This commit is contained in:
bssrdf 2026-02-02 00:18:18 +02:00 committed by GitHub
commit 9f3a0909eb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 2061 additions and 2 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,730 @@
#pragma once
#include "common.cuh"
constexpr unsigned int SWIZZLE_MASK_1 = 0b10000;
constexpr unsigned int SWIZZLE_BITS_1 = 4;
constexpr unsigned int SWIZZLE_MASK_2 = 0b1100;
constexpr unsigned int SWIZZLE_BITS_2 = 2;
typedef struct{
unsigned int n; //batch size
unsigned int c; //number if channels
unsigned int h; //height
unsigned int w; //width
unsigned int k; //number of filters
unsigned int r; //filter height
unsigned int s; //filter width
unsigned int u; //stride height
unsigned int v; //stride width
unsigned int p; //padding height
unsigned int q; //padding width
unsigned int d_h; //dilation height
unsigned int d_w; //dilation width
unsigned int Oh; //output height
unsigned int Ow; //output width
uint3 SC_fastdiv;
uint3 OW_fastdiv;
uint3 C_fastdiv;
uint3 RS_fastdiv;
uint3 S_fastdiv;
uint3 OHOW_fastdiv;
int64_t inc_next[3];
unsigned int inChannelOffset;
unsigned int weightKOffset;
unsigned int PQ;
unsigned int KPQ;
unsigned int NKPQ;
unsigned int CHW;
} param_t;
/// Clears the predicates
template<const unsigned int K_STRID>
__device__ void clear_mask(unsigned int masks_[][2], bool clear = true) {
#pragma unroll
for (int s = 0; s < K_STRID; ++s) {
masks_[s][0] = clear ? 0 : masks_[s][0];
masks_[s][1] = clear ? 0 : masks_[s][1];
}
}
template<const unsigned int K_STRID>
__device__ void add_byte_offset(int64_t element_offset[], const int64_t offset) {
#pragma unroll
for (int s = 0; s < K_STRID; ++s) {
element_offset[s] += offset;
}
}
template<const unsigned int TILE_ROWS,
const unsigned int TILE_COLS,
const unsigned int A_K_STRID,
const unsigned int ROW_STEP>
__device__ void prepareIteratorA(unsigned int thread_row,
unsigned int masks[][2],
int64_t element_offset[],
const param_t param) {
int offset_n[A_K_STRID];
int offset_p[A_K_STRID];
int offset_q[A_K_STRID];
#pragma unroll
for (int s = 0; s < A_K_STRID; ++s) {
const unsigned int gemm_i = blockIdx.y * TILE_ROWS + thread_row;
offset_n[s] = fastdiv(gemm_i, param.OHOW_fastdiv);
unsigned int npq_res = fastmodulo(gemm_i, param.OHOW_fastdiv);
offset_p[s] = fastdiv(npq_res, param.OW_fastdiv); //* param.u - param.p;
offset_q[s] = fastmodulo(npq_res, param.OW_fastdiv); // * param.v - param.q;
const int h = offset_p[s] * (int)param.u - (int) param.p;
const int w = offset_q[s] * (int)param.v - (int) param.q;
element_offset[s] = offset_n[s] * (int64_t)param.CHW + h * (int64_t)(param.inChannelOffset) + w * (int64_t)param.c;
thread_row += ROW_STEP;
}
clear_mask<A_K_STRID>(masks);
for (int r = 0; r < param.r; ++r) {
#pragma unroll
for (int s_idx = 0; s_idx < A_K_STRID; ++s_idx) {
const int h = offset_p[s_idx] * param.u - param.p + r * param.d_h;
bool pred = (offset_n[s_idx] < param.n && h >= 0 && h < param.h);
masks[s_idx][0] |= (pred << r);
}
}
for (int s = 0; s < param.s; ++s) {
#pragma unroll
for (int s_idx = 0; s_idx < A_K_STRID; ++s_idx) {
const int w = offset_q[s_idx] * param.v - param.q + s * param.d_w;
bool pred = (w >= 0 && w < param.w);
masks[s_idx][1] |= (pred << s);
}
}
}
template <int preload=16>
__device__ void cp_async_zfill(void *ptr, void const *global_ptr, bool pred_guard = true) {
#ifdef CP_ASYNC_AVAILABLE
unsigned int smem_ptr;
int src_in_bytes = pred_guard ? preload : 0;
asm("{ .reg .u64 smem_ptr; cvta.to.shared.u64 smem_ptr, %1; cvt.u32.u64 "
"%0, smem_ptr; }\n"
: "=r"(smem_ptr)
: "l"(ptr));
asm volatile("cp.async.cg.shared.global [%0], [%1], %2, %3;\n" ::"r"(smem_ptr),
"l"(global_ptr),
"n"(preload), "r"(src_in_bytes));
#else
GGML_UNUSED(ptr);
GGML_UNUSED(global_ptr);
GGML_UNUSED(pred_guard);
#endif
}
// same as above, but writes are swizzled to avoid bank conflicts when shared memory is read later in the kernel
template<unsigned int TILE_ROWS,
unsigned int NUM_THREADS>
__device__ __forceinline__ void tileMemcpySwizzleB(
const half* __restrict__ src,
half* __restrict__ dst,
const unsigned int curR,
const unsigned int curS,
const unsigned int curC,
const int64_t ki,
const unsigned int start_k,
const unsigned int end_k,
unsigned int thread_row,
const unsigned int thread_col,
param_t param
) {
#if __CUDA_ARCH__ >= GGML_CUDA_TURING
constexpr unsigned int TILE_COLS = 32;
float4* dst_float4 = reinterpret_cast<float4*>(dst);
// # of threads is multiple of # of columns in the tile
constexpr unsigned int TILE_COLS_VECTORIZED = TILE_COLS / 8;
static_assert(NUM_THREADS % TILE_COLS_VECTORIZED == 0);
// assign each thread a row/column in the tile, calculate how many iterations we need
// to cover the whole tile
constexpr unsigned int ROW_STEP = NUM_THREADS / TILE_COLS_VECTORIZED;
constexpr unsigned int NUM_ITERS = TILE_ROWS / ROW_STEP;
#pragma unroll
for (unsigned int i = 0; i < NUM_ITERS; i++) {
// apply swizzle to the dst index
const unsigned int src_index = thread_row * param.weightKOffset + ki;
unsigned int dst_index = thread_row * TILE_COLS_VECTORIZED + thread_col;
dst_index = dst_index ^ ((dst_index & SWIZZLE_MASK_1) >> SWIZZLE_BITS_1);
dst_index = dst_index ^ ((dst_index & SWIZZLE_MASK_2) >> SWIZZLE_BITS_2);
#ifdef CP_ASYNC_AVAILABLE
cp_async_zfill((void *)(&dst_float4[dst_index]), (void const *)(&src[src_index]),
thread_row + blockIdx.x * TILE_ROWS < param.k && curC < end_k);
#else
if (thread_row + blockIdx.x * TILE_ROWS < param.k && curC < end_k) {
dst_float4[dst_index] = reinterpret_cast<const float4 *>(&src[src_index])[0];
} else { // read 4 halves
dst_float4[dst_index] = make_float4(0.f, 0.f, 0.f, 0.f);
}
#endif
thread_row += ROW_STEP;
}
#else
GGML_UNUSED(src);
GGML_UNUSED(dst);
GGML_UNUSED(curR);
GGML_UNUSED(curS);
GGML_UNUSED(ki);
GGML_UNUSED(start_k);
GGML_UNUSED(end_k);
GGML_UNUSED(thread_row);
GGML_UNUSED(thread_col);
GGML_UNUSED(param);
NO_DEVICE_CODE;
#endif
}
// this is a special case of the above for when TILE_COLS == 32
template<unsigned int TILE_ROWS,
unsigned int NUM_THREADS>
__device__ __forceinline__ unsigned int tileMemcpySwizzleA(
const half* __restrict__ src,
half* __restrict__ dst,
const unsigned int curR,
const unsigned int curS,
unsigned int masks[][2],
const int64_t element_offset[],
unsigned int thread_row,
const unsigned int thread_col,
const unsigned int start_k,
const unsigned int end_k,
param_t param
) {
#if __CUDA_ARCH__ >= GGML_CUDA_TURING
constexpr unsigned int TILE_COLS = 32;
float4* dst_float4 = reinterpret_cast<float4*>(dst);
// # of threads is multiple of # of columns in the tile
constexpr unsigned int TILE_COLS_VECTORIZED = TILE_COLS / 8;
static_assert(NUM_THREADS % TILE_COLS_VECTORIZED == 0);
// assign each thread a row/column in the tile, calculate how many iterations we need
// to cover the whole tile
constexpr unsigned int ROW_STEP = NUM_THREADS / TILE_COLS_VECTORIZED;
constexpr unsigned int NUM_ITERS = TILE_ROWS / ROW_STEP;
const unsigned int curC = start_k+thread_col*8;
clear_mask<NUM_ITERS>(masks, curC >= end_k);
#pragma unroll
for (unsigned int i = 0; i < NUM_ITERS; i++) {
bool valid = (masks[i][0] & (1u << curR)) && (masks[i][1] & (1u << curS));
// apply swizzle to the dst index
unsigned int dst_index = thread_row * TILE_COLS_VECTORIZED + thread_col;
dst_index = dst_index ^ ((dst_index & SWIZZLE_MASK_1) >> SWIZZLE_BITS_1);
dst_index = dst_index ^ ((dst_index & SWIZZLE_MASK_2) >> SWIZZLE_BITS_2);
#ifdef CP_ASYNC_AVAILABLE
cp_async_zfill((void *)(&dst_float4[dst_index]), (void const *)(&src[element_offset[i]+curC]), valid);
#else
if (valid) {
dst_float4[dst_index] = reinterpret_cast<const float4 *>(&src[element_offset[i]+curC])[0];
} else {
dst_float4[dst_index] = make_float4(0.f, 0.f, 0.f, 0.f);
}
#endif
thread_row += ROW_STEP;
}
return curC;
#else
GGML_UNUSED(src);
GGML_UNUSED(dst);
GGML_UNUSED(curR);
GGML_UNUSED(curS);
GGML_UNUSED(start_k);
GGML_UNUSED(end_k);
GGML_UNUSED(masks);
GGML_UNUSED(element_offset);
GGML_UNUSED(thread_row);
GGML_UNUSED(thread_col);
GGML_UNUSED(param);
NO_DEVICE_CODE;
#endif
}
template<unsigned int TILE_ROWS,
unsigned int TILE_COLS,
unsigned int NUM_THREADS,
unsigned int ELEMENTS_PER_THREAD>
__device__ __forceinline__ unsigned int tileMemcpyLoadA(
const half* __restrict__ src,
float4 (&dst_reg)[ELEMENTS_PER_THREAD],
const unsigned int curR,
const unsigned int curS,
unsigned int masks[][2],
const int64_t element_offset[],
unsigned int thread_row,
const unsigned int thread_col,
const unsigned int block_k,
const unsigned int start_k,
const unsigned int end_k,
unsigned int oldC,
param_t param
) {
#if __CUDA_ARCH__ >= GGML_CUDA_TURING
// # of threads is multiple of # of columns in the tile
constexpr unsigned int TILE_COLS_VECTORIZED = TILE_COLS / 8;
static_assert(NUM_THREADS % TILE_COLS_VECTORIZED == 0);
// assign each thread a row/column in the tile, calculate how many iterations we need
// to cover the whole tile
constexpr unsigned int ROW_STEP = NUM_THREADS / TILE_COLS_VECTORIZED;
constexpr unsigned int NUM_ITERS = TILE_ROWS / ROW_STEP;
// compile time check that we provided the right amount of registers for storage
static_assert(ELEMENTS_PER_THREAD == NUM_ITERS);
const unsigned int curC = start_k+block_k+thread_col*8;
if (curC > oldC)
clear_mask<NUM_ITERS>(masks, curC >= end_k);
#pragma unroll
for (unsigned int i = 0; i < NUM_ITERS; i++) {
bool valid = (masks[i][0] & (1u << curR)) && (masks[i][1] & (1u << curS));
if (valid) {
dst_reg[i] = reinterpret_cast<const float4 *>(&src[element_offset[i]+curC])[0];
} else{
dst_reg[i] = make_float4(0.f, 0.f, 0.f, 0.f);
}
}
return curC;
#else
GGML_UNUSED(src);
GGML_UNUSED(dst_reg);
GGML_UNUSED(block_k);
GGML_UNUSED(curR);
GGML_UNUSED(curS);
GGML_UNUSED(start_k);
GGML_UNUSED(end_k);
GGML_UNUSED(masks);
GGML_UNUSED(element_offset);
GGML_UNUSED(thread_row);
GGML_UNUSED(thread_col);
GGML_UNUSED(oldC);
GGML_UNUSED(param);
NO_DEVICE_CODE;
#endif
}
template<unsigned int TILE_ROWS,
unsigned int TILE_COLS,
unsigned int NUM_THREADS,
unsigned int ELEMENTS_PER_THREAD>
__device__ __forceinline__ unsigned int tileMemcpyAsyncLoadA(
const half* __restrict__ src,
half* __restrict__ dst,
const unsigned int curR,
const unsigned int curS,
unsigned int masks[][2],
const int64_t element_offset[],
unsigned int thread_row,
const unsigned int thread_col,
unsigned int iter_idx,
const unsigned int block_k,
const unsigned int start_k,
const unsigned int end_k,
unsigned int oldC,
param_t param
) {
#ifdef CP_ASYNC_AVAILABLE
constexpr unsigned int TILE_COLS_VECTORIZED = TILE_COLS / 8;
static_assert(NUM_THREADS % TILE_COLS_VECTORIZED == 0);
float4* dst_float4 = reinterpret_cast<float4*>(dst);
// assign each thread a row/column in the tile, calculate how many iterations we need
// to cover the whole tile
constexpr unsigned int ROW_STEP = NUM_THREADS / TILE_COLS_VECTORIZED;
constexpr unsigned int NUM_ITERS = TILE_ROWS / ROW_STEP;
constexpr unsigned int ITER_STEPS = ROW_STEP * TILE_COLS_VECTORIZED;
// compile time check that we provided the right amount of registers for storage
static_assert(ELEMENTS_PER_THREAD == NUM_ITERS);
const unsigned int curC = start_k+block_k+thread_col*8;
if (curC > oldC)
clear_mask<NUM_ITERS>(masks, curC >= end_k);
#pragma unroll
for (unsigned int i = 0; i < NUM_ITERS; i++) {
bool valid = (masks[i][0] & (1u << curR)) && (masks[i][1] & (1u << curS));
unsigned int dst_index = iter_idx;
dst_index = dst_index ^ ((dst_index & SWIZZLE_MASK_1) >> SWIZZLE_BITS_1);
dst_index = dst_index ^ ((dst_index & SWIZZLE_MASK_2) >> SWIZZLE_BITS_2);
cp_async_zfill((void *)(&dst_float4[dst_index]), (void const *)(&src[element_offset[i]+curC]), valid);
iter_idx += ITER_STEPS;
}
return curC;
#else
GGML_UNUSED(src);
GGML_UNUSED(dst);
GGML_UNUSED(block_k);
GGML_UNUSED(curR);
GGML_UNUSED(curS);
GGML_UNUSED(start_k);
GGML_UNUSED(end_k);
GGML_UNUSED(masks);
GGML_UNUSED(element_offset);
GGML_UNUSED(thread_row);
GGML_UNUSED(thread_col);
GGML_UNUSED(iter_idx);
GGML_UNUSED(oldC);
GGML_UNUSED(param);
NO_DEVICE_CODE;
#endif
}
template<unsigned int TILE_ROWS,
unsigned int TILE_COLS,
unsigned int NUM_THREADS,
unsigned int ELEMENTS_PER_THREAD>
__device__ __forceinline__ void tileMemcpyLoadB(
const half* __restrict__ src,
float4 (&dst_reg)[ELEMENTS_PER_THREAD],
const unsigned int curR,
const unsigned int curS,
const unsigned int curC,
const int64_t ki,
const unsigned int block_k,
const unsigned int start_k,
const unsigned int end_k,
unsigned int thread_row,
const unsigned int thread_col,
param_t param
) {
#if __CUDA_ARCH__ >= GGML_CUDA_TURING
// # of threads is multiple of # of columns in the tile
constexpr unsigned int TILE_COLS_VECTORIZED = TILE_COLS / 8;
static_assert(NUM_THREADS % TILE_COLS_VECTORIZED == 0);
// assign each thread a row/column in the tile, calculate how many iterations we need
// to cover the whole tile
constexpr unsigned int ROW_STEP = NUM_THREADS / TILE_COLS_VECTORIZED;
constexpr unsigned int NUM_ITERS = TILE_ROWS / ROW_STEP;
// compile time check that we provided the right amount of registers for storage
static_assert(ELEMENTS_PER_THREAD == NUM_ITERS);
unsigned int iter_idx = thread_row * param.weightKOffset + ki;
unsigned int krow_idx = thread_row + blockIdx.x * TILE_ROWS;
const int ITER_STEPS = ROW_STEP * param.weightKOffset;
#pragma unroll
for (unsigned int i = 0; i < NUM_ITERS; i++) {
const unsigned int src_index = iter_idx;
if (krow_idx < param.k && curC < end_k) {
dst_reg[i] = reinterpret_cast<const float4 *>(&src[src_index])[0];
} else { // read 4 halves
dst_reg[i] = make_float4(0.f, 0.f, 0.f, 0.f);
}
krow_idx += ROW_STEP;
iter_idx += ITER_STEPS;
}
#else
GGML_UNUSED(src);
GGML_UNUSED(dst_reg);
GGML_UNUSED(block_k);
GGML_UNUSED(curR);
GGML_UNUSED(curS);
GGML_UNUSED(ki);
GGML_UNUSED(start_k);
GGML_UNUSED(end_k);
GGML_UNUSED(thread_row);
GGML_UNUSED(thread_col);
GGML_UNUSED(param);
NO_DEVICE_CODE;
#endif
}
template<unsigned int TILE_ROWS,
unsigned int TILE_COLS,
unsigned int NUM_THREADS,
unsigned int ELEMENTS_PER_THREAD>
__device__ __forceinline__ void tileMemcpyAsyncLoadB(
const half *src,
half *dst,
const unsigned int curR,
const unsigned int curS,
const unsigned int curC,
const int64_t ki,
const unsigned int block_k,
const unsigned int start_k,
const unsigned int end_k,
unsigned int thread_row,
const unsigned int thread_col,
unsigned int iter_src_idx,
unsigned int iter_dst_idx,
unsigned int krow_idx,
const int ITER_SRC_STEPS,
param_t param
) {
#ifdef CP_ASYNC_AVAILABLE
// # of threads is multiple of # of columns in the tile
constexpr unsigned int TILE_COLS_VECTORIZED = TILE_COLS / 8;
static_assert(NUM_THREADS % TILE_COLS_VECTORIZED == 0);
float4* dst_float4 = reinterpret_cast<float4*>(dst);
// assign each thread a row/column in the tile, calculate how many iterations we need
// to cover the whole tile
constexpr unsigned int ROW_STEP = NUM_THREADS / TILE_COLS_VECTORIZED;
constexpr unsigned int NUM_ITERS = TILE_ROWS / ROW_STEP;
constexpr unsigned int ITER_DST_STEPS = ROW_STEP * TILE_COLS_VECTORIZED;
// compile time check that we provided the right amount of registers for storage
static_assert(ELEMENTS_PER_THREAD == NUM_ITERS);
iter_src_idx += ki;
#pragma unroll
for (unsigned int i = 0; i < NUM_ITERS; i++) {
const unsigned int src_index = iter_src_idx;
unsigned int dst_index = iter_dst_idx;
dst_index = dst_index ^ ((dst_index & SWIZZLE_MASK_1) >> SWIZZLE_BITS_1);
dst_index = dst_index ^ ((dst_index & SWIZZLE_MASK_2) >> SWIZZLE_BITS_2);
cp_async_zfill((void *)(&dst_float4[dst_index]), (void const *)(&src[src_index]), krow_idx < param.k && curC < end_k);
iter_src_idx += ITER_SRC_STEPS;
krow_idx += ROW_STEP;
iter_dst_idx += ITER_DST_STEPS;
}
#else
GGML_UNUSED(src);
GGML_UNUSED(dst);
GGML_UNUSED(block_k);
GGML_UNUSED(curR);
GGML_UNUSED(curS);
GGML_UNUSED(ki);
GGML_UNUSED(start_k);
GGML_UNUSED(end_k);
GGML_UNUSED(thread_row);
GGML_UNUSED(thread_col);
GGML_UNUSED(iter_src_idx);
GGML_UNUSED(iter_dst_idx);
GGML_UNUSED(krow_idx);
GGML_UNUSED(ITER_SRC_STEPS);
GGML_UNUSED(param);
NO_DEVICE_CODE;
#endif
}
// same as above but without the swizzle
// this is a special case of the above for when TILE_COLS == 32
template<unsigned int TILE_ROWS,
unsigned int NUM_THREADS,
unsigned int ELEMENTS_PER_THREAD>
__device__ __forceinline__ void tileMemcpySwizzleStore(
const float4 (&src_reg)[ELEMENTS_PER_THREAD],
half* __restrict__ dst,
unsigned int thread_row,
const unsigned int thread_col
) {
#if __CUDA_ARCH__ >= GGML_CUDA_TURING
constexpr unsigned int TILE_COLS = 32;
// reinterpret input/output as float4
float4* dst_float4 = reinterpret_cast<float4*>(dst);
// # of threads is multiple of # of columns in the tile
constexpr unsigned int TILE_COLS_VECTORIZED = TILE_COLS / 8;
static_assert(NUM_THREADS % TILE_COLS_VECTORIZED == 0);
// assign each thread a row/column in the tile, calculate how many iterations we need
// to cover the whole tile
constexpr unsigned int ROW_STEP = NUM_THREADS / TILE_COLS_VECTORIZED;
constexpr unsigned int NUM_ITERS = TILE_ROWS / ROW_STEP;
constexpr unsigned int ITER_STEPS = ROW_STEP * TILE_COLS_VECTORIZED;
// compile time check that we provided the right amount of registers for storage
static_assert(ELEMENTS_PER_THREAD == NUM_ITERS);
unsigned int iter_idx = thread_row * TILE_COLS_VECTORIZED + thread_col;
#pragma unroll
for (unsigned int i = 0; i < NUM_ITERS; i++) {
// apply swizzle to the dst index
unsigned int dst_index = iter_idx;
dst_index = dst_index ^ ((dst_index & SWIZZLE_MASK_1) >> SWIZZLE_BITS_1);
dst_index = dst_index ^ ((dst_index & SWIZZLE_MASK_2) >> SWIZZLE_BITS_2);
dst_float4[dst_index] = src_reg[i];
iter_idx += ITER_STEPS;
}
#else
GGML_UNUSED(src_reg);
GGML_UNUSED(dst);
GGML_UNUSED(thread_row);
GGML_UNUSED(thread_col);
NO_DEVICE_CODE;
#endif
}
template<typename T, const int BN, const int rowStrideA, const int layout,
const bool vec_load, const int ksplit, const int PAD>
__device__ __forceinline__ void loadFilter(const T * __restrict__ kernel,
T * __restrict__ smemweight,
const unsigned int by,
const unsigned int innerRowA,
const unsigned int innerColA,
const unsigned int weightKOffset,
const unsigned int start_k,
const unsigned int end_k,
const param_t param){
const unsigned int weight_sts_addr = innerRowA + innerColA * (BN+PAD) * 4;
const unsigned int kidx = start_k + innerColA * 4;
#pragma unroll
for (int offset = 0; offset + rowStrideA <= BN; offset += rowStrideA) {
const unsigned int nidx = by * BN + innerRowA + offset;
if (vec_load) {
if (nidx < param.k && kidx < end_k) {
if constexpr (std::is_same_v<T, float>){
float4 tmp = reinterpret_cast<const float4 *>(&kernel[nidx * weightKOffset + kidx])[0];
smemweight[weight_sts_addr + offset + 0] = tmp.x;
smemweight[weight_sts_addr + offset + (BN+PAD)] = tmp.y;
smemweight[weight_sts_addr + offset + 2*(BN+PAD)] = tmp.z;
smemweight[weight_sts_addr + offset + 3*(BN+PAD)] = tmp.w;
} else { // read 4 halves
float2 tmp = reinterpret_cast<const float2 *>(&kernel[nidx * weightKOffset + kidx])[0];
const half *val = reinterpret_cast<const half *>(&tmp);
smemweight[weight_sts_addr + offset + 0] = val[0];
smemweight[weight_sts_addr + offset + (BN+PAD)] = val[1];
smemweight[weight_sts_addr + offset + 2*(BN+PAD)] = val[2];
smemweight[weight_sts_addr + offset + 3*(BN+PAD)] = val[3];
}
} else {
#pragma unroll
for (int i = 0; i < 4; ++i) {
smemweight[weight_sts_addr + offset + i*(BN+PAD)] = (T)0.f;
}
}
} else {
#pragma unroll
for (int i = 0; i < 4; ++i) {
if (nidx < param.k && kidx + i < end_k) {
smemweight[weight_sts_addr + offset + i*(BN+PAD)] = kernel[nidx * weightKOffset + kidx + i];
} else {
smemweight[weight_sts_addr + offset + i*(BN+PAD)] = (T)0.f;
}
}
}
}
}
template<const int BM, const int rowStrideA, const int layout,
const bool vec_load, const int ksplit, const int PAD>
__device__ __forceinline__ void loadInput(const float * __restrict__ input,
float * __restrict__ smeminput,
const unsigned int bx,
const unsigned int innerRowA,
const unsigned int innerColA,
const unsigned int start_k,
const unsigned int end_k,
const unsigned int PQ,
const unsigned int CHW,
const unsigned int inChannelOffset,
const param_t param) {
const unsigned int input_sts_addr = innerRowA + innerColA * (BM+PAD) * 4;
const unsigned int kidx = start_k + innerColA * 4;
#pragma unroll
for (unsigned int offset = 0; offset + rowStrideA <= BM; offset += rowStrideA) {
const unsigned int midx = bx * BM + innerRowA + offset;
int n = (ksplit > 0) ? midx / PQ : blockIdx.z;
const unsigned int npq_res = midx % PQ;
const int posh_ori = fastdiv((ksplit > 0) ? npq_res: midx, param.OW_fastdiv) * param.u - param.p;
const int posw_ori = fastmodulo((ksplit > 0) ? npq_res: midx, param.OW_fastdiv) * param.v - param.q;
const unsigned int inOffset = n * CHW;
if (vec_load) {
const unsigned int cur0 = fastdiv(kidx,
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv); // channel offset
const unsigned int cur1 = fastdiv(fastmodulo(kidx,
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv),
layout == 0 ? param.C_fastdiv : param.S_fastdiv); // kernel r offset
const unsigned int cur2 = fastmodulo(fastmodulo(kidx,
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv),
layout == 0 ? param.C_fastdiv : param.S_fastdiv); // kernel r offset
const unsigned int curC = layout == 0 ? cur2 : cur0;
const unsigned int curR = layout == 0 ? cur0 : cur1;
const unsigned int curS = layout == 0 ? cur1 : cur2;
const int curH = posh_ori + curR * param.d_h; // input h
const int curW = posw_ori + curS * param.d_w; // input w
if (curH >= 0 && curW >= 0 && curW < param.w && curH < param.h && kidx < end_k) {
int inOffsetTmp = layout == 0 ?
curH * inChannelOffset + curW * param.c + curC:
curC * inChannelOffset + curH * param.w + curW;
float4 tmp = reinterpret_cast<const float4 *>(&input[inOffset + inOffsetTmp])[0];
smeminput[input_sts_addr + offset + 0] = tmp.x;
smeminput[input_sts_addr + offset + BM+PAD] = tmp.y;
smeminput[input_sts_addr + offset + 2*(BM+PAD)] = tmp.z;
smeminput[input_sts_addr + offset + 3*(BM+PAD)] = tmp.w;
} else {
#pragma unroll
for (int i = 0; i < 4; ++i)
smeminput[input_sts_addr + offset + i*(BM+PAD)] = 0.f;
}
} else {
#pragma unroll
for (int i = 0; i < 4; ++i) {
const unsigned int cur0 = fastdiv(kidx + i,
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv); // channel offset
const unsigned int cur1 = fastdiv(fastmodulo(kidx + i,
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv),
layout == 0 ? param.C_fastdiv : param.S_fastdiv); // kernel r offset
const unsigned int cur2 = fastmodulo(fastmodulo(kidx + i,
layout == 0 ? param.SC_fastdiv : param.RS_fastdiv),
layout == 0 ? param.C_fastdiv : param.S_fastdiv); // kernel r offset
const unsigned int curC = layout == 0 ? cur2 : cur0;
const unsigned int curR = layout == 0 ? cur0 : cur1;
const unsigned int curS = layout == 0 ? cur1 : cur2;
const int curH = posh_ori + curR * param.d_h; // input h
const int curW = posw_ori + curS * param.d_w; // input w
if (curH >= 0 && curW >= 0 && curW < param.w && curH < param.h && kidx + i < end_k) {
int inOffsetTmp = layout == 0 ?
curH * inChannelOffset + curW * param.c + curC:
curC * inChannelOffset + curH * param.w + curW;
smeminput[input_sts_addr + offset + i*(BM+PAD)] = input[inOffset + inOffsetTmp];
} else {
smeminput[input_sts_addr + offset + i*(BM+PAD)] = 0.f;
}
}
}
}
}
#define CUDA_CONV2D_IMPLICT_BLOCK_SIZE 256
void ggml_cuda_op_conv2d_implicit(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -3,7 +3,7 @@
#include "common.cuh"
static __device__ __forceinline__ unsigned int ggml_cuda_cvta_generic_to_shared(void * generic_ptr) {
static __device__ __forceinline__ unsigned int ggml_cuda_cvta_generic_to_shared(const void * generic_ptr) {
#ifdef CP_ASYNC_AVAILABLE
return __cvta_generic_to_shared(generic_ptr);
#else

View File

@ -13,6 +13,7 @@
#include "ggml-cuda/concat.cuh"
#include "ggml-cuda/conv-transpose-1d.cuh"
#include "ggml-cuda/conv2d.cuh"
#include "ggml-cuda/conv2d-implicit.cuh"
#include "ggml-cuda/conv2d-dw.cuh"
#include "ggml-cuda/conv2d-transpose.cuh"
#include "ggml-cuda/convert.cuh"
@ -2671,7 +2672,7 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
ggml_cuda_op_im2col_3d(ctx, dst);
break;
case GGML_OP_CONV_2D:
ggml_cuda_op_conv2d(ctx, dst);
ggml_cuda_op_conv2d_implicit(ctx, dst);
break;
case GGML_OP_CONV_2D_DW:
ggml_cuda_op_conv2d_dw(ctx, dst);

View File

@ -40,6 +40,7 @@
#include <thread>
#include <vector>
#include <unordered_map>
#include <map>
#ifdef __EMSCRIPTEN__
# define N_THREADS 1
@ -7277,6 +7278,25 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
}
}
test_cases.emplace_back(new test_conv_2d( { 16, 16, 8, 1}, { 3, 3, 8, 12},
GGML_TYPE_F16, 1, 1, 1, 1, 1, 1, false));
test_cases.emplace_back(new test_conv_2d( { 16, 16, 16, 1}, { 3, 3, 16, 6},
GGML_TYPE_F16, 1, 1, 1, 1, 1, 1, false));
test_cases.emplace_back(new test_conv_2d( { 16, 16, 24, 1}, { 3, 3, 24, 6},
GGML_TYPE_F16, 1, 1, 1, 1, 1, 1, false));
test_cases.emplace_back(new test_conv_2d( { 16, 16, 8, 3}, { 3, 3, 8, 6},
GGML_TYPE_F16, 1, 1, 1, 1, 1, 1, false));
test_cases.emplace_back(new test_conv_2d( { 24, 24, 32, 1 }, { 3, 3, 32, 8},
GGML_TYPE_F16, 1, 1, 1, 1, 1, 1, false));
test_cases.emplace_back(new test_conv_2d( { 24, 24, 96, 1 }, { 3, 3, 96, 8},
GGML_TYPE_F16, 1, 1, 1, 1, 1, 1, false));
test_cases.emplace_back(new test_conv_2d( { 24, 24, 128, 1 }, { 3, 3, 128, 8},
GGML_TYPE_F16, 1, 1, 1, 1, 1, 1, false));
test_cases.emplace_back(new test_conv_2d( { 24, 24, 128, 3 }, { 3, 3, 128, 8},
GGML_TYPE_F16, 1, 1, 1, 1, 1, 1, false));
// sycl backend will limit task global_range < MAX_INT
// test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
// however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
@ -8363,6 +8383,71 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
}
}
// Stable-diffusion layers
std::map<std::string, uint32_t> idx_sd{
{ "iw", 0 },
{ "ih", 1 },
{ "kw", 2 },
{ "kh", 3 },
{ "Cout", 4 },
{ "Cin", 5 },
{ "B", 6 },
};
// Input image size
uint32_t w = 768;
uint32_t h = 1024;
// Number of filters (base)
uint32_t Cout_b = 128;
uint32_t Cin_b = 128;
std::vector<std::array<uint32_t, 7>> cases_sd = {
{ w / 8, h / 8, 3, 3, Cout_b * 4, Cin_b * 4, 1 }, // x10 (called 10 times)
{ w / 4, h / 4, 3, 3, Cout_b * 4, Cin_b * 4, 1 }, // x7
{ w / 2, h / 2, 3, 3, Cout_b * 2, Cin_b * 2, 1 }, // x5
{ w, h, 3, 3, Cout_b, Cin_b, 1 }, // x5
{ w / 8, h / 8, 1, 1, Cout_b * 4, Cin_b * 4, 1 }, // x4
{ w / 8, h / 8, 1, 1, 4, 4, 1 },
{ w / 8, h / 8, 3, 3, Cout_b * 4, 4, 1 },
{ w / 2, h / 2, 3, 3, Cout_b * 4, Cin_b * 4, 1 },
{ w / 2, h / 2, 3, 3, Cout_b * 2, Cin_b * 4, 1 },
{ w / 2, h / 2, 1, 1, Cout_b * 2, Cin_b * 4, 1 },
{ w, h, 3, 3, Cout_b, Cin_b * 2, 1 },
{ w, h, 1, 1, Cout_b, Cin_b * 2, 1 },
{ w, h, 3, 3, Cout_b * 2, Cin_b * 2, 1 },
{ w, h, 3, 3, 3, Cin_b, 1 },
};
for (auto act_case : cases_sd) {
GGML_ASSERT(act_case[idx_sd["kw"]] == 3 || act_case[idx_sd["kw"]] == 1);
GGML_ASSERT(act_case[idx_sd["kh"]] == 3 || act_case[idx_sd["kh"]] == 1);
uint32_t p0 = act_case[idx_sd["kw"]] == 3 ? 1 : 0;
uint32_t p1 = act_case[idx_sd["kh"]] == 3 ? 1 : 0;
test_cases.emplace_back(new test_conv_2d(
{ act_case[idx_sd["iw"]], act_case[idx_sd["ih"]], act_case[idx_sd["Cin"]], act_case[idx_sd["B"]] },
{ act_case[idx_sd["kw"]], act_case[idx_sd["kh"]], act_case[idx_sd["Cin"]], act_case[idx_sd["Cout"]] },
GGML_TYPE_F16, 1, 1, p0, p1, 1, 1, false));
}
for (auto act_case : cases_sd) {
GGML_ASSERT(act_case[idx_sd["kw"]] == 3 || act_case[idx_sd["kw"]] == 1);
GGML_ASSERT(act_case[idx_sd["kh"]] == 3 || act_case[idx_sd["kh"]] == 1);
uint32_t p0 = act_case[idx_sd["kw"]] == 3 ? 1 : 0;
uint32_t p1 = act_case[idx_sd["kh"]] == 3 ? 1 : 0;
test_cases.emplace_back(new test_conv_2d(
{ act_case[idx_sd["iw"]], act_case[idx_sd["ih"]], act_case[idx_sd["Cin"]], act_case[idx_sd["B"]] },
{ act_case[idx_sd["kw"]], act_case[idx_sd["kh"]], act_case[idx_sd["Cin"]], act_case[idx_sd["Cout"]] },
GGML_TYPE_F32, 1, 1, p0, p1, 1, 1, false));
}
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));