void launch_mul_mat_vec_cuda(
static void launch_mul_mat_vec_f_cuda(
const T * x, const float * y, const int32_t * ids, float * dst,
const int64_t ncols, const int64_t nrows,
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
@ -141,11 +141,9 @@ static void launch_mul_mat_vec_cuda(
GGML_ASSERT( nsamples_dst % nsamples_x == 0);
const int64_t channel_ratio = nchannels_dst / nchannels_x;
const int64_t sample_ratio = nsamples_dst / nsamples_x;
int device;
int warp_size;
CUDA_CHECK(cudaGetDevice(&device));
warp_size = ggml_cuda_info().devices[device].warp_size;
const int device = ggml_cuda_get_device();
const int warp_size = ggml_cuda_info().devices[device].warp_size;
int64_t block_size_best = warp_size;
int64_t niter_best = (ncols + 2*warp_size - 1) / (2*warp_size);
@ -161,54 +159,54 @@ static void launch_mul_mat_vec_cuda(
}
}
const int smem = warp_size*sizeof(float);
const int nbytes_shared = warp_size*sizeof(float);
const dim3 block_nums(nrows, nchannels_dst, nsamples_dst);
const dim3 block_dims(block_size_best, 1, 1);
switch (block_size_best) {
case 32: {
mul_mat_vec<T, type_acc, ncols_dst, 32><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec_f<T, type_acc, ncols_dst, 32><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 64: {
mul_mat_vec<T, type_acc, ncols_dst, 64><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec_f<T, type_acc, ncols_dst, 64><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 96: {
mul_mat_vec<T, type_acc, ncols_dst, 96><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec_f<T, type_acc, ncols_dst, 96><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 128: {
mul_mat_vec<T, type_acc, ncols_dst, 128><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec_f<T, type_acc, ncols_dst, 128><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 160: {
mul_mat_vec<T, type_acc, ncols_dst, 160><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec_f<T, type_acc, ncols_dst, 160><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 192: {
mul_mat_vec<T, type_acc, ncols_dst, 192><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec_f<T, type_acc, ncols_dst, 192><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 224: {
mul_mat_vec<T, type_acc, ncols_dst, 224><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec_f<T, type_acc, ncols_dst, 224><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} break;
case 256: {
mul_mat_vec<T, type_acc, ncols_dst, 256><<<block_nums, block_dims, smem, stream>>>
mul_mat_vec_f<T, type_acc, ncols_dst, 256><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
@ -220,7 +218,7 @@ static void launch_mul_mat_vec_cuda(
}
template <typename T, typename type_acc>
static void mul_mat_vec_cuda_switch_ncols_dst(
static void mul_mat_vec_f_cuda_switch_ncols_dst(
const T * x, const float * y, const int32_t * ids, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t ncols_dst,
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
@ -230,49 +228,49 @@ static void mul_mat_vec_cuda_switch_ncols_dst(
cudaStream_t stream) {
switch (ncols_dst) {
case 1:
launch_mul_mat_vec_cuda<T, type_acc, 1>
launch_mul_mat_vec_f_cuda<T, type_acc, 1>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 2:
launch_mul_mat_vec_cuda<T, type_acc, 2>
launch_mul_mat_vec_f_cuda<T, type_acc, 2>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 3:
launch_mul_mat_vec_cuda<T, type_acc, 3>
launch_mul_mat_vec_f_cuda<T, type_acc, 3>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 4:
launch_mul_mat_vec_cuda<T, type_acc, 4>
launch_mul_mat_vec_f_cuda<T, type_acc, 4>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 5:
launch_mul_mat_vec_cuda<T, type_acc, 5>
launch_mul_mat_vec_f_cuda<T, type_acc, 5>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 6:
launch_mul_mat_vec_cuda<T, type_acc, 6>
launch_mul_mat_vec_f_cuda<T, type_acc, 6>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 7:
launch_mul_mat_vec_cuda<T, type_acc, 7>
launch_mul_mat_vec_f_cuda<T, type_acc, 7>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 8:
launch_mul_mat_vec_cuda<T, type_acc, 8>
launch_mul_mat_vec_f_cuda<T, type_acc, 8>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
@ -284,7 +282,7 @@ static void mul_mat_vec_cuda_switch_ncols_dst(
}
template<typename T>
static void mul_mat_vec_cuda(
static void mul_mat_vec_f_cuda(
const T * x, const float * y, const int32_t * ids, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t ncols_dst,
const int64_t stride_row, const int64_t stride_col_y, const int stride_col_dst,
@ -292,22 +290,22 @@ static void mul_mat_vec_cuda(
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
enum ggml_prec prec, cudaStream_t stream) {
if constexpr(std::is_same<T, half>::value) {
if constexpr(std::is_same_v<T, half>) {
if (prec == GGML_PREC_DEFAULT) {
mul_mat_vec_cuda_switch_ncols_dst<T, half>
mul_mat_vec_f_cuda_switch_ncols_dst<T, half>
(x, y, ids, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
return;
}
}
mul_mat_vec_cuda_switch_ncols_dst<T, float>
mul_mat_vec_f_cuda_switch_ncols_dst<T, float>
(x, y, ids, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
}
void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
GGML_ASSERT( src1->type == GGML_TYPE_F32);
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
@ -355,19 +353,19 @@ void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor *
switch (src0->type) {
case GGML_TYPE_F32: {
const float * src0_d = (const float *) src0->data;
mul_mat_vec_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
} break;
case GGML_TYPE_F16: {
const half * src0_d = (const half *) src0->data;
mul_mat_vec_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
} break;
case GGML_TYPE_BF16: {
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0->data;
mul_mat_vec_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
} break;
@ -376,7 +374,7 @@ void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor *
}
}
void ggml_cuda_op_mul_mat_vec(
void ggml_cuda_op_mul_mat_vec_f(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
@ -414,19 +412,19 @@ void ggml_cuda_op_mul_mat_vec(
switch (src0->type) {
case GGML_TYPE_F32: {
const float * src0_d = (const float *) src0_dd_i;
mul_mat_vec_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
} break;
case GGML_TYPE_F16: {
const half * src0_d = (const half *) src0_dd_i;
mul_mat_vec_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
} break;
case GGML_TYPE_BF16: {
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0_dd_i;
mul_mat_vec_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
} break;
@ -442,15 +440,15 @@ void ggml_cuda_op_mul_mat_vec(
GGML_UNUSED(src1_padded_row_size);
}
bool ggml_cuda_should_use_mmv(enum ggml_type type, int cc, const int64_t * src0_ne, int64_t ne11) {
bool ggml_cuda_should_use_mmvf(enum ggml_type type, int cc, const int64_t * src0_ne, int64_t ne11) {
if (src0_ne[0] % 2 != 0) {
return false;
}
switch (type) {
case GGML_TYPE_F32:
if (GGML_CUDA_CC_IS_NVIDIA(cc)) {
if (cc >= GGML_CUDA_CC_ADA_LOVELACE) {
return ne11 <= 8;
if (ampere_mma_available(cc)) {
return ne11 <= 3;
}
if (cc >= GGML_CUDA_CC_TURING) {
return ne11 <= 4;
@ -466,6 +464,9 @@ bool ggml_cuda_should_use_mmv(enum ggml_type type, int cc, const int64_t * src0_
case GGML_TYPE_F16:
if (GGML_CUDA_CC_IS_NVIDIA(cc)) {
const bool src0_small = (src0_ne[1] <= 512 || src0_ne[2]*src0_ne[3] == 1);
if (ampere_mma_available(cc)) {
return src0_small && ne11 == 1;
}
if (cc >= GGML_CUDA_CC_ADA_LOVELACE) {
return src0_small && ne11 <= 4;
}
@ -486,6 +487,9 @@ bool ggml_cuda_should_use_mmv(enum ggml_type type, int cc, const int64_t * src0_
case GGML_TYPE_BF16:
if (GGML_CUDA_CC_IS_NVIDIA(cc)) {
const bool src0_small = (src0_ne[1] <= 512 || src0_ne[2]*src0_ne[3] == 1);
if (ampere_mma_available(cc)) {
return src0_small && ne11 == 1;
}
if (cc >= GGML_CUDA_CC_ADA_LOVELACE) {
return src0_small && ne11 <= 4;
}

View File

@ -1,11 +1,11 @@
#include "common.cuh"
void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
void ggml_cuda_op_mul_mat_vec(
void ggml_cuda_op_mul_mat_vec_f(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream);
bool ggml_cuda_should_use_mmv(enum ggml_type type, int cc, const int64_t * src0_ne, int64_t ne11);
bool ggml_cuda_should_use_mmvf(enum ggml_type type, int cc, const int64_t * src0_ne, int64_t ne11);

View File

@ -13,6 +13,7 @@ static constexpr __device__ vec_dot_q_cuda_t get_vec_dot_q_cuda(ggml_type type)
case GGML_TYPE_Q5_0: return vec_dot_q5_0_q8_1;
case GGML_TYPE_Q5_1: return vec_dot_q5_1_q8_1;
case GGML_TYPE_Q8_0: return vec_dot_q8_0_q8_1;
case GGML_TYPE_MXFP4: return vec_dot_mxfp4_q8_1;
case GGML_TYPE_Q2_K: return vec_dot_q2_K_q8_1;
case GGML_TYPE_Q3_K: return vec_dot_q3_K_q8_1;
case GGML_TYPE_Q4_K: return vec_dot_q4_K_q8_1;
@ -38,6 +39,7 @@ static constexpr __device__ int get_vdr_mmvq(ggml_type type) {
case GGML_TYPE_Q5_0: return VDR_Q5_0_Q8_1_MMVQ;
case GGML_TYPE_Q5_1: return VDR_Q5_1_Q8_1_MMVQ;
case GGML_TYPE_Q8_0: return VDR_Q8_0_Q8_1_MMVQ;
case GGML_TYPE_MXFP4: return VDR_MXFP4_Q8_1_MMVQ;
case GGML_TYPE_Q2_K: return VDR_Q2_K_Q8_1_MMVQ;
case GGML_TYPE_Q3_K: return VDR_Q3_K_Q8_1_MMVQ;
case GGML_TYPE_Q4_K: return VDR_Q4_K_Q8_1_MMVQ;
@ -384,6 +386,13 @@ static void mul_mat_vec_q_switch_type(
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_MXFP4:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_MXFP4>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_Q2_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q2_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,

View File

@ -45,7 +45,7 @@ struct soft_max_params {
#endif // __clang__
template <bool use_shared, int ncols_template, int block_size_template, typename T>
static __global__ void soft_max_f32(
const float * x, const T * mask, float * dst, const soft_max_params p) {
const float * x, const T * mask, const float * sinks, float * dst, const soft_max_params p) {
const int ncols = ncols_template == 0 ? p.ncols : ncols_template;
const int tid = threadIdx.x;
@ -77,7 +77,7 @@ static __global__ void soft_max_f32(
// shared memory buffer to cache values between iterations:
float * vals = use_shared ? buf_iw + WARP_SIZE : dst;
float max_val = -INFINITY;
float max_val = sinks ? sinks[i02] : -INFINITY;
#pragma unroll
for (int col0 = 0; col0 < ncols; col0 += block_size) {
@ -143,6 +143,10 @@ static __global__ void soft_max_f32(
tmp = warp_reduce_sum(tmp);
}
if (sinks) {
tmp += expf(sinks[i02] - max_val);
}
const float inv_sum = 1.0f / tmp;
#pragma unroll
@ -183,7 +187,7 @@ static __global__ void soft_max_back_f32(
}
template<int... Ns, typename T>
static void launch_soft_max_kernels(const float * x, const T * mask, float * dst,
static void launch_soft_max_kernels(const float * x, const T * mask, const float * sinks, float * dst,
const soft_max_params & p, cudaStream_t stream, dim3 block_dims, dim3 block_nums, size_t nbytes_shared)
{
const int id = ggml_cuda_get_device();
@ -196,7 +200,7 @@ static void launch_soft_max_kernels(const float * x, const T * mask, float * dst
if (p.ncols == ncols) {
CUDA_SET_SHARED_MEMORY_LIMIT((soft_max_f32<true, ncols, block, T>), smpbo);
soft_max_f32<true, ncols, block><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, p);
(x, mask, sinks, dst, p);
return true;
}
return false;
@ -209,12 +213,12 @@ static void launch_soft_max_kernels(const float * x, const T * mask, float * dst
//default case
CUDA_SET_SHARED_MEMORY_LIMIT((soft_max_f32<true, 0, 0, T>), smpbo);
soft_max_f32<true, 0, 0><<<block_nums, block_dims, nbytes_shared, stream>>>(x, mask, dst, p);
soft_max_f32<true, 0, 0><<<block_nums, block_dims, nbytes_shared, stream>>>(x, mask, sinks, dst, p);
}
template<typename T>
static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, const soft_max_params & params, cudaStream_t stream) {
static void soft_max_f32_cuda(const float * x, const T * mask, const float * sinks, float * dst, const soft_max_params & params, cudaStream_t stream) {
int nth = WARP_SIZE;
const int64_t ncols_x = params.ncols;
@ -230,10 +234,10 @@ static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, cons
if (nbytes_shared <= smpbo) {
launch_soft_max_kernels<32, 64, 128, 256, 512, 1024, 2048, 4096>(x, mask, dst, params, stream, block_dims, block_nums, nbytes_shared);
launch_soft_max_kernels<32, 64, 128, 256, 512, 1024, 2048, 4096>(x, mask, sinks, dst, params, stream, block_dims, block_nums, nbytes_shared);
} else {
const size_t nbytes_shared_low = WARP_SIZE*sizeof(float);
soft_max_f32<false, 0, 0><<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, dst, params);
soft_max_f32<false, 0, 0><<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, sinks, dst, params);
}
}
@ -249,9 +253,11 @@ static void soft_max_back_f32_cuda(
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
const float * src0_d = (const float *) src0->data;
const void * src1_d = src1 ? (const void *) src1->data : nullptr;
const void * src2_d = src2 ? (const void *) src2->data : nullptr;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
@ -309,9 +315,9 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
params.m1 = m1;
if (use_f16) {
soft_max_f32_cuda(src0_d, (const half *) src1_d, dst_d, params, stream);
soft_max_f32_cuda(src0_d, (const half *) src1_d, (const float *) src2_d, dst_d, params, stream);
} else {
soft_max_f32_cuda(src0_d, (const float *) src1_d, dst_d, params, stream);
soft_max_f32_cuda(src0_d, (const float *) src1_d, (const float *) src2_d, dst_d, params, stream);
}
}

View File

@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../mmq.cuh"
DECL_MMQ_CASE(GGML_TYPE_MXFP4);

View File

@ -300,6 +300,81 @@ void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst
ggml_cuda_op_unary_gated<op_gelu_quick>(ctx, dst);
}
// swiglu_oai
template <typename T>
static __global__ void swiglu_oai_kernel(const T * x, const T * g, T * dst, const int64_t k, const int64_t n, const int64_t o0, const int64_t o1, float alpha, float limit) {
const int64_t i = int64_t(blockDim.x)*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
// perform base op and multiply with gate (either offset in same tensor or a separate one)
const int64_t j0 = (i / n) * o0 + (i % n);
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
float xi = x[j0];
float gi = g[j1];
xi = fminf(xi, limit);
gi = fmaxf(fminf(gi, limit), -limit);
float out_glu = xi / (1.0f + expf(-xi * alpha));
out_glu = out_glu * (1.0f + gi);
dst[i] = out_glu;
}
template <typename T>
static void swiglu_oai_cuda(const T * x, const T * g, T * dst, const int64_t k, const int64_t n, const int64_t o0, const int64_t o1, const float alpha, const float limit, cudaStream_t stream) {
const int64_t num_blocks = (k + CUDA_GLU_BLOCK_SIZE - 1) / CUDA_GLU_BLOCK_SIZE;
swiglu_oai_kernel<<<num_blocks, CUDA_GLU_BLOCK_SIZE, 0, stream>>>(x, g, dst, k, n, o0, o1, alpha, limit);
}
void ggml_cuda_op_swiglu_oai(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
void * src0_d = src0->data;
void * src1_d = src1 ? src1->data : src0->data;
const int64_t src0_o = src0->nb[1];
const int64_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
void * dst_d = dst->data;
const int64_t nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(src0->nb[0] == ggml_element_size(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->type == dst->type);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == ggml_nrows(src0));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
GGML_ASSERT(src1->ne[0] == nc);
GGML_ASSERT(src0->type == src1->type);
}
//const int32_t swapped = ((const int32_t *) dst->op_params)[1];
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
const float alpha = ggml_get_op_params_f32(dst, 2);
const float limit = ggml_get_op_params_f32(dst, 3);
float * src0_p = (float *) src0_d;
float * src1_p = (float *) src1_d;
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
swiglu_oai_cuda(src0_p, src1_p, (float *)dst_d, ggml_nelements(dst), nc, src0_o / sizeof(float), src1_o / sizeof(float), alpha, limit, stream);
}
/* silu_back */
static __device__ __forceinline__ float op_silu_back(float grad, float x) {

View File

@ -67,6 +67,8 @@ void ggml_cuda_op_geglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_swiglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_swiglu_oai(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -1,8 +1,20 @@
#pragma once
#include "common.cuh"
#include <cstdint>
static __device__ __forceinline__ int get_int_b1(const void * x, const int & i32) {
const uint8_t * x8 = (const uint8_t *) x;
int x32 = x8[4*i32 + 0] << 0;
x32 |= x8[4*i32 + 1] << 8;
x32 |= x8[4*i32 + 2] << 16;
x32 |= x8[4*i32 + 3] << 24;
return x32;
}
static __device__ __forceinline__ int get_int_b2(const void * x, const int & i32) {
const uint16_t * x16 = (const uint16_t *) x; // assume at least 2 byte alignment
@ -16,6 +28,20 @@ static __device__ __forceinline__ int get_int_b4(const void * x, const int & i32
return ((const int *) x)[i32]; // assume at least 4 byte alignment
}
static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4, const int8_t * table) {
const int q0_32 = (q4 >> 0) & 0x0F0F0F0F;
const int8_t * q0_8 = (const int8_t *) &q0_32;
const char4 val0_8 = make_char4(
table[q0_8[0]], table[q0_8[1]], table[q0_8[2]], table[q0_8[3]]);
const int q1_32 = (q4 >> 4) & 0x0F0F0F0F;
const int8_t * q1_8 = (const int8_t *) &q1_32;
const char4 val1_8 = make_char4(
table[q1_8[0]], table[q1_8[1]], table[q1_8[2]], table[q1_8[3]]);
return make_int2(*((const int *) &val0_8), *((const int *) &val1_8));
}
// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
@ -211,6 +237,30 @@ template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_16_q8_1_
return d8_1*sumf;
}
#define VDR_MXFP4_Q8_1_MMVQ 2
#define VDR_MXFP4_Q8_1_MMQ 4
static __device__ __forceinline__ float vec_dot_mxfp4_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_mxfp4 * bq4 = (const block_mxfp4 *) vbq + kbx;
const int * q8 = (const int *) bq8_1->qs + iqs;
int sumi = 0;
#pragma unroll
for (int l = 0; l < VDR_MXFP4_Q8_1_MMVQ; ++l) {
const int aux_q4 = get_int_b1(bq4->qs, iqs + l);
const int2 v = get_int_from_table_16(aux_q4, kvalues_mxfp4);
sumi = ggml_cuda_dp4a(v.x, q8[l + 0], sumi);
sumi = ggml_cuda_dp4a(v.y, q8[l + 4], sumi);
}
const float d = ggml_cuda_e8m0_to_fp32(bq4->e) * 0.5f * __low2float(bq8_1->ds);
return d * sumi;
}
#define VDR_Q2_K_Q8_1_MMVQ 1
#define VDR_Q2_K_Q8_1_MMQ 4
@ -1068,20 +1118,6 @@ static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
return d * ((sumi[0] + sumf[0]) * sc0 + (sumi[1] + sumf[1]) * sc1);
}
static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4) {
const int q0_32 = (q4 >> 0) & 0x0F0F0F0F;
const int8_t * q0_8 = (const int8_t *) &q0_32;
const char4 val0_8 = make_char4(
kvalues_iq4nl[q0_8[0]], kvalues_iq4nl[q0_8[1]], kvalues_iq4nl[q0_8[2]], kvalues_iq4nl[q0_8[3]]);
const int q1_32 = (q4 >> 4) & 0x0F0F0F0F;
const int8_t * q1_8 = (const int8_t *) &q1_32;
const char4 val1_8 = make_char4(
kvalues_iq4nl[q1_8[0]], kvalues_iq4nl[q1_8[1]], kvalues_iq4nl[q1_8[2]], kvalues_iq4nl[q1_8[3]]);
return make_int2(*((const int *) &val0_8), *((const int *) &val1_8));
}
#define VDR_IQ4_NL_Q8_1_MMVQ 2
#define VDR_IQ4_NL_Q8_1_MMQ 4
@ -1096,7 +1132,7 @@ static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
#pragma unroll
for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
const int aux_q4 = get_int_b2(bq4->qs, iqs + l);
const int2 v = get_int_from_table_16(aux_q4);
const int2 v = get_int_from_table_16(aux_q4, kvalues_iq4nl);
sumi = ggml_cuda_dp4a(v.x, q8[l + 0], sumi);
sumi = ggml_cuda_dp4a(v.y, q8[l + 4], sumi);
@ -1118,7 +1154,7 @@ static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
#pragma unroll
for (int j = 0; j < 4; ++j) {
const int aux_q4 = get_int_b4(bq4->qs, iqs + j);
const int2 v = get_int_from_table_16(aux_q4);
const int2 v = get_int_from_table_16(aux_q4, kvalues_iq4nl);
const int u0 = get_int_b4(bq8_1[iqs/4].qs, j + 0);
const int u1 = get_int_b4(bq8_1[iqs/4].qs, j + 4);

View File

@ -6,6 +6,10 @@
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#if CUDART_VERSION >= 12050
#include <cuda_fp8.h>
#endif // CUDART_VERSION >= 12050
#if CUDART_VERSION < 11020
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH

View File

@ -200,6 +200,7 @@
#endif
typedef hip_bfloat16 nv_bfloat16;
typedef short2 nv_bfloat162; // FIXME there is no 2x BF16 type being defined in bfloat16.h, ad-hoc compilation fix
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));

View File

@ -137,4 +137,5 @@
#define cudaStreamEndCapture musaStreamEndCapture
#define cudaOccupancyMaxActiveBlocksPerMultiprocessor musaOccupancyMaxActiveBlocksPerMultiprocessor
typedef mt_bfloat16 nv_bfloat16;
typedef __mt_bfloat16 nv_bfloat16;
typedef __mt_bfloat162 nv_bfloat162;

View File

@ -121,6 +121,10 @@ if (GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 OR ${hip_VERSION} VERSION_GREATER_EQUAL 7
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN_GFX12)
endif()
if (GGML_HIP_EXPORT_METRICS)
set(CMAKE_HIP_FLAGS "${CMAKE_HIP_FLAGS} -Rpass-analysis=kernel-resource-usage --save-temps")
endif()
if (NOT GGML_CUDA_FA)
add_compile_definitions(GGML_CUDA_NO_FA)
endif()

View File

@ -410,6 +410,67 @@ static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
static inline float ggml_e8m0_to_fp32(uint8_t x) {
uint32_t bits; // Stores the raw bit representation of the float
// Handle special case for minimum exponent (denormalized float)
if (x == 0) {
// Bit pattern for 2^(-127):
// - Sign bit: 0 (positive)
// - Exponent: 0 (denormalized number)
// - Mantissa: 0x400000 (0.5 in fractional form)
// Value = 0.5 * 2^(-126) = 2^(-127)
bits = 0x00400000;
}
// note: disabled as we don't need to handle NaNs
//// Handle special case for NaN (all bits set)
//else if (x == 0xFF) {
// // Standard quiet NaN pattern:
// // - Sign bit: 0
// // - Exponent: all 1s (0xFF)
// // - Mantissa: 0x400000 (quiet NaN flag)
// bits = 0x7FC00000;
//}
// Normalized values (most common case)
else {
// Construct normalized float by shifting exponent into position:
// - Exponent field: 8 bits (positions 30-23)
// - Mantissa: 0 (implicit leading 1)
// Value = 2^(x - 127)
bits = (uint32_t) x << 23;
}
float result; // Final float value
// Safely reinterpret bit pattern as float without type-punning issues
memcpy(&result, &bits, sizeof(float));
return result;
}
// Equal to ggml_e8m0_to_fp32/2
// Useful with MXFP4 quantization since the E0M2 values are doubled
static inline float ggml_e8m0_to_fp32_half(uint8_t x) {
uint32_t bits;
// For x < 2: use precomputed denormal patterns
if (x < 2) {
// 0x00200000 = 2^(-128), 0x00400000 = 2^(-127)
bits = 0x00200000 << x;
}
// For x >= 2: normalized exponent adjustment
else {
// 0.5 * 2^(x-127) = 2^(x-128) = normalized with exponent (x-1)
bits = (uint32_t)(x - 1) << 23;
}
// Note: NaNs are not handled here
float result;
memcpy(&result, &bits, sizeof(float));
return result;
}
#define GGML_E8M0_TO_FP32(x) ggml_e8m0_to_fp32(x)
#define GGML_E8M0_TO_FP32_HALF(x) ggml_e8m0_to_fp32_half(x)
/**
* Converts brain16 to float32.
*

View File

@ -23,6 +23,9 @@
#define N_R0_Q8_0 4
#define N_SG_Q8_0 2
#define N_R0_MXFP4 2
#define N_SG_MXFP4 2
#define N_R0_Q2_K 4
#define N_SG_Q2_K 2
@ -129,6 +132,15 @@ typedef struct {
uint64_t o1[8];
} ggml_metal_kargs_bin;
typedef struct {
int64_t ne0;
int64_t ne1;
size_t nb01;
size_t nb02;
size_t nb11;
size_t nb21;
} ggml_metal_kargs_add_id;
typedef struct {
int32_t ne00;
int32_t ne01;
@ -444,6 +456,8 @@ typedef struct{
uint64_t nb1;
int32_t i00;
int32_t i10;
float alpha;
float limit;
} ggml_metal_kargs_glu;
typedef struct {

View File

@ -195,6 +195,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_ROW_C4,
GGML_METAL_KERNEL_TYPE_DIV,
GGML_METAL_KERNEL_TYPE_DIV_ROW_C4,
GGML_METAL_KERNEL_TYPE_ADD_ID,
GGML_METAL_KERNEL_TYPE_REPEAT_F32,
GGML_METAL_KERNEL_TYPE_REPEAT_F16,
GGML_METAL_KERNEL_TYPE_REPEAT_I32,
@ -234,6 +235,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0,
GGML_METAL_KERNEL_TYPE_GET_ROWS_MXFP4,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K,
@ -286,6 +288,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4,
@ -310,6 +313,10 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_3,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_4,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_5,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_2,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_3,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_4,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_5,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_2,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_3,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_4,
@ -351,6 +358,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32,
@ -373,6 +381,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32,
@ -397,6 +406,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16,
@ -579,6 +589,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_REGLU,
GGML_METAL_KERNEL_TYPE_GEGLU,
GGML_METAL_KERNEL_TYPE_SWIGLU,
GGML_METAL_KERNEL_TYPE_SWIGLU_OAI,
GGML_METAL_KERNEL_TYPE_GEGLU_ERF,
GGML_METAL_KERNEL_TYPE_GEGLU_QUICK,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
@ -1199,6 +1210,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW_C4, mul_row_c4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW_C4, div_row_c4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ID, add_id, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F32, repeat_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F16, repeat_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I32, repeat_i32, true);
@ -1238,6 +1250,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_MXFP4, get_rows_mxfp4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true);
@ -1290,6 +1303,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32, mul_mv_mxfp4_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2, mul_mv_ext_f16_f32_r1_2, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3, mul_mv_ext_f16_f32_r1_3, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4, mul_mv_ext_f16_f32_r1_4, has_simdgroup_reduction);
@ -1314,6 +1328,10 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_3, mul_mv_ext_q8_0_f32_r1_3, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_4, mul_mv_ext_q8_0_f32_r1_4, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_5, mul_mv_ext_q8_0_f32_r1_5, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_2, mul_mv_ext_mxfp4_f32_r1_2, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_3, mul_mv_ext_mxfp4_f32_r1_3, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_4, mul_mv_ext_mxfp4_f32_r1_4, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_5, mul_mv_ext_mxfp4_f32_r1_5, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_2, mul_mv_ext_q4_K_f32_r1_2, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_3, mul_mv_ext_q4_K_f32_r1_3, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_4, mul_mv_ext_q4_K_f32_r1_4, has_simdgroup_reduction);
@ -1355,6 +1373,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32, mul_mv_id_mxfp4_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, has_simdgroup_reduction);
@ -1377,6 +1396,8 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32, mul_mm_mxfp4_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32, mul_mm_mxfp4_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, has_simdgroup_mm);
@ -1401,6 +1422,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16, mul_mm_id_q5_0_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16, mul_mm_id_q5_1_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16, mul_mm_id_q8_0_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16, mul_mm_id_mxfp4_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16, mul_mm_id_q2_K_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16, mul_mm_id_q3_K_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16, mul_mm_id_q4_K_f16, has_simdgroup_mm);
@ -1583,6 +1605,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REGLU, reglu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU, geglu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SWIGLU, swiglu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SWIGLU_OAI, swiglu_oai, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU_ERF, geglu_erf, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU_QUICK, geglu_quick, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
@ -1774,6 +1797,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return ggml_is_contiguous_1(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
@ -1791,6 +1815,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_ADD_ID:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_ACC:
case GGML_OP_REPEAT:
@ -2042,6 +2067,7 @@ static int ggml_metal_encode_node(
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT;
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
size_t offs_src0 = 0;
@ -2291,6 +2317,38 @@ static int ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
}
} break;
case GGML_OP_ADD_ID:
{
GGML_ASSERT(src0t == GGML_TYPE_F32);
GGML_ASSERT(src1t == GGML_TYPE_F32);
GGML_ASSERT(src2t == GGML_TYPE_I32);
GGML_ASSERT(dstt == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous_rows(src0));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ID].pipeline;
ggml_metal_kargs_add_id args = {
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb11 =*/ nb11,
/*.nb21 =*/ nb21,
};
[encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_REPEAT:
{
id<MTLComputePipelineState> pipeline;
@ -2710,6 +2768,9 @@ static int ggml_metal_encode_node(
case GGML_GLU_OP_SWIGLU:
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SWIGLU].pipeline;
break;
case GGML_GLU_OP_SWIGLU_OAI:
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SWIGLU_OAI].pipeline;
break;
case GGML_GLU_OP_GEGLU_ERF:
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GEGLU_ERF].pipeline;
break;
@ -2720,7 +2781,9 @@ static int ggml_metal_encode_node(
GGML_ABORT("fatal error");
}
const int32_t swp = ((const int32_t *) dst->op_params)[1];
const int32_t swp = ggml_get_op_params_i32(dst, 1);
const float alpha = ggml_get_op_params_f32(dst, 2);
const float limit = ggml_get_op_params_f32(dst, 3);
const int32_t i00 = swp ? ne0 : 0;
const int32_t i10 = swp ? 0 : ne0;
@ -2734,6 +2797,8 @@ static int ggml_metal_encode_node(
/*.nb1 =*/ nb1,
/*.i00 =*/ src1 ? 0 : i00,
/*.i10 =*/ src1 ? 0 : i10,
/*.alpha=*/ alpha,
/*.limit=*/ limit
};
[encoder setComputePipelineState:pipeline];
@ -2992,8 +3057,13 @@ static int ggml_metal_encode_node(
} else {
[encoder setBuffer:h_src0 offset:offs_src0 atIndex:1];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&args length:sizeof(args) atIndex:3];
if (id_src2) {
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
} else {
[encoder setBuffer:h_src0 offset:offs_src0 atIndex:2];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
[encoder setBytes:&args length:sizeof(args) atIndex:4];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
@ -3291,6 +3361,7 @@ static int ggml_metal_encode_node(
src0t == GGML_TYPE_Q5_0 ||
src0t == GGML_TYPE_Q5_1 ||
src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_MXFP4 ||
src0t == GGML_TYPE_IQ4_NL ||
false) && (ne11 >= 2 && ne11 <= 8)
) ||
@ -3383,6 +3454,14 @@ static int ggml_metal_encode_node(
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_5].pipeline; break;
default: GGML_ABORT("not implemented");
} break;
case GGML_TYPE_MXFP4:
switch (r1ptg) {
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_2].pipeline; break;
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_3].pipeline; break;
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_4].pipeline; break;
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_5].pipeline; break;
default: GGML_ABORT("not implemented");
} break;
case GGML_TYPE_Q4_K:
switch (r1ptg) {
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_2].pipeline; break;
@ -3481,6 +3560,7 @@ static int ggml_metal_encode_node(
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32 ].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32 ].pipeline; break;
case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32 ].pipeline; break;
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32 ].pipeline; break;
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32 ].pipeline; break;
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32 ].pipeline; break;
@ -3623,6 +3703,13 @@ static int ggml_metal_encode_node(
nr0 = N_R0_Q8_0;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32].pipeline;
} break;
case GGML_TYPE_MXFP4:
{
nsg = N_SG_MXFP4;
nr0 = N_R0_MXFP4;
smem = 32*sizeof(float);
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32].pipeline;
} break;
case GGML_TYPE_Q2_K:
{
nsg = N_SG_Q2_K;
@ -3756,8 +3843,6 @@ static int ggml_metal_encode_node(
case GGML_OP_MUL_MAT_ID:
{
// src2 = ids
const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t);
GGML_ASSERT(src2t == GGML_TYPE_I32);
GGML_ASSERT(!ggml_is_transposed(src0));
@ -3883,6 +3968,7 @@ static int ggml_metal_encode_node(
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16 ].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16 ].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16 ].pipeline; break;
case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16 ].pipeline; break;
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16 ].pipeline; break;
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16 ].pipeline; break;
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16 ].pipeline; break;
@ -4018,6 +4104,13 @@ static int ggml_metal_encode_node(
nr0 = N_R0_Q8_0;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32].pipeline;
} break;
case GGML_TYPE_MXFP4:
{
nsg = N_SG_MXFP4;
nr0 = N_R0_MXFP4;
smem = 32*sizeof(float);
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32].pipeline;
} break;
case GGML_TYPE_Q2_K:
{
nsg = N_SG_Q2_K;
@ -4170,6 +4263,7 @@ static int ggml_metal_encode_node(
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0 ].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1 ].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0 ].pipeline; break;
case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_MXFP4 ].pipeline; break;
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K ].pipeline; break;
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K ].pipeline; break;
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K ].pipeline; break;
@ -4980,11 +5074,14 @@ static int ggml_metal_encode_node(
GGML_ASSERT(ne11 == ne21);
GGML_ASSERT(ne12 == ne22);
struct ggml_tensor * src3 = node->src[3];
struct ggml_tensor * src3 = node->src[3]; // mask
struct ggml_tensor * src4 = node->src[4]; // sinks
size_t offs_src3 = 0;
size_t offs_src4 = 0;
id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
id<MTLBuffer> id_src4 = src4 ? ggml_metal_get_buffer(src4, &offs_src4) : nil;
GGML_ASSERT(!src3 || src3->type == GGML_TYPE_F16);
GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) &&
@ -5000,8 +5097,6 @@ static int ggml_metal_encode_node(
const uint64_t nb32 = src3 ? src3->nb[2] : 0; GGML_UNUSED(nb32);
const uint64_t nb33 = src3 ? src3->nb[3] : 0; GGML_UNUSED(nb33);
const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t);
float scale;
float max_bias;
float logit_softcap;
@ -5389,7 +5484,12 @@ static int ggml_metal_encode_node(
} else {
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:4];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:5];
if (id_src4) {
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:5];
} else {
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:5];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:6];
if (!use_vec_kernel) {
// half8x8 kernel

View File

@ -35,6 +35,10 @@ constexpr constant static float kvalues_iq4nl_f[16] = {
-127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
};
constexpr constant static float kvalues_mxfp4_f[16] = {
0, .5f, 1.f, 1.5f, 2.f, 3.f, 4.f, 6.f, -0, -.5f, -1.f, -1.5f, -2.f, -3.f, -4.f, -6.f
};
static inline int best_index_int8(int n, constant float * val, float x) {
if (x <= val[0]) return 0;
if (x >= val[n-1]) return n-1;
@ -46,6 +50,18 @@ static inline int best_index_int8(int n, constant float * val, float x) {
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}
static inline float e8m0_to_fp32(uint8_t x) {
uint32_t bits;
if (x == 0) {
bits = 0x00400000;
} else {
bits = (uint32_t) x << 23;
}
return as_type<float>(bits);
}
// NOTE: this is not dequantizing - we are simply fitting the template
template <typename type4x4>
void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
@ -242,6 +258,27 @@ void quantize_q5_1(device const float * src, device block_q5_1 & dst) {
}
}
void quantize_q8_0(device const float * src, device block_q8_0 & dst) {
#pragma METAL fp math_mode(safe)
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = src[j];
amax = MAX(amax, fabs(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
dst.d = d;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = src[j]*id;
dst.qs[j] = round(x0);
}
}
void quantize_iq4_nl(device const float * src, device block_iq4_nl & dst) {
#pragma METAL fp math_mode(safe)
float amax = 0.0f; // absolute max
@ -462,25 +499,34 @@ void dequantize_q8_0_t4(device const block_q8_0 *xb, short il, thread type4 & re
}
}
void quantize_q8_0(device const float * src, device block_q8_0 & dst) {
#pragma METAL fp math_mode(safe)
float amax = 0.0f; // absolute max
template <typename type4x4>
void dequantize_mxfp4(device const block_mxfp4 * xb, short il, thread type4x4 & reg) {
device const uint8_t * q2 = (device const uint8_t *)xb->qs;
for (int j = 0; j < QK8_0; j++) {
const float v = src[j];
amax = MAX(amax, fabs(v));
const float d = e8m0_to_fp32(xb->e);
const uint8_t shr = il >= 1 ? 4 : 0;
for (int i = 0; i < 4; ++i) {
reg[i][0] = d * kvalues_mxfp4_f[(q2[4*i + 0] >> shr) & 0x0F];
reg[i][1] = d * kvalues_mxfp4_f[(q2[4*i + 1] >> shr) & 0x0F];
reg[i][2] = d * kvalues_mxfp4_f[(q2[4*i + 2] >> shr) & 0x0F];
reg[i][3] = d * kvalues_mxfp4_f[(q2[4*i + 3] >> shr) & 0x0F];
}
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
template <typename type4>
void dequantize_mxfp4_t4(device const block_mxfp4 * xb, short il, thread type4 & reg) {
device const uint8_t * q2 = (device const uint8_t *)xb->qs;
dst.d = d;
const float d = e8m0_to_fp32(xb->e);
const short il4 = il%4;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = src[j]*id;
const uint8_t shr = il >= 4 ? 4 : 0;
dst.qs[j] = round(x0);
}
reg[0] = d * kvalues_mxfp4_f[(q2[4*il4 + 0] >> shr) & 0x0F];
reg[1] = d * kvalues_mxfp4_f[(q2[4*il4 + 1] >> shr) & 0x0F];
reg[2] = d * kvalues_mxfp4_f[(q2[4*il4 + 2] >> shr) & 0x0F];
reg[3] = d * kvalues_mxfp4_f[(q2[4*il4 + 3] >> shr) & 0x0F];
}
template <typename type4x4>
@ -960,6 +1006,32 @@ kernel void kernel_div(
}
}
kernel void kernel_add_id(
constant ggml_metal_kargs_add_id & args,
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i1 = tgpig.x;
const int i2 = tgpig.y;
const int i11 = *((device const int32_t *) (src2 + i1*sizeof(int32_t) + i2*args.nb21));
const size_t nb1 = args.ne0 * sizeof(float);
const size_t nb2 = args.ne1 * nb1;
device float * dst_row = (device float *)((device char *)dst + i1*nb1 + i2*nb2);
device const float * src0_row = (device const float *)((device char *)src0 + i1*args.nb01 + i2*args.nb02);
device const float * src1_row = (device const float *)((device char *)src1 + i11*args.nb11);
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
dst_row[i0] = src0_row[i0] + src1_row[i0];
}
}
template<typename T>
kernel void kernel_repeat(
constant ggml_metal_kargs_repeat & args,
@ -1431,6 +1503,32 @@ kernel void kernel_swiglu(
}
}
kernel void kernel_swiglu_oai(
device const char * src0,
device const char * src1,
device char * dst,
constant ggml_metal_kargs_glu & args,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * src0_row = (device const float *) ((device const char *) src0 + tgpig*args.nb01) + args.i00;
device const float * src1_row = (device const float *) ((device const char *) src1 + tgpig*args.nb11) + args.i10;
device float * dst_row = (device float *) ((device char *) dst + tgpig*args.nb1);
for (int i0 = tpitg; i0 < args.ne0; i0 += ntg) {
float x0 = src0_row[i0];
float x1 = src1_row[i0];
x0 = min(x0, args.limit);
x1 = max(min(x1, args.limit), -args.limit);
float out_glu = x0 / (1.0f + exp(-x0 * args.alpha));
out_glu = out_glu * (1.0f + x1);
dst_row[i0] = out_glu;
}
}
kernel void kernel_geglu_erf(
device const char * src0,
device const char * src1,
@ -1534,6 +1632,7 @@ template<typename T>
kernel void kernel_soft_max(
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
constant ggml_metal_kargs_soft_max & args,
threadgroup float * buf [[threadgroup(0)]],
@ -1552,6 +1651,7 @@ kernel void kernel_soft_max(
device const float * psrc0 = (device const float *) (src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
device const T * pmask = src1 != src0 ? (device const T * ) (src1 + i11*args.nb11 + i12*args.nb12 + i13*args.nb13) : nullptr;
device const float * psrc2 = src2 != src0 ? (device const float *) (src2) : nullptr;
device float * pdst = (device float *) (dst + i01*args.nb1 + i02*args.nb2 + i03*args.nb3);
float slope = 1.0f;
@ -1567,7 +1667,7 @@ kernel void kernel_soft_max(
}
// parallel max
float lmax = -INFINITY;
float lmax = psrc2 ? psrc2[i02] : -INFINITY;
for (int i00 = tpitg.x; i00 < args.ne00; i00 += tptg.x) {
lmax = MAX(lmax, psrc0[i00]*args.scale + (pmask ? slope*pmask[i00] : 0.0f));
@ -1623,6 +1723,10 @@ kernel void kernel_soft_max(
sum = simd_sum(sum);
}
if (psrc2) {
sum += exp(psrc2[i02] - max_val);
}
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg.x; i00 < args.ne00; i00 += tptg.x) {
@ -1634,6 +1738,7 @@ template<typename T>
kernel void kernel_soft_max_4(
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
constant ggml_metal_kargs_soft_max & args,
threadgroup float * buf [[threadgroup(0)]],
@ -1652,6 +1757,7 @@ kernel void kernel_soft_max_4(
device const float4 * psrc4 = (device const float4 *) (src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
device const T * pmask = src1 != src0 ? (device const T * ) (src1 + i11*args.nb11 + i12*args.nb12 + i13*args.nb13) : nullptr;
device const float * psrc2 = src2 != src0 ? (device const float * ) (src2) : nullptr;
device float4 * pdst4 = (device float4 *) (dst + i01*args.nb1 + i02*args.nb2 + i03*args.nb3);
float slope = 1.0f;
@ -1666,7 +1772,7 @@ kernel void kernel_soft_max_4(
}
// parallel max
float4 lmax4 = -INFINITY;
float4 lmax4 = psrc2 ? psrc2[i02] : -INFINITY;
for (int i00 = tpitg.x; i00 < args.ne00/4; i00 += tptg.x) {
lmax4 = fmax(lmax4, psrc4[i00]*args.scale + (float4)((pmask ? slope*pmask[i00] : 0.0f)));
@ -1725,6 +1831,10 @@ kernel void kernel_soft_max_4(
sum = simd_sum(sum);
}
if (psrc2) {
sum += exp(psrc2[i02] - max_val);
}
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg.x; i00 < args.ne00/4; i00 += tptg.x) {
@ -3106,6 +3216,11 @@ template [[host_name("kernel_mul_mv_ext_q8_0_f32_r1_3")]] kernel mul_mv_ext_q4
template [[host_name("kernel_mul_mv_ext_q8_0_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, block_q8_0, 32, dequantize_q8_0_t4>;
template [[host_name("kernel_mul_mv_ext_q8_0_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, block_q8_0, 32, dequantize_q8_0_t4>;
template [[host_name("kernel_mul_mv_ext_mxfp4_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, block_mxfp4, 32, dequantize_mxfp4_t4>;
template [[host_name("kernel_mul_mv_ext_mxfp4_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, block_mxfp4, 32, dequantize_mxfp4_t4>;
template [[host_name("kernel_mul_mv_ext_mxfp4_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, block_mxfp4, 32, dequantize_mxfp4_t4>;
template [[host_name("kernel_mul_mv_ext_mxfp4_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, block_mxfp4, 32, dequantize_mxfp4_t4>;
template [[host_name("kernel_mul_mv_ext_iq4_nl_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, block_iq4_nl, 32, dequantize_iq4_nl_t4>;
template [[host_name("kernel_mul_mv_ext_iq4_nl_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, block_iq4_nl, 32, dequantize_iq4_nl_t4>;
template [[host_name("kernel_mul_mv_ext_iq4_nl_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, block_iq4_nl, 32, dequantize_iq4_nl_t4>;
@ -4092,6 +4207,7 @@ kernel void kernel_flash_attn_ext(
device const char * k,
device const char * v,
device const char * mask,
device const char * sinks,
device char * dst,
threadgroup half * shmem_f16 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
@ -4407,6 +4523,35 @@ kernel void kernel_flash_attn_ext(
}
}
if (sinks != q && sgitg == 0) {
for (ushort j = 0; j < Q; ++j) {
const float m = M[j];
const float s = tiisg == 0 ? ((device const float *) sinks)[iq2] : -FLT_MAX/2;
M[j] = simd_max(max(M[j], s));
const float ms = exp(m - M[j]);
const float vs = exp(s - M[j]);
S[j] = S[j]*ms + simd_sum(vs);
if (tiisg == j) {
ss[j*TS + 2*C + j] = ms;
}
}
// O = diag(ms)*O
{
s8x8_t ms;
simdgroup_load(ms, ss + 2*C, TS, 0, false);
#pragma unroll(DV8)
for (short i = 0; i < DV8; ++i) {
simdgroup_multiply(lo[i], ms, lo[i]);
}
}
}
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
for (short j = tiisg; j < Q; j += NW) {
ss[j*TS + 0] = S[j];
@ -4618,6 +4763,7 @@ kernel void kernel_flash_attn_ext_vec(
device const char * k,
device const char * v,
device const char * mask,
device const char * sinks,
device char * dst,
threadgroup half * shmem_f16 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
@ -4835,6 +4981,23 @@ kernel void kernel_flash_attn_ext_vec(
}
}
if (sinks != q && sgitg == 0) {
const float m = M;
const float s = tiisg == 0 ? ((device const float *) sinks)[iq2] : -FLT_MAX/2;
M = simd_max(max(M, s));
const float ms = exp(m - M);
const float vs = exp(s - M);
S = S*ms + simd_sum(vs);
#pragma unroll(DV4/NL)
for (short ii = 0; ii < DV4; ii += NL) {
lo[ii/NL] *= ms;
}
}
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
if (tiisg == 0) {
ss[0] = (s_t) S;
@ -6940,6 +7103,95 @@ kernel void kernel_mul_mv_iq4_xs_f32(
kernel_mul_mv_iq4_xs_f32_impl<N_R0_IQ4_XS, N_SG_IQ4_XS, N_SIMDWIDTH, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<int nr0, int nsg, int nw, typename args_t>
void kernel_mul_mv_mxfp4_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
threadgroup float * shmem_f32 = (threadgroup float *) shmem;
const int nb = args.ne00/QK_MXFP4;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * nsg + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_mxfp4 * x = (device const block_mxfp4 *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
const short ix = tiisg/2; // 0...15
const short it = tiisg%2; // 0 or 1
shmem_f32[tiisg] = kvalues_mxfp4_f[tiisg%16];
threadgroup_barrier(mem_flags::mem_threadgroup);
float4 yl[4];
float sumf[nr0]={0.f};
device const float * yb = y + ix * QK_MXFP4 + it * 8;
for (int ib = ix; ib < nb; ib += 16) {
device const float4 * y4 = (device const float4 *)yb;
yl[0] = y4[0];
yl[1] = y4[4];
yl[2] = y4[1];
yl[3] = y4[5];
#pragma unroll(nr0)
for (short row = 0; row < nr0; row++) {
device const block_mxfp4 & xb = x[row*nb + ib];
device const uint8_t * q2 = (device const uint8_t *)(xb.qs + 8*it);
float4 acc1 = yl[0]*float4(shmem_f32[q2[0] & 0x0F], shmem_f32[q2[1] & 0x0F], shmem_f32[q2[2] & 0x0F], shmem_f32[q2[3] & 0x0F]);
float4 acc2 = yl[1]*float4(shmem_f32[q2[0] >> 4 ], shmem_f32[q2[1] >> 4 ], shmem_f32[q2[2] >> 4 ], shmem_f32[q2[3] >> 4 ]);
float4 acc3 = yl[2]*float4(shmem_f32[q2[4] & 0x0F], shmem_f32[q2[5] & 0x0F], shmem_f32[q2[6] & 0x0F], shmem_f32[q2[7] & 0x0F]);
float4 acc4 = yl[3]*float4(shmem_f32[q2[4] >> 4 ], shmem_f32[q2[5] >> 4 ], shmem_f32[q2[6] >> 4 ], shmem_f32[q2[7] >> 4 ]);
acc1 = (acc1 + acc3) + (acc2 + acc4);
sumf[row] += e8m0_to_fp32(xb.e) * ((acc1[0] + acc1[1]) + (acc1[2] + acc1[3]));
}
yb += 16 * QK_MXFP4;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}
[[host_name("kernel_mul_mv_mxfp4_f32")]]
kernel void kernel_mul_mv_mxfp4_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_mxfp4_f32_impl<N_R0_MXFP4, N_SG_MXFP4, N_SIMDWIDTH, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
kernel void kernel_get_rows_q(
constant ggml_metal_kargs_get_rows & args,
@ -7475,6 +7727,7 @@ template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_q_t kernel_get
template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_q_t kernel_get_rows_q<block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_q_t kernel_get_rows_q<block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_q_t kernel_get_rows_q<block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_get_rows_mxfp4")]] kernel get_rows_q_t kernel_get_rows_q<block_mxfp4, 2, dequantize_mxfp4>;
template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q3_K, QK_NL, dequantize_q3_K>;
template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q4_K, QK_NL, dequantize_q4_K>;
@ -7527,6 +7780,7 @@ template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mul_mm_t kernel_mul_m
template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_mul_mm_mxfp4_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_mxfp4, 2, dequantize_mxfp4>;
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K>;
template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K>;
@ -7558,6 +7812,7 @@ template [[host_name("kernel_mul_mm_id_q4_1_f16")]] kernel mul_mm_id kernel_m
template [[host_name("kernel_mul_mm_id_q5_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_mul_mm_id_q5_1_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_mul_mm_id_q8_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_mul_mm_id_mxfp4_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_mxfp4, 2, dequantize_mxfp4>;
template [[host_name("kernel_mul_mm_id_q2_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_mul_mm_id_q3_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K>;
template [[host_name("kernel_mul_mm_id_q4_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K>;
@ -7703,6 +7958,8 @@ template [[host_name("kernel_mul_mv_id_q4_1_f32")]] kernel kernel_mul_mv_id_t
template [[host_name("kernel_mul_mv_id_q5_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q5_0, N_R0_Q5_0, N_SG_Q5_0, N_SIMDWIDTH>>>;
template [[host_name("kernel_mul_mv_id_q5_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q5_1, N_R0_Q5_1, N_SG_Q5_1, N_SIMDWIDTH>>>;
template [[host_name("kernel_mul_mv_id_mxfp4_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_mxfp4_f32_impl<N_R0_MXFP4, N_SG_MXFP4, N_SIMDWIDTH>>>;
template [[host_name("kernel_mul_mv_id_q2_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q2_K_f32_impl <N_R0_Q2_K, N_SG_Q2_K, N_SIMDWIDTH>>>;
template [[host_name("kernel_mul_mv_id_q3_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q3_K_f32_impl <N_R0_Q3_K, N_SG_Q3_K, N_SIMDWIDTH>>>;
template [[host_name("kernel_mul_mv_id_q4_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q4_K_f32_impl <N_R0_Q4_K, N_SG_Q4_K, N_SIMDWIDTH>>>;

View File

@ -55,6 +55,7 @@ endfunction()
set(GGML_OPENCL_KERNELS
add
add_id
argsort
clamp
cpy

View File

@ -345,6 +345,7 @@ struct ggml_backend_opencl_context {
cl_command_queue queue;
cl_program program_add;
cl_program program_add_id;
cl_program program_clamp;
cl_program program_cpy;
cl_program program_cvt;
@ -404,6 +405,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_mul, kernel_mul_row, kernel_mul_f16, kernel_mul_row_f16;
cl_kernel kernel_div, kernel_div_row, kernel_div_f16, kernel_div_row_f16;
cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
cl_kernel kernel_add_id;
cl_kernel kernel_scale;
cl_kernel kernel_silu, kernel_silu_4;
cl_kernel kernel_gelu, kernel_gelu_4;
@ -412,7 +414,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_relu;
cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
cl_kernel kernel_clamp;
cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_geglu_erf, kernel_geglu_quick,
cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick,
kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
cl_kernel kernel_norm;
cl_kernel kernel_rms_norm, kernel_rms_norm_mul;
@ -600,6 +602,7 @@ struct ggml_backend_opencl_context {
if (ref_count == 0) {
#ifdef GGML_OPENCL_PROFILING
write_profiling_info();
profiling_info.clear();
#endif
}
}
@ -681,6 +684,22 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// add_id
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "add_id.cl.h"
};
#else
const std::string kernel_src = read_file("add_id.cl");
#endif
backend_ctx->program_add_id =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_add_id = clCreateKernel(backend_ctx->program_add_id, "kernel_add_id", &err), err));
GGML_LOG_CONT(".");
}
// clamp
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -787,6 +806,7 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
CL_CHECK((backend_ctx->kernel_swiglu_oai = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_oai", &err), err));
CL_CHECK((backend_ctx->kernel_geglu_erf = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf", &err), err));
CL_CHECK((backend_ctx->kernel_geglu_quick = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick", &err), err));
CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
@ -2046,8 +2066,8 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
backend_ctx->has_vector_subgroup_broadcast =
backend_ctx->adreno_cl_compiler_version.major >= 47 ||
backend_ctx->adreno_cl_compiler_version.major == 17;
(backend_ctx->adreno_cl_compiler_version.type == E031 && backend_ctx->adreno_cl_compiler_version.major >= 47) ||
(backend_ctx->adreno_cl_compiler_version.type == DX && backend_ctx->adreno_cl_compiler_version.major >= 17);
GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
@ -2467,6 +2487,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return (op->src[0]->type == op->src[1]->type) &&
(op->src[0]->type == op->type) &&
(op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
case GGML_OP_ADD_ID:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_GELU:
@ -2488,6 +2510,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
@ -2601,10 +2624,10 @@ ggml_backend_t ggml_backend_opencl_init(void) {
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_opencl_guid(),
/* .interface = */ ggml_backend_opencl_i,
/* .device = */ dev,
/* .context = */ backend_ctx
/* .guid = */ ggml_backend_opencl_guid(),
/* .iface = */ ggml_backend_opencl_i,
/* .device = */ dev,
/* .context = */ backend_ctx
};
return backend;
@ -3822,6 +3845,75 @@ static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const
}
}
static void ggml_cl_add_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
const ggml_tensor * src2 = dst->src[2];
GGML_ASSERT(src2);
GGML_ASSERT(src2->extra);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(src2->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous_rows(src0));
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb11 = src1->nb[1];
const cl_ulong nb21 = src2->nb[1];
const int ne0 = dst->ne[0];
const int ne1 = dst->ne[1];
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offset2 = extra2->offset + src2->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel = backend_ctx->kernel_add_id;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb21));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne1));
int nth = MIN(ne00, (int) backend_ctx->get_kernel_workgroup_size(kernel));
size_t global_work_size[] = { (size_t)ne01*nth, (size_t)ne02, 1 };
size_t local_work_size[] = { (size_t)nth, 1, 1 };
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@ -6500,17 +6592,24 @@ static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, c
GGML_ASSERT(src1->extra);
}
const ggml_tensor * src2 = dst->src[2];
if (src2) {
GGML_ASSERT(src2->extra);
}
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
@ -6578,25 +6677,27 @@ static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, c
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb3));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &scale));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(float), &max_bias));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(float), &m0));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(float), &m1));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &n_head_log2));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb3));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(float), &scale));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(float), &max_bias));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(float), &m0));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &m1));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_head_log2));
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)nth, 1, 1};
@ -7003,6 +7104,9 @@ static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const
kernel = backend_ctx->kernel_swiglu_f16;
}
break;
case GGML_GLU_OP_SWIGLU_OAI:
kernel = backend_ctx->kernel_swiglu_oai;
break;
case GGML_GLU_OP_GEGLU_ERF:
if (dst->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_geglu_erf;
@ -7038,7 +7142,10 @@ static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const
const cl_ulong nb1 = dst->nb[1];
const int swp = ((const int32_t *) dst->op_params)[1];
const int swp = ggml_get_op_params_i32(dst, 1);
const float alpha = ggml_get_op_params_f32(dst, 2);
const float limit = ggml_get_op_params_f32(dst, 3);
const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
@ -7055,6 +7162,11 @@ static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU_OAI) {
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &limit));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &alpha));
}
const size_t nrows = ggml_nrows(src0);
size_t nth = 512;
size_t global_work_size[] = {nrows*nth, 1, 1};
@ -7111,6 +7223,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_add;
break;
case GGML_OP_ADD_ID:
if (!any_on_device) {
return false;
}
func = ggml_cl_add_id;
break;
case GGML_OP_MUL:
if (!any_on_device) {
return false;

View File

@ -0,0 +1,42 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
//------------------------------------------------------------------------------
// add_id
//------------------------------------------------------------------------------
kernel void kernel_add_id(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * src2,
ulong offset2,
global char * dst,
ulong offsetd,
ulong nb01,
ulong nb02,
ulong nb11,
ulong nb21,
int ne0,
int ne1
) {
src0 = (global char*)((global char*)src0 + offset0);
src1 = (global char*)((global char*)src1 + offset1);
src2 = (global char*)((global char*)src2 + offset2);
dst = (global char*)((global char*)dst + offsetd);
int i1 = get_group_id(0);
int i2 = get_group_id(1);
const int i11 = *((global const int *) (src2 + i1*sizeof(int) + i2*nb21));
const size_t nb1 = ne0 * sizeof(float);
const size_t nb2 = ne1 * nb1;
global float * dst_row = (global float *)((global char *)dst + i1*nb1 + i2*nb2);
global float * src0_row = (global float *)((global char *)src0 + i1*nb01 + i2*nb02);
global float * src1_row = (global float *)((global char *)src1 + i11*nb11);
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
dst_row[i0] = src0_row[i0] + src1_row[i0];
}
}

View File

@ -202,6 +202,47 @@ kernel void kernel_swiglu_f16(
}
}
//------------------------------------------------------------------------------
// swiglu_oai
//------------------------------------------------------------------------------
kernel void kernel_swiglu_oai(
global char * src0,
ulong offset0,
global char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
ulong nb01,
ulong nb11,
int ne0,
ulong nb1,
int ne00_off,
int ne10_off,
float limit,
float alpha
) {
src0 = (global char*)((global char*)src0 + offset0);
src1 = (global char*)((global char*)src1 + offset1);
dst = (global char*)((global char*)dst + offsetd);
global float * src0_row = (global float *) ((global char *) src0 + get_group_id(0)*nb01) + ne00_off;
global float * src1_row = (global float *) ((global char *) src1 + get_group_id(0)*nb11) + ne10_off;
global float * dst_row = (global float *) ((global char *) dst + get_group_id(0)*nb1);
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
float x0 = src0_row[i0];
float x1 = src1_row[i0];
x0 = min(x0, limit);
x1 = max(min(x1, limit), -limit);
float out_glu = x0 / (1.0f + exp(-x0 * alpha));
out_glu = out_glu * (1.0f + x1);
dst_row[i0] = out_glu;
}
}
//------------------------------------------------------------------------------
// geglu_erf
//------------------------------------------------------------------------------

View File

@ -26,6 +26,8 @@ kernel void kernel_soft_max_4_f16(
ulong offset0,
global char * src1,
ulong offset1,
global char * src2,
ulong offset2,
global char * dst,
ulong offsetd,
int ne00,
@ -48,6 +50,7 @@ kernel void kernel_soft_max_4_f16(
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
src2 = src2 + offset2;
dst = dst + offsetd;
int i03 = get_group_id(2);
@ -60,6 +63,7 @@ kernel void kernel_soft_max_4_f16(
global float4 * psrc4 = (global float4 *)(src0 + i01*nb01 + i02*nb02 + i03*nb03);
global half4 * pmask = src1 != src0 ? (global half4 *)(src1 + i11*nb11 + i12*nb12 + i13*nb13) : 0;
global float * psrc2 = src2 != src0 ? (global float *)(src2) : 0;
global float4 * pdst4 = (global float4 *)(dst + i01*nb1 + i02*nb2 + i03*nb3);
float slope = 1.0f;
@ -75,7 +79,7 @@ kernel void kernel_soft_max_4_f16(
}
// parallel max
float4 lmax4 = -INFINITY;
float4 lmax4 = psrc2 ? psrc2[i02] : -INFINITY;
for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
lmax4 = fmax(lmax4, psrc4[i00]*scale + slope*(pmask ? convert_float4(pmask[i00]) : 0.0f));
}
@ -92,7 +96,11 @@ kernel void kernel_soft_max_4_f16(
}
float lsum = lsum4.s0 + lsum4.s1 + lsum4.s2 + lsum4.s3;
const float sum = sub_group_reduce_add(lsum);
float sum = sub_group_reduce_add(lsum);
if (psrc2) {
sum += exp(psrc2[i02] - max);
}
for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
pdst4[i00] /= sum;

View File

@ -26,6 +26,8 @@ kernel void kernel_soft_max_4(
ulong offset0,
global char * src1,
ulong offset1,
global char * src2,
ulong offset2,
global char * dst,
ulong offsetd,
int ne00,
@ -48,6 +50,7 @@ kernel void kernel_soft_max_4(
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
src2 = src2 + offset2;
dst = dst + offsetd;
int i03 = get_group_id(2);
@ -60,6 +63,7 @@ kernel void kernel_soft_max_4(
global float4 * psrc4 = (global float4 *)(src0 + i01*nb01 + i02*nb02 + i03*nb03);
global float4 * pmask = src1 != src0 ? (global float4 *)(src1 + i11*nb11 + i12*nb12 + i13*nb13) : 0;
global float * psrc2 = src2 != src0 ? (global float *)(src2) : 0;
global float4 * pdst4 = (global float4 *)(dst + i01*nb1 + i02*nb2 + i03*nb3);
float slope = 1.0f;
@ -75,7 +79,7 @@ kernel void kernel_soft_max_4(
}
// parallel max
float4 lmax4 = -INFINITY;
float4 lmax4 = psrc2 ? psrc2[i02] : -INFINITY;
for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f));
}
@ -92,7 +96,11 @@ kernel void kernel_soft_max_4(
}
float lsum = lsum4.s0 + lsum4.s1 + lsum4.s2 + lsum4.s3;
const float sum = sub_group_reduce_add(lsum);
float sum = sub_group_reduce_add(lsum);
if (psrc2) {
sum += exp(psrc2[i02] - max);
}
for (int i00 = get_local_id(0); i00 < ne00/4; i00 += get_local_size(0)) {
pdst4[i00] /= sum;

View File

@ -26,6 +26,8 @@ kernel void kernel_soft_max_f16(
ulong offset0,
global char * src1,
ulong offset1,
global char * src2,
ulong offset2,
global char * dst,
ulong offsetd,
int ne00,
@ -48,6 +50,7 @@ kernel void kernel_soft_max_f16(
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
src2 = src2 + offset2;
dst = dst + offsetd;
int i03 = get_group_id(2);
@ -60,6 +63,7 @@ kernel void kernel_soft_max_f16(
global float * psrc0 = (global float *)(src0 + i01*nb01 + i02*nb02 + i03*nb03);
global half * pmask = src1 != src0 ? (global half *)(src1 + i11*nb11 + i12*nb12 + i13*nb13) : 0;
global float * psrc2 = src2 != src0 ? (global float *)(src2) : 0;
global float * pdst = (global float *)(dst + i01*nb1 + i02*nb2 + i03*nb3);
float slope = 1.0f;
@ -75,7 +79,7 @@ kernel void kernel_soft_max_f16(
}
// parallel max
float lmax = -INFINITY;
float lmax = psrc2 ? psrc2[i02] : -INFINITY;
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
lmax = fmax(lmax, psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f));
}
@ -91,7 +95,11 @@ kernel void kernel_soft_max_f16(
pdst[i00] = exp_psrc0;
}
const float sum = sub_group_reduce_add(lsum);
float sum = sub_group_reduce_add(lsum);
if (psrc2) {
sum += exp(psrc2[i02] - max);
}
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
pdst[i00] /= sum;

View File

@ -26,6 +26,8 @@ kernel void kernel_soft_max(
ulong offset0,
global char * src1,
ulong offset1,
global char * src2,
ulong offset2,
global char * dst,
ulong offsetd,
int ne00,
@ -48,6 +50,7 @@ kernel void kernel_soft_max(
) {
src0 = src0 + offset0;
src1 = src1 + offset1;
src2 = src2 + offset2;
dst = dst + offsetd;
int i03 = get_group_id(2);
@ -60,6 +63,7 @@ kernel void kernel_soft_max(
global float * psrc0 = (global float *)(src0 + i01*nb01 + i02*nb02 + i03*nb03);
global float * pmask = src1 != src0 ? (global float *)(src1 + i11*nb11 + i12*nb12 + i13*nb13) : 0;
global float * psrc2 = src2 != src0 ? (global float *)(src2) : 0;
global float * pdst = (global float *)(dst + i01*nb1 + i02*nb2 + i03*nb3);
float slope = 1.0f;
@ -75,7 +79,7 @@ kernel void kernel_soft_max(
}
// parallel max
float lmax = -INFINITY;
float lmax = psrc2 ? psrc2[i02] : -INFINITY;
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
lmax = fmax(lmax, psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f));
}
@ -91,7 +95,11 @@ kernel void kernel_soft_max(
pdst[i00] = exp_psrc0;
}
const float sum = sub_group_reduce_add(lsum);
float sum = sub_group_reduce_add(lsum);
if (psrc2) {
sum += exp(psrc2[i02] - max);
}
for (int i00 = get_local_id(0); i00 < ne00; i00 += get_local_size(0)) {
pdst[i00] /= sum;

View File

@ -21,6 +21,17 @@
#define UNUSED GGML_UNUSED
static inline int best_index_int8(int n, const int8_t * val, float x) {
if (x <= val[0]) return 0;
if (x >= val[n-1]) return n-1;
int ml = 0, mu = n-1;
while (mu-ml > 1) {
int mav = (ml+mu)/2;
if (x < val[mav]) mu = mav; else ml = mav;
}
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}
// reference implementation for deterministic creation of model files
void quantize_row_q4_0_ref(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k) {
static const int qk = QK4_0;
@ -246,6 +257,53 @@ void quantize_row_q8_1_ref(const float * GGML_RESTRICT x, block_q8_1 * GGML_REST
}
}
static inline int best_index_mxfp4(float x, float e) {
int best_index = 0;
float best_err = fabsf(kvalues_mxfp4[0]*e - x);
for (int i = 1; i < 16; i++) {
float err = fabsf(kvalues_mxfp4[i]*e - x);
if (err < best_err) {
best_index = i;
best_err = err;
}
}
return best_index;
}
void quantize_row_mxfp4_ref(const float * GGML_RESTRICT x, block_mxfp4 * GGML_RESTRICT y, int64_t k) {
static const int qk = QK_MXFP4;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < qk; j++) {
const float v = x[i*qk + j];
if (amax < fabsf(v)) {
amax = fabsf(v);
}
}
const uint8_t e = (uint8_t) (floorf(log2f(amax)) - 2 + 127);
const float d = GGML_E8M0_TO_FP32_HALF(e);
y[i].e = e;
for (int j = 0; j < qk/2; ++j) {
const uint8_t x0 = best_index_mxfp4(x[i*qk + 0 + j], d);
const uint8_t x1 = best_index_mxfp4(x[i*qk + qk/2 + j], d);
y[i].qs[j] = x0;
y[i].qs[j] |= x1 << 4;
}
}
}
void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k) {
static const int qk = QK4_0;
@ -356,6 +414,26 @@ void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRI
}
}
void dequantize_row_mxfp4(const block_mxfp4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k) {
static const int qk = QK_MXFP4;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
const float d = GGML_E8M0_TO_FP32_HALF(x[i].e);
for (int j = 0; j < qk/2; ++j) {
const int8_t x0 = kvalues_mxfp4[x[i].qs[j] & 0x0F];
const int8_t x1 = kvalues_mxfp4[x[i].qs[j] >> 4];
y[i*qk + j + 0 ] = x0*d;
y[i*qk + j + qk/2] = x1*d;
}
}
}
//
// 2-6 bit quantization in super-blocks
//
@ -2014,6 +2092,12 @@ size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst,
return nrow * row_size;
}
size_t quantize_mxfp4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
GGML_UNUSED(quant_weights);
quantize_row_mxfp4_ref(src, dst, (int64_t)nrow*n_per_row);
return nrow * ggml_row_size(GGML_TYPE_MXFP4, n_per_row);
}
// ====================== Ternary (de)-quantization (BitNet b1.58 and TriLMs)
void quantize_row_tq1_0_ref(const float * GGML_RESTRICT x, block_tq1_0 * GGML_RESTRICT y, int64_t k) {
@ -4551,17 +4635,6 @@ size_t quantize_iq1_m(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst,
// ============================ 4-bit non-linear quants
static inline int best_index_int8(int n, const int8_t * val, float x) {
if (x <= val[0]) return 0;
if (x >= val[n-1]) return n-1;
int ml = 0, mu = n-1;
while (mu-ml > 1) {
int mav = (ml+mu)/2;
if (x < val[mav]) mu = mav; else ml = mav;
}
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}
static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * GGML_RESTRICT x,
ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
float * scales, float * weight, uint8_t * L,
@ -4961,6 +5034,15 @@ static bool validate_fp16(ggml_fp16_t f, size_t i) {
return true;
}
static bool validate_e_e8m0(uint8_t e, size_t i) {
if (e == 0xff) {
fprintf(stderr, "ggml_validate_row_data: found invalid e value %d at block %zu\n", e, i);
return false;
}
return true;
}
#define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
@ -4977,6 +5059,14 @@ static bool validate_fp16(ggml_fp16_t f, size_t i) {
} \
}
#define VALIDATE_ROW_DATA_E_E8M0_IMPL(type, data, nb) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
if (!validate_e_e8m0(q[i].e, i)) { \
return false; \
} \
}
#define VALIDATE_ROW_DATA_DVEC_F16_IMPL(type, data, nb, nr) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
@ -5130,6 +5220,10 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
} break;
case GGML_TYPE_MXFP4:
{
VALIDATE_ROW_DATA_E_E8M0_IMPL(block_mxfp4, data, nb);
} break;
case GGML_TYPE_Q2_K:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);

View File

@ -21,6 +21,8 @@ GGML_API void quantize_row_q5_1_ref(const float * GGML_RESTRICT x, block_q5_1 *
GGML_API void quantize_row_q8_0_ref(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k);
GGML_API void quantize_row_q8_1_ref(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k);
GGML_API void quantize_row_mxfp4_ref(const float * GGML_RESTRICT x, block_mxfp4 * GGML_RESTRICT y, int64_t k);
GGML_API void quantize_row_q2_K_ref(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k);
GGML_API void quantize_row_q3_K_ref(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k);
GGML_API void quantize_row_q4_K_ref(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k);
@ -45,6 +47,8 @@ GGML_API void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GG
GGML_API void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
//GGML_API void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
GGML_API void dequantize_row_mxfp4(const block_mxfp4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
GGML_API void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
GGML_API void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
GGML_API void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
@ -90,6 +94,8 @@ GGML_API size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTR
GGML_API size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
GGML_API size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
GGML_API size_t quantize_mxfp4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
GGML_API void iq2xs_init_impl(enum ggml_type type);
GGML_API void iq2xs_free_impl(enum ggml_type type);
GGML_API void iq3xs_init_impl(int grid_size);

View File

@ -823,10 +823,10 @@ ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
};
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_rpc_guid(),
/* .interface = */ ggml_backend_rpc_interface,
/* .device = */ ggml_backend_rpc_add_device(endpoint),
/* .context = */ ctx
/* .guid = */ ggml_backend_rpc_guid(),
/* .iface = */ ggml_backend_rpc_interface,
/* .device = */ ggml_backend_rpc_add_device(endpoint),
/* .context = */ ctx
};
return backend;
}

View File

@ -2609,6 +2609,8 @@ static void ggml_sycl_mul_mat_vec_nc(ggml_backend_sycl_context & ctx, const ggml
GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer));
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(src1->ne[1] == 1);
GGML_ASSERT(src1->ne[3] == 1);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
@ -2688,6 +2690,9 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
const size_t type_size_src0 = ggml_type_size(src0->type);
const size_t type_size_src1 = ggml_type_size(src1->type);
bool is_src0_cont_2 = ggml_is_contiguous_2(src0);
bool is_src1_cont_2 = ggml_is_contiguous_2(src1);
// SRC1 strides
int64_t s11 = nb11 / type_size_src1;
int64_t s12 = nb12 / type_size_src1;
@ -2737,6 +2742,8 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
s11 = ne10;
s12 = ne11 * s11;
s13 = ne12 * s12;
is_src1_cont_2 = true;
}
ggml_sycl_pool_alloc<sycl::half> dst_f16(ctx.pool());
@ -2852,12 +2859,16 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
else
#endif
{
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
if (r2 == 1 && r3 == 1 && is_src0_cont_2 && is_src1_cont_2) {
// with a [0, 2, 1, 3] perm. and ne02==1 the matrix strides need to be determined from dim 3:
const int64_t sma = ne02 == 1 ? nb03/nb00 : nb02/nb00;
const int64_t smb = ne12 == 1 ? s13 : s12;
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(*queue, oneapi::math::transpose::trans,
oneapi::math::transpose::nontrans, ne01, ne11, ne10, alpha,
src0_f16, dpct::library_data_t::real_half, nb01 / nb00, nb02 / nb00,
src1_f16, dpct::library_data_t::real_half, s11, s12, beta, dst_ddf,
src0_f16, dpct::library_data_t::real_half, nb01 / nb00, sma,
src1_f16, dpct::library_data_t::real_half, s11, smb, beta, dst_ddf,
mkl_data_type, ne0, ne1 * ne0, ne12 * ne13, mkl_compute_type)));
} else {
const int ne23 = ne12 * ne13;
@ -3187,7 +3198,7 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
// The kernel from the if path is faster for that specific case, but does not support all mul mats.
ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
}
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1 && src1->ne[3] == 1) {
// KQV single-batch
ggml_sycl_mul_mat_vec_nc(ctx, src0, src1, dst);
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2] * src1->ne[3] > 1) {
@ -4182,15 +4193,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
{
struct ggml_tensor * a;
struct ggml_tensor * b;
if (op->op == GGML_OP_MUL_MAT) {
a = op->src[0];
b = op->src[1];
} else {
a = op->src[2];
b = op->src[1];
}
struct ggml_tensor * a = op->src[0];
struct ggml_tensor * b = op->src[1];
if (a->ne[3] != b->ne[3]) {
return false;
}
@ -4205,7 +4210,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
}
}
ggml_type src0_type = op->src[0]->type;
if (src0_type == GGML_TYPE_BF16) {
if (src0_type == GGML_TYPE_BF16 || src0_type == GGML_TYPE_MXFP4) {
// TODO: support MXFP4
// FIXME: keep a list of supported types to avoid breaking the backend when a new type is added
return false;
}
return true;
@ -4350,6 +4357,10 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
if (op->src[0]->ne[3] != 1) {
return false;
}
// TODO: support attention sinks [TAG_ATTN_SINKS]
if (op->src[2]) {
return false;
}
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
@ -4575,10 +4586,10 @@ ggml_backend_t ggml_backend_sycl_init(int device) {
};
ggml_backend_t sycl_backend = new ggml_backend {
/* .guid = */ ggml_backend_sycl_guid(),
/* .interface = */ ggml_backend_sycl_interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_sycl_reg(), device),
/* .context = */ ctx
/* .guid = */ ggml_backend_sycl_guid(),
/* .iface = */ ggml_backend_sycl_interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_sycl_reg(), device),
/* .context = */ ctx
};
return sycl_backend;

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,42 @@
#version 450
#extension GL_EXT_control_flow_attributes : require
#include "types.comp"
layout (push_constant) uniform parameter
{
uint ne0;
uint ne1;
uint s01;
uint s02;
uint s11;
uint s21;
} p;
#define BLOCK_SIZE 512
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
layout (binding = 2) readonly buffer Z {int32_t data_c[];};
layout (binding = 3) writeonly buffer D {D_TYPE data_d[];};
void main() {
const uint i1 = gl_WorkGroupID.x;
const uint i2 = gl_WorkGroupID.y;
const uint i11 = data_c[i1 + i2 * p.s21];
const uint s1 = p.ne0;
const uint s2 = p.ne0 * p.ne1;
const uint d0 = i1 * s1 + i2 * s2;
const uint a0 = i1 * p.s01 + i2 * p.s02;
const uint b0 = i11 * p.s11;
for (uint i0 = gl_LocalInvocationID.x; i0 < p.ne0; i0 += BLOCK_SIZE) {
data_d[d0 + i0] = data_a[a0 + i0] + data_b[b0 + i0];
}
}

View File

@ -1,14 +1,18 @@
#version 450
#extension GL_EXT_control_flow_attributes : enable
#ifdef COOPMAT2
#extension GL_NV_cooperative_matrix2 : enable
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
#extension GL_KHR_memory_scope_semantics : enable
#endif
#ifdef USE_COLLECTIVES
# extension GL_KHR_shader_subgroup_shuffle : enable
#endif
#include "types.comp"
// Make spec constant
#define SHMEM_PAD 0
// shape notation: [dim(N), ..., dim(0)] -- stride(dim(j)) >= stride(dim(i)) if i > j
layout(binding = 0) readonly buffer A {
A_TYPE knl_data[];
@ -56,6 +60,12 @@ layout(push_constant) uniform parameter {
uint32_t nb1;
uint32_t nb2;
uint32_t nb3;
// fastdiv helper values
uint32_t KWmp; uint32_t KWL;
uint32_t KWKHmp; uint32_t KWKHL;
uint32_t OWmp; uint32_t OWL;
uint32_t OWOHmp; uint32_t OWOHL;
}
p;
@ -68,6 +78,7 @@ layout(constant_id = 3) const uint BS_NPQ = 128;
// Thread-tile sizes
layout(constant_id = 4) const uint TS_K = 8;
layout(constant_id = 5) const uint use_collectives = 1;
layout(constant_id = 6) const uint SHMEM_PAD = 4;
uint32_t tid = gl_LocalInvocationID.x;
const uint32_t WG_SIZE = gl_WorkGroupSize.x;
@ -85,6 +96,12 @@ uint32_t n_elems_out = K * NPQ;
// Number of blocktiles per input
uint32_t NB_CRS = splitWork(CRS, BS_CRS);
#ifdef COOPMAT2
#define SHMEM_TYPE float16_t
#else
#define SHMEM_TYPE float
#endif
const uint32_t Ash_stride = BS_CRS + SHMEM_PAD;
const uint32_t Bsh_stride = BS_NPQ + SHMEM_PAD;
@ -94,8 +111,8 @@ const uint32_t Bsh_numel = BS_CRS * BS_NPQ;
const uint32_t Ash_len = BS_K * Ash_stride;
const uint32_t Bsh_len = BS_CRS * Bsh_stride;
shared float Ash[Ash_len]; // K x CRS
shared float Bsh[Bsh_len]; // CRS x NPQ
shared SHMEM_TYPE Ash[Ash_len]; // K x CRS
shared SHMEM_TYPE Bsh[Bsh_len]; // CRS x NPQ
// Threadtile sizes
const uint32_t TS_NPQ = BS_K * BS_NPQ / WG_SIZE / TS_K;
@ -104,10 +121,6 @@ const uint32_t TS_NPQ = BS_K * BS_NPQ / WG_SIZE / TS_K;
const uint32_t NT_K = BS_K / TS_K;
const uint32_t NT_NPQ = BS_NPQ / TS_NPQ;
float regA[TS_K];
float regB[TS_NPQ];
float regC[TS_K][TS_NPQ];
/*
Compute
KxCRS @ CRSxNPQ = K x NPQ
@ -131,12 +144,44 @@ uint32_t Br = tid / BS_NPQ;
uint32_t Bc = tid % BS_NPQ;
const uint32_t BrpWg = WG_SIZE / BS_NPQ;
// see init_fastdiv_values in ggml-vulkan.cpp
uint fastdiv(uint n, uint mp, uint L) {
uint msbs, lsbs;
// msbs = mulhi(n, mp)
umulExtended(n, mp, msbs, lsbs);
return (msbs + n) >> L;
}
#ifdef COOPMAT2
#define ACC_TYPE float16_t
ACC_TYPE perElemOpStore(const in uint32_t r, const in uint32_t c, const in ACC_TYPE elem)
{
uint32_t K_idx = B_idx_K * BS_K + r;
uint32_t NPQ_idx = B_idx_NPQ * BS_NPQ + c;
uint32_t N_idx = fastdiv(NPQ_idx, p.OWOHmp, p.OWOHL); // divide by p.OH * p.OW;
uint32_t OH_idx = fastdiv(NPQ_idx - N_idx * p.OH * p.OW, p.OWmp, p.OWL); // divide by p.OW;
uint32_t OW_idx = NPQ_idx - N_idx * p.OH * p.OW - OH_idx * p.OW;
uint32_t dst_idx = OW_idx + OH_idx * p.nb1 + K_idx * p.nb2 + N_idx * p.nb3;
if (K_idx < K && NPQ_idx < NPQ) {
dst_data[dst_idx] = D_TYPE(elem);
}
return elem;
}
#endif
void main() {
#ifdef COOPMAT2
coopmat<ACC_TYPE, gl_ScopeWorkgroup, BS_K, BS_NPQ, gl_MatrixUseAccumulator> matC;
matC = coopmat<ACC_TYPE, gl_ScopeWorkgroup, BS_K, BS_NPQ, gl_MatrixUseAccumulator>(0.0);
#else
float regC[TS_K][TS_NPQ];
for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) {
regC[T_ly][T_lx] = 0.0;
}
}
#endif
/* Advance block in CRS dim */
for (uint32_t B_idx_CRS = 0; B_idx_CRS < NB_CRS; B_idx_CRS++) {
uint32_t CRS_idx_a;
@ -151,9 +196,9 @@ void main() {
uint32_t cached_KW_idx;
if (use_collectives == 1) {
cached_CRS_idx = B_idx_CRS * BS_CRS + gl_SubgroupInvocationID;
cached_Cin_idx = cached_CRS_idx / (p.KW * p.KH);
cached_Cin_idx = fastdiv(cached_CRS_idx, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH);
uint32_t cached_CRS_remainder = (cached_CRS_idx - cached_Cin_idx * p.KW * p.KH);
cached_KH_idx = cached_CRS_remainder / p.KW;
cached_KH_idx = fastdiv(cached_CRS_remainder, p.KWmp, p.KWL); // divide by p.KW;
cached_KW_idx = cached_CRS_remainder - cached_KH_idx * p.KW;
CRS_idx_a = subgroupShuffle(cached_CRS_idx, Ac);
@ -162,16 +207,16 @@ void main() {
KW_idx_a = subgroupShuffle(cached_KW_idx, Ac);
} else {
CRS_idx_a = B_idx_CRS * BS_CRS + Ac; // Global CRS_idx_a (column index of A)
Cin_idx_a = CRS_idx_a / (p.KW * p.KH);
Cin_idx_a = fastdiv(CRS_idx_a, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH);
uint32_t CRS_remainder = CRS_idx_a - Cin_idx_a * p.KW * p.KH;
KH_idx_a = CRS_remainder / p.KW;
KH_idx_a = fastdiv(CRS_remainder, p.KWmp, p.KWL); // divide by p.KW;
KW_idx_a = CRS_remainder - KH_idx_a * p.KW;
}
#else
CRS_idx_a = B_idx_CRS * BS_CRS + Ac; // Global CRS_idx_a (column index of A)
Cin_idx_a = CRS_idx_a / (p.KW * p.KH);
Cin_idx_a = fastdiv(CRS_idx_a, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH); / (p.KW * p.KH);
CRS_remainder = CRS_idx_a - Cin_idx_a * p.KW * p.KH;
KH_idx_a = CRS_remainder / p.KW;
KH_idx_a = fastdiv(CRS_remainder, p.KWmp, p.KWL); // divide by p.KW;
KW_idx_a = CRS_remainder - KH_idx_a * p.KW;
#endif
@ -185,16 +230,16 @@ void main() {
if (K_idx >= K || CRS_idx_a >= CRS) {
val = 0.0;
}
Ash[B_ly * Ash_stride + B_lx] = val;
Ash[B_ly * Ash_stride + B_lx] = SHMEM_TYPE(val);
}
/* Load input to B_block: (BS_CRS x BS_NPQ) */
for (uint32_t r_offset = 0; r_offset < BS_CRS; r_offset += BrpWg) {
UNROLL for (uint32_t r_offset = 0; r_offset < BS_CRS; r_offset += BrpWg) {
uint32_t B_ly = r_offset + Br; /* Row index of B block */
uint32_t B_lx = Bc;
uint32_t NPQ_idx = B_idx_NPQ * BS_NPQ + B_lx; /* Global NPQ index (column index of B) */
uint32_t N_idx = NPQ_idx / (p.OH * p.OW);
uint32_t N_idx = fastdiv(NPQ_idx, p.OWOHmp, p.OWOHL); // divide by p.OH * p.OW;
uint32_t NPQ_remainder = NPQ_idx - N_idx * p.OH * p.OW;
uint32_t OH_idx = NPQ_remainder / p.OW;
uint32_t OH_idx = fastdiv(NPQ_remainder, p.OWmp, p.OWL); // divide by p.OW;
uint32_t OW_idx = NPQ_remainder - OH_idx * p.OW;
uint32_t CRS_idx_b;
@ -209,16 +254,16 @@ void main() {
KW_idx_b = subgroupShuffle(cached_KW_idx, r_offset + Br);
} else {
CRS_idx_b = B_idx_CRS * BS_CRS + B_ly; /* Global CRS index (row index of B) */
Cin_idx_b = CRS_idx_b / (p.KW * p.KH);
Cin_idx_b = fastdiv(CRS_idx_b, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH);
uint32_t CRS_remainder = CRS_idx_b - Cin_idx_b * p.KW * p.KH;
KH_idx_b = CRS_remainder / p.KW;
KH_idx_b = fastdiv(CRS_remainder, p.KWmp, p.KWL); // divide by p.KW;
KW_idx_b = CRS_remainder - KH_idx_b * p.KW;
}
#else
CRS_idx_b = B_idx_CRS * BS_CRS + B_ly; /* Global CRS index (row index of B) */
Cin_idx_b = CRS_idx_b / (p.KW * p.KH);
Cin_idx_b = fastdiv(CRS_idx_b, p.KWKHmp, p.KWKHL); // divide by (p.KW * p.KH);
uint32_t CRS_remainder = CRS_idx_b - Cin_idx_b * p.KW * p.KH;
KH_idx_b = CRS_remainder / p.KW;
KH_idx_b = fastdiv(CRS_remainder, p.KWmp, p.KWL); // divide by p.KW;
KW_idx_b = CRS_remainder - KH_idx_b * p.KW;
#endif
@ -230,36 +275,55 @@ void main() {
if (CRS_idx_b >= CRS || NPQ_idx >= NPQ || H_idx < 0 || H_idx >= p.H || W_idx < 0 || W_idx >= p.W) {
val = 0.0;
}
Bsh[B_ly * Bsh_stride + B_lx] = val;
Bsh[B_ly * Bsh_stride + B_lx] = SHMEM_TYPE(val);
}
barrier();
for (uint32_t CRS_lidx = 0; CRS_lidx < BS_CRS; CRS_lidx++) {
for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
regA[T_ly] = Ash[(T_y * TS_K + T_ly) * Ash_stride + CRS_lidx];
}
for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) {
regB[T_lx] = Bsh[CRS_lidx * Bsh_stride + T_x * TS_NPQ + T_lx];
}
for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
#ifdef COOPMAT2
coopmat<float16_t, gl_ScopeWorkgroup, BS_K, BS_CRS, gl_MatrixUseA> matA;
coopmat<float16_t, gl_ScopeWorkgroup, BS_CRS, BS_NPQ, gl_MatrixUseB> matB;
coopMatLoad(matA, Ash, 0, Ash_stride, gl_CooperativeMatrixLayoutRowMajor);
coopMatLoad(matB, Bsh, 0, Bsh_stride, gl_CooperativeMatrixLayoutRowMajor);
matC = coopMatMulAdd(matA, matB, matC);
#else
if (T_y * TS_K < K) {
UNROLL for (uint32_t CRS_lidx = 0; CRS_lidx < BS_CRS; CRS_lidx++) {
float regA[TS_K];
float regB[TS_NPQ];
for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
regA[T_ly] = Ash[(T_y * TS_K + T_ly) * Ash_stride + CRS_lidx];
}
for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) {
regC[T_ly][T_lx] = fma(regA[T_ly], regB[T_lx], regC[T_ly][T_lx]);
regB[T_lx] = Bsh[CRS_lidx * Bsh_stride + T_x * TS_NPQ + T_lx];
}
for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) {
regC[T_ly][T_lx] = fma(regA[T_ly], regB[T_lx], regC[T_ly][T_lx]);
}
}
}
}
#endif
barrier();
}
/* Save C* */
for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) {
uint32_t K_idx = B_idx_K * BS_K + T_y * TS_K + T_ly;
uint32_t NPQ_idx = B_idx_NPQ * BS_NPQ + T_x * TS_NPQ + T_lx;
uint32_t N_idx = NPQ_idx / (p.OH * p.OW);
uint32_t OH_idx = (NPQ_idx - N_idx * p.OH * p.OW) / p.OW;
uint32_t OW_idx = NPQ_idx - N_idx * p.OH * p.OW - OH_idx * p.OW;
uint32_t dst_idx = OW_idx + OH_idx * p.nb1 + K_idx * p.nb2 + N_idx * p.nb3;
if (K_idx < K && NPQ_idx < NPQ) {
dst_data[dst_idx] = regC[T_ly][T_lx];
#ifdef COOPMAT2
coopMatPerElementNV(matC, matC, perElemOpStore);
#else
if (T_y * TS_K < K) {
for (uint32_t T_ly = 0; T_ly < TS_K; T_ly++) {
for (uint32_t T_lx = 0; T_lx < TS_NPQ; T_lx++) {
uint32_t K_idx = B_idx_K * BS_K + T_y * TS_K + T_ly;
uint32_t NPQ_idx = B_idx_NPQ * BS_NPQ + T_x * TS_NPQ + T_lx;
uint32_t N_idx = fastdiv(NPQ_idx, p.OWOHmp, p.OWOHL); // divide by p.OH * p.OW;
uint32_t OH_idx = fastdiv(NPQ_idx - N_idx * p.OH * p.OW, p.OWmp, p.OWL); // divide by p.OW;
uint32_t OW_idx = NPQ_idx - N_idx * p.OH * p.OW - OH_idx * p.OW;
uint32_t dst_idx = OW_idx + OH_idx * p.nb1 + K_idx * p.nb2 + N_idx * p.nb3;
if (K_idx < K && NPQ_idx < NPQ) {
dst_data[dst_idx] = regC[T_ly][T_lx];
}
}
}
}
#endif
}

View File

@ -4,8 +4,8 @@
#include "generic_unary_head.comp"
#include "dequant_funcs.comp"
#if defined(DATA_A_IQ4_NL)
// 16 invocations needed for init_iq4nl_shmem
#if defined(DATA_A_IQ4_NL) || defined(DATA_A_MXFP4)
// 16 invocations needed for init_iq_shmem
layout(local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
#else
layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;

View File

@ -434,6 +434,18 @@ vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
}
#endif
#if defined(DATA_A_MXFP4)
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
return vec2(kvalues_mxfp4[vui & 0xF], kvalues_mxfp4[vui >> 4]);
}
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
vec2 v0 = dequantize(ib, iqs, a_offset);
vec2 v1 = dequantize(ib, iqs + 1, a_offset);
return vec4(v0.x, v0.y, v1.x, v1.y);
}
#endif
#if defined(DATA_A_F32) || defined(DATA_A_F16) || defined(DATA_A_BF16)
vec2 get_dm(uint ib, uint a_offset) {
return vec2(0, 0);
@ -455,6 +467,12 @@ vec2 get_dm(uint ib, uint a_offset) {
}
#endif
#if defined(DATA_A_MXFP4)
vec2 get_dm(uint ib, uint a_offset) {
return vec2(e8m0_to_fp32(data_a[a_offset + ib].e), 0);
}
#endif
#if defined(DATA_A_Q4_1) || defined(DATA_A_Q5_1)
vec2 get_dm(uint ib, uint a_offset) {
return vec2(float(data_a[a_offset + ib].d), float(data_a[a_offset + ib].m));

View File

@ -654,6 +654,25 @@ float16_t dequantFuncIQ4_NL(const in decodeBufIQ4_NL bl, const in uint blockCoor
}
#endif
#if defined(DATA_A_MXFP4)
layout(buffer_reference, std430, buffer_reference_align = 2) buffer decodeBufMXFP4 {
block_mxfp4 block;
};
float16_t dequantFuncMXFP4(const in decodeBufMXFP4 bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{
const float d = e8m0_to_fp32(bl.block.e);
const uint idx = coordInBlock[1];
const uint iqs = idx & 0xF;
const uint shift = (idx & 0x10) >> 2;
uint32_t qs = bl.block.qs[iqs];
qs >>= shift;
qs &= 0xF;
float16_t ret = float16_t(kvalues_mxfp4[qs] * d);
return ret;
}
#endif
#if defined(DATA_A_Q4_0)
#define dequantFuncA dequantFuncQ4_0
#elif defined(DATA_A_Q4_1)
@ -696,4 +715,6 @@ float16_t dequantFuncIQ4_NL(const in decodeBufIQ4_NL bl, const in uint blockCoor
#define dequantFuncA dequantFuncIQ4_XS
#elif defined(DATA_A_IQ4_NL)
#define dequantFuncA dequantFuncIQ4_NL
#elif defined(DATA_A_MXFP4)
#define dequantFuncA dequantFuncMXFP4
#endif

View File

@ -0,0 +1,32 @@
#version 450
#include "dequant_head.comp"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {block_mxfp4 data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
init_iq_shmem(gl_WorkGroupSize);
const uint tid = gl_LocalInvocationID.x % 64;
const uint il = tid/32;
const uint ir = tid%32;
const uint ib = 32*i + ir;
if (ib >= p.nel / 32) {
return;
}
const uint q_idx = 8*il;
const uint b_idx = 1024*i + 32*ir + q_idx;
const float d = e8m0_to_fp32(data_a[ib].e);
[[unroll]] for (uint l = 0; l < 8; ++l) {
data_b[b_idx + l + 0] = D_TYPE(d * kvalues_mxfp4[data_a[ib].qs[q_idx + l] & 0xF]);
data_b[b_idx + l + 16] = D_TYPE(d * kvalues_mxfp4[data_a[ib].qs[q_idx + l] >> 4]);
}
}

View File

@ -305,6 +305,27 @@ void main() {
return;
}
if ((p.mask_n_head_log2 & SINK_ENABLE_BIT) != 0) {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
float sink = perElemOpGetSink(r, 0u, ACC_TYPE(0), iq2);
float ms = 1.0f;
float vs = 1.0f;
if (sink > Mf[r]) {
ms = exp(Mf[r] - sink);
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
Of[r][d] *= ms;
}
} else {
vs = exp(sink - Mf[r]);
}
Lf[r] = Lf[r]*ms + vs;
}
}
float Lfrcp[Br];
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
Lfrcp[r] = 1.0 / Lf[r];

View File

@ -50,10 +50,13 @@ layout (push_constant) uniform parameter {
uint32_t k_num;
} p;
#define SINK_ENABLE_BIT (1<<24)
#define MASK_ENABLE_BIT (1<<16)
#define N_LOG2_MASK 0xFFFF
layout (binding = 4) writeonly buffer O {D_TYPE data_o[];};
layout (binding = 4) readonly buffer S {float data_s[];};
layout (binding = 5) writeonly buffer O {D_TYPE data_o[];};
#if defined(A_TYPE_PACKED16)
#define BINDING_IDX_K 0
@ -111,6 +114,14 @@ ACC_TYPE perElemOpComputeSlope(const in uint32_t r, const in uint32_t c, const i
return ACC_TYPE(pow(base, ACC_TYPE(exph)));
}
// Load the sink value, indexed by Q's dimension 2.
ACC_TYPE perElemOpGetSink(const in uint32_t r, const in uint32_t c, const in ACC_TYPE elem, const in uint32_t iq2)
{
const uint32_t h = iq2 + (r % p.gqa_ratio);
return ACC_TYPE(data_s[h]);
}
uint32_t i, N, KV, split_k_index, Tr, start_j, end_j,
iq2, iq3, rk2, rk3, rv2, rv3, ik2, ik3, iv2, iv3,
q_stride, k_stride, v_stride, m_stride;

View File

@ -329,6 +329,27 @@ void main() {
return;
}
if ((p.mask_n_head_log2 & SINK_ENABLE_BIT) != 0) {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
float sink = perElemOpGetSink(r, 0u, ACC_TYPE(0), iq2);
float ms = 1.0f;
float vs = 1.0f;
if (sink > Mf[r]) {
ms = exp(Mf[r] - sink);
[[unroll]] for (uint32_t d = 0; d < HSV_per_thread / 4; ++d) {
Of[r][d] *= ACC_TYPE(ms);
}
} else {
vs = exp(sink - Mf[r]);
}
Lf[r] = Lf[r]*ms + vs;
}
}
float Lfrcp[rows_per_thread];
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
Lfrcp[r] = 1.0 / Lf[r];

View File

@ -248,6 +248,34 @@ void main() {
// resize L by using smear/reduce
coopMatReduceNV(Ldiag, L, gl_CooperativeMatrixReduceRowNV, smearReduce);
if ((p.mask_n_head_log2 & SINK_ENABLE_BIT) != 0) {
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> S;
coopMatPerElementNV(S, S, perElemOpGetSink, iq2);
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV, gl_MatrixUseAccumulator> Mr;
// resize M by using smear/reduce
coopMatReduceNV(Mr, M, gl_CooperativeMatrixReduceRowNV, smearReduce);
// O, Ldiag, Mr all have the same type so all element locations match
[[unroll]] for (uint32_t i = 0; i < Ldiag.length(); ++i) {
ACC_TYPE sink = S[i];
ACC_TYPE ms = ACC_TYPE(1.0f);
ACC_TYPE vs = ACC_TYPE(1.0f);
if (sink > Mr[i]) {
ms = exp(Mr[i] - sink);
O[i] *= ms;
} else {
vs = exp(sink - Mr[i]);
}
Ldiag[i] = Ldiag[i]*ms + vs;
}
}
[[unroll]]
for (int k = 0; k < Ldiag.length(); ++k) {
Ldiag[k] = ACC_TYPE(1.0) / Ldiag[k];

View File

@ -7,13 +7,15 @@ layout(constant_id = 0) const uint BLOCK_SIZE = 32;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {float data_a[];};
layout (binding = 1) writeonly buffer D {float data_d[];};
layout (binding = 1) readonly buffer B {float data_s[];};
layout (binding = 2) writeonly buffer D {float data_d[];};
layout (push_constant) uniform parameter {
uint D;
uint N;
uint ne3;
uint k_num;
uint sinks;
} p;
shared float tmpsh[BLOCK_SIZE];
@ -73,6 +75,22 @@ void main() {
}
L = tmpsh[0];
float sink;
if (p.sinks != 0) {
sink = data_s[n];
float ms = 1.0f;
float vs = 1.0f;
if (sink > m_max) {
ms = exp(m_max - sink);
} else {
vs = exp(sink - m_max);
}
L = L*ms + vs;
}
L = 1.0 / L;
// D dimension is split across workgroups in the y dimension
@ -85,6 +103,13 @@ void main() {
float m = data_a[m_offset + k * lm_stride];
O += exp(m - m_max) * data_a[o_offset];
}
if (p.sinks != 0) {
if (sink > m_max) {
float ms = 1.0f;
ms = exp(m_max - sink);
O *= ms;
}
}
O *= L;
data_d[iq3 * D * N + D * n + d] = O;
}

View File

@ -14,4 +14,6 @@ layout (push_constant) uniform parameter
uint ne00;
uint ne20;
uint mode;
float alpha;
float limit;
} p;

View File

@ -26,6 +26,9 @@ layout (push_constant) uniform parameter
uint ne12;
uint b_offset;
uint d_offset;
uint nb03;
uint nb13;
uint nb23;
} p;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
@ -34,6 +37,7 @@ void main() {
const uint tid = gl_LocalInvocationID.x;
const uint row_x = gl_GlobalInvocationID.y;
const uint channel = gl_GlobalInvocationID.z;
const uint i3 = gl_WorkGroupID.x;
const uint channel_x = channel / p.channel_x_divisor;
const uint channel_y = channel % p.ne12;
@ -41,7 +45,7 @@ void main() {
const uint nrows_dst = p.nrows_x;
const uint row_dst = row_x;
const uint idst = channel*nrows_dst + row_dst;
const uint idst = i3*p.nb23 + channel*nrows_dst + row_dst;
FLOAT_TYPE temp = 0.0f;
@ -58,8 +62,8 @@ void main() {
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel_y*p.channel_stride_y + row_y;
const uint ix = i3*p.nb03 + channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = i3*p.nb13 + channel_y*p.channel_stride_y + row_y;
const vec4 av4 = vec4(data_a_v4[ix / 4]);
const vec4 bv4 = vec4(data_b_v4[iy / 4]);
@ -74,8 +78,8 @@ void main() {
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel_y*p.channel_stride_y + row_y;
const uint ix = i3*p.nb03 + channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = i3*p.nb13 + channel_y*p.channel_stride_y + row_y;
const vec4 av4 = vec4(data_a_v4[ix / 4]);
const vec4 bv4 = vec4(data_b_v4[iy / 4]);
@ -91,8 +95,8 @@ void main() {
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel_y*p.channel_stride_y + row_y;
const uint ix = i3*p.nb03 + channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = i3*p.nb13 + channel_y*p.channel_stride_y + row_y;
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);

View File

@ -747,6 +747,21 @@ void main() {
buf_a[buf_idx + 1 ] = FLOAT_TYPE(kvalues_iq4nl[bitfieldExtract(vui, 8, 4)]) * d;
buf_a[buf_idx + 16] = FLOAT_TYPE(kvalues_iq4nl[bitfieldExtract(vui, 4, 4)]) * d;
buf_a[buf_idx + 17] = FLOAT_TYPE(kvalues_iq4nl[vui >> 12]) * d;
#elif defined(DATA_A_MXFP4)
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 2 * loadr_a;
const uint ib = idx / 8;
const uint iqs = (idx & 0x07) * 2;
const float d = e8m0_to_fp32(data_a[ib].e);
const uint vui = uint(data_a[ib].qs[iqs]);
const uint vui2 = uint(data_a[ib].qs[iqs+1]);
buf_a[buf_idx ] = FLOAT_TYPE(kvalues_mxfp4[vui & 0xF] * d);
buf_a[buf_idx + 16] = FLOAT_TYPE(kvalues_mxfp4[vui >> 4] * d);
buf_a[buf_idx + 1] = FLOAT_TYPE(kvalues_mxfp4[vui2 & 0xF] * d);
buf_a[buf_idx + 17] = FLOAT_TYPE(kvalues_mxfp4[vui2 >> 4] * d);
#endif
}
[[unroll]] for (uint l = 0; l < BN; l += loadstride_b) {

View File

@ -92,6 +92,12 @@ FLOAT_TYPE get_d(uint ib) {
}
#endif
#if defined(DATA_A_MXFP4)
FLOAT_TYPE get_d(uint ib) {
return FLOAT_TYPE(e8m0_to_fp32(data_a[ib].e));
}
#endif
#if defined(DATA_A_Q4_1) || defined(DATA_A_Q5_1)
FLOAT_TYPE_VEC2 get_dm(uint ib) {
return FLOAT_TYPE_VEC2(data_a_packed32[ib].dm);

View File

@ -20,6 +20,7 @@ layout (push_constant) uniform parameter
float m1;
uint n_head_log2;
uint nrows_x;
uint has_sinks;
} p;
#include "types.comp"
@ -29,7 +30,8 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
layout (binding = 2) buffer D {D_TYPE data_d[];};
layout (binding = 2) readonly buffer Z {float data_c[];};
layout (binding = 3) buffer D {D_TYPE data_d[];};
shared FLOAT_TYPE vals[BLOCK_SIZE];
@ -60,13 +62,13 @@ void soft_max(uint num_iters) {
const uint h = (rowx / p.ne01) % p.ne02; // head index
const float base = h < p.n_head_log2 ? p.m0 : p.m1;
const uint exp = h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1;
const uint exp = h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1;
slope = pow(base, exp);
}
// Find max
FLOAT_TYPE max_val = uintBitsToFloat(0xFF800000);
FLOAT_TYPE max_val = p.has_sinks == 0 ? uintBitsToFloat(0xFF800000) : data_c[i02];
// Cache values while we compute the max, so we don't need to read them
// again when we're ready to compute exp(x-max).
@ -148,6 +150,10 @@ void soft_max(uint num_iters) {
}
sum = vals[0];
if (p.has_sinks != 0) {
sum += FLOAT_TYPE(exp(FLOAT_TYPE(data_c[i02]) - max_val));
}
FLOAT_TYPE rcpdivisor = 1.0/sum;
[[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {

View File

@ -0,0 +1,14 @@
#version 450
#include "glu_head.comp"
float op(float a, float b) {
float xi = min(a, p.limit);
float gi = max(min(b, p.limit), -p.limit);
float out_glu = xi / (1.0f + exp(-xi * p.alpha));
out_glu = out_glu * (1.0f + gi);
return out_glu;
}
#include "glu_main.comp"

View File

@ -1337,6 +1337,29 @@ struct block_iq4_nl_packed16
#define A_TYPE_PACKED16 block_iq4_nl_packed16
#endif
#define QUANT_K_MXFP4 32
#define QUANT_R_MXFP4 2
struct block_mxfp4
{
uint8_t e;
uint8_t qs[QUANT_K_MXFP4/2];
};
//struct block_mxfp4_packed16
//{
// uint8_t e;
// uint16_t qs[QUANT_K_MXFP4/2/2];
//};
#if defined(DATA_A_MXFP4)
#define QUANT_K QUANT_K_MXFP4
#define QUANT_R QUANT_R_MXFP4
#define QUANT_AUXF 1
#define A_TYPE block_mxfp4
//#define A_TYPE_PACKED16 block_mxfp4_packed16
#endif
#if defined(DATA_A_IQ4_NL) || defined(DATA_A_IQ4_XS)
const int8_t kvalues_iq4nl_const[16] = {
int8_t(-127), int8_t(-104), int8_t(-83), int8_t(-65), int8_t(-49), int8_t(-35), int8_t(-22), int8_t(-10),
@ -1356,6 +1379,25 @@ void init_iq_shmem(uvec3 wgsize)
}
#endif
#if defined(DATA_A_MXFP4)
const FLOAT_TYPE kvalues_mxfp4_const[16] = {
FLOAT_TYPE(0.0f), FLOAT_TYPE(0.5f), FLOAT_TYPE(1.0f), FLOAT_TYPE(1.5f), FLOAT_TYPE(2.0f), FLOAT_TYPE(3.0f), FLOAT_TYPE(4.0f), FLOAT_TYPE(6.0f),
FLOAT_TYPE(-0.0f), FLOAT_TYPE(-0.5f), FLOAT_TYPE(-1.0f), FLOAT_TYPE(-1.5f), FLOAT_TYPE(-2.0f), FLOAT_TYPE(-3.0f), FLOAT_TYPE(-4.0f), FLOAT_TYPE(-6.0f)
};
shared FLOAT_TYPE kvalues_mxfp4[16];
#define NEEDS_INIT_IQ_SHMEM
void init_iq_shmem(uvec3 wgsize)
{
// copy the table into shared memory and sync
for (uint i = gl_LocalInvocationIndex.x; i < kvalues_mxfp4.length(); i += wgsize.x) {
kvalues_mxfp4[i] = kvalues_mxfp4_const[i];
}
barrier();
}
#endif
// returns the bfloat value in the low 16b.
// See ggml_compute_fp32_to_bf16
uint32_t fp32_to_bf16(float f)
@ -1370,4 +1412,17 @@ float bf16_to_fp32(uint32_t u)
return uintBitsToFloat(u << 16);
}
float e8m0_to_fp32(uint8_t x) {
uint32_t bits;
if (x == 0) {
bits = 0x00400000;
} else {
bits = x;
bits = bits << 23;
}
return uintBitsToFloat(bits);
}
#endif // !defined(GGML_TYPES_COMP)

Some files were not shown because too many files have changed in this diff Show More