Merge branch 'master' into conv2d-implicit
This commit is contained in:
commit
2bd682bb1f
|
|
@ -21,7 +21,8 @@ on:
|
|||
'**/*.m',
|
||||
'**/*.metal',
|
||||
'**/*.comp',
|
||||
'**/*.glsl'
|
||||
'**/*.glsl',
|
||||
'**/*.wgsl'
|
||||
]
|
||||
|
||||
pull_request:
|
||||
|
|
@ -42,7 +43,8 @@ on:
|
|||
'**/*.m',
|
||||
'**/*.metal',
|
||||
'**/*.comp',
|
||||
'**/*.glsl'
|
||||
'**/*.glsl',
|
||||
'**/*.wgsl'
|
||||
]
|
||||
|
||||
concurrency:
|
||||
|
|
@ -1371,7 +1373,7 @@ jobs:
|
|||
id: update_presets
|
||||
if: ${{ matrix.build == 'arm64-snapdragon' }}
|
||||
run: |
|
||||
cp docs/backend/hexagon/CMakeUserPresets.json .
|
||||
cp docs/backend/snapdragon/CMakeUserPresets.json .
|
||||
|
||||
- name: Build
|
||||
id: ndk_build
|
||||
|
|
|
|||
|
|
@ -213,6 +213,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
|||
- [llama.vim](https://github.com/ggml-org/llama.vim) (MIT)
|
||||
- [LARS](https://github.com/abgulati/LARS) (AGPL)
|
||||
- [Llama Assistant](https://github.com/vietanhdev/llama-assistant) (GPL)
|
||||
- [LlamaLib](https://github.com/undreamai/LlamaLib) (Apache-2.0)
|
||||
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
|
||||
- [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT)
|
||||
- [LMStudio](https://lmstudio.ai/) (proprietary)
|
||||
|
|
|
|||
|
|
@ -75,6 +75,8 @@ add_library(${TARGET} STATIC
|
|||
ngram-cache.h
|
||||
ngram-map.cpp
|
||||
ngram-map.h
|
||||
ngram-mod.cpp
|
||||
ngram-mod.h
|
||||
peg-parser.cpp
|
||||
peg-parser.h
|
||||
preset.cpp
|
||||
|
|
|
|||
|
|
@ -3396,7 +3396,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
|
||||
add_opt(common_arg(
|
||||
{"--spec-type"}, "[none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v]",
|
||||
{"--spec-type"}, "[none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v|ngram-mod]",
|
||||
string_format("type of speculative decoding to use when no draft model is provided (default: %s)\n",
|
||||
common_speculative_type_to_str(params.speculative.type).c_str()),
|
||||
[](common_params & params, const std::string & value) {
|
||||
|
|
@ -3410,6 +3410,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K;
|
||||
} else if (value == "ngram-map-k4v") {
|
||||
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V;
|
||||
} else if (value == "ngram-mod") {
|
||||
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MOD;
|
||||
} else {
|
||||
throw std::invalid_argument("unknown speculative decoding type without draft model");
|
||||
}
|
||||
|
|
|
|||
|
|
@ -171,6 +171,7 @@ enum common_speculative_type {
|
|||
COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE, // simple self-speculative decoding
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K, // self-speculative decoding with n-gram keys only
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V, // self-speculative decoding with n-gram keys and 4 m-gram values
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MOD,
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_CACHE, // self-speculative decoding with 3-level n-gram cache
|
||||
COMMON_SPECULATIVE_TYPE_COUNT // number of types, unknown type
|
||||
};
|
||||
|
|
@ -252,6 +253,8 @@ struct common_params_model {
|
|||
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
|
||||
};
|
||||
|
||||
struct common_ngram_mod;
|
||||
|
||||
struct common_params_speculative {
|
||||
common_speculative_type type = COMMON_SPECULATIVE_TYPE_NONE; // type of speculative decoding
|
||||
|
||||
|
|
@ -269,6 +272,8 @@ struct common_params_speculative {
|
|||
uint16_t ngram_check_rate = 1; // check rate for ngram lookup
|
||||
uint16_t ngram_min_hits = 1; // minimum hits at ngram/mgram lookup for mgram to be proposed
|
||||
|
||||
std::shared_ptr<common_ngram_mod> ngram_mod;
|
||||
|
||||
std::string lookup_cache_static; // path of static ngram cache file for lookup decoding // NOLINT
|
||||
std::string lookup_cache_dynamic; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
||||
|
||||
|
|
|
|||
|
|
@ -12,6 +12,7 @@
|
|||
#include <set>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
namespace jinja {
|
||||
|
|
|
|||
|
|
@ -7,6 +7,21 @@
|
|||
#include <cstdio>
|
||||
#include <sstream>
|
||||
|
||||
// Print the values of a sublist of `llama_tokens & inp` to a string in the form [v0, v1, v2, ...].
|
||||
static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length) {
|
||||
std::ostringstream oss;
|
||||
oss << '[';
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
if (i > 0) {
|
||||
oss << ", ";
|
||||
}
|
||||
oss << inp[start + i];
|
||||
}
|
||||
oss << ']';
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
|
||||
// n-gram simple
|
||||
//
|
||||
|
||||
|
|
@ -100,8 +115,6 @@ llama_tokens common_ngram_simple_draft(
|
|||
// maximum number of counted values of a ngram map value.
|
||||
#define COMMON_NGRAM_MAX_VALUE_COUNT 16380
|
||||
|
||||
static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length);
|
||||
|
||||
void common_ngram_map_draft(common_ngram_map & map,
|
||||
const llama_tokens & inp, llama_token sampled,
|
||||
llama_tokens & draft) {
|
||||
|
|
@ -347,21 +360,3 @@ void common_ngram_map_accept(common_ngram_map & map, uint16_t n_accepted) {
|
|||
n_accepted, curr_value.n_accepted);
|
||||
curr_value.n_accepted = n_accepted;
|
||||
}
|
||||
|
||||
// Helper functions.
|
||||
//
|
||||
|
||||
// Print the values of a sublist of `llama_tokens & inp` to a string in the form [v0, v1, v2, ...].
|
||||
std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length) {
|
||||
std::ostringstream oss;
|
||||
oss << '[';
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
if (i > 0) {
|
||||
oss << ", ";
|
||||
}
|
||||
oss << inp[start + i];
|
||||
}
|
||||
oss << ']';
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -11,6 +11,7 @@
|
|||
//
|
||||
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,60 @@
|
|||
#include "ngram-mod.h"
|
||||
|
||||
//
|
||||
// common_ngram_mod
|
||||
//
|
||||
|
||||
common_ngram_mod::common_ngram_mod(uint16_t n, size_t size) : n(n), used(0) {
|
||||
entries.resize(size);
|
||||
|
||||
reset();
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::idx(const entry_t * tokens) const {
|
||||
size_t res = 0;
|
||||
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
res = res*6364136223846793005ULL + tokens[i];
|
||||
}
|
||||
|
||||
res = res % entries.size();
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void common_ngram_mod::add(const entry_t * tokens) {
|
||||
const size_t i = idx(tokens);
|
||||
|
||||
if (entries[i] == EMPTY) {
|
||||
used++;
|
||||
}
|
||||
|
||||
entries[i] = tokens[n];
|
||||
}
|
||||
|
||||
common_ngram_mod::entry_t common_ngram_mod::get(const entry_t * tokens) const {
|
||||
const size_t i = idx(tokens);
|
||||
|
||||
return entries[i];
|
||||
}
|
||||
|
||||
void common_ngram_mod::reset() {
|
||||
std::fill(entries.begin(), entries.end(), EMPTY);
|
||||
used = 0;
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::get_n() const {
|
||||
return n;
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::get_used() const {
|
||||
return used;
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::size() const {
|
||||
return entries.size();
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::size_bytes() const {
|
||||
return entries.size() * sizeof(entries[0]);
|
||||
}
|
||||
|
|
@ -0,0 +1,38 @@
|
|||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
#include <cstddef>
|
||||
|
||||
//
|
||||
// common_ngram_mod
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/19164
|
||||
//
|
||||
|
||||
// basic n-gram hasher
|
||||
struct common_ngram_mod {
|
||||
using entry_t = int32_t;
|
||||
|
||||
static constexpr entry_t EMPTY = -1;
|
||||
|
||||
common_ngram_mod(uint16_t n, size_t size);
|
||||
|
||||
size_t idx(const entry_t * tokens) const;
|
||||
void add(const entry_t * tokens);
|
||||
entry_t get(const entry_t * tokens) const; // return -1 if not found
|
||||
|
||||
void reset();
|
||||
|
||||
size_t get_n() const;
|
||||
size_t get_used() const;
|
||||
|
||||
size_t size() const;
|
||||
size_t size_bytes() const;
|
||||
|
||||
private:
|
||||
size_t n; // ngram size to hash
|
||||
|
||||
size_t used;
|
||||
|
||||
std::vector<entry_t> entries;
|
||||
};
|
||||
|
|
@ -6,6 +6,7 @@
|
|||
#include "log.h"
|
||||
#include "ngram-cache.h"
|
||||
#include "ngram-map.h"
|
||||
#include "ngram-mod.h"
|
||||
#include "sampling.h"
|
||||
|
||||
#include <algorithm>
|
||||
|
|
@ -23,6 +24,7 @@ const std::vector<enum common_speculative_type> common_speculative_types = {
|
|||
COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE,
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K,
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V,
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MOD,
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_CACHE
|
||||
};
|
||||
|
||||
|
|
@ -33,6 +35,7 @@ const std::map<std::string, enum common_speculative_type> common_speculative_typ
|
|||
{"ngram_simple", COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE},
|
||||
{"ngram_map_k", COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K},
|
||||
{"ngram_map_k4v", COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V},
|
||||
{"ngram_mod", COMMON_SPECULATIVE_TYPE_NGRAM_MOD},
|
||||
{"ngram_cache", COMMON_SPECULATIVE_TYPE_NGRAM_CACHE}
|
||||
};
|
||||
|
||||
|
|
@ -110,6 +113,8 @@ static bool common_speculative_are_compatible(
|
|||
struct common_speculative_state {
|
||||
const enum common_speculative_type type;
|
||||
|
||||
// TODO: rename to n_call_draft, n_gen_drafts, n_acc_drafts, n_gen_tokens, n_acc_tokens
|
||||
// TODO: add n_call_begin, n_call_accept
|
||||
size_t drafts_call_count = 0; // number of times this implementation was called.
|
||||
size_t drafts_generated_count = 0; // number of times a draft or part was generated by this implementation.
|
||||
size_t drafts_accepted_count = 0; // number of times a draft or part was accepted by the target model.
|
||||
|
|
@ -119,6 +124,8 @@ struct common_speculative_state {
|
|||
// TODO: track performance of most recent calls
|
||||
const bool gen_perf = true; // whether to generate performance stats.
|
||||
|
||||
// TODO: rename to t_draft_us
|
||||
// TODO: add t_begin_us, t_accept_us
|
||||
int64_t gen_duration_us = 0; // total time spent in this implementation in microseconds.
|
||||
|
||||
common_speculative_state(enum common_speculative_type type) : type(type) {}
|
||||
|
|
@ -509,6 +516,132 @@ struct common_speculative_state_ngram_map_k : public common_speculative_state {
|
|||
}
|
||||
};
|
||||
|
||||
struct common_speculative_state_ngram_mod : public common_speculative_state {
|
||||
common_ngram_mod & mod;
|
||||
|
||||
// the last position in the prompt that was added to the ngram container
|
||||
size_t i_last = 0;
|
||||
|
||||
// length of the last drafted n‑gram (number of tokens returned by draft)
|
||||
size_t n_draft_last = 0;
|
||||
|
||||
// consecutive accept rounds with low acceptance fraction (< 0.5)
|
||||
int n_low = 0;
|
||||
|
||||
// enable trace logging if LLAMA_TRACE is set
|
||||
const bool verbose;
|
||||
|
||||
common_speculative_state_ngram_mod(enum common_speculative_type type, common_ngram_mod & mod)
|
||||
: common_speculative_state(type), mod(mod), verbose(std::getenv("LLAMA_TRACE") != nullptr) {
|
||||
static_assert(sizeof(llama_token) == sizeof(common_ngram_mod::entry_t));
|
||||
}
|
||||
|
||||
void begin(const llama_tokens & prompt) override {
|
||||
i_last = 0;
|
||||
|
||||
n_draft_last = 0;
|
||||
|
||||
const size_t n = mod.get_n();
|
||||
|
||||
if (prompt.size() < n) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < prompt.size() - n; ++i) {
|
||||
mod.add(prompt.data() + i);
|
||||
}
|
||||
|
||||
i_last = prompt.size() - n;
|
||||
|
||||
const double f = (double)mod.get_used() / (double)mod.size();
|
||||
LOG_INF("%s: ngram_mod occupancy = %zu/%zu (%.2f)\n", __func__, mod.get_used(), mod.size(), f);
|
||||
|
||||
constexpr double f_thold = 0.25;
|
||||
if (f > f_thold) {
|
||||
LOG_WRN("%s: ngram_mod occupancy %.2f exceeds threshold (%.2f) - resetting\n", __func__, f, f_thold);
|
||||
|
||||
mod.reset();
|
||||
}
|
||||
}
|
||||
|
||||
void draft(
|
||||
const common_params_speculative & params,
|
||||
const llama_tokens & prompt_tgt,
|
||||
llama_token id_last,
|
||||
llama_tokens & result) override {
|
||||
GGML_UNUSED(params);
|
||||
|
||||
n_draft_last = 0;
|
||||
|
||||
const size_t cur_len = prompt_tgt.size();
|
||||
if (cur_len < mod.get_n()) {
|
||||
return;
|
||||
}
|
||||
|
||||
const size_t n = mod.get_n();
|
||||
|
||||
// add new ngrams in chunks
|
||||
if (i_last + 32 < cur_len) {
|
||||
for (size_t i = i_last; i < cur_len - n; ++i) {
|
||||
mod.add(prompt_tgt.data() + i);
|
||||
}
|
||||
|
||||
i_last = cur_len - n;
|
||||
}
|
||||
|
||||
result.resize(n + params.n_max);
|
||||
for (size_t i = 0; i < n - 1; ++i) {
|
||||
result[i] = prompt_tgt[cur_len - n + 1 + i];
|
||||
}
|
||||
result[n - 1] = id_last;
|
||||
|
||||
for (int i = 0; i < params.n_max; ++i) {
|
||||
const llama_token token = mod.get(result.data() + i);
|
||||
if (token == common_ngram_mod::EMPTY) {
|
||||
if (i < params.n_min) {
|
||||
result.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
result.resize(n + i);
|
||||
break;
|
||||
}
|
||||
result[n + i] = token;
|
||||
}
|
||||
|
||||
// only return the m tokens that were drafted
|
||||
for (size_t i = 0; n + i < result.size(); ++i) {
|
||||
result[i] = result[n + i];
|
||||
}
|
||||
result.resize(result.size() - n);
|
||||
|
||||
// store length of drafted n‑gram for later acceptance analysis
|
||||
n_draft_last = result.size();
|
||||
}
|
||||
|
||||
void accept(uint16_t n_accepted) override {
|
||||
if (verbose) {
|
||||
LOG_INF("%s: accepted %d tokens from %zu drafted tokens\n", __func__, n_accepted, n_draft_last);
|
||||
}
|
||||
|
||||
// compute acceptance fraction if we have a recorded draft length
|
||||
if (n_draft_last > 0) {
|
||||
const double f_acc = (double)n_accepted / (double)n_draft_last;
|
||||
if (f_acc < 0.5) {
|
||||
n_low++;
|
||||
if (n_low >= 3) {
|
||||
LOG_WRN("%s: low acceptance streak (%d) – resetting ngram_mod\n", __func__, n_low);
|
||||
|
||||
mod.reset();
|
||||
n_low = 0;
|
||||
}
|
||||
} else {
|
||||
n_low = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct common_speculative_state_ngram_cache : public common_speculative_state {
|
||||
uint16_t n_draft;
|
||||
bool save_dynamic;
|
||||
|
|
@ -650,6 +783,7 @@ std::string common_speculative_type_to_str(enum common_speculative_type type) {
|
|||
case COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE: return "ngram_simple";
|
||||
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K: return "ngram_map_k";
|
||||
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V: return "ngram_map_k4v";
|
||||
case COMMON_SPECULATIVE_TYPE_NGRAM_MOD: return "ngram_mod";
|
||||
case COMMON_SPECULATIVE_TYPE_NGRAM_CACHE: return "ngram_cache";
|
||||
default: return "unknown";
|
||||
}
|
||||
|
|
@ -666,8 +800,8 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
|
|||
// initialization of the speculative decoding system
|
||||
//
|
||||
common_speculative * common_speculative_init(
|
||||
const common_params_speculative & params,
|
||||
llama_context * ctx_tgt) {
|
||||
common_params_speculative & params,
|
||||
llama_context * ctx_tgt) {
|
||||
llama_context * ctx_dft = nullptr;
|
||||
if (params.model_dft) {
|
||||
ctx_dft = llama_init_from_model(params.model_dft, params.cparams_dft);
|
||||
|
|
@ -687,6 +821,7 @@ common_speculative * common_speculative_init(
|
|||
bool has_ngram_simple = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE);
|
||||
bool has_ngram_map_k = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K);
|
||||
bool has_ngram_map_k4v = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V);
|
||||
bool has_ngram_mod = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MOD);
|
||||
|
||||
// In a more complex implementation we could use the same implementation but with different parameters.
|
||||
// This was initially used in PR-18471 but removed to simplify the code.
|
||||
|
|
@ -701,6 +836,22 @@ common_speculative * common_speculative_init(
|
|||
// This implementation can guess tokens with high acceptance rate but is more expensive.
|
||||
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V, params));
|
||||
}
|
||||
if (has_ngram_mod) {
|
||||
// shared instance for all speculative decoding contexts
|
||||
if (!params.ngram_mod) {
|
||||
params.ngram_mod = std::make_shared<common_ngram_mod>(params.ngram_size_n, 4*1024*1024);
|
||||
|
||||
LOG_INF("%s: initialized ngram_mod with n=%d, size=%zu (%.3f MB)\n", __func__,
|
||||
params.ngram_size_n, params.ngram_mod->size(),
|
||||
(float)(params.ngram_mod->size_bytes())/1024/1024);
|
||||
|
||||
if (params.ngram_size_n < 16) {
|
||||
LOG_WRN("%s: ngram_mod n=%d is too small - poor quality is possible, see: https://github.com/ggml-org/llama.cpp/pull/19164\n", __func__, params.ngram_size_n);
|
||||
}
|
||||
}
|
||||
|
||||
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MOD, params));
|
||||
}
|
||||
if (has_ngram_cache) {
|
||||
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_CACHE, params));
|
||||
}
|
||||
|
|
@ -758,6 +909,11 @@ common_speculative * common_speculative_init(
|
|||
));
|
||||
break;
|
||||
}
|
||||
case COMMON_SPECULATIVE_TYPE_NGRAM_MOD: {
|
||||
GGML_ASSERT(config.params.ngram_mod);
|
||||
impls.push_back(std::make_unique<common_speculative_state_ngram_mod>(config.type, *config.params.ngram_mod));
|
||||
break;
|
||||
}
|
||||
case COMMON_SPECULATIVE_TYPE_NGRAM_CACHE: {
|
||||
auto state = create_state_ngram_cache(
|
||||
params.lookup_cache_static, params.lookup_cache_dynamic, config);
|
||||
|
|
@ -822,8 +978,7 @@ llama_tokens common_speculative_draft(
|
|||
|
||||
if (!result.empty()) {
|
||||
LOG_DBG("%s: called impl %s, hist size = %zu, call_count = %zu, gen = %zu\n", __func__,
|
||||
common_speculative_type_to_str(impl.get()->type).c_str(),
|
||||
prompt_tgt.size(),
|
||||
common_speculative_type_to_str(impl.get()->type).c_str(), prompt_tgt.size(),
|
||||
impl.get()->drafts_call_count, result.size());
|
||||
|
||||
spec->curr_impl = impl.get(); // set current implementation for stats
|
||||
|
|
@ -869,6 +1024,7 @@ void common_speculative_print_stats(const common_speculative * spec) {
|
|||
str_perf = "";
|
||||
}
|
||||
|
||||
// TODO: report time for begin() and accept()
|
||||
LOG_INF("statistics %s: #calls = %zu, #gen drafts = %zu, #acc drafts = %zu, #gen tokens = %zu, #acc tokens = %zu%s\n",
|
||||
common_speculative_type_to_str(impl->type).c_str(),
|
||||
impl->drafts_call_count,
|
||||
|
|
|
|||
|
|
@ -15,8 +15,8 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
|
|||
std::string common_speculative_type_to_str(enum common_speculative_type type);
|
||||
|
||||
common_speculative * common_speculative_init(
|
||||
const common_params_speculative & params,
|
||||
llama_context * ctx_tgt);
|
||||
common_params_speculative & params,
|
||||
llama_context * ctx_tgt);
|
||||
|
||||
void common_speculative_free(common_speculative * spec);
|
||||
|
||||
|
|
|
|||
|
|
@ -8806,6 +8806,7 @@ class GraniteMoeModel(GraniteModel):
|
|||
gate, up = data_torch.split(ffn_dim, dim=-2)
|
||||
yield from ModelBase.modify_tensors(self, gate, self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), bid)
|
||||
yield from ModelBase.modify_tensors(self, up, self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), bid)
|
||||
return
|
||||
|
||||
has_experts = bool(self.hparams.get('num_local_experts'))
|
||||
|
||||
|
|
|
|||
|
|
@ -35,9 +35,9 @@ The following releases are verified and recommended:
|
|||
|
||||
|Commit ID|Tag|Release|Verified Platform| Update date|
|
||||
|-|-|-|-|-|
|
||||
|24e86cae7219b0f3ede1d5abdf5bf3ad515cccb8|b5377 |[llama-b5377-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b5377/llama-b5377-bin-win-sycl-x64.zip) |ArcB580/Linux/oneAPI 2025.1<br>LNL Arc GPU/Windows 11/oneAPI 2025.1.1|2025-05-15|
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|24e86cae7219b0f3ede1d5abdf5bf3ad515cccb8|b5377 |[llama-b5377-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b5377/llama-b5377-bin-win-sycl-x64.zip) |Arc B580/Linux/oneAPI 2025.1<br>LNL Arc GPU/Windows 11/oneAPI 2025.1.1|2025-05-15|
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc A770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc A770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|
||||
|
||||
## News
|
||||
|
|
@ -51,7 +51,7 @@ The following releases are verified and recommended:
|
|||
|-|-|-|-|
|
||||
|PVC 1550|39|73|+87%|
|
||||
|Flex 170|39|50|+28%|
|
||||
|Arc770|42|55|+30%|
|
||||
|Arc A770|42|55|+30%|
|
||||
|MTL|13|16|+23%|
|
||||
|ARL-H|14|17|+21%|
|
||||
|
||||
|
|
@ -62,7 +62,7 @@ The following releases are verified and recommended:
|
|||
- Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs.
|
||||
|
||||
- 2024.5
|
||||
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
|
||||
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc A770.
|
||||
- Arch Linux is verified successfully.
|
||||
|
||||
- 2024.4
|
||||
|
|
@ -111,7 +111,8 @@ On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the
|
|||
|-------------------------------|---------|---------------------------------------|
|
||||
| Intel Data Center Max Series | Support | Max 1550, 1100 |
|
||||
| Intel Data Center Flex Series | Support | Flex 170 |
|
||||
| Intel Arc Series | Support | Arc 770, 730M, Arc A750, B580 |
|
||||
| Intel Arc A-Series | Support | Arc A770, Arc A730M, Arc A750 |
|
||||
| Intel Arc B-Series | Support | Arc B580 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake, Lunar Lake |
|
||||
| Intel iGPU | Support | iGPU in 13700k, 13400, i5-1250P, i7-1260P, i7-1165G7 |
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,10 @@
|
|||
{
|
||||
"version": 4,
|
||||
"version": 5,
|
||||
"cmakeMinimumRequired": {
|
||||
"major": 3,
|
||||
"minor": 28,
|
||||
"patch": 0
|
||||
},
|
||||
"configurePresets": [
|
||||
{
|
||||
"name": "arm64-android-snapdragon",
|
||||
|
|
@ -16,7 +21,9 @@
|
|||
"CMAKE_CXX_FLAGS_RELEASE": "-O3 -DNDEBUG",
|
||||
"CMAKE_C_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
|
||||
"CMAKE_CXX_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
|
||||
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
|
||||
"CMAKE_PREFIX_PATH": "$env{OPENCL_SDK_ROOT}",
|
||||
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
|
||||
"HEXAGON_TOOLS_ROOT": "$env{HEXAGON_TOOLS_ROOT}",
|
||||
"PREBUILT_LIB_DIR": "android_aarch64",
|
||||
"GGML_OPENMP": "OFF",
|
||||
"GGML_LLAMAFILE": "OFF",
|
||||
|
|
@ -31,7 +38,15 @@
|
|||
"name": "arm64-windows-snapdragon",
|
||||
"inherits": [ "base", "arm64-windows-llvm" ],
|
||||
"cacheVariables": {
|
||||
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
|
||||
"CMAKE_C_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -flto -D_GNU_SOURCE",
|
||||
"CMAKE_CXX_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -flto -D_GNU_SOURCE",
|
||||
"CMAKE_C_FLAGS_RELEASE": "-O3 -DNDEBUG",
|
||||
"CMAKE_CXX_FLAGS_RELEASE": "-O3 -DNDEBUG",
|
||||
"CMAKE_C_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
|
||||
"CMAKE_CXX_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
|
||||
"CMAKE_PREFIX_PATH": "$env{OPENCL_SDK_ROOT}",
|
||||
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
|
||||
"HEXAGON_TOOLS_ROOT": "$env{HEXAGON_TOOLS_ROOT}",
|
||||
"PREBUILT_LIB_DIR": "windows_aarch64",
|
||||
"GGML_OPENMP": "OFF",
|
||||
"GGML_LLAMAFILE": "OFF",
|
||||
|
|
@ -1,6 +1,8 @@
|
|||
# Snapdragon-based Android devices
|
||||
# Snapdragon-based devices
|
||||
|
||||
## How to Build
|
||||
## Setup
|
||||
|
||||
### Android
|
||||
|
||||
The easiest way to build llama.cpp for a Snapdragon-based Android device is using the toolchain Docker image (see github.com/snapdragon-toolchain).
|
||||
This image includes Android NDK, OpenCL SDK, Hexagon SDK, CMake, etc.
|
||||
|
|
@ -12,7 +14,24 @@ This method works on Linux, macOS, and Windows. macOS and Windows users should i
|
|||
[d]/> cd /workspace
|
||||
```
|
||||
|
||||
The rest of the Android build process assumes that you're running inside the toolchain container.
|
||||
Note: The rest of the **Android** build process assumes that you're running inside the toolchain container.
|
||||
|
||||
### Windows On Snapdragon
|
||||
|
||||
Native Windows 11 arm64 builds has the following tools dependencies:
|
||||
- MS Visual Studio 2026 (Community Edition or Pro)
|
||||
- MSVC arm64 standard and runtime libraries
|
||||
- UCRT and Driver Kit
|
||||
- LLVM core libraries and Clang compiler (winget)
|
||||
- CMake, Git, Python (winget)
|
||||
- Hexagon SDK Community Edition 6.4 or later (see windows.md)
|
||||
- OpenCL SDK 2.3 or later (see windows.md)
|
||||
|
||||
Note: The rest of the **Windows** build process assumes that you're running natively in Powershell.
|
||||
Adapt below build commands accordingly.
|
||||
|
||||
## How to Build
|
||||
|
||||
Let's build llama.cpp with CPU, OpenCL, and Hexagon backends via CMake presets:
|
||||
|
||||
```
|
||||
|
|
@ -49,24 +68,26 @@ Preset CMake variables:
|
|||
To generate an installable "package" simply use cmake --install:
|
||||
|
||||
```
|
||||
[d]/workspace> cmake --install build-snapdragon --prefix pkg-adb/llama.cpp
|
||||
[d]/workspace> cmake --install build-snapdragon --prefix pkg-snapdragon/llama.cpp
|
||||
-- Install configuration: "Release"
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-cpu.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-opencl.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-hexagon.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v73.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v75.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v79.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v81.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-cpu.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-opencl.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-hexagon.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-htp-v73.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-htp-v75.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-htp-v79.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-htp-v81.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml.so
|
||||
...
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-bench
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-cli
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/bin/llama-bench
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/bin/llama-cli
|
||||
...
|
||||
```
|
||||
|
||||
## How to Install
|
||||
|
||||
### Android
|
||||
|
||||
For this step, your device needs to be configured for on-device development.
|
||||
Please see https://developer.android.com/studio/debug/dev-options for details.
|
||||
|
||||
|
|
@ -74,10 +95,10 @@ Once ADB is enabled, use `adb push` to install `pkg-snapdragon` on the device.
|
|||
**Note that the toolchain Docker image doesn't have ADB and doesn't set up the ADB bridge. Please use native ADB on the host.**
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ adb push pkg-adb/llama.cpp /data/local/tmp/
|
||||
pkg-adb/llama.cpp/bin/: 67 files pushed, 0 skipped. 190.2 MB/s (919095042 bytes in 4.607s)
|
||||
pkg-adb/llama.cpp/include/: 19 files pushed, 0 skipped. 20.5 MB/s (255173 bytes in 0.012s)
|
||||
pkg-adb/llama.cpp/lib/: 16 files pushed, 0 skipped. 144.4 MB/s (43801382 bytes in 0.289s)
|
||||
~/src/llama.cpp$ adb push pkg-snapdragon/llama.cpp /data/local/tmp/
|
||||
pkg-snapdragon/llama.cpp/bin/: 67 files pushed, 0 skipped. 190.2 MB/s (919095042 bytes in 4.607s)
|
||||
pkg-snapdragon/llama.cpp/include/: 19 files pushed, 0 skipped. 20.5 MB/s (255173 bytes in 0.012s)
|
||||
pkg-snapdragon/llama.cpp/lib/: 16 files pushed, 0 skipped. 144.4 MB/s (43801382 bytes in 0.289s)
|
||||
102 files pushed, 0 skipped. 186.9 MB/s (963151597 bytes in 4.914s)
|
||||
```
|
||||
|
||||
|
|
@ -92,6 +113,11 @@ At this point, you should also install some models:
|
|||
Llama-3.2-1B-Instruct-Q4_0.gguf: 1 file pushed, 0 skipped. 38.3 MB/s (773025920 bytes in 19.250s)
|
||||
```
|
||||
|
||||
### Windows
|
||||
|
||||
All artifacts are already installed in the `pkg-snapdragon` folder.
|
||||
To run, adapt below instructions to use Powershell scrits in `scripts/snapdragon/windows`.
|
||||
|
||||
## How to Run
|
||||
|
||||
The easiest way to run llama.cpp cli tools is using provided wrapper scripts that properly set up all required environment variables.
|
||||
|
|
@ -0,0 +1,161 @@
|
|||
## Overview
|
||||
|
||||
The document covers procedures for installing the latest GPU and NPU drivers, and OpenCL and Hexagon SDKs.
|
||||
|
||||
|
||||
In order to use Hexagon NPU on Snapdragon Windows devices the underlying HTP Ops libraries (e.g libggml-htp-v73.so)
|
||||
must be included in the .cat file digitally signed with a trusted certificate.
|
||||
|
||||
This document covers details on how to generate personal certificate files (.pfx) and how to configure the system
|
||||
to allow for test signatures (aka test-signing).
|
||||
|
||||
## Install the latest Adreno OpenCL SDK
|
||||
|
||||
Either use the trimmed down version (optimized for CI) from
|
||||
|
||||
https://github.com/snapdragon-toolchain/opencl-sdk/releases/download/v2.3.2/adreno-opencl-sdk-v2.3.2-arm64-wos.tar.xz
|
||||
|
||||
Or download the complete official version from
|
||||
|
||||
https://softwarecenter.qualcomm.com/catalog/item/Adreno_OpenCL_SDK?version=2.3.2
|
||||
|
||||
Unzip/untar the archive into
|
||||
```
|
||||
c:\Qualcomm\OpenCL_SDK\2.3.2
|
||||
```
|
||||
|
||||
## Install the latest Hexagon SDK Community Edition
|
||||
|
||||
Either use the trimmed down version (optimized for CI) from
|
||||
|
||||
https://github.com/snapdragon-toolchain/hexagon-sdk/releases/download/v6.4.0.2/hexagon-sdk-v6.4.0.2-arm64-wos.tar.xz
|
||||
|
||||
Or download the complete official version from
|
||||
|
||||
https://softwarecenter.qualcomm.com/catalog/item/Hexagon_SDK?version=6.4.0.2
|
||||
|
||||
Unzip/untar the archive into
|
||||
```
|
||||
c:\Qualcomm\Hexagon_SDK\6.4.0.2
|
||||
```
|
||||
|
||||
## Install the latest Adreno GPU driver
|
||||
|
||||
Download the driver from
|
||||
|
||||
https://softwarecenter.qualcomm.com/catalog/item/Windows_Graphics_Driver
|
||||
|
||||
After the automated installation and reboot please make sure that the GPU device shows up in the `Device Manager` (under 'Display Adapters`)
|
||||
|
||||
## Install the latest Qualcomm NPU driver
|
||||
|
||||
Download the driver from
|
||||
|
||||
https://softwarecenter.qualcomm.com/catalog/item/Qualcomm_HND
|
||||
|
||||
After the automated installation and reboot please make sure that the Hexagon NPU device shows up in the `Device Manager` (under `Neural Processors`).
|
||||
|
||||
If the device is not available you can try installing all components (`qcnspmcdm8380`, `qcnspmcdm8380_ext`) manually.
|
||||
The components are extracted into
|
||||
```
|
||||
c:\QCDrivers\qcnspmcdm...
|
||||
```
|
||||
|
||||
## Enable NPU driver test signatures
|
||||
|
||||
Please note that the following steps are required only for the Hexagon NPU.
|
||||
Adreno GPU backend does not require test signatures.
|
||||
|
||||
### Enable testsigning
|
||||
|
||||
Use `bcdedit` to enable test-signing
|
||||
```
|
||||
> bcdedit /set TESTSIGNING ON
|
||||
```
|
||||
(Secure Boot may need to be disabled for this to work)
|
||||
|
||||
Make sure test-signing is enabled after reboot
|
||||
```
|
||||
> bcdedit /enum
|
||||
...
|
||||
testsigning Yes
|
||||
...
|
||||
```
|
||||
For additional details see Microsoft guide at
|
||||
|
||||
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/the-testsigning-boot-configuration-option
|
||||
|
||||
### Create personal certificate
|
||||
|
||||
The tools required for this procedure are available as part of Windows SDK and Windows Driver Kit which should be
|
||||
installed as part of the MS Visual Studio.
|
||||
They are typically located at
|
||||
```
|
||||
c:\Program Files (x86)\Windows Kits\10\bin\10.0.26100.0
|
||||
```
|
||||
(replace 10.0.26100.0 with correct version).
|
||||
|
||||
To create personal self-signed certificate run the following commands (either from cmd or power-shell):
|
||||
```
|
||||
> cd c:\Users\MyUser
|
||||
> mkdir Certs
|
||||
> cd Certs
|
||||
> makecert -r -pe -ss PrivateCertStore -n CN=GGML.HTP.v1 -eku 1.3.6.1.5.5.7.3.3 -sv ggml-htp-v1.pvk ggml-htp-v1.cer
|
||||
> pvk2pfx.exe -pvk ggml-htp-v1.pvk -spc ggml-htp-v1.cer -pfx ggml-htp-v1.pfx
|
||||
```
|
||||
(replace `MyUser` with your username).
|
||||
|
||||
Add this certificate to `Trusted Root Certification Authorities` and `Trusted Publishers` stores.
|
||||
This can be done using `certlm` Certificate Manager tool.
|
||||
Right click on the certificate store, select `All Tasks -> Import` and follow the prompts to import the certificate from the
|
||||
PFX file you created above.
|
||||
|
||||
For additional details see Microsoft guide at
|
||||
|
||||
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/introduction-to-test-signing
|
||||
|
||||
Make sure to save the PFX file, you will need it for the build procedures.
|
||||
Please note that the same certificate can be used for signing any number of builds.
|
||||
|
||||
## Build Hexagon backend with signed HTP ops libraries
|
||||
|
||||
The overall Hexagon backend build procedure for Windows on Snapdragon is the same as for other platforms.
|
||||
However, additional settings are required for generating and signing HTP Ops libraries.
|
||||
```
|
||||
> $env:OPENCL_SDK_ROOT="C:\Qualcomm\OpenCL_SDK\2.3.2"
|
||||
> $env:HEXAGON_SDK_ROOT="C:\Qualcomm\Hexagon_SDK\6.4.0.2"
|
||||
> $env:HEXAGON_TOOLS_ROOT="C:\Qualcomm\Hexagon_SDK\6.4.0.2\tools\HEXAGON_Tools\19.0.04"
|
||||
> $env:HEXAGON_HTP_CERT="c:\Users\MyUsers\Certs\ggml-htp-v1.pfx"
|
||||
> $env:WINDOWS_SDK_BIN="C:\Program Files (x86)\Windows Kits\10\bin\10.0.26100.0\arm64"
|
||||
|
||||
> cmake --preset arm64-windows-snapdragon -B build-wos
|
||||
...
|
||||
> cmake --install build-wos --prefix pkg-snapdragon
|
||||
```
|
||||
|
||||
Once the build is complete HTP ops libraries will be installed like this
|
||||
```
|
||||
> dir pkg-snapdragon/lib
|
||||
...
|
||||
-a---- 1/22/2026 6:01 PM 187656 libggml-htp-v73.so
|
||||
-a---- 1/22/2026 6:01 PM 191752 libggml-htp-v75.so
|
||||
-a---- 1/22/2026 6:01 PM 187656 libggml-htp-v79.so
|
||||
-a---- 1/22/2026 6:01 PM 187656 libggml-htp-v81.so
|
||||
-a---- 1/22/2026 6:01 PM 4139 libggml-htp.cat
|
||||
```
|
||||
|
||||
The .cat file, the signature and proper certicate installation can be verified with
|
||||
|
||||
```
|
||||
> signtool.exe verify /v /pa .\pkg-snapdragon\lib\libggml-htp.cat
|
||||
Verifying: .\pkg-snapdragon\lib\libggml-htp.cat
|
||||
|
||||
Signature Index: 0 (Primary Signature)
|
||||
Hash of file (sha256): 9820C664DA59D5EAE31DBB664127FCDAEF59CDC31502496BC567544EC2F401CF
|
||||
|
||||
Signing Certificate Chain:
|
||||
Issued to: GGML.HTP.v1
|
||||
...
|
||||
Successfully verified: .\pkg-snapdragon\lib\libggml-htp.cat
|
||||
...
|
||||
```
|
||||
|
|
@ -97,7 +97,7 @@ Legend:
|
|||
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ | ❌ |
|
||||
| SOLVE_TRI | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
|
||||
|
|
@ -114,7 +114,7 @@ Legend:
|
|||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TRI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TRI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
|
|
|
|||
|
|
@ -29,8 +29,8 @@
|
|||
"SYCL0","EXP","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","EXPM1","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
|
||||
"SYCL0","EXPM1","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
|
|
@ -71,8 +71,8 @@
|
|||
"SYCL0","EXP","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","EXPM1","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","EXPM1","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
|
|
@ -113,8 +113,8 @@
|
|||
"SYCL0","EXP","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","EXPM1","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
|
||||
"SYCL0","EXPM1","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
|
|
@ -155,8 +155,8 @@
|
|||
"SYCL0","EXP","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","EXPM1","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","EXPM1","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
|
|
@ -10052,10 +10052,10 @@
|
|||
"SYCL0","CUMSUM","type=f32,ne=[375960,1,1,1]","support","0","no","SYCL"
|
||||
"SYCL0","CUMSUM","type=f32,ne=[20481,4,1,1]","support","0","no","SYCL"
|
||||
"SYCL0","XIELU","type=f32,ne=[10,5,4,3]","support","0","no","SYCL"
|
||||
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","0","no","SYCL"
|
||||
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","0","no","SYCL"
|
||||
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","0","no","SYCL"
|
||||
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","0","no","SYCL"
|
||||
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","1","yes","SYCL"
|
||||
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","1","yes","SYCL"
|
||||
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","1","yes","SYCL"
|
||||
"SYCL0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","1","yes","SYCL"
|
||||
"SYCL0","FILL","type=f32,ne=[10,10,4,3],c=0.000000","support","0","no","SYCL"
|
||||
"SYCL0","FILL","type=f32,ne=[303,207,11,3],c=2.000000","support","0","no","SYCL"
|
||||
"SYCL0","FILL","type=f32,ne=[800,600,4,4],c=-152.000000","support","0","no","SYCL"
|
||||
|
|
|
|||
|
Can't render this file because it is too large.
|
|
|
@ -50,6 +50,12 @@ int main(int argc, char ** argv) {
|
|||
const int N = 5; // n-gram size
|
||||
const int G = 15; // max verification n-grams
|
||||
|
||||
// lookahead requires W + G + 1 sequences for parallel Jacobi decoding
|
||||
params.n_parallel = W + G + 1;
|
||||
|
||||
// unified KV cache is required for coupled sequences in batch splitting
|
||||
params.kv_unified = true;
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
|
@ -115,7 +121,7 @@ int main(int argc, char ** argv) {
|
|||
// seq_id == 0 : the current input token
|
||||
// seq_id [1, W] : tokens from the past N - 1 Jacobi iterations
|
||||
// seq_id [W + 1, W + G] : verification n-grams
|
||||
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
|
||||
llama_batch batch = llama_batch_init(llama_n_ctx(ctx), 0, W + G + 1);
|
||||
|
||||
// target model sampling context
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sampling);
|
||||
|
|
|
|||
|
|
@ -106,7 +106,7 @@ int main(int argc, char ** argv){
|
|||
|
||||
std::vector<llama_token> draft;
|
||||
|
||||
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
|
||||
llama_batch batch_tgt = llama_batch_init(llama_n_ctx(ctx), 0, 1);
|
||||
|
||||
const auto t_dec_start = ggml_time_us();
|
||||
|
||||
|
|
|
|||
|
|
@ -222,6 +222,7 @@ if (GGML_SCHED_NO_REALLOC)
|
|||
endif()
|
||||
|
||||
add_library(ggml
|
||||
ggml-backend-dl.cpp
|
||||
ggml-backend-reg.cpp)
|
||||
add_library(ggml::ggml ALIAS ggml)
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,48 @@
|
|||
#include "ggml-backend-dl.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
dl_handle * dl_load_library(const fs::path & path) {
|
||||
// suppress error dialogs for missing DLLs
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
HMODULE handle = LoadLibraryW(path.wstring().c_str());
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return handle;
|
||||
}
|
||||
|
||||
void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
void * p = (void *) GetProcAddress(handle, name);
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
const char * dl_error() {
|
||||
return "";
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
dl_handle * dl_load_library(const fs::path & path) {
|
||||
dl_handle * handle = dlopen(path.string().c_str(), RTLD_NOW | RTLD_LOCAL);
|
||||
return handle;
|
||||
}
|
||||
|
||||
void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
return dlsym(handle, name);
|
||||
}
|
||||
|
||||
const char * dl_error() {
|
||||
const char *rslt = dlerror();
|
||||
return rslt != nullptr ? rslt : "";
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
@ -0,0 +1,45 @@
|
|||
#pragma once
|
||||
|
||||
#ifdef _WIN32
|
||||
# define WIN32_LEAN_AND_MEAN
|
||||
# ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
# endif
|
||||
# include <windows.h>
|
||||
# include <winevt.h>
|
||||
#else
|
||||
# include <dlfcn.h>
|
||||
# include <unistd.h>
|
||||
#endif
|
||||
#include <filesystem>
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
using dl_handle = std::remove_pointer_t<HMODULE>;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(HMODULE handle) {
|
||||
FreeLibrary(handle);
|
||||
}
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
using dl_handle = void;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(void * handle) {
|
||||
dlclose(handle);
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
using dl_handle_ptr = std::unique_ptr<dl_handle, dl_handle_deleter>;
|
||||
|
||||
dl_handle * dl_load_library(const fs::path & path);
|
||||
void * dl_get_sym(dl_handle * handle, const char * name);
|
||||
const char * dl_error();
|
||||
|
||||
|
|
@ -1,5 +1,6 @@
|
|||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-backend-dl.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
|
|
@ -98,72 +99,6 @@ static std::string path_str(const fs::path & path) {
|
|||
}
|
||||
}
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
using dl_handle = std::remove_pointer_t<HMODULE>;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(HMODULE handle) {
|
||||
FreeLibrary(handle);
|
||||
}
|
||||
};
|
||||
|
||||
static dl_handle * dl_load_library(const fs::path & path) {
|
||||
// suppress error dialogs for missing DLLs
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
HMODULE handle = LoadLibraryW(path.wstring().c_str());
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return handle;
|
||||
}
|
||||
|
||||
static void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
void * p = (void *) GetProcAddress(handle, name);
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
static const char * dl_error() {
|
||||
return "";
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
using dl_handle = void;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(void * handle) {
|
||||
dlclose(handle);
|
||||
}
|
||||
};
|
||||
|
||||
static void * dl_load_library(const fs::path & path) {
|
||||
dl_handle * handle = dlopen(path.string().c_str(), RTLD_NOW | RTLD_LOCAL);
|
||||
|
||||
return handle;
|
||||
}
|
||||
|
||||
static void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
return dlsym(handle, name);
|
||||
}
|
||||
|
||||
static const char * dl_error() {
|
||||
const char *rslt = dlerror();
|
||||
return rslt != nullptr ? rslt : "";
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
using dl_handle_ptr = std::unique_ptr<dl_handle, dl_handle_deleter>;
|
||||
|
||||
struct ggml_backend_reg_entry {
|
||||
ggml_backend_reg_t reg;
|
||||
dl_handle_ptr handle;
|
||||
|
|
|
|||
|
|
@ -1124,6 +1124,7 @@ struct ggml_tensor_extra_gpu {
|
|||
struct ggml_cuda_graph_node_properties {
|
||||
void * node_data;
|
||||
ggml_op node_op;
|
||||
enum ggml_type node_type;
|
||||
int32_t flags;
|
||||
int64_t ne[GGML_MAX_DIMS];
|
||||
size_t nb[GGML_MAX_DIMS];
|
||||
|
|
|
|||
|
|
@ -2921,6 +2921,7 @@ static void ggml_cuda_graph_node_set_properties(ggml_cuda_graph_node_properties
|
|||
memset(props, 0, sizeof(ggml_cuda_graph_node_properties));
|
||||
props->node_data = node->data;
|
||||
props->node_op = node->op;
|
||||
props->node_type = node->type;
|
||||
props->flags = node->flags;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
props->ne[i] = node->ne[i];
|
||||
|
|
@ -2945,6 +2946,10 @@ static bool ggml_cuda_graph_node_properties_match(ggml_tensor * node, ggml_cuda_
|
|||
return false;
|
||||
}
|
||||
|
||||
if (node->type != props->node_type) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if (node->ne[i] != props->ne[i]) {
|
||||
return false;
|
||||
|
|
@ -3906,14 +3911,14 @@ static void ggml_cuda_graph_evaluate_and_capture(ggml_backend_cuda_context * cud
|
|||
// Launch graph
|
||||
CUDA_CHECK(cudaGraphLaunch(graph->instance, cuda_ctx->stream()));
|
||||
#else
|
||||
GGML_UNUSED(graph_key);
|
||||
graph_evaluated_or_captured = true;
|
||||
#endif // USE_CUDA_GRAPH
|
||||
}
|
||||
}
|
||||
|
||||
static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx, const void * graph_key) {
|
||||
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx, const void * graph_key) {
|
||||
ggml_cuda_graph * graph = cuda_ctx->cuda_graph(graph_key);
|
||||
|
||||
if (graph->graph == nullptr) {
|
||||
|
|
@ -3926,12 +3931,8 @@ static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx, co
|
|||
}
|
||||
|
||||
return graph->is_enabled();
|
||||
#else
|
||||
GGML_UNUSED(cuda_ctx);
|
||||
GGML_UNUSED(graph_key);
|
||||
return false;
|
||||
#endif // USE_CUDA_GRAPH
|
||||
}
|
||||
#endif // USE_CUDA_GRAPH
|
||||
|
||||
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
|
||||
|
|
|
|||
|
|
@ -1,7 +1,29 @@
|
|||
file(TO_CMAKE_PATH "${HEXAGON_SDK_ROOT}" HEXAGON_SDK_ROOT)
|
||||
file(TO_CMAKE_PATH "${HEXAGON_TOOLS_ROOT}" HEXAGON_TOOLS_ROOT)
|
||||
|
||||
if (NOT IS_DIRECTORY "${HEXAGON_SDK_ROOT}")
|
||||
message(FATAL_ERROR "Make sure HEXAGON_SDK_ROOT point to the correct Hexagon SDK installation.")
|
||||
endif()
|
||||
|
||||
if (NOT IS_DIRECTORY "${HEXAGON_TOOLS_ROOT}")
|
||||
message("Try to read HEXAGON_TOOLS_ROOT from hexagon_sdk.json")
|
||||
file(READ "${HEXAGON_SDK_ROOT}/hexagon_sdk.json" HEXAGON_SDK_CONFIG_PATH)
|
||||
string(JSON HEXAGON_TOOLS_PATH GET ${HEXAGON_SDK_CONFIG_PATH} "root" "tools" "info" 0 "path")
|
||||
message("Found HEXAGON_TOOLS_PATH: ${HEXAGON_TOOLS_PATH}")
|
||||
set(HEXAGON_TOOLS_ROOT "${HEXAGON_SDK_ROOT}/${HEXAGON_TOOLS_PATH}")
|
||||
file(TO_CMAKE_PATH "${HEXAGON_TOOLS_ROOT}" HEXAGON_TOOLS_ROOT)
|
||||
if (NOT IS_DIRECTORY "${HEXAGON_TOOLS_ROOT}")
|
||||
message(FATAL_ERROR "Make sure HEXAGON_TOOLS_ROOT point to the correct Hexagon SDK installation.")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
message(STATUS "hexagon: using ${HEXAGON_SDK_ROOT} and ${HEXAGON_TOOLS_ROOT} for building libggml-htp skels")
|
||||
|
||||
include(${HEXAGON_SDK_ROOT}/build/cmake/hexagon_fun.cmake)
|
||||
include(ExternalProject)
|
||||
|
||||
option(GGML_HEXAGON_HTP_DEBUG "ggml-hexagon: enable HTP debug output" OFF)
|
||||
set(GGML_HEXAGON_HTP_CERT "$ENV{HEXAGON_HTP_CERT}" CACHE PATH "ggml-hexagon: enable HTP library signing using certificate")
|
||||
set(GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE 128 CACHE STRING "ggml-hexagon: quantize group size (32, 64, or 128)")
|
||||
|
||||
add_library(htp_iface OBJECT
|
||||
|
|
@ -25,56 +47,71 @@ else()
|
|||
target_link_options(htp_iface PUBLIC -ldl)
|
||||
endif()
|
||||
|
||||
link_custom_library(htp_iface cdsprpc)
|
||||
link_custom_library(htp_iface rpcmem)
|
||||
|
||||
set(TARGET_NAME ggml-hexagon)
|
||||
ggml_add_backend_library(${TARGET_NAME}
|
||||
ggml-hexagon.cpp htp-utils.c htp-utils.h ../../include/ggml-hexagon.h)
|
||||
ggml-hexagon.cpp
|
||||
htp-drv.cpp
|
||||
htp-drv.h
|
||||
libdl.h
|
||||
../../include/ggml-hexagon.h)
|
||||
|
||||
target_link_libraries(${TARGET_NAME} PRIVATE htp_iface)
|
||||
target_include_directories(${TARGET_NAME} PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/htp ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
# Build HTP bits
|
||||
set(HTP_CMAKE_ARGS
|
||||
-DCMAKE_TOOLCHAIN_FILE=${CMAKE_CURRENT_SOURCE_DIR}/htp/cmake-toolchain.cmake
|
||||
-DCMAKE_BUILD_TYPE=Release
|
||||
-DCMAKE_INSTALL_LIBDIR=${CMAKE_CURRENT_BINARY_DIR}
|
||||
-DHEXAGON_SDK_ROOT=$ENV{HEXAGON_SDK_ROOT}
|
||||
-DHEXAGON_TOOLS_ROOT=$ENV{HEXAGON_TOOLS_ROOT}
|
||||
-DHEXAGON_HTP_DEBUG=${GGML_HEXAGON_HTP_DEBUG}
|
||||
-DGGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE=${GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE})
|
||||
# Build HTP skels
|
||||
set(HTP_SKELS)
|
||||
function(build_htp_skel V)
|
||||
ExternalProject_Add(htp-${V}
|
||||
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
|
||||
BUILD_BYPRODUCTS ${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-${V}.so
|
||||
CMAKE_ARGS
|
||||
-DCMAKE_BUILD_TYPE=Release
|
||||
-DCMAKE_TOOLCHAIN_FILE=${CMAKE_CURRENT_SOURCE_DIR}/htp/cmake-toolchain.cmake
|
||||
-DCMAKE_INSTALL_LIBDIR=${CMAKE_CURRENT_BINARY_DIR}
|
||||
-DHEXAGON_SDK_ROOT=${HEXAGON_SDK_ROOT}
|
||||
-DHEXAGON_TOOLS_ROOT=${HEXAGON_TOOLS_ROOT}
|
||||
-DHEXAGON_HTP_DEBUG=${GGML_HEXAGON_HTP_DEBUG}
|
||||
-DGGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE=${GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE}
|
||||
-DDSP_VERSION=${V}
|
||||
-DPREBUILT_LIB_DIR="toolv19_${V}")
|
||||
list(APPEND HTP_SKELS ${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-${V}.so)
|
||||
set(HTP_SKELS ${HTP_SKELS} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
ExternalProject_Add(htp-v68
|
||||
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
|
||||
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v68 -DPREBUILT_LIB_DIR="toolv19_v68")
|
||||
|
||||
ExternalProject_Add(htp-v69
|
||||
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
|
||||
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v69 -DPREBUILT_LIB_DIR="toolv19_v69")
|
||||
|
||||
ExternalProject_Add(htp-v73
|
||||
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
|
||||
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v73 -DPREBUILT_LIB_DIR="toolv19_v73")
|
||||
|
||||
ExternalProject_Add(htp-v75
|
||||
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
|
||||
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v75 -DPREBUILT_LIB_DIR="toolv19_v75")
|
||||
|
||||
ExternalProject_Add(htp-v79
|
||||
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
|
||||
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v79 -DPREBUILT_LIB_DIR="toolv19_v79")
|
||||
|
||||
ExternalProject_Add(htp-v81
|
||||
SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/htp BUILD_ALWAYS ON
|
||||
CMAKE_ARGS ${HTP_CMAKE_ARGS} -DDSP_VERSION=v81 -DPREBUILT_LIB_DIR="toolv19_v81")
|
||||
build_htp_skel(v68)
|
||||
build_htp_skel(v69)
|
||||
build_htp_skel(v73)
|
||||
build_htp_skel(v75)
|
||||
build_htp_skel(v79)
|
||||
build_htp_skel(v81)
|
||||
|
||||
# Install Hexagon skels required at runtime
|
||||
install(FILES
|
||||
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v68.so
|
||||
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v69.so
|
||||
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v73.so
|
||||
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v75.so
|
||||
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v79.so
|
||||
${CMAKE_CURRENT_BINARY_DIR}/libggml-htp-v81.so
|
||||
TYPE LIB)
|
||||
install(FILES ${HTP_SKELS} TYPE LIB)
|
||||
|
||||
if (CMAKE_SYSTEM_NAME MATCHES Windows AND GGML_HEXAGON_HTP_CERT)
|
||||
file(TO_CMAKE_PATH "$ENV{WINDOWS_SDK_BIN}/arm64" WINSDK_BIN0_ARM64)
|
||||
file(TO_CMAKE_PATH "$ENV{WINDOWS_SDK_BIN}/x86" WINSDK_BIN0_X86)
|
||||
file(TO_CMAKE_PATH "$ENV{WindowsSdkVerBinPath}/arm64" WINSDK_BIN1_ARM64)
|
||||
file(TO_CMAKE_PATH "$ENV{WindowsSdkVerBinPath}/x86" WINSDK_BIN1_X86)
|
||||
|
||||
set(WINSDK_PATHS ${WINSDK_BIN0_ARM64} ${WINSDK_BIN0_X86} ${WINSDK_BIN1_ARM64} ${WINSDK_BIN1_X86})
|
||||
|
||||
find_program(INF2CAT NAMES inf2cat.exe PATHS ${WINSDK_PATHS} REQUIRED)
|
||||
find_program(SIGNTOOL NAMES signtool.exe PATHS ${WINSDK_PATHS} REQUIRED)
|
||||
|
||||
message(STATUS "hexagon: using ${GGML_HEXAGON_HTP_CERT} to sign libggml-htp skels")
|
||||
|
||||
set(LIBGGML_HTP_CAT ${CMAKE_CURRENT_BINARY_DIR}/libggml-htp.cat)
|
||||
add_custom_target(libggml-htp-cat
|
||||
BYPRODUCTS ${LIBGGML_HTP_CAT}
|
||||
DEPENDS libggml-htp.inf ${HTP_SKELS}
|
||||
COMMAND ${CMAKE_COMMAND} -E copy ${CMAKE_CURRENT_SOURCE_DIR}/libggml-htp.inf ${CMAKE_CURRENT_BINARY_DIR}
|
||||
COMMAND ${INF2CAT} /driver:${CMAKE_CURRENT_BINARY_DIR} /os:10_25H2_ARM64
|
||||
COMMAND ${SIGNTOOL} sign /fd sha256 /f ${GGML_HEXAGON_HTP_CERT} ${LIBGGML_HTP_CAT}
|
||||
COMMENT "generating and signing libggml-htp.cat file"
|
||||
VERBATIM
|
||||
)
|
||||
|
||||
add_dependencies(${TARGET_NAME} libggml-htp-cat)
|
||||
install(FILES ${LIBGGML_HTP_CAT} TYPE LIB)
|
||||
endif()
|
||||
|
|
|
|||
|
|
@ -14,9 +14,6 @@
|
|||
|
||||
#ifdef _WIN32
|
||||
# include <sal.h>
|
||||
# ifndef _WINDOWS
|
||||
# define _WINDOWS
|
||||
# endif
|
||||
#else
|
||||
# include <semaphore.h>
|
||||
# include <unistd.h>
|
||||
|
|
@ -25,8 +22,6 @@
|
|||
#pragma clang diagnostic ignored "-Wnested-anon-types"
|
||||
#pragma clang diagnostic ignored "-Wgnu-anonymous-struct"
|
||||
|
||||
#include "htp-utils.h"
|
||||
|
||||
#include <AEEStdErr.h>
|
||||
#include <dspqueue.h>
|
||||
#include <rpcmem.h>
|
||||
|
|
@ -40,6 +35,7 @@
|
|||
#include "op-desc.h"
|
||||
#include "htp-msg.h"
|
||||
#include "htp_iface.h"
|
||||
#include "htp-drv.h"
|
||||
|
||||
static size_t opt_ndev = 1;
|
||||
static size_t opt_nhvx = 0; // use all
|
||||
|
|
@ -150,9 +146,9 @@ void ggml_hexagon_session::enqueue(struct htp_general_req &req, struct dspqueue_
|
|||
0, // flags - the framework will autoset this
|
||||
n_bufs, // number of buffers
|
||||
bufs, // buffer references
|
||||
sizeof(req),
|
||||
sizeof(req), // Message length
|
||||
(const uint8_t *) &req, // Message
|
||||
1000000 // Timeout
|
||||
DSPQUEUE_TIMEOUT // Timeout
|
||||
);
|
||||
|
||||
if (err != 0) {
|
||||
|
|
@ -182,13 +178,13 @@ void ggml_hexagon_session::flush() {
|
|||
|
||||
// Read response packet from queue
|
||||
int err = dspqueue_read(q, &flags,
|
||||
HTP_MAX_PACKET_BUFFERS, // Maximum number of buffer references
|
||||
&n_bufs, // Number of buffer references
|
||||
bufs, // Buffer references
|
||||
sizeof(rsp), // Max message length
|
||||
&rsp_size, // Message length
|
||||
(uint8_t *) &rsp,
|
||||
1000000); // Timeout
|
||||
HTP_MAX_PACKET_BUFFERS, // Maximum number of buffer references
|
||||
&n_bufs, // Number of buffer references
|
||||
bufs, // Buffer references
|
||||
sizeof(rsp), // Max message length
|
||||
&rsp_size, // Message length
|
||||
(uint8_t *) &rsp, // Message
|
||||
DSPQUEUE_TIMEOUT); // Timeout
|
||||
|
||||
if (err == AEE_EEXPIRED) {
|
||||
// TODO: might need to bail out if the HTP is stuck on something
|
||||
|
|
@ -269,13 +265,7 @@ struct ggml_backend_hexagon_buffer_context {
|
|||
ggml_backend_hexagon_buffer_context(ggml_hexagon_session * sess, size_t size, bool repack) {
|
||||
size += 4 * 1024; // extra page for padding
|
||||
|
||||
if (rpcmem_alloc2) {
|
||||
this->base = (uint8_t *) rpcmem_alloc2(RPCMEM_HEAP_ID_SYSTEM, RPCMEM_DEFAULT_FLAGS | RPCMEM_HEAP_NOREG, size);
|
||||
} else {
|
||||
GGML_LOG_INFO("ggml-hex: %s rpcmem_alloc2 not found, falling back to rpcmem_alloc\n", sess->name.c_str());
|
||||
this->base = (uint8_t *) rpcmem_alloc(RPCMEM_HEAP_ID_SYSTEM, RPCMEM_DEFAULT_FLAGS | RPCMEM_HEAP_NOREG, size);
|
||||
}
|
||||
|
||||
this->base = (uint8_t *) rpcmem_alloc2(RPCMEM_HEAP_ID_SYSTEM, RPCMEM_DEFAULT_FLAGS | RPCMEM_HEAP_NOREG, size);
|
||||
if (!this->base) {
|
||||
GGML_LOG_ERROR("ggml-hex: %s failed to allocate buffer : size %zu\n", sess->name.c_str(), size);
|
||||
throw std::runtime_error("ggml-hex: rpcmem_alloc failed (see log for details)");
|
||||
|
|
@ -2461,12 +2451,12 @@ static void ggml_backend_hexagon_free(ggml_backend_t backend) {
|
|||
}
|
||||
|
||||
static inline bool op_reuse_src1(const ggml_tensor * op1, const ggml_tensor * op0) {
|
||||
return (op0 && op0->src[1] == op1->src[1] && ggml_is_quantized(op0->src[0]->type) && ggml_is_quantized(op1->src[1]->type));
|
||||
return (op0 && op0->src[1] == op1->src[1] && ggml_is_quantized(op0->src[0]->type));
|
||||
}
|
||||
|
||||
static inline bool is_compute_op(ggml_tensor *node)
|
||||
{
|
||||
return !(ggml_op_is_empty(node->op) || ggml_is_empty(node));
|
||||
return !ggml_op_is_empty(node->op) && !ggml_is_empty(node) && (node->flags & GGML_TENSOR_FLAG_COMPUTE);
|
||||
}
|
||||
|
||||
// scan the graph and figure out last compute op index
|
||||
|
|
@ -2488,7 +2478,7 @@ static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, gg
|
|||
|
||||
const int last = last_compute_op(graph);
|
||||
|
||||
const struct ggml_tensor * prev_quant_op = nullptr; // prev executed op with quantizer
|
||||
const struct ggml_tensor * prev_op = nullptr; // prev executed op
|
||||
|
||||
for (int i = 0; i < graph->n_nodes; ++i) {
|
||||
ggml_tensor * node = graph->nodes[i];
|
||||
|
|
@ -2497,17 +2487,15 @@ static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, gg
|
|||
continue;
|
||||
}
|
||||
|
||||
if ((node->flags & GGML_TENSOR_FLAG_COMPUTE) == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
uint32_t flags = 0;
|
||||
|
||||
// skip quantizer if src1 is reused
|
||||
if (op_reuse_src1(node, prev_quant_op)) {
|
||||
if (op_reuse_src1(node, prev_op)) {
|
||||
flags |= HTP_OPFLAGS_SKIP_QUANTIZE;
|
||||
}
|
||||
|
||||
prev_op = node;
|
||||
|
||||
// ask for early notification for the last Op
|
||||
if (i == last) {
|
||||
flags |= HTP_OPFLAGS_EARLY_WAKEUP;
|
||||
|
|
@ -2520,7 +2508,6 @@ static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, gg
|
|||
} else {
|
||||
ggml_hexagon_dispatch_op<init_binary_req<false>>(sess, node, flags);
|
||||
}
|
||||
prev_quant_op = node;
|
||||
break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
if (ggml_is_quantized(node->src[0]->type)) {
|
||||
|
|
@ -2528,7 +2515,6 @@ static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, gg
|
|||
} else {
|
||||
ggml_hexagon_dispatch_op<init_binary_id_req<false>>(sess, node, flags);
|
||||
}
|
||||
prev_quant_op = node;
|
||||
break;
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_ADD:
|
||||
|
|
@ -2670,7 +2656,7 @@ static std::vector<int> ggml_hexagon_graph_optimize_reorder(const std::vector<no
|
|||
}
|
||||
|
||||
// that many nodes forward to search for stackable nodes that can reuse VTCM
|
||||
constexpr int N_FORWARD = 8;
|
||||
constexpr int N_FORWARD = 16;
|
||||
|
||||
for (int i1 = i0 + 1; i1 < i0 + N_FORWARD && i1 < n; i1++) {
|
||||
if (used[i1]) {
|
||||
|
|
@ -3056,10 +3042,12 @@ ggml_hexagon_registry::ggml_hexagon_registry(ggml_backend_reg_t reg) {
|
|||
}
|
||||
}
|
||||
|
||||
#if defined(__ANDROID__)
|
||||
if (opt_arch < 75) {
|
||||
opt_ndev = 1;
|
||||
GGML_LOG_WARN("ggml-hex: forcing ndev to 1 for SoCs archs lower than v75.\n");
|
||||
}
|
||||
#endif
|
||||
|
||||
GGML_LOG_INFO("ggml-hex: Hexagon Arch version v%d\n", opt_arch);
|
||||
|
||||
|
|
@ -3156,6 +3144,8 @@ static void ggml_hexagon_init(ggml_backend_reg * reg) {
|
|||
opt_arch = strtoul(str_arch, NULL, 0);
|
||||
}
|
||||
|
||||
opt_hostbuf = str_hostbuf ? atoi(str_hostbuf) : 1;
|
||||
|
||||
reg->context = new ggml_hexagon_registry(reg);
|
||||
|
||||
HEX_VERBOSE("ggml-hex: size-of-general-req %zu size-of-general-rsp %zu\n", sizeof(struct htp_general_req),
|
||||
|
|
@ -3180,6 +3170,11 @@ ggml_backend_reg_t ggml_backend_hexagon_reg(void) {
|
|||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
if (!initialized) {
|
||||
auto nErr = htpdrv_init();
|
||||
if (nErr != AEE_SUCCESS) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ggml_hexagon_init(®);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,418 @@
|
|||
// sample drv interface
|
||||
|
||||
#pragma clang diagnostic ignored "-Wgnu-anonymous-struct"
|
||||
#pragma clang diagnostic ignored "-Wmissing-prototypes"
|
||||
#pragma clang diagnostic ignored "-Wsign-compare"
|
||||
|
||||
#include <filesystem>
|
||||
#include <set>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#ifdef _WIN32
|
||||
# define WIN32_LEAN_AND_MEAN
|
||||
# ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
# endif
|
||||
# include <windows.h>
|
||||
# include <winevt.h>
|
||||
#else
|
||||
# include <dlfcn.h>
|
||||
# include <unistd.h>
|
||||
#endif
|
||||
#include "ggml-impl.h"
|
||||
#include "htp-drv.h"
|
||||
#include "libdl.h"
|
||||
|
||||
#include <domain.h>
|
||||
|
||||
//
|
||||
// Driver API types
|
||||
//
|
||||
|
||||
typedef void * (*rpcmem_alloc_pfn_t)(int heapid, uint32_t flags, int size);
|
||||
typedef void * (*rpcmem_alloc2_pfn_t)(int heapid, uint32_t flags, size_t size);
|
||||
typedef void (*rpcmem_free_pfn_t)(void * po);
|
||||
typedef int (*rpcmem_to_fd_pfn_t)(void * po);
|
||||
|
||||
typedef AEEResult (*dspqueue_create_pfn_t)(int domain,
|
||||
uint32_t flags,
|
||||
uint32_t req_queue_size,
|
||||
uint32_t resp_queue_size,
|
||||
dspqueue_callback_t packet_callback,
|
||||
dspqueue_callback_t error_callback,
|
||||
void * callback_context,
|
||||
dspqueue_t * queue);
|
||||
typedef AEEResult (*dspqueue_close_pfn_t)(dspqueue_t queue);
|
||||
typedef AEEResult (*dspqueue_export_pfn_t)(dspqueue_t queue, uint64_t *queue_id);
|
||||
typedef AEEResult (*dspqueue_write_pfn_t)(dspqueue_t queue, uint32_t flags,
|
||||
uint32_t num_buffers,
|
||||
struct dspqueue_buffer *buffers,
|
||||
uint32_t message_length,
|
||||
const uint8_t *message,
|
||||
uint32_t timeout_us);
|
||||
typedef AEEResult (*dspqueue_read_pfn_t)(dspqueue_t queue, uint32_t *flags,
|
||||
uint32_t max_buffers, uint32_t *num_buffers,
|
||||
struct dspqueue_buffer *buffers,
|
||||
uint32_t max_message_length,
|
||||
uint32_t *message_length, uint8_t *message,
|
||||
uint32_t timeout_us);
|
||||
|
||||
typedef int (*fastrpc_mmap_pfn_t)(int domain, int fd, void *addr, int offset, size_t length, enum fastrpc_map_flags flags);
|
||||
typedef int (*fastrpc_munmap_pfn_t)(int domain, int fd, void *addr, size_t length);
|
||||
|
||||
typedef int (*remote_handle64_open_pfn_t)(const char* name, remote_handle64 *ph);
|
||||
typedef int (*remote_handle64_invoke_pfn_t)(remote_handle64 h, uint32_t dwScalars, remote_arg *pra);
|
||||
typedef int (*remote_handle64_close_pfn_t)(remote_handle h);
|
||||
typedef int (*remote_handle_control_pfn_t)(uint32_t req, void* data, uint32_t datalen);
|
||||
typedef int (*remote_handle64_control_pfn_t)(remote_handle64 h, uint32_t req, void* data, uint32_t datalen);
|
||||
typedef int (*remote_session_control_pfn_t)(uint32_t req, void *data, uint32_t datalen);
|
||||
|
||||
//
|
||||
// Driver API pfns
|
||||
//
|
||||
|
||||
rpcmem_alloc_pfn_t rpcmem_alloc_pfn = nullptr;
|
||||
rpcmem_alloc2_pfn_t rpcmem_alloc2_pfn = nullptr;
|
||||
rpcmem_free_pfn_t rpcmem_free_pfn = nullptr;
|
||||
rpcmem_to_fd_pfn_t rpcmem_to_fd_pfn = nullptr;
|
||||
|
||||
fastrpc_mmap_pfn_t fastrpc_mmap_pfn = nullptr;
|
||||
fastrpc_munmap_pfn_t fastrpc_munmap_pfn = nullptr;
|
||||
|
||||
dspqueue_create_pfn_t dspqueue_create_pfn = nullptr;
|
||||
dspqueue_close_pfn_t dspqueue_close_pfn = nullptr;
|
||||
dspqueue_export_pfn_t dspqueue_export_pfn = nullptr;
|
||||
dspqueue_write_pfn_t dspqueue_write_pfn = nullptr;
|
||||
dspqueue_read_pfn_t dspqueue_read_pfn = nullptr;
|
||||
|
||||
remote_handle64_open_pfn_t remote_handle64_open_pfn = nullptr;
|
||||
remote_handle64_invoke_pfn_t remote_handle64_invoke_pfn = nullptr;
|
||||
remote_handle64_close_pfn_t remote_handle64_close_pfn = nullptr;
|
||||
remote_handle_control_pfn_t remote_handle_control_pfn = nullptr;
|
||||
remote_handle64_control_pfn_t remote_handle64_control_pfn = nullptr;
|
||||
remote_session_control_pfn_t remote_session_control_pfn = nullptr;
|
||||
|
||||
//
|
||||
// Driver API
|
||||
//
|
||||
|
||||
void * rpcmem_alloc(int heapid, uint32_t flags, int size) {
|
||||
return rpcmem_alloc_pfn(heapid, flags, size);
|
||||
}
|
||||
|
||||
void * rpcmem_alloc2(int heapid, uint32_t flags, size_t size) {
|
||||
if (rpcmem_alloc2_pfn) {
|
||||
return rpcmem_alloc2_pfn(heapid, flags, size);
|
||||
} else {
|
||||
GGML_LOG_INFO("ggml-hex: rpcmem_alloc2 not found, falling back to rpcmem_alloc\n");
|
||||
return rpcmem_alloc_pfn(heapid, flags, size);
|
||||
}
|
||||
}
|
||||
|
||||
void rpcmem_free(void * po) {
|
||||
return rpcmem_free_pfn(po);
|
||||
}
|
||||
|
||||
int rpcmem_to_fd(void * po) {
|
||||
return rpcmem_to_fd_pfn(po);
|
||||
}
|
||||
|
||||
HTPDRV_API int fastrpc_mmap(int domain, int fd, void * addr, int offset, size_t length, enum fastrpc_map_flags flags) {
|
||||
return fastrpc_mmap_pfn(domain, fd, addr, offset, length, flags);
|
||||
}
|
||||
|
||||
HTPDRV_API int fastrpc_munmap(int domain, int fd, void * addr, size_t length) {
|
||||
return fastrpc_munmap_pfn(domain, fd, addr, length);
|
||||
}
|
||||
|
||||
AEEResult dspqueue_create(int domain,
|
||||
uint32_t flags,
|
||||
uint32_t req_queue_size,
|
||||
uint32_t resp_queue_size,
|
||||
dspqueue_callback_t packet_callback,
|
||||
dspqueue_callback_t error_callback,
|
||||
void * callback_context,
|
||||
dspqueue_t * queue) {
|
||||
return dspqueue_create_pfn(domain, flags, req_queue_size, resp_queue_size, packet_callback, error_callback,
|
||||
callback_context, queue);
|
||||
}
|
||||
|
||||
AEEResult dspqueue_close(dspqueue_t queue) {
|
||||
return dspqueue_close_pfn(queue);
|
||||
}
|
||||
|
||||
AEEResult dspqueue_export(dspqueue_t queue, uint64_t * queue_id) {
|
||||
return dspqueue_export_pfn(queue, queue_id);
|
||||
}
|
||||
|
||||
AEEResult dspqueue_write(dspqueue_t queue,
|
||||
uint32_t flags,
|
||||
uint32_t num_buffers,
|
||||
struct dspqueue_buffer * buffers,
|
||||
uint32_t message_length,
|
||||
const uint8_t * message,
|
||||
uint32_t timeout_us) {
|
||||
return dspqueue_write_pfn(queue, flags, num_buffers, buffers, message_length, message, timeout_us);
|
||||
}
|
||||
|
||||
AEEResult dspqueue_read(dspqueue_t queue,
|
||||
uint32_t * flags,
|
||||
uint32_t max_buffers,
|
||||
uint32_t * num_buffers,
|
||||
struct dspqueue_buffer * buffers,
|
||||
uint32_t max_message_length,
|
||||
uint32_t * message_length,
|
||||
uint8_t * message,
|
||||
uint32_t timeout_us) {
|
||||
return dspqueue_read_pfn(queue, flags, max_buffers, num_buffers, buffers, max_message_length, message_length,
|
||||
message, timeout_us);
|
||||
}
|
||||
|
||||
HTPDRV_API int remote_handle64_open(const char * name, remote_handle64 * ph) {
|
||||
return remote_handle64_open_pfn(name, ph);
|
||||
}
|
||||
|
||||
HTPDRV_API int remote_handle64_invoke(remote_handle64 h, uint32_t dwScalars, remote_arg * pra) {
|
||||
return remote_handle64_invoke_pfn(h, dwScalars, pra);
|
||||
}
|
||||
|
||||
HTPDRV_API int remote_handle64_close(remote_handle64 h) {
|
||||
return remote_handle64_close_pfn(h);
|
||||
}
|
||||
|
||||
HTPDRV_API int remote_handle_control(uint32_t req, void * data, uint32_t datalen) {
|
||||
return remote_handle_control_pfn(req, data, datalen);
|
||||
}
|
||||
|
||||
HTPDRV_API int remote_handle64_control(remote_handle64 h, uint32_t req, void * data, uint32_t datalen) {
|
||||
return remote_handle64_control_pfn(h, req, data, datalen);
|
||||
}
|
||||
|
||||
HTPDRV_API int remote_session_control(uint32_t req, void * data, uint32_t datalen) {
|
||||
return remote_session_control_pfn(req, data, datalen);
|
||||
}
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
static std::string wstr_to_str(std::wstring_view wstr) {
|
||||
std::string result;
|
||||
if (wstr.empty()) {
|
||||
return result;
|
||||
}
|
||||
auto bytes_needed = WideCharToMultiByte(CP_UTF8, WC_ERR_INVALID_CHARS,
|
||||
wstr.data(), (int) wstr.size(),
|
||||
nullptr, 0, nullptr, nullptr);
|
||||
if (bytes_needed == 0) {
|
||||
GGML_LOG_ERROR("ggml-hex: WideCharToMultiByte failed. Error %lu\n", GetLastError());
|
||||
throw std::runtime_error("Invalid wstring input");
|
||||
}
|
||||
|
||||
result.resize(bytes_needed, '\0');
|
||||
int bytes_written = WideCharToMultiByte(CP_UTF8, WC_ERR_INVALID_CHARS,
|
||||
wstr.data(), (int) wstr.size(),
|
||||
result.data(), bytes_needed,
|
||||
nullptr, nullptr);
|
||||
if (bytes_written == 0) {
|
||||
GGML_LOG_ERROR("ggml-hex: WideCharToMultiByte failed. Error %lu\n", GetLastError());
|
||||
throw std::runtime_error("Wstring conversion failed");
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static std::string get_driver_path() {
|
||||
std::wstring serviceName = L"qcnspmcdm";
|
||||
std::string result;
|
||||
|
||||
// Get a handle to the SCM database.
|
||||
SC_HANDLE schSCManager = OpenSCManagerW(NULL, NULL, STANDARD_RIGHTS_READ);
|
||||
if (nullptr == schSCManager) {
|
||||
GGML_LOG_ERROR("ggml-hex: Failed to open SCManager. Error: %lu\n", GetLastError());
|
||||
return result;
|
||||
}
|
||||
|
||||
// Get a handle to the service.
|
||||
SC_HANDLE schService = OpenServiceW(schSCManager, // SCM database
|
||||
serviceName.c_str(), // name of service
|
||||
SERVICE_QUERY_CONFIG); // need query config access
|
||||
|
||||
if (nullptr == schService) {
|
||||
GGML_LOG_ERROR("ggml-hex: Failed to open qcnspmcdm service. Error: %lu\n", GetLastError());
|
||||
CloseServiceHandle(schSCManager);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Store the size of buffer used as an output.
|
||||
DWORD bufferSize;
|
||||
if (!QueryServiceConfigW(schService, NULL, 0, &bufferSize) &&
|
||||
(GetLastError() != ERROR_INSUFFICIENT_BUFFER)) {
|
||||
GGML_LOG_ERROR("ggml-hex: Failed to query service config. Error: %lu\n", GetLastError());
|
||||
CloseServiceHandle(schService);
|
||||
CloseServiceHandle(schSCManager);
|
||||
return result;
|
||||
}
|
||||
// Get the configuration of the service.
|
||||
LPQUERY_SERVICE_CONFIGW serviceConfig =
|
||||
static_cast<LPQUERY_SERVICE_CONFIGW>(LocalAlloc(LMEM_FIXED, bufferSize));
|
||||
if (!QueryServiceConfigW(schService, serviceConfig, bufferSize, &bufferSize)) {
|
||||
fprintf(stderr, "ggml-hex: Failed to query service config. Error: %lu\n", GetLastError());
|
||||
LocalFree(serviceConfig);
|
||||
CloseServiceHandle(schService);
|
||||
CloseServiceHandle(schSCManager);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Read the driver file path get its parent directory
|
||||
std::wstring driverPath = std::wstring(serviceConfig->lpBinaryPathName);
|
||||
driverPath = driverPath.substr(0, driverPath.find_last_of(L"\\"));
|
||||
|
||||
// Clean up resources
|
||||
LocalFree(serviceConfig);
|
||||
CloseServiceHandle(schService);
|
||||
CloseServiceHandle(schSCManager);
|
||||
|
||||
// Driver path would contain invalid path string, like:
|
||||
// \SystemRoot\System32\DriverStore\FileRepository\qcadsprpc8280.inf_arm64_c2b9460c9a072f37
|
||||
// "\SystemRoot" should be replace with a correct one (e.g. C:\Windows)
|
||||
const std::wstring systemRootPlaceholder = L"\\SystemRoot";
|
||||
if (0 != driverPath.compare(0, systemRootPlaceholder.length(), systemRootPlaceholder)) {
|
||||
GGML_LOG_ERROR("ggml-hex: String pattern not found in driver path.\n");
|
||||
return result;
|
||||
}
|
||||
|
||||
// Replace \SystemRoot with an absolute path from system ENV windir
|
||||
const std::wstring systemRootEnv = L"windir";
|
||||
|
||||
// Query the number of wide charactors this variable requires
|
||||
DWORD numWords = GetEnvironmentVariableW(systemRootEnv.c_str(), NULL, 0);
|
||||
if (numWords == 0) {
|
||||
GGML_LOG_ERROR("ggml-hex: Failed get systemRoot environment variable\n");
|
||||
return result;
|
||||
}
|
||||
|
||||
// Query the actual system root name from environment variable
|
||||
std::vector<wchar_t> systemRoot(numWords + 1);
|
||||
numWords = GetEnvironmentVariableW(systemRootEnv.c_str(), systemRoot.data(), numWords + 1);
|
||||
if (numWords == 0) {
|
||||
GGML_LOG_ERROR("ggml-hex: Failed to read windir environment variable\n");
|
||||
return result;
|
||||
}
|
||||
driverPath.replace(0, systemRootPlaceholder.length(), std::wstring(systemRoot.data()));
|
||||
|
||||
return wstr_to_str(driverPath);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
using dl_handle_ptr = std::unique_ptr<dl_handle, dl_handle_deleter>;
|
||||
|
||||
int htpdrv_init() {
|
||||
static dl_handle_ptr lib_cdsp_rpc_handle = nullptr;
|
||||
static bool initialized = false;
|
||||
#ifdef _WIN32
|
||||
std::string drv_path = get_driver_path() + "\\" + "libcdsprpc.dll";
|
||||
#else
|
||||
std::string drv_path = "libcdsprpc.so";
|
||||
#endif
|
||||
if (initialized) {
|
||||
GGML_LOG_INFO("ggml-hex: Driver already loaded\n");
|
||||
return AEE_SUCCESS;
|
||||
}
|
||||
GGML_LOG_INFO("ggml-hex: Loading driver %s\n", drv_path.c_str());
|
||||
|
||||
fs::path path{ drv_path.c_str() };
|
||||
dl_handle_ptr handle { dl_load_library(path) };
|
||||
if (!handle) {
|
||||
GGML_LOG_ERROR("ggml-hex: failed to load %s: %s\n", path.u8string().c_str(), dl_error());
|
||||
return AEE_EUNABLETOLOAD;
|
||||
}
|
||||
|
||||
#define dlsym(drv, type, pfn, symbol, ignore) \
|
||||
do { \
|
||||
pfn = (type) dl_get_sym(drv, #symbol); \
|
||||
if (!ignore && nullptr == pfn) { \
|
||||
GGML_LOG_ERROR("ggml-hex: failed to dlsym %s\n", #symbol); \
|
||||
return AEE_EUNABLETOLOAD; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
dlsym(handle.get(), rpcmem_alloc_pfn_t, rpcmem_alloc_pfn, rpcmem_alloc, false);
|
||||
dlsym(handle.get(), rpcmem_alloc2_pfn_t, rpcmem_alloc2_pfn, rpcmem_alloc2, true);
|
||||
dlsym(handle.get(), rpcmem_free_pfn_t, rpcmem_free_pfn, rpcmem_free, false);
|
||||
dlsym(handle.get(), rpcmem_to_fd_pfn_t, rpcmem_to_fd_pfn, rpcmem_to_fd, false);
|
||||
dlsym(handle.get(), fastrpc_mmap_pfn_t, fastrpc_mmap_pfn, fastrpc_mmap, false);
|
||||
dlsym(handle.get(), fastrpc_munmap_pfn_t, fastrpc_munmap_pfn, fastrpc_munmap, false);
|
||||
dlsym(handle.get(), dspqueue_create_pfn_t, dspqueue_create_pfn, dspqueue_create, false);
|
||||
dlsym(handle.get(), dspqueue_close_pfn_t, dspqueue_close_pfn, dspqueue_close, false);
|
||||
dlsym(handle.get(), dspqueue_export_pfn_t, dspqueue_export_pfn, dspqueue_export, false);
|
||||
dlsym(handle.get(), dspqueue_write_pfn_t, dspqueue_write_pfn, dspqueue_write, false);
|
||||
dlsym(handle.get(), dspqueue_read_pfn_t, dspqueue_read_pfn, dspqueue_read, false);
|
||||
dlsym(handle.get(), remote_handle64_open_pfn_t, remote_handle64_open_pfn, remote_handle64_open, false);
|
||||
dlsym(handle.get(), remote_handle64_invoke_pfn_t, remote_handle64_invoke_pfn, remote_handle64_invoke, false);
|
||||
dlsym(handle.get(), remote_handle_control_pfn_t, remote_handle_control_pfn, remote_handle_control, false);
|
||||
dlsym(handle.get(), remote_handle64_control_pfn_t, remote_handle64_control_pfn, remote_handle64_control, false);
|
||||
dlsym(handle.get(), remote_session_control_pfn_t, remote_session_control_pfn, remote_session_control, false);
|
||||
dlsym(handle.get(), remote_handle64_close_pfn_t, remote_handle64_close_pfn, remote_handle64_close, false);
|
||||
|
||||
lib_cdsp_rpc_handle = std::move(handle);
|
||||
initialized = true;
|
||||
|
||||
return AEE_SUCCESS;
|
||||
}
|
||||
|
||||
domain * get_domain(int domain_id) {
|
||||
int i = 0;
|
||||
int size = sizeof(supported_domains) / sizeof(domain);
|
||||
|
||||
for (i = 0; i < size; i++) {
|
||||
if (supported_domains[i].id == domain_id) {
|
||||
return &supported_domains[i];
|
||||
}
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
int get_hex_arch_ver(int domain, int * arch) {
|
||||
if (!remote_handle_control_pfn) {
|
||||
GGML_LOG_ERROR("ggml-hex: remote_handle_control is not supported on this device\n");
|
||||
return AEE_EUNSUPPORTEDAPI;
|
||||
}
|
||||
|
||||
struct remote_dsp_capability arch_ver;
|
||||
arch_ver.domain = (uint32_t) domain;
|
||||
arch_ver.attribute_ID = ARCH_VER;
|
||||
arch_ver.capability = (uint32_t) 0;
|
||||
|
||||
int err = remote_handle_control(DSPRPC_GET_DSP_INFO, &arch_ver, sizeof(arch_ver));
|
||||
if ((err & 0xff) == (AEE_EUNSUPPORTEDAPI & 0xff)) {
|
||||
GGML_LOG_ERROR("ggml-hex: FastRPC capability API is not supported on this device\n");
|
||||
return AEE_EUNSUPPORTEDAPI;
|
||||
}
|
||||
|
||||
if (err != AEE_SUCCESS) {
|
||||
GGML_LOG_ERROR("ggml-hex: FastRPC capability query failed (err %d)\n", err);
|
||||
return err;
|
||||
}
|
||||
|
||||
switch (arch_ver.capability & 0xff) {
|
||||
case 0x68:
|
||||
*arch = 68;
|
||||
return 0;
|
||||
case 0x69:
|
||||
*arch = 69;
|
||||
return 0;
|
||||
case 0x73:
|
||||
*arch = 73;
|
||||
return 0;
|
||||
case 0x75:
|
||||
*arch = 75;
|
||||
return 0;
|
||||
case 0x79:
|
||||
*arch = 79;
|
||||
return 0;
|
||||
case 0x81:
|
||||
*arch = 81;
|
||||
return 0;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
|
@ -0,0 +1,121 @@
|
|||
#pragma once
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifdef _WIN32
|
||||
# pragma clang diagnostic ignored "-Wignored-attributes"
|
||||
#endif
|
||||
|
||||
#include <AEEStdErr.h>
|
||||
#include <rpcmem.h>
|
||||
#include <remote.h>
|
||||
#include <dspqueue.h>
|
||||
|
||||
#if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef GGML_BACKEND_BUILD
|
||||
# define HTPDRV_API __declspec(dllexport) extern
|
||||
# else
|
||||
# define HTPDRV_API __declspec(dllimport) extern
|
||||
# endif
|
||||
#else
|
||||
# define HTPDRV_API __attribute__ ((visibility ("default"))) extern
|
||||
#endif
|
||||
|
||||
/* Offset to differentiate HLOS and Hexagon error codes.
|
||||
Stores the value of AEE_EOFFSET for Hexagon. */
|
||||
#ifndef DSP_OFFSET
|
||||
# define DSP_OFFSET 0x80000400
|
||||
#endif
|
||||
|
||||
/* Errno for connection reset by peer. */
|
||||
#ifndef ECONNRESET
|
||||
# ifdef __hexagon__
|
||||
# define ECONNRESET 104
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Abstraction of different OS specific sleep APIs.
|
||||
SLEEP accepts input in seconds. */
|
||||
#ifndef SLEEP
|
||||
# ifdef __hexagon__
|
||||
# define SLEEP(x) \
|
||||
{ /* Do nothing for simulator. */ \
|
||||
}
|
||||
# else
|
||||
# ifdef _WIN32
|
||||
# define SLEEP(x) Sleep(1000 * x) /* Sleep accepts input in milliseconds. */
|
||||
# else
|
||||
# define SLEEP(x) sleep(x) /* sleep accepts input in seconds. */
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Include windows specific header files. */
|
||||
#ifdef _WIN32
|
||||
# include <windows.h>
|
||||
# include <sysinfoapi.h>
|
||||
# define _CRT_SECURE_NO_WARNINGS 1
|
||||
# define _WINSOCK_DEPRECATED_NO_WARNINGS 1
|
||||
#endif
|
||||
|
||||
/* Includes and defines for all HLOS except windows */
|
||||
#if !defined(__hexagon__) && !defined(_WIN32)
|
||||
# include "unistd.h"
|
||||
|
||||
# include <sys/time.h>
|
||||
#endif
|
||||
|
||||
/* Includes and defines for Hexagon and all HLOS except Windows. */
|
||||
#if !defined(_WIN32)
|
||||
/* Weak reference to remote symbol for compilation. */
|
||||
# pragma weak remote_session_control
|
||||
# pragma weak remote_handle_control
|
||||
# pragma weak remote_handle64_control
|
||||
# pragma weak fastrpc_mmap
|
||||
# pragma weak fastrpc_munmap
|
||||
# pragma weak rpcmem_alloc2
|
||||
#endif
|
||||
|
||||
#if !defined(_WIN32)
|
||||
# pragma weak remote_system_request
|
||||
#endif
|
||||
|
||||
#ifdef _WIN32
|
||||
# define DSPQUEUE_TIMEOUT DSPQUEUE_TIMEOUT_NONE
|
||||
#else
|
||||
# define DSPQUEUE_TIMEOUT 1000000
|
||||
#endif
|
||||
|
||||
/**
|
||||
* htpdrv_init API: driver interface entry point
|
||||
*
|
||||
* @return Return AEE error codes as defined in Hexagon SDK.
|
||||
*/
|
||||
HTPDRV_API int htpdrv_init(void);
|
||||
|
||||
/**
|
||||
* get_domain API: get domain struct from domain value.
|
||||
*
|
||||
* @param[in] domain value of a domain
|
||||
* @return Returns domain struct of the domain if it is supported or else
|
||||
* returns NULL.
|
||||
*
|
||||
*/
|
||||
HTPDRV_API domain * get_domain(int domain_id);
|
||||
|
||||
/**
|
||||
* get_hex_arch_ver API: query the Hexagon processor architecture version information
|
||||
*
|
||||
* @param[in] domain_id value of a domain
|
||||
* @param[out] Arch version (73, 75, ...)
|
||||
* @return 0 if query is successful.
|
||||
* non-zero if error, return value points to the error.
|
||||
*
|
||||
*/
|
||||
HTPDRV_API int get_hex_arch_ver(int domain, int * arch);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
@ -1,454 +0,0 @@
|
|||
|
||||
#pragma clang diagnostic ignored "-Wgnu-anonymous-struct"
|
||||
#pragma clang diagnostic ignored "-Wmissing-prototypes"
|
||||
#pragma clang diagnostic ignored "-Wsign-compare"
|
||||
|
||||
#define GGML_COMMON_IMPL_C
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-common.h"
|
||||
#include "ggml-hexagon.h"
|
||||
#include "ggml-impl.h"
|
||||
|
||||
#include "htp-utils.h"
|
||||
|
||||
#include <domain.h>
|
||||
#include <remote.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
domain * get_domain(int domain_id) {
|
||||
int i = 0;
|
||||
int size = sizeof(supported_domains) / sizeof(domain);
|
||||
|
||||
for (i = 0; i < size; i++) {
|
||||
if (supported_domains[i].id == domain_id) {
|
||||
return &supported_domains[i];
|
||||
}
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
bool is_valid_domain_id(int domain_id, int compute_only) {
|
||||
int i = 0;
|
||||
int size = sizeof(supported_domains) / sizeof(domain);
|
||||
|
||||
if (compute_only) {
|
||||
return is_CDSP(domain_id);
|
||||
}
|
||||
|
||||
for (i = 0; i < size; i++) {
|
||||
if (supported_domains[i].id == domain_id) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
int get_domains_info(char * domain_type, int * num_domains, fastrpc_domain ** domains_info) {
|
||||
int nErr = AEE_SUCCESS;
|
||||
int ss_info = 0;
|
||||
if (domain_type != NULL) {
|
||||
if (strcmp(domain_type, "LPASS") == 0) {
|
||||
ss_info = FASTRPC_LPASS;
|
||||
} else if (strcmp(domain_type, "HPASS") == 0) {
|
||||
ss_info = FASTRPC_HPASS;
|
||||
} else {
|
||||
ss_info = FASTRPC_NSP;
|
||||
}
|
||||
}
|
||||
system_req_payload req = { 0 };
|
||||
req.id = FASTRPC_GET_DOMAINS;
|
||||
req.sys.domains = NULL;
|
||||
fastrpc_domain * domain = NULL;
|
||||
if (ss_info != 0) {
|
||||
req.sys.flags = DOMAINS_LIST_FLAGS_SET_TYPE(req.sys.flags, ss_info);
|
||||
} else {
|
||||
req.sys.flags = 0;
|
||||
}
|
||||
#ifdef _WIN32
|
||||
nErr = AEE_EUNSUPPORTED;
|
||||
goto bail;
|
||||
#endif
|
||||
if (remote_system_request) {
|
||||
nErr = remote_system_request(&req);
|
||||
if (nErr != AEE_SUCCESS) {
|
||||
GGML_LOG_ERROR("Failure in remote_system_request call: %d.\n", nErr);
|
||||
goto bail;
|
||||
}
|
||||
// Allocate memory for domain-info array
|
||||
req.sys.max_domains = req.sys.num_domains;
|
||||
if ((req.sys.domains = calloc(req.sys.num_domains, sizeof(fastrpc_domain))) == NULL) {
|
||||
nErr = AEE_ENOMEMORY;
|
||||
GGML_LOG_ERROR("Unable to allocate memory for req.sys.domains");
|
||||
goto bail;
|
||||
}
|
||||
|
||||
nErr = remote_system_request(&req);
|
||||
if (nErr != AEE_SUCCESS) {
|
||||
GGML_LOG_ERROR("Failure in remote_system_request call: %d.\n", nErr);
|
||||
goto bail;
|
||||
}
|
||||
|
||||
for (int i = 0; i < req.sys.num_domains; i++) {
|
||||
// Verify that only requested type domains were returned
|
||||
domain = &req.sys.domains[i];
|
||||
if (domain->type != ss_info && domain_type != NULL) {
|
||||
nErr = -1;
|
||||
GGML_LOG_ERROR("Incorrect data received from remote_system_request.\n");
|
||||
goto bail;
|
||||
}
|
||||
}
|
||||
*domains_info = req.sys.domains;
|
||||
*num_domains = req.sys.num_domains;
|
||||
} else {
|
||||
nErr = AEE_EUNSUPPORTED;
|
||||
goto bail;
|
||||
}
|
||||
bail:
|
||||
if (nErr && !req.sys.domains) {
|
||||
free(req.sys.domains);
|
||||
}
|
||||
return nErr;
|
||||
}
|
||||
|
||||
int get_effective_domain_id(char * domain_name, int session_id, int * effec_domain_id) {
|
||||
int err = 0;
|
||||
remote_rpc_effective_domain_id_t sess = { 0 };
|
||||
|
||||
sess.domain_name = domain_name;
|
||||
sess.domain_name_len = strlen(domain_name);
|
||||
sess.session_id = session_id;
|
||||
|
||||
err = remote_session_control(FASTRPC_GET_EFFECTIVE_DOMAIN_ID, &sess, sizeof(sess));
|
||||
if (err) {
|
||||
GGML_LOG_ERROR("Error 0x%x: failed to get effective domain id for %s, session id %d\n", err, sess.domain_name,
|
||||
session_id);
|
||||
return err;
|
||||
}
|
||||
|
||||
*effec_domain_id = sess.effective_domain_id;
|
||||
return err;
|
||||
}
|
||||
|
||||
int get_dsp_support(int * domain) {
|
||||
int nErr = AEE_SUCCESS;
|
||||
*domain = CDSP_DOMAIN_ID; // DSP domain default value is CDSP_DOMAIN_ID
|
||||
|
||||
if (remote_handle_control) {
|
||||
struct remote_dsp_capability dsp_capability_domain = { CDSP_DOMAIN_ID, DOMAIN_SUPPORT, 0 };
|
||||
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_domain, sizeof(struct remote_dsp_capability));
|
||||
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
|
||||
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device\n");
|
||||
goto bail;
|
||||
}
|
||||
|
||||
if (dsp_capability_domain.capability == 0) {
|
||||
dsp_capability_domain.domain = ADSP_DOMAIN_ID; // Check for ADSP support.
|
||||
dsp_capability_domain.attribute_ID = DOMAIN_SUPPORT;
|
||||
dsp_capability_domain.capability = 0;
|
||||
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_domain,
|
||||
sizeof(struct remote_dsp_capability));
|
||||
if (dsp_capability_domain.capability) {
|
||||
*domain = ADSP_DOMAIN_ID; // For targets like Agatti (not having cDSP), domain is ADSP_DOMAIN_ID
|
||||
}
|
||||
}
|
||||
|
||||
if (nErr != AEE_SUCCESS) {
|
||||
GGML_LOG_ERROR("\nget_dsp_support failed with Error 0x%x\n", nErr);
|
||||
goto bail;
|
||||
}
|
||||
} else {
|
||||
nErr = AEE_EUNSUPPORTEDAPI;
|
||||
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device\n");
|
||||
}
|
||||
|
||||
bail:
|
||||
return nErr;
|
||||
}
|
||||
|
||||
int get_vtcm_info(int domain, uint32_t * capability, uint32_t attr) {
|
||||
int nErr = AEE_SUCCESS;
|
||||
*capability = 0;
|
||||
|
||||
if (attr == VTCM_PAGE || attr == VTCM_COUNT) {
|
||||
} else {
|
||||
nErr = AEE_EBADPARM;
|
||||
GGML_LOG_ERROR("Unsupported attr. Only VTCM_PAGE and VTCM_COUNT supported\n");
|
||||
goto bail;
|
||||
}
|
||||
if (remote_handle_control) {
|
||||
if (domain == ADSP_DOMAIN_ID || domain == CDSP_DOMAIN_ID) {
|
||||
/*
|
||||
* Query the DSP for VTCM information
|
||||
* Since the ADSP does not have a dedicated VTCM, we expect the output to be 0
|
||||
*/
|
||||
struct remote_dsp_capability dsp_capability_vtcm_dsp;
|
||||
dsp_capability_vtcm_dsp.domain = (uint32_t) domain;
|
||||
dsp_capability_vtcm_dsp.attribute_ID = attr;
|
||||
dsp_capability_vtcm_dsp.capability = (uint32_t) 0;
|
||||
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_vtcm_dsp,
|
||||
sizeof(struct remote_dsp_capability));
|
||||
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
|
||||
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device\n");
|
||||
GGML_LOG_ERROR("Running the usecase without checking the capability\n");
|
||||
nErr = AEE_SUCCESS;
|
||||
goto bail;
|
||||
} else if (nErr == AEE_SUCCESS) {
|
||||
*capability = dsp_capability_vtcm_dsp.capability;
|
||||
} else {
|
||||
GGML_LOG_ERROR("\nget_vtcm_info failed with Error 0x%x\n", nErr);
|
||||
goto bail;
|
||||
}
|
||||
} else {
|
||||
nErr = AEE_EUNSUPPORTED;
|
||||
GGML_LOG_ERROR("Unsupported domain %d\n", domain);
|
||||
goto bail;
|
||||
}
|
||||
} else {
|
||||
nErr = AEE_EUNSUPPORTEDAPI;
|
||||
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device\n");
|
||||
}
|
||||
|
||||
bail:
|
||||
return nErr;
|
||||
}
|
||||
|
||||
bool is_unsignedpd_supported(int domain_id) {
|
||||
int nErr = AEE_SUCCESS;
|
||||
if (remote_handle_control) {
|
||||
struct remote_dsp_capability dsp_capability_domain = { domain_id, UNSIGNED_PD_SUPPORT, 0 };
|
||||
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_domain, sizeof(struct remote_dsp_capability));
|
||||
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
|
||||
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device. Falling back to signed pd.\n");
|
||||
return false;
|
||||
}
|
||||
if (nErr) {
|
||||
GGML_LOG_ERROR("\nERROR 0x%x: FastRPC Capability API failed. Falling back to signed pd.", nErr);
|
||||
return false;
|
||||
}
|
||||
if (dsp_capability_domain.capability == 1) {
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
nErr = AEE_EUNSUPPORTEDAPI;
|
||||
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device. Falling back to signed pd.\n");
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool get_unsignedpd_support(void) {
|
||||
return is_unsignedpd_supported(CDSP_DOMAIN_ID);
|
||||
}
|
||||
|
||||
bool is_async_fastrpc_supported(int domain) {
|
||||
int nErr = AEE_SUCCESS;
|
||||
if (remote_handle_control) {
|
||||
if (domain == CDSP_DOMAIN_ID) {
|
||||
/*
|
||||
* Query the DSP for ASYNC_FASTRPC_SUPPORT information
|
||||
* Async fastrpc is supported only on CDSP
|
||||
*/
|
||||
struct remote_dsp_capability dsp_capability_async_support;
|
||||
dsp_capability_async_support.domain = (uint32_t) domain;
|
||||
dsp_capability_async_support.attribute_ID = ASYNC_FASTRPC_SUPPORT;
|
||||
dsp_capability_async_support.capability = (uint32_t) 0;
|
||||
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_async_support,
|
||||
sizeof(struct remote_dsp_capability));
|
||||
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
|
||||
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device\n");
|
||||
GGML_LOG_ERROR("Running the usecase without checking the capability\n");
|
||||
nErr = AEE_SUCCESS;
|
||||
goto bail;
|
||||
} else if (dsp_capability_async_support.capability == 1) {
|
||||
return true;
|
||||
}
|
||||
if (nErr != AEE_SUCCESS) {
|
||||
GGML_LOG_ERROR("\nis_async_fastrpc_supported failed with Error 0x%x\n", nErr);
|
||||
goto bail;
|
||||
}
|
||||
} else {
|
||||
nErr = AEE_EUNSUPPORTED;
|
||||
GGML_LOG_ERROR("Async fastrpc is not supported on domain %d\n", domain);
|
||||
goto bail;
|
||||
}
|
||||
} else {
|
||||
nErr = AEE_EUNSUPPORTEDAPI;
|
||||
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device\n");
|
||||
}
|
||||
|
||||
bail:
|
||||
return false;
|
||||
}
|
||||
|
||||
bool is_status_notification_supported(int domain) {
|
||||
int nErr = AEE_SUCCESS;
|
||||
|
||||
if (remote_handle_control) {
|
||||
/*
|
||||
* Query the DSP for STATUS_NOTIFICATION_SUPPORT information
|
||||
* DSP User PD status notification Support
|
||||
*/
|
||||
struct remote_dsp_capability dsp_capability_status_notification_support;
|
||||
dsp_capability_status_notification_support.domain = (uint32_t) domain;
|
||||
dsp_capability_status_notification_support.attribute_ID = STATUS_NOTIFICATION_SUPPORT;
|
||||
dsp_capability_status_notification_support.capability = (uint32_t) 0;
|
||||
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_status_notification_support,
|
||||
sizeof(struct remote_dsp_capability));
|
||||
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
|
||||
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device\n");
|
||||
GGML_LOG_ERROR("Running the usecase without checking the capability\n");
|
||||
nErr = AEE_SUCCESS;
|
||||
goto bail;
|
||||
} else if (dsp_capability_status_notification_support.capability == 1) {
|
||||
return true;
|
||||
}
|
||||
if (nErr != AEE_SUCCESS) {
|
||||
GGML_LOG_ERROR("\nis_status_notification_supported failed with Error 0x%x\n", nErr);
|
||||
goto bail;
|
||||
}
|
||||
} else {
|
||||
nErr = AEE_EUNSUPPORTEDAPI;
|
||||
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device\n");
|
||||
}
|
||||
|
||||
bail:
|
||||
return false;
|
||||
}
|
||||
|
||||
int get_hmx_support_info(int domain, uint32_t * capability, uint32_t attr) {
|
||||
int nErr = AEE_SUCCESS;
|
||||
*capability = 0;
|
||||
|
||||
if (attr != HMX_SUPPORT_SPATIAL && attr != HMX_SUPPORT_DEPTH) {
|
||||
nErr = AEE_EBADPARM;
|
||||
GGML_LOG_ERROR("Unsupported attr. Only HMX_SUPPORT_SPATIAL and HMX_SUPPORT_DEPTH supported\n");
|
||||
goto bail;
|
||||
}
|
||||
if (remote_handle_control) {
|
||||
if (domain == CDSP_DOMAIN_ID) {
|
||||
/*
|
||||
* Query the DSP for HMX SUPPORT information
|
||||
* HMX is supported on CDSP only
|
||||
*/
|
||||
struct remote_dsp_capability dsp_capability_hmx_dsp;
|
||||
dsp_capability_hmx_dsp.domain = (uint32_t) domain;
|
||||
dsp_capability_hmx_dsp.attribute_ID = attr;
|
||||
dsp_capability_hmx_dsp.capability = (uint32_t) 0;
|
||||
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_hmx_dsp,
|
||||
sizeof(struct remote_dsp_capability));
|
||||
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
|
||||
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device\n");
|
||||
GGML_LOG_ERROR("Running the usecase without checking the capability\n");
|
||||
nErr = AEE_SUCCESS;
|
||||
goto bail;
|
||||
} else if (nErr == AEE_SUCCESS) {
|
||||
*capability = dsp_capability_hmx_dsp.capability;
|
||||
} else {
|
||||
GGML_LOG_ERROR("\nget_hmx_support_info failed with Error 0x%x\n", nErr);
|
||||
goto bail;
|
||||
}
|
||||
} else {
|
||||
nErr = AEE_EUNSUPPORTED;
|
||||
GGML_LOG_ERROR("HMX support is not there for domain %d\n", domain);
|
||||
goto bail;
|
||||
}
|
||||
} else {
|
||||
nErr = AEE_EUNSUPPORTEDAPI;
|
||||
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device\n");
|
||||
}
|
||||
|
||||
bail:
|
||||
return nErr;
|
||||
}
|
||||
|
||||
int get_hex_arch_ver(int domain, int * arch) {
|
||||
if (!remote_handle_control) {
|
||||
GGML_LOG_ERROR("ggml-hex: remote_handle_control is not supported on this device\n");
|
||||
return AEE_EUNSUPPORTEDAPI;
|
||||
}
|
||||
|
||||
struct remote_dsp_capability arch_ver;
|
||||
arch_ver.domain = (uint32_t) domain;
|
||||
arch_ver.attribute_ID = ARCH_VER;
|
||||
arch_ver.capability = (uint32_t) 0;
|
||||
|
||||
int err = remote_handle_control(DSPRPC_GET_DSP_INFO, &arch_ver, sizeof(arch_ver));
|
||||
if ((err & 0xff) == (AEE_EUNSUPPORTEDAPI & 0xff)) {
|
||||
GGML_LOG_ERROR("ggml-hex: FastRPC capability API is not supported on this device\n");
|
||||
return AEE_EUNSUPPORTEDAPI;
|
||||
}
|
||||
|
||||
if (err != AEE_SUCCESS) {
|
||||
GGML_LOG_ERROR("ggml-hex: FastRPC capability query failed (err %d)\n", err);
|
||||
return err;
|
||||
}
|
||||
|
||||
switch (arch_ver.capability & 0xff) {
|
||||
case 0x68:
|
||||
*arch = 68;
|
||||
return 0;
|
||||
case 0x69:
|
||||
*arch = 69;
|
||||
return 0;
|
||||
case 0x73:
|
||||
*arch = 73;
|
||||
return 0;
|
||||
case 0x75:
|
||||
*arch = 75;
|
||||
return 0;
|
||||
case 0x79:
|
||||
*arch = 79;
|
||||
return 0;
|
||||
case 0x81:
|
||||
*arch = 81;
|
||||
return 0;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
int get_hvx_support_info(int domain, uint32_t * capability, uint32_t attr) {
|
||||
int nErr = AEE_SUCCESS;
|
||||
*capability = 0;
|
||||
|
||||
if (remote_handle_control) {
|
||||
if (domain == CDSP_DOMAIN_ID) {
|
||||
/*
|
||||
* Query the DSP for HVX SUPPORT information
|
||||
* HVX is supported on CDSP only
|
||||
*/
|
||||
struct remote_dsp_capability dsp_capability_hvx_dsp;
|
||||
dsp_capability_hvx_dsp.domain = (uint32_t) domain;
|
||||
dsp_capability_hvx_dsp.attribute_ID = attr;
|
||||
dsp_capability_hvx_dsp.capability = (uint32_t) 0;
|
||||
nErr = remote_handle_control(DSPRPC_GET_DSP_INFO, &dsp_capability_hvx_dsp,
|
||||
sizeof(struct remote_dsp_capability));
|
||||
if ((nErr & 0xFF) == (AEE_EUNSUPPORTEDAPI & 0xFF)) {
|
||||
GGML_LOG_ERROR("\nFastRPC Capability API is not supported on this device\n");
|
||||
GGML_LOG_ERROR("Running the usecase without checking the capability\n");
|
||||
nErr = AEE_SUCCESS;
|
||||
goto bail;
|
||||
} else if (nErr == AEE_SUCCESS) {
|
||||
*capability = dsp_capability_hvx_dsp.capability;
|
||||
} else {
|
||||
GGML_LOG_ERROR("\nget_hvx_support_info failed with Error 0x%x\n", nErr);
|
||||
goto bail;
|
||||
}
|
||||
} else {
|
||||
nErr = AEE_EUNSUPPORTED;
|
||||
GGML_LOG_ERROR("HVX support is not available on domain %d\n", domain);
|
||||
goto bail;
|
||||
}
|
||||
} else {
|
||||
nErr = AEE_EUNSUPPORTEDAPI;
|
||||
GGML_LOG_ERROR("remote_dsp_capability interface is not supported on this device\n");
|
||||
}
|
||||
|
||||
bail:
|
||||
return nErr;
|
||||
}
|
||||
|
|
@ -1,221 +0,0 @@
|
|||
#ifndef HTP_UTILS_H
|
||||
#define HTP_UTILS_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <AEEStdErr.h>
|
||||
#include <inttypes.h>
|
||||
#include <remote.h>
|
||||
#include <rpcmem.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
/* Offset to differentiate HLOS and Hexagon error codes.
|
||||
Stores the value of AEE_EOFFSET for Hexagon. */
|
||||
#ifndef DSP_OFFSET
|
||||
# define DSP_OFFSET 0x80000400
|
||||
#endif
|
||||
|
||||
/* Errno for connection reset by peer. */
|
||||
#ifndef ECONNRESET
|
||||
# ifdef __hexagon__
|
||||
# define ECONNRESET 104
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Abstraction of different OS specific sleep APIs.
|
||||
SLEEP accepts input in seconds. */
|
||||
#ifndef SLEEP
|
||||
# ifdef __hexagon__
|
||||
# define SLEEP(x) \
|
||||
{ /* Do nothing for simulator. */ \
|
||||
}
|
||||
# else
|
||||
# ifdef _WINDOWS
|
||||
# define SLEEP(x) Sleep(1000 * x) /* Sleep accepts input in milliseconds. */
|
||||
# else
|
||||
# define SLEEP(x) sleep(x) /* sleep accepts input in seconds. */
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Include windows specific header files. */
|
||||
#ifdef _WINDOWS
|
||||
# include <sysinfoapi.h>
|
||||
# include <windows.h>
|
||||
# define _CRT_SECURE_NO_WARNINGS 1
|
||||
# define _WINSOCK_DEPRECATED_NO_WARNINGS 1
|
||||
/* Including this file for custom implementation of getopt function. */
|
||||
# include "getopt_custom.h"
|
||||
#endif
|
||||
|
||||
/* Includes and defines for all HLOS except windows */
|
||||
#if !defined(__hexagon__) && !defined(_WINDOWS)
|
||||
# include "unistd.h"
|
||||
|
||||
# include <sys/time.h>
|
||||
#endif
|
||||
|
||||
/* Includes and defines for Hexagon and all HLOS except Windows. */
|
||||
#if !defined(_WINDOWS)
|
||||
/* Weak reference to remote symbol for compilation. */
|
||||
# pragma weak remote_session_control
|
||||
# pragma weak remote_handle_control
|
||||
# pragma weak remote_handle64_control
|
||||
# pragma weak fastrpc_mmap
|
||||
# pragma weak fastrpc_munmap
|
||||
# pragma weak rpcmem_alloc2
|
||||
#endif
|
||||
|
||||
#if !defined(_WINDOWS)
|
||||
# pragma weak remote_system_request
|
||||
#endif
|
||||
/**
|
||||
* Wrapper for FastRPC Capability API: query DSP support.
|
||||
*
|
||||
* @param[out] domain pointer to supported domain.
|
||||
* @return 0 if query is successful.
|
||||
* non-zero if error, return value points to the error.
|
||||
*/
|
||||
int get_dsp_support(int * domain);
|
||||
|
||||
/**
|
||||
* Wrapper for FastRPC Capability API: query VTCM information.
|
||||
*
|
||||
* @param[in] domain value of domain in the queried.
|
||||
* @param[out] capability capability value of the attribute queried.
|
||||
* @param[in] attr value of the attribute to the queried.
|
||||
* @return 0 if query is successful.
|
||||
* non-zero if error, return value points to the error.
|
||||
*/
|
||||
int get_vtcm_info(int domain, uint32_t * capability, uint32_t attr);
|
||||
|
||||
/**
|
||||
* Wrapper for FastRPC Capability API: query unsigned pd support on CDSP domain.
|
||||
*
|
||||
* @return true if unsigned pd is supported.
|
||||
* false if unsigned pd is not supported, capability query failed.
|
||||
*/
|
||||
|
||||
bool get_unsignedpd_support(void);
|
||||
|
||||
/**
|
||||
* Wrapper for FastRPC Capability API: query unsigned pd support.
|
||||
*
|
||||
* @param[in] domain value of domain in the queried.
|
||||
* @return true if unsigned pd is supported.
|
||||
* false if unsigned pd is not supported, capability query failed.
|
||||
*/
|
||||
|
||||
bool is_unsignedpd_supported(int domain_id);
|
||||
|
||||
/**
|
||||
* is_valid_domain_id API: query a domain id is valid.
|
||||
*
|
||||
* @param[in] domain value of domain in the queried.
|
||||
* @param[in] compute_only value of domain is only compared with CDSP domains supported by the target when enabled.
|
||||
* @return true if value of domain is valid.
|
||||
* false if value of domain is not valid.
|
||||
*/
|
||||
|
||||
bool is_valid_domain_id(int domain_id, int compute_only);
|
||||
|
||||
/**
|
||||
* get_domain API: get domain struct from domain value.
|
||||
*
|
||||
* @param[in] domain value of a domain
|
||||
* @return Returns domain struct of the domain if it is supported or else
|
||||
* returns NULL.
|
||||
*
|
||||
*/
|
||||
|
||||
domain * get_domain(int domain_id);
|
||||
|
||||
/**
|
||||
* get_domains_info API: get information for all the domains available on the device
|
||||
*
|
||||
* @param[in] domain_type pointer to domain type
|
||||
* @param[in] num_domains pointer to number of domains
|
||||
* @param[in] domains_info pointer to save discovered domains information.
|
||||
* @return 0 if query is successful.
|
||||
* non-zero if error, return value points to the error.
|
||||
*
|
||||
* It is user's responsibility to free the memory used to store the domains info whose address is present in domains_info before closing the application.
|
||||
*
|
||||
*/
|
||||
|
||||
int get_domains_info(char * domain_type, int * num_domains, fastrpc_domain ** domains_info);
|
||||
|
||||
/**
|
||||
* get_effective_domain_id API: get effective domain id for given session id
|
||||
*
|
||||
* @param[in] domain_name pointer to domain name
|
||||
* @param[in] session_id
|
||||
* @param[in] effec_domain_id pointer to save obtained effective domain id.
|
||||
* @return 0 if query is successful.
|
||||
* non-zero if error, return value points to the error.
|
||||
*
|
||||
*/
|
||||
|
||||
int get_effective_domain_id(char * domain_name, int session_id, int * effec_domain_id);
|
||||
|
||||
/**
|
||||
* is_async_fastrpc_supported API: query a domain id has async fastrpc supported or not
|
||||
*
|
||||
* @param[in] domain_id value of a domain
|
||||
* @return Returns true or false stating support of Async FastRPC
|
||||
*
|
||||
*/
|
||||
|
||||
bool is_async_fastrpc_supported(int domain_id);
|
||||
|
||||
/**
|
||||
* is_status_notification_supported API: query the DSP for STATUS_NOTIFICATION_SUPPORT information
|
||||
*
|
||||
* @param[in] domain_id value of a domain
|
||||
* @return Returns true or false stating status notification support information
|
||||
*
|
||||
*/
|
||||
bool is_status_notification_supported(int domain_id);
|
||||
|
||||
/**
|
||||
* get_hmx_support_info API: query the DSP for HMX SUPPORT information
|
||||
*
|
||||
* @param[in] domain_id value of a domain
|
||||
* @param[out] capability capability value of the attribute queried.
|
||||
* @param[in] attr value of the attribute to the queried.
|
||||
* @return 0 if query is successful.
|
||||
* non-zero if error, return value points to the error.
|
||||
*
|
||||
*/
|
||||
int get_hmx_support_info(int domain, uint32_t * capability, uint32_t attr);
|
||||
|
||||
/**
|
||||
* get_hex_arch_ver API: query the Hexagon processor architecture version information
|
||||
*
|
||||
* @param[in] domain_id value of a domain
|
||||
* @param[out] Arch version (73, 75, ...)
|
||||
* @return 0 if query is successful.
|
||||
* non-zero if error, return value points to the error.
|
||||
*
|
||||
*/
|
||||
int get_hex_arch_ver(int domain, int * arch);
|
||||
|
||||
/**
|
||||
* get_hvx_support_info API: query the DSP for HVX SUPPORT information
|
||||
*
|
||||
* @param[in] domain_id value of a domain
|
||||
* @param[out] capability capability value of the attribute queried.
|
||||
* @param[in] attr value of the attribute to the queried.
|
||||
* @return 0 if query is successful.
|
||||
* non-zero if error, return value points to the error.
|
||||
*
|
||||
*/
|
||||
int get_hvx_support_info(int domain, uint32_t * capability, uint32_t attr);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif //DSP_CAPABILITIES_UTILS_H
|
||||
|
|
@ -17,6 +17,12 @@
|
|||
#include "htp-msg.h"
|
||||
#include "htp-ops.h"
|
||||
|
||||
static inline HVX_Vector hvx_load_f32_to_f16(const HVX_Vector * restrict src, const HVX_Vector zero) {
|
||||
HVX_Vector y0_qf = Q6_Vqf32_vsub_VsfVsf(src[0], zero); // 32 elements
|
||||
HVX_Vector y1_qf = Q6_Vqf32_vsub_VsfVsf(src[1], zero); // 32 elements
|
||||
return Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(y1_qf, y0_qf)));
|
||||
}
|
||||
|
||||
// Dot product of FP32 and FP16 vectors, accumulating to float
|
||||
static inline void hvx_dot_f32_f16_aa(float * restrict r, const void * restrict y, const void * restrict x, unsigned int n, float s) {
|
||||
const HVX_Vector * restrict vy = (const HVX_Vector * restrict) y; // fp32
|
||||
|
|
@ -33,23 +39,19 @@ static inline void hvx_dot_f32_f16_aa(float * restrict r, const void * restrict
|
|||
#pragma unroll(4)
|
||||
for (i = 0; i < nvec; i++) {
|
||||
// Load y (fp32) and convert into fp16
|
||||
HVX_Vector y0_qf = Q6_Vqf32_vsub_VsfVsf(vy[i*2+0], zero); // 32 elements
|
||||
HVX_Vector y1_qf = Q6_Vqf32_vsub_VsfVsf(vy[i*2+1], zero); // 32 elements
|
||||
HVX_Vector y_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(y1_qf, y0_qf)));
|
||||
HVX_Vector y_hf = hvx_load_f32_to_f16(&vy[i*2], zero);
|
||||
|
||||
// Load x (fp16)
|
||||
HVX_Vector x_hf = vx[i];
|
||||
|
||||
HVX_VectorPair xy_qf = Q6_Wqf32_vmpy_VhfVhf(x_hf, y_hf);
|
||||
|
||||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
rsum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)), rsum));
|
||||
}
|
||||
|
||||
if (nloe) {
|
||||
// Load y (fp32) and convert into fp16
|
||||
HVX_Vector y0_qf = Q6_Vqf32_vsub_VsfVsf(vy[i*2+0], zero); // 32 elements
|
||||
HVX_Vector y1_qf = Q6_Vqf32_vsub_VsfVsf(vy[i*2+1], zero); // 32 elements
|
||||
HVX_Vector y_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(y1_qf, y0_qf)));
|
||||
HVX_Vector y_hf = hvx_load_f32_to_f16(&vy[i*2], zero);
|
||||
|
||||
// Load x (fp16)
|
||||
HVX_Vector x_hf = vx[i];
|
||||
|
|
@ -62,13 +64,72 @@ static inline void hvx_dot_f32_f16_aa(float * restrict r, const void * restrict
|
|||
|
||||
HVX_VectorPair xy_qf = Q6_Wqf32_vmpy_VhfVhf(x_hf, y_hf);
|
||||
|
||||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
rsum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)), rsum));
|
||||
}
|
||||
|
||||
rsum = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(rsum), hvx_vec_splat_f32(s));
|
||||
rsum = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum));
|
||||
rsum = Q6_Vqf32_vmpy_VsfVsf(hvx_vec_splat_f32(s), hvx_vec_reduce_sum_f32(rsum));
|
||||
hvx_vec_store_u(r, 4, Q6_Vsf_equals_Vqf32(rsum));
|
||||
}
|
||||
|
||||
hvx_vec_store_u(r, 4, rsum);
|
||||
// Dot product of FP32 and FP16 vectors, accumulating to float
|
||||
static inline void hvx_dot_f32_f16_aa_rx2(float * restrict r,
|
||||
const void * restrict y,
|
||||
const void * restrict x0,
|
||||
const void * restrict x1,
|
||||
unsigned int n,
|
||||
float s) {
|
||||
const HVX_Vector * restrict vy = (const HVX_Vector * restrict) y; // fp32
|
||||
const HVX_Vector * restrict vx0 = (const HVX_Vector * restrict) x0; // fp16
|
||||
const HVX_Vector * restrict vx1 = (const HVX_Vector * restrict) x1; // fp16
|
||||
|
||||
uint32_t nvec = n / VLEN_FP16; // num full fp16 hvx vectors
|
||||
uint32_t nloe = n % VLEN_FP16; // leftover elements
|
||||
|
||||
const HVX_Vector zero = Q6_V_vsplat_R(0);
|
||||
HVX_Vector rsum0 = Q6_V_vsplat_R(0);
|
||||
HVX_Vector rsum1 = Q6_V_vsplat_R(0);
|
||||
|
||||
uint32_t i = 0;
|
||||
|
||||
#pragma unroll(2)
|
||||
for (i = 0; i < nvec; i++) {
|
||||
// Load y (fp32) and convert into fp16
|
||||
HVX_Vector y_hf = hvx_load_f32_to_f16(&vy[i*2], zero);
|
||||
// Load x (fp16)
|
||||
HVX_Vector x0_hf = vx0[i];
|
||||
HVX_Vector x1_hf = vx1[i];
|
||||
|
||||
HVX_VectorPair xy0_qf = Q6_Wqf32_vmpy_VhfVhf(x0_hf, y_hf);
|
||||
HVX_VectorPair xy1_qf = Q6_Wqf32_vmpy_VhfVhf(x1_hf, y_hf);
|
||||
|
||||
rsum0 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy0_qf), Q6_V_hi_W(xy0_qf)), rsum0));
|
||||
rsum1 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy1_qf), Q6_V_hi_W(xy1_qf)), rsum1));
|
||||
}
|
||||
|
||||
if (nloe) {
|
||||
// Load y (fp32) and convert into fp16
|
||||
HVX_Vector y_hf = hvx_load_f32_to_f16(&vy[i*2], zero);
|
||||
|
||||
// Load x (fp16)
|
||||
HVX_Vector x0_hf = vx0[i];
|
||||
HVX_Vector x1_hf = vx1[i];
|
||||
|
||||
// Zero-out unused elements
|
||||
// Note that we need to clear both x and y because they may contain NANs
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe * 2);
|
||||
x0_hf = Q6_V_vand_QV(bmask, x0_hf);
|
||||
x1_hf = Q6_V_vand_QV(bmask, x1_hf);
|
||||
y_hf = Q6_V_vand_QV(bmask, y_hf);
|
||||
|
||||
HVX_VectorPair xy0_qf = Q6_Wqf32_vmpy_VhfVhf(x0_hf, y_hf);
|
||||
HVX_VectorPair xy1_qf = Q6_Wqf32_vmpy_VhfVhf(x1_hf, y_hf);
|
||||
|
||||
rsum0 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy0_qf), Q6_V_hi_W(xy0_qf)), rsum0));
|
||||
rsum1 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy1_qf), Q6_V_hi_W(xy1_qf)), rsum1));
|
||||
}
|
||||
|
||||
HVX_Vector rsum = Q6_Vqf32_vmpy_VsfVsf(hvx_vec_splat_f32(s), hvx_vec_reduce_sum_f32x2(rsum0, rsum1));
|
||||
hvx_vec_store_u(r, 8, Q6_Vsf_equals_Vqf32(rsum));
|
||||
}
|
||||
|
||||
// Dot product of two F16 vectors, accumulating to float
|
||||
|
|
@ -91,7 +152,7 @@ static inline void hvx_dot_f16_f16_aa(float * restrict r, const void * restrict
|
|||
|
||||
HVX_VectorPair xy_qf = Q6_Wqf32_vmpy_VhfVhf(x_hf, y_hf);
|
||||
|
||||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
rsum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)), rsum));
|
||||
}
|
||||
|
||||
if (nloe) {
|
||||
|
|
@ -103,12 +164,62 @@ static inline void hvx_dot_f16_f16_aa(float * restrict r, const void * restrict
|
|||
|
||||
HVX_VectorPair xy_qf = Q6_Wqf32_vmpy_VhfVhf(x_hf, y_hf);
|
||||
|
||||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
rsum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)), rsum));
|
||||
}
|
||||
|
||||
rsum = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(rsum), hvx_vec_splat_f32(s));
|
||||
rsum = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum));
|
||||
hvx_vec_store_u(r, 4, rsum);
|
||||
rsum = Q6_Vqf32_vmpy_VsfVsf(hvx_vec_splat_f32(s), hvx_vec_reduce_sum_f32(rsum));
|
||||
hvx_vec_store_u(r, 4, Q6_Vsf_equals_Vqf32(rsum));
|
||||
}
|
||||
|
||||
static inline void hvx_dot_f16_f16_aa_rx2(float * restrict r,
|
||||
const void * restrict y,
|
||||
const void * restrict x0,
|
||||
const void * restrict x1,
|
||||
unsigned int n,
|
||||
float s) {
|
||||
const HVX_Vector * restrict vx0 = (const HVX_Vector * restrict) x0; // fp16
|
||||
const HVX_Vector * restrict vx1 = (const HVX_Vector * restrict) x1; // fp16
|
||||
const HVX_Vector * restrict vy = (const HVX_Vector * restrict) y; // fp16
|
||||
|
||||
uint32_t nvec = n / VLEN_FP16; // num full fp16 hvx vectors
|
||||
uint32_t nloe = n % VLEN_FP16; // leftover elements
|
||||
|
||||
const HVX_Vector zero = Q6_V_vsplat_R(0);
|
||||
HVX_Vector rsum0 = Q6_V_vsplat_R(0);
|
||||
HVX_Vector rsum1 = Q6_V_vsplat_R(0);
|
||||
|
||||
uint32_t i = 0;
|
||||
|
||||
#pragma unroll(4)
|
||||
for (i = 0; i < nvec; i++) {
|
||||
HVX_Vector y_hf = vy[i];
|
||||
HVX_Vector x0_hf = vx0[i];
|
||||
HVX_Vector x1_hf = vx1[i];
|
||||
|
||||
HVX_VectorPair xy0_qf = Q6_Wqf32_vmpy_VhfVhf(x0_hf, y_hf);
|
||||
HVX_VectorPair xy1_qf = Q6_Wqf32_vmpy_VhfVhf(x1_hf, y_hf);
|
||||
|
||||
rsum0 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy0_qf), Q6_V_hi_W(xy0_qf)), rsum0));
|
||||
rsum1 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy1_qf), Q6_V_hi_W(xy1_qf)), rsum1));
|
||||
}
|
||||
|
||||
if (nloe) {
|
||||
HVX_Vector y_hf = vy[i];
|
||||
|
||||
// Load x (fp16) and zero-out unused elements
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe * 2);
|
||||
HVX_Vector x0_hf = Q6_V_vand_QV(bmask, vx0[i]);
|
||||
HVX_Vector x1_hf = Q6_V_vand_QV(bmask, vx1[i]);
|
||||
|
||||
HVX_VectorPair xy0_qf = Q6_Wqf32_vmpy_VhfVhf(x0_hf, y_hf);
|
||||
HVX_VectorPair xy1_qf = Q6_Wqf32_vmpy_VhfVhf(x1_hf, y_hf);
|
||||
|
||||
rsum0 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy0_qf), Q6_V_hi_W(xy0_qf)), rsum0));
|
||||
rsum1 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy1_qf), Q6_V_hi_W(xy1_qf)), rsum1));
|
||||
}
|
||||
|
||||
HVX_Vector rsum = Q6_Vqf32_vmpy_VsfVsf(hvx_vec_splat_f32(s), hvx_vec_reduce_sum_f32x2(rsum0, rsum1));
|
||||
hvx_vec_store_u(r, 8, Q6_Vsf_equals_Vqf32(rsum));
|
||||
}
|
||||
|
||||
// MAD: y (F32) += x (F16) * s (float)
|
||||
|
|
@ -317,20 +428,22 @@ static void flash_attn_ext_f16_thread(struct htp_ops_context * octx, int ith, in
|
|||
// Inner loop processing the block from VTCM
|
||||
uint32_t ic = 0;
|
||||
|
||||
const bool is_q_fp32 = (q->type == HTP_TYPE_F32);
|
||||
|
||||
// Process in blocks of 32 (VLEN_FP32)
|
||||
static_assert(FLASH_ATTN_BLOCK_SIZE / VLEN_FP32 == 4, "FLASH_ATTN_BLOCK_SIZE changed, fix HVX_Vector_x4 usage");
|
||||
static_assert(FLASH_ATTN_BLOCK_SIZE / VLEN_FP32 <= 4, "FLASH_ATTN_BLOCK_SIZE changed, fix HVX_Vector_x4 usage");
|
||||
HVX_Vector_x4 scores_x4;
|
||||
HVX_Vector v_max = hvx_vec_splat_f32(-INFINITY);
|
||||
for (uint32_t iv = 0; ic + VLEN_FP32 <= current_block_size; ic += VLEN_FP32, ++iv) {
|
||||
// 1. Compute scores
|
||||
float __attribute__((aligned(VLEN))) scores_arr[FLASH_ATTN_BLOCK_SIZE];
|
||||
for (int j = 0; j < VLEN_FP32; ++j) {
|
||||
float __attribute__((aligned(VLEN))) scores_arr[VLEN_FP32];
|
||||
for (int j = 0; j < VLEN_FP32; j += 2) {
|
||||
const uint32_t cur_ic = ic + j;
|
||||
const uint8_t * k_ptr = k_base + cur_ic * size_k_row_padded;
|
||||
if (q->type == HTP_TYPE_F32) {
|
||||
hvx_dot_f32_f16_aa(&scores_arr[j], q_ptr_vtcm, k_ptr, DK, scale);
|
||||
if (is_q_fp32) {
|
||||
hvx_dot_f32_f16_aa_rx2(&scores_arr[j], q_ptr_vtcm, k_ptr, k_ptr + size_k_row_padded, DK, scale);
|
||||
} else {
|
||||
hvx_dot_f16_f16_aa(&scores_arr[j], q_ptr_vtcm, k_ptr, DK, scale);
|
||||
hvx_dot_f16_f16_aa_rx2(&scores_arr[j], q_ptr_vtcm, k_ptr, k_ptr + size_k_row_padded, DK, scale);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -403,7 +516,7 @@ static void flash_attn_ext_f16_thread(struct htp_ops_context * octx, int ith, in
|
|||
float s_val;
|
||||
const uint8_t * k_ptr = k_base + ic * size_k_row_padded;
|
||||
|
||||
if (q->type == HTP_TYPE_F32) {
|
||||
if (is_q_fp32) {
|
||||
hvx_dot_f32_f16_aa(&s_val, q_ptr_vtcm, k_ptr, DK, scale);
|
||||
} else {
|
||||
hvx_dot_f16_f16_aa(&s_val, q_ptr_vtcm, k_ptr, DK, scale);
|
||||
|
|
|
|||
|
|
@ -28,19 +28,16 @@ static void hvx_vec_dump_f16(char * pref, HVX_Vector v) {
|
|||
}
|
||||
|
||||
static void hvx_vec_dump_f32_n(char * pref, HVX_Vector v, uint32_t n) {
|
||||
union {
|
||||
HVX_Vector v;
|
||||
float d[32];
|
||||
} u = { .v = v };
|
||||
HVX_VectorAlias u = { .v = v };
|
||||
|
||||
const uint32_t n0 = n / 16;
|
||||
const uint32_t n1 = n % 16;
|
||||
int i = 0;
|
||||
for (; i < n0; i++) {
|
||||
hex_dump_f32_line(pref, u.d + (16 * i), 16);
|
||||
hex_dump_f32_line(pref, u.fp32 + (16 * i), 16);
|
||||
}
|
||||
if (n1) {
|
||||
hex_dump_f32_line(pref, u.d + (16 * i), n1);
|
||||
hex_dump_f32_line(pref, u.fp32 + (16 * i), n1);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -44,6 +44,45 @@ static inline HVX_Vector hvx_vec_reduce_sum_qf32(HVX_Vector in) {
|
|||
return hvx_vec_reduce_sum_n_qf32(in, 32);
|
||||
}
|
||||
|
||||
#if __HVX_ARCH__ > 75
|
||||
|
||||
static inline HVX_Vector hvx_vec_reduce_sum_f32x2(HVX_Vector in0, HVX_Vector in1) {
|
||||
HVX_VectorPair sump = Q6_W_vshuff_VVR(in1, in0, 4);
|
||||
HVX_Vector sum_sf = Q6_Vsf_vadd_VsfVsf(Q6_V_lo_W(sump), Q6_V_hi_W(sump));
|
||||
|
||||
sum_sf = Q6_Vsf_vadd_VsfVsf(sum_sf, Q6_V_vror_VR(sum_sf, VLEN / 2));
|
||||
sum_sf = Q6_Vsf_vadd_VsfVsf(sum_sf, Q6_V_vror_VR(sum_sf, VLEN / 4));
|
||||
sum_sf = Q6_Vsf_vadd_VsfVsf(sum_sf, Q6_V_vror_VR(sum_sf, VLEN / 8));
|
||||
sum_sf = Q6_Vsf_vadd_VsfVsf(sum_sf, Q6_V_vror_VR(sum_sf, VLEN / 16));
|
||||
return sum_sf;
|
||||
}
|
||||
|
||||
static inline HVX_Vector hvx_vec_reduce_sum_n_f32(HVX_Vector in, unsigned int n) {
|
||||
unsigned int total = n * 4; // total vec nbytes
|
||||
unsigned int width = 4; // fp32 nbytes
|
||||
|
||||
HVX_Vector sum = in, sum_t;
|
||||
while (width < total) {
|
||||
sum_t = Q6_V_vror_VR(sum, width); // rotate right
|
||||
sum = Q6_Vsf_vadd_VsfVsf(sum, sum_t); // elementwise sum
|
||||
width = width << 1;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static inline HVX_Vector hvx_vec_reduce_sum_f32x2(HVX_Vector in0, HVX_Vector in1) {
|
||||
HVX_VectorPair sump = Q6_W_vshuff_VVR(in1, in0, 4);
|
||||
HVX_Vector sum_qf = Q6_Vqf32_vadd_VsfVsf(Q6_V_lo_W(sump), Q6_V_hi_W(sump));
|
||||
|
||||
sum_qf = Q6_Vqf32_vadd_Vqf32Vsf(sum_qf, Q6_V_vror_VR(Q6_Vsf_equals_Vqf32(sum_qf), VLEN / 2));
|
||||
sum_qf = Q6_Vqf32_vadd_Vqf32Vsf(sum_qf, Q6_V_vror_VR(Q6_Vsf_equals_Vqf32(sum_qf), VLEN / 4));
|
||||
sum_qf = Q6_Vqf32_vadd_Vqf32Vsf(sum_qf, Q6_V_vror_VR(Q6_Vsf_equals_Vqf32(sum_qf), VLEN / 8));
|
||||
sum_qf = Q6_Vqf32_vadd_Vqf32Vsf(sum_qf, Q6_V_vror_VR(Q6_Vsf_equals_Vqf32(sum_qf), VLEN / 16));
|
||||
return Q6_Vsf_equals_Vqf32(sum_qf);
|
||||
}
|
||||
|
||||
static inline HVX_Vector hvx_vec_reduce_sum_n_f32(HVX_Vector in, unsigned int n) {
|
||||
unsigned int total = n * 4; // total vec nbytes
|
||||
unsigned int width = 4; // fp32 nbytes
|
||||
|
|
@ -57,6 +96,8 @@ static inline HVX_Vector hvx_vec_reduce_sum_n_f32(HVX_Vector in, unsigned int n)
|
|||
return sum;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
static inline HVX_Vector hvx_vec_reduce_sum_f32(HVX_Vector in) {
|
||||
return hvx_vec_reduce_sum_n_f32(in, 32);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -11,6 +11,7 @@
|
|||
|
||||
#include "hex-dma.h"
|
||||
#include "hvx-utils.h"
|
||||
#include "hvx-dump.h"
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
#include "ggml-common.h"
|
||||
|
|
@ -320,7 +321,7 @@ static void vec_dot_q4x4x2_q8x4x2(const int n, float * restrict s, const void *
|
|||
const uint8_t * restrict y_q = ((const uint8_t *) vy + 0); // quants first
|
||||
const uint8_t * restrict y_d = ((const uint8_t *) vy + y_qrow_size); // then scales
|
||||
|
||||
// Row sum (qf32)
|
||||
// Row sum (sf)
|
||||
HVX_Vector r0_sum = Q6_V_vsplat_R(0);
|
||||
|
||||
// Multiply and accumulate into int32.
|
||||
|
|
@ -344,7 +345,7 @@ static void vec_dot_q4x4x2_q8x4x2(const int n, float * restrict s, const void *
|
|||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
}
|
||||
|
||||
// Process leftovers, we still load full 4x4x2 block but zero out unused scales/blocks
|
||||
|
|
@ -362,14 +363,14 @@ static void vec_dot_q4x4x2_q8x4x2(const int n, float * restrict s, const void *
|
|||
// Zero out unused scales
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe / 8);
|
||||
r0_dd = Q6_V_vand_QV(bmask, r0_dd);
|
||||
r0_ia = Q6_V_vand_QV(bmask, r0_ia);
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
}
|
||||
|
||||
// Reduce and convert into fp32
|
||||
r0_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r0_sum));
|
||||
r0_sum = hvx_vec_reduce_sum_f32(r0_sum);
|
||||
|
||||
hvx_vec_store_u(&s[0], 4, r0_sum);
|
||||
}
|
||||
|
|
@ -402,7 +403,7 @@ static void vec_dot_q4x4x2_q8x4x2_rx2(const int n,
|
|||
const uint8_t * restrict y_q = ((const uint8_t *) vy + 0); // quants first
|
||||
const uint8_t * restrict y_d = ((const uint8_t *) vy + y_qrow_size); // then scales
|
||||
|
||||
// Row sum (qf32)
|
||||
// Row sum (sf)
|
||||
HVX_Vector r0_sum = Q6_V_vsplat_R(0);
|
||||
HVX_Vector r1_sum = Q6_V_vsplat_R(0);
|
||||
|
||||
|
|
@ -432,8 +433,8 @@ static void vec_dot_q4x4x2_q8x4x2_rx2(const int n,
|
|||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
HVX_Vector r1_fa = Q6_Vqf32_vmpy_VsfVsf(r1_ia, r1_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r1_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r1_sum, r1_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
r1_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r1_fa, r1_sum));
|
||||
}
|
||||
|
||||
// Process leftovers, we still load full 4x4x2 block but zero out unused scales/blocks
|
||||
|
|
@ -456,20 +457,18 @@ static void vec_dot_q4x4x2_q8x4x2_rx2(const int n,
|
|||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe / 8);
|
||||
r0_dd = Q6_V_vand_QV(bmask, r0_dd);
|
||||
r1_dd = Q6_V_vand_QV(bmask, r1_dd);
|
||||
r0_ia = Q6_V_vand_QV(bmask, r0_ia);
|
||||
r1_ia = Q6_V_vand_QV(bmask, r1_ia);
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
HVX_Vector r1_fa = Q6_Vqf32_vmpy_VsfVsf(r1_ia, r1_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r1_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r1_sum, r1_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
r1_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r1_fa, r1_sum));
|
||||
}
|
||||
|
||||
// Convert into fp32 and reduce
|
||||
r0_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r0_sum));
|
||||
r1_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r1_sum));
|
||||
HVX_VectorPair p0 = Q6_W_vshuff_VVR(r1_sum, r0_sum, 4);
|
||||
|
||||
hvx_vec_store_u(&s[0], 8, Q6_V_lo_W(p0));
|
||||
HVX_Vector rsum = hvx_vec_reduce_sum_f32x2(r0_sum, r1_sum);
|
||||
hvx_vec_store_u(&s[0], 8, rsum);
|
||||
}
|
||||
|
||||
static void vec_dot_q8x4x2_q8x4x2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
|
||||
|
|
@ -493,7 +492,7 @@ static void vec_dot_q8x4x2_q8x4x2(const int n, float * restrict s, const void *
|
|||
const uint8_t * restrict y_q = ((const uint8_t *) vy + 0); // quants first
|
||||
const uint8_t * restrict y_d = ((const uint8_t *) vy + y_qrow_size); // then scales
|
||||
|
||||
// Row sum (qf32)
|
||||
// Row sum (sf)
|
||||
HVX_Vector r0_sum = Q6_V_vsplat_R(0);
|
||||
|
||||
// Multiply and accumulate into int32.
|
||||
|
|
@ -517,7 +516,7 @@ static void vec_dot_q8x4x2_q8x4x2(const int n, float * restrict s, const void *
|
|||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
}
|
||||
|
||||
// Process leftovers, we still load full 4x4x2 block but zero out unused scales/blocks
|
||||
|
|
@ -535,14 +534,14 @@ static void vec_dot_q8x4x2_q8x4x2(const int n, float * restrict s, const void *
|
|||
// Zero out unused scales
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe / 8);
|
||||
r0_dd = Q6_V_vand_QV(bmask, r0_dd);
|
||||
r0_ia = Q6_V_vand_QV(bmask, r0_ia);
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
}
|
||||
|
||||
// Reduce and convert into fp32
|
||||
r0_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r0_sum));
|
||||
r0_sum = hvx_vec_reduce_sum_f32(r0_sum);
|
||||
|
||||
hvx_vec_store_u(&s[0], 4, r0_sum);
|
||||
}
|
||||
|
|
@ -605,8 +604,8 @@ static void vec_dot_q8x4x2_q8x4x2_rx2(const int n,
|
|||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
HVX_Vector r1_fa = Q6_Vqf32_vmpy_VsfVsf(r1_ia, r1_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r1_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r1_sum, r1_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
r1_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r1_fa, r1_sum));
|
||||
}
|
||||
|
||||
// Process leftovers, we still load full 4x4x2 block but zero out unused scales/blocks
|
||||
|
|
@ -629,20 +628,18 @@ static void vec_dot_q8x4x2_q8x4x2_rx2(const int n,
|
|||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe / 8);
|
||||
r0_dd = Q6_V_vand_QV(bmask, r0_dd);
|
||||
r1_dd = Q6_V_vand_QV(bmask, r1_dd);
|
||||
r0_ia = Q6_V_vand_QV(bmask, r0_ia);
|
||||
r1_ia = Q6_V_vand_QV(bmask, r1_ia);
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
HVX_Vector r1_fa = Q6_Vqf32_vmpy_VsfVsf(r1_ia, r1_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r1_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r1_sum, r1_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
r1_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r1_fa, r1_sum));
|
||||
}
|
||||
|
||||
// Convert into fp32 and reduce
|
||||
r0_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r0_sum));
|
||||
r1_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r1_sum));
|
||||
HVX_VectorPair p0 = Q6_W_vshuff_VVR(r1_sum, r0_sum, 4);
|
||||
|
||||
hvx_vec_store_u(&s[0], 8, Q6_V_lo_W(p0));
|
||||
HVX_Vector rsum = hvx_vec_reduce_sum_f32x2(r0_sum, r1_sum);
|
||||
hvx_vec_store_u(&s[0], 8, rsum);
|
||||
}
|
||||
|
||||
static void vec_dot_mxfp4x4x2_q8x4x2(const int n,
|
||||
|
|
@ -669,7 +666,7 @@ static void vec_dot_mxfp4x4x2_q8x4x2(const int n,
|
|||
const uint8_t * restrict y_q = ((const uint8_t *) vy + 0); // quants first
|
||||
const uint8_t * restrict y_d = ((const uint8_t *) vy + y_qrow_size); // then scales
|
||||
|
||||
// Row sum (qf32)
|
||||
// Row sum (sf)
|
||||
HVX_Vector r0_sum = Q6_V_vsplat_R(0);
|
||||
|
||||
// Multiply and accumulate into int32.
|
||||
|
|
@ -708,7 +705,7 @@ static void vec_dot_mxfp4x4x2_q8x4x2(const int n,
|
|||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
}
|
||||
|
||||
// Process leftovers
|
||||
|
|
@ -741,14 +738,14 @@ static void vec_dot_mxfp4x4x2_q8x4x2(const int n,
|
|||
// Zero-out unused scales
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe / 8);
|
||||
r0_dd = Q6_V_vand_QV(bmask, r0_dd);
|
||||
r0_ia = Q6_V_vand_QV(bmask, r0_ia);
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
}
|
||||
|
||||
// Reduce and convert into fp32
|
||||
r0_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r0_sum));
|
||||
r0_sum = hvx_vec_reduce_sum_f32(r0_sum);
|
||||
|
||||
hvx_vec_store_u(&s[0], 4, r0_sum);
|
||||
}
|
||||
|
|
@ -781,13 +778,13 @@ static void vec_dot_mxfp4x4x2_q8x4x2_rx2(const int n,
|
|||
const uint8_t * restrict y_q = ((const uint8_t *) vy + 0); // quants first
|
||||
const uint8_t * restrict y_d = ((const uint8_t *) vy + y_qrow_size); // then scales
|
||||
|
||||
// Row sum (qf32)
|
||||
// Row sum (sf)
|
||||
HVX_Vector r0_sum = Q6_V_vsplat_R(0);
|
||||
HVX_Vector r1_sum = Q6_V_vsplat_R(0);
|
||||
|
||||
// Multiply and accumulate into int32.
|
||||
// Compute combined scale (fp32).
|
||||
// Apply scale to acc and accumulate into the row sum (qf32).
|
||||
// Apply scale to acc and accumulate into the row sum (f32).
|
||||
|
||||
const uint32_t nb = n / qk; // num full blocks
|
||||
int32_t nloe = n % qk; // num leftover elemements (must be signed)
|
||||
|
|
@ -829,8 +826,8 @@ static void vec_dot_mxfp4x4x2_q8x4x2_rx2(const int n,
|
|||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
HVX_Vector r1_fa = Q6_Vqf32_vmpy_VsfVsf(r1_ia, r1_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r1_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r1_sum, r1_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
r1_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r1_fa, r1_sum));
|
||||
}
|
||||
|
||||
// Process leftovers
|
||||
|
|
@ -867,24 +864,22 @@ static void vec_dot_mxfp4x4x2_q8x4x2_rx2(const int n,
|
|||
HVX_Vector r0_dd = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(r0_d, vy_d));
|
||||
HVX_Vector r1_dd = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(r1_d, vy_d));
|
||||
|
||||
// Zero-out unused scales
|
||||
// Zero-out unused values
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe / 8);
|
||||
r0_dd = Q6_V_vand_QV(bmask, r0_dd);
|
||||
r1_dd = Q6_V_vand_QV(bmask, r1_dd);
|
||||
r0_ia = Q6_V_vand_QV(bmask, r0_ia);
|
||||
r1_ia = Q6_V_vand_QV(bmask, r1_ia);
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
HVX_Vector r1_fa = Q6_Vqf32_vmpy_VsfVsf(r1_ia, r1_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r1_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r1_sum, r1_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
r1_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r1_fa, r1_sum));
|
||||
}
|
||||
|
||||
// Convert into fp32 and reduce
|
||||
r0_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r0_sum));
|
||||
r1_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r1_sum));
|
||||
HVX_VectorPair p0 = Q6_W_vshuff_VVR(r1_sum, r0_sum, 4);
|
||||
|
||||
hvx_vec_store_u(&s[0], 8, Q6_V_lo_W(p0));
|
||||
HVX_Vector rsum = hvx_vec_reduce_sum_f32x2(r0_sum, r1_sum);
|
||||
hvx_vec_store_u(&s[0], 8, rsum);
|
||||
}
|
||||
|
||||
static void vec_dot_f16_f16_aa(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
|
||||
|
|
@ -913,7 +908,7 @@ static void vec_dot_f16_f16_aa(const int n, float * restrict s, const void * res
|
|||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
}
|
||||
|
||||
rsum = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum));
|
||||
rsum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(rsum));
|
||||
hvx_vec_store_u(&s[0], 4, rsum);
|
||||
}
|
||||
|
||||
|
|
@ -957,11 +952,8 @@ static void vec_dot_f16_f16_aa_rx2(const int n,
|
|||
rsum1 = Q6_Vqf32_vadd_Vqf32Vqf32(rsum1, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy1_qf), Q6_V_hi_W(xy1_qf)));
|
||||
}
|
||||
|
||||
rsum0 = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum0));
|
||||
rsum1 = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum1));
|
||||
HVX_VectorPair p0 = Q6_W_vshuff_VVR(rsum1, rsum0, 4);
|
||||
|
||||
hvx_vec_store_u(&s[0], 8, Q6_V_lo_W(p0));
|
||||
HVX_Vector rsum = hvx_vec_reduce_sum_f32x2(Q6_Vsf_equals_Vqf32(rsum0), Q6_Vsf_equals_Vqf32(rsum1));
|
||||
hvx_vec_store_u(&s[0], 8, rsum);
|
||||
}
|
||||
|
||||
static void vec_dot_f16_f16_uu(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
|
||||
|
|
@ -990,7 +982,7 @@ static void vec_dot_f16_f16_uu(const int n, float * restrict s, const void * res
|
|||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
}
|
||||
|
||||
rsum = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum));
|
||||
rsum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(rsum));
|
||||
hvx_vec_store_u(&s[0], 4, rsum);
|
||||
}
|
||||
|
||||
|
|
@ -1042,7 +1034,8 @@ static void vec_dot_f16_f32_uu(const int n, float * restrict s, const void * res
|
|||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
}
|
||||
|
||||
rsum = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum));
|
||||
// Convert into fp32 and reduce
|
||||
rsum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(rsum));
|
||||
hvx_vec_store_u(&s[0], 4, rsum);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -154,8 +154,8 @@ static void hvx_fast_softmax_f32(const uint8_t * restrict src,
|
|||
v_pad[i] = v3;
|
||||
}
|
||||
|
||||
v = hvx_vec_reduce_sum_qf32(sum_vec);
|
||||
sum_vec = hvx_vec_repl4(Q6_Vsf_equals_Vqf32(v));
|
||||
v = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(sum_vec));
|
||||
sum_vec = hvx_vec_repl4(v);
|
||||
|
||||
HVX_VectorPred pos_sum = Q6_Q_vcmp_gt_VwVw(sum_vec, zero_v);
|
||||
HVX_Vector v4 = hvx_vec_inverse_f32(sum_vec);
|
||||
|
|
|
|||
|
|
@ -57,8 +57,8 @@ static void hvx_fast_rms_norm_f32(const uint8_t * restrict src,
|
|||
sum_v = Q6_Vqf32_vadd_Vqf32Vqf32(sum_v, v2);
|
||||
}
|
||||
|
||||
HVX_Vector reduced_sum = hvx_vec_reduce_sum_qf32(sum_v);
|
||||
sum_v = hvx_vec_repl4(Q6_Vsf_equals_Vqf32(reduced_sum));
|
||||
HVX_Vector reduced_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(sum_v));
|
||||
sum_v = hvx_vec_repl4(reduced_sum);
|
||||
|
||||
HVX_Vector t_v = hvx_vec_splat_f32((float) num_elems);
|
||||
HVX_Vector denom_v = hvx_vec_inverse_f32(t_v);
|
||||
|
|
|
|||
|
|
@ -0,0 +1,79 @@
|
|||
#pragma once
|
||||
|
||||
#ifdef _WIN32
|
||||
# define WIN32_LEAN_AND_MEAN
|
||||
# ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
# endif
|
||||
# include <windows.h>
|
||||
# include <winevt.h>
|
||||
#else
|
||||
# include <dlfcn.h>
|
||||
# include <unistd.h>
|
||||
#endif
|
||||
#include <filesystem>
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
using dl_handle = std::remove_pointer_t<HMODULE>;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(HMODULE handle) {
|
||||
FreeLibrary(handle);
|
||||
}
|
||||
};
|
||||
|
||||
static inline dl_handle * dl_load_library(const fs::path & path) {
|
||||
// suppress error dialogs for missing DLLs
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
HMODULE handle = LoadLibraryW(path.wstring().c_str());
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return handle;
|
||||
}
|
||||
|
||||
static inline void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
void * p = (void *) GetProcAddress(handle, name);
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
static inline const char * dl_error() {
|
||||
return "";
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
using dl_handle = void;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(void * handle) {
|
||||
dlclose(handle);
|
||||
}
|
||||
};
|
||||
|
||||
static inline dl_handle * dl_load_library(const fs::path & path) {
|
||||
dl_handle * handle = dlopen(path.string().c_str(), RTLD_NOW | RTLD_LOCAL);
|
||||
return handle;
|
||||
}
|
||||
|
||||
static inline void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
return dlsym(handle, name);
|
||||
}
|
||||
|
||||
static inline const char * dl_error() {
|
||||
const char *rslt = dlerror();
|
||||
return rslt != nullptr ? rslt : "";
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
@ -0,0 +1,38 @@
|
|||
[Version]
|
||||
Signature = "$WINDOWS NT$"
|
||||
Class = ComputeAccelerator
|
||||
ClassGuid = {F01A9D53-3FF6-48D2-9F97-C8A7004BE10C}
|
||||
Provider = %GGML%
|
||||
DriverVer = 01/01/2026,1.0.0.0
|
||||
CatalogFile = libggml-htp.cat
|
||||
PnpLockDown = 1
|
||||
|
||||
[DestinationDirs]
|
||||
Drivers_Dir = 6
|
||||
|
||||
[SourceDisksNames]
|
||||
1 = %DiskId%
|
||||
|
||||
[SourceDisksFiles]
|
||||
libggml-htp-v68.so = 1
|
||||
libggml-htp-v69.so = 1
|
||||
libggml-htp-v73.so = 1
|
||||
libggml-htp-v75.so = 1
|
||||
libggml-htp-v81.so = 1
|
||||
|
||||
[ControlFlags]
|
||||
ExcludeFromSelect = *
|
||||
|
||||
[DefaultInstall.NTarm64]
|
||||
CopyFiles=Drivers_Dir
|
||||
|
||||
[Drivers_Dir]
|
||||
libggml-htp-v68.so,,,0x10 ;COPYFLG_NO_OVERWRITE
|
||||
libggml-htp-v69.so,,,0x10 ;COPYFLG_NO_OVERWRITE
|
||||
libggml-htp-v73.so,,,0x10 ;COPYFLG_NO_OVERWRITE
|
||||
libggml-htp-v75.so,,,0x10 ;COPYFLG_NO_OVERWRITE
|
||||
libggml-htp-v81.so,,,0x10 ;COPYFLG_NO_OVERWRITE
|
||||
|
||||
[Strings]
|
||||
GGML = 'GGML'
|
||||
DiskId = 'GGML HTP library'
|
||||
|
|
@ -101,6 +101,8 @@ set(GGML_OPENCL_KERNELS
|
|||
mul_mm_f32_f32_l4_lm
|
||||
mul_mm_f16_f32_l4_lm
|
||||
mul_mm_q8_0_f32_l4_lm
|
||||
mul_mm_q8_0_f32_8x4
|
||||
gemv_noshuffle_general_q8_0_f32
|
||||
mul
|
||||
norm
|
||||
relu
|
||||
|
|
|
|||
|
|
@ -226,7 +226,8 @@ static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
|
|||
return ADRENO_GPU_GEN::A7X;
|
||||
}
|
||||
|
||||
if (strstr(device_name, "830")) {
|
||||
if (strstr(device_name, "830") ||
|
||||
strstr(device_name, "840")) {
|
||||
return ADRENO_GPU_GEN::A8X;
|
||||
}
|
||||
|
||||
|
|
@ -529,7 +530,7 @@ struct ggml_backend_opencl_context {
|
|||
cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
|
||||
cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
|
||||
cl_kernel kernel_convert_block_mxfp4, kernel_convert_block_mxfp4_trans, kernel_restore_block_mxfp4, kernel_restore_block_mxfp4_trans;
|
||||
cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0;
|
||||
cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0, kernel_restore_block_q8_0_trans;
|
||||
cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
|
||||
cl_kernel kernel_convert_block_q4_0_noshuffle;
|
||||
cl_kernel kernel_restore_block_q4_0_noshuffle;
|
||||
|
|
@ -696,6 +697,8 @@ struct ggml_backend_opencl_context {
|
|||
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
|
||||
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
|
||||
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
|
||||
cl_kernel kernel_mul_mm_q8_0_f32_8x4;
|
||||
cl_kernel CL_mul_mat_vec_q8_0_f32;
|
||||
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
|
||||
|
||||
void free() {
|
||||
|
|
@ -894,6 +897,7 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|||
CL_CHECK((backend_ctx->kernel_restore_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_convert_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q8_0", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_restore_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_restore_block_q8_0_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0_trans", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_convert_block_q6_K = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q6_K", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_restore_block_q6_K = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q6_K", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
|
|
@ -2290,6 +2294,46 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// mul_mm_q8_0_f32_8x4
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src_q8_8x4_gemm {
|
||||
#include "mul_mm_q8_0_f32_8x4.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src_q8_8x4_gemm = read_file("mul_mm_q8_0_f32_8x4.cl");
|
||||
#endif
|
||||
backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_q8_8x4_gemm.c_str(), compile_opts);
|
||||
CL_CHECK((backend_ctx->kernel_mul_mm_q8_0_f32_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mm_q8_0_f32_8x4", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// gemv_noshuffle_general_q8_0_f32
|
||||
{
|
||||
std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
|
||||
" -cl-mad-enable "
|
||||
" -DSIMDGROUP_WIDTH=" +
|
||||
std::to_string(backend_ctx->adreno_wave_size);
|
||||
if (backend_ctx->has_vector_subgroup_broadcast) {
|
||||
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
|
||||
}
|
||||
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src_CL_gemv_general {
|
||||
#include "gemv_noshuffle_general_q8_0_f32.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general_q8_0_f32.cl");
|
||||
#endif
|
||||
|
||||
cl_program prog = build_program_from_source(
|
||||
backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->CL_mul_mat_vec_q8_0_f32 = clCreateKernel(prog, "kernel_gemv_noshuffle", &err), err));
|
||||
CL_CHECK(clReleaseProgram(prog));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
std::string CL_moe_compile_opts = std::string("-cl-std=") + opencl_c_std +
|
||||
" -cl-mad-enable "
|
||||
" -cl-fast-relaxed-math";
|
||||
|
|
@ -3745,6 +3789,15 @@ inline bool use_adreno_moe_kernels(const ggml_backend_opencl_context *backend_ct
|
|||
return ((strstr(tensor->name, "ffn") != NULL) || (strstr(tensor->name, "as") != NULL)) && (ne01 % 64 == 0);
|
||||
}
|
||||
|
||||
inline bool enable_adreno_trans_weight(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
|
||||
|
||||
bool adreno_kernel = use_adreno_kernels(backend_ctx, tensor);
|
||||
|
||||
size_t elem_num = tensor->ne[0] * tensor->ne[1] * tensor->ne[2] * tensor->ne[3];
|
||||
|
||||
return ((elem_num < 128 * 1024 * 1024) && adreno_kernel); // max element num: 2**27
|
||||
}
|
||||
|
||||
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
|
||||
|
||||
|
|
@ -4159,6 +4212,130 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
|
|||
|
||||
tensor->extra = extra;
|
||||
|
||||
// Transpose the weights and scales
|
||||
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
||||
if (enable_adreno_trans_weight(backend_ctx, tensor)) {
|
||||
|
||||
int M = tensor->ne[1]; // ne01
|
||||
int K = tensor->ne[0]; // ne00
|
||||
|
||||
GGML_ASSERT(K % 32 == 0);
|
||||
GGML_ASSERT(M % 4 == 0);
|
||||
GGML_ASSERT(tensor->ne[2] == 1);
|
||||
GGML_ASSERT(tensor->ne[3] == 1);
|
||||
|
||||
// Transpose weights
|
||||
size_t q_size_bytes = K * M / 4 * sizeof(float);
|
||||
cl_buffer_region region;
|
||||
region.origin = 0;
|
||||
region.size = q_size_bytes;
|
||||
cl_mem qT_d = clCreateSubBuffer(
|
||||
backend_ctx->prealloc_quant_trans.buffer,
|
||||
0,
|
||||
CL_BUFFER_CREATE_TYPE_REGION,
|
||||
®ion,
|
||||
&err);
|
||||
CL_CHECK(err);
|
||||
|
||||
cl_mem q_d_image1D;
|
||||
cl_mem qT_d_image1D;
|
||||
|
||||
cl_image_format img_fmt_1d;
|
||||
cl_image_desc img_desc_1d;
|
||||
|
||||
img_fmt_1d = { CL_RGBA, CL_FLOAT };
|
||||
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
||||
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
||||
img_desc_1d.image_width = M * K / 4 / 4;
|
||||
img_desc_1d.buffer = extra->q;
|
||||
q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
|
||||
CL_CHECK(err);
|
||||
|
||||
img_fmt_1d = { CL_RGBA, CL_FLOAT };
|
||||
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
||||
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
||||
img_desc_1d.image_width = M * K / 4 / 4;
|
||||
img_desc_1d.buffer = qT_d;
|
||||
qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
|
||||
CL_CHECK(err);
|
||||
|
||||
int height_q = M / 4;
|
||||
int width_q = K / 4 / 4;
|
||||
kernel = backend_ctx->kernel_transpose_32;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
|
||||
|
||||
size_t local_size_q[3] = {4, 16, 1};
|
||||
size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
|
||||
CL_CHECK(clWaitForEvents(1, &evt));
|
||||
|
||||
// Transpose scales
|
||||
size_t d_size_bytes = M * (K / 32) * 2;
|
||||
region.origin = 0;
|
||||
region.size = d_size_bytes;
|
||||
cl_mem dT_d = clCreateSubBuffer(
|
||||
backend_ctx->prealloc_scales_trans.buffer,
|
||||
0,
|
||||
CL_BUFFER_CREATE_TYPE_REGION,
|
||||
®ion,
|
||||
&err);
|
||||
CL_CHECK(err);
|
||||
|
||||
cl_mem d_d_image1D;
|
||||
cl_mem dT_d_image1D;
|
||||
|
||||
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
||||
img_fmt_1d = { CL_R, CL_HALF_FLOAT };
|
||||
img_desc_1d.image_width = M * K / 32;
|
||||
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
||||
img_desc_1d.buffer = extra->d;
|
||||
d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
|
||||
CL_CHECK(err);
|
||||
|
||||
img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
|
||||
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
||||
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
||||
img_desc_1d.image_width = M * K / 32 / 4;
|
||||
img_desc_1d.buffer = dT_d;
|
||||
dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
|
||||
CL_CHECK(err);
|
||||
|
||||
int height_s = M / 4;
|
||||
int width_s = K / 32;
|
||||
|
||||
kernel = backend_ctx->kernel_transpose_16_4x1;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
|
||||
|
||||
size_t local_size_s[3] = {4, 16, 1};
|
||||
size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
|
||||
CL_CHECK(clWaitForEvents(1, &evt));
|
||||
|
||||
// copy transposed buffer contents to original buffers
|
||||
CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
|
||||
CL_CHECK(clWaitForEvents(1, &evt));
|
||||
|
||||
CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
|
||||
CL_CHECK(clWaitForEvents(1, &evt));
|
||||
|
||||
CL_CHECK(clReleaseMemObject(qT_d));
|
||||
CL_CHECK(clReleaseMemObject(dT_d));
|
||||
|
||||
CL_CHECK(clReleaseMemObject(q_d_image1D));
|
||||
CL_CHECK(clReleaseMemObject(d_d_image1D));
|
||||
CL_CHECK(clReleaseMemObject(qT_d_image1D));
|
||||
CL_CHECK(clReleaseMemObject(dT_d_image1D));
|
||||
} // end transpose
|
||||
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
|
||||
|
||||
return;
|
||||
}
|
||||
if (tensor->type == GGML_TYPE_Q6_K) {
|
||||
|
|
@ -4448,6 +4625,36 @@ static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer,
|
|||
ggml_nbytes(tensor), NULL, &err);
|
||||
CL_CHECK(err);
|
||||
|
||||
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
||||
if (enable_adreno_trans_weight(backend_ctx, tensor)) {
|
||||
cl_kernel kernel = backend_ctx->kernel_restore_block_q8_0_trans;
|
||||
|
||||
int ne00 = tensor->ne[0];
|
||||
int ne01 = tensor->ne[1];
|
||||
GGML_ASSERT(tensor->ne[2] == 1); // ???
|
||||
GGML_ASSERT(tensor->ne[3] == 1); // ???
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_int), &ne01));
|
||||
|
||||
size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), 1, 1};
|
||||
size_t local_work_size[3] = {64, 1, 1};
|
||||
|
||||
cl_event evt;
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
|
||||
global_work_size, local_work_size, 0, NULL, &evt));
|
||||
CL_CHECK(clWaitForEvents(1, &evt));
|
||||
|
||||
CL_CHECK(clEnqueueReadBuffer(
|
||||
queue, data_device, CL_TRUE, offset,
|
||||
size, data, 0, NULL, NULL));
|
||||
CL_CHECK(clReleaseMemObject(data_device));
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
cl_kernel kernel = backend_ctx->kernel_restore_block_q8_0;
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
|
||||
|
|
@ -7947,6 +8154,252 @@ static void ggml_cl_mul_mat_kq_kqv_adreno(ggml_backend_t backend, const ggml_ten
|
|||
CL_CHECK(clReleaseMemObject(D_sub_buffer));
|
||||
}
|
||||
|
||||
static void ggml_cl_mul_mat_q8_0_f32_adreno(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
||||
GGML_ASSERT(src0);
|
||||
GGML_ASSERT(src0->extra);
|
||||
GGML_ASSERT(src1);
|
||||
GGML_ASSERT(src1->extra);
|
||||
GGML_ASSERT(dst);
|
||||
GGML_ASSERT(dst->extra);
|
||||
|
||||
const enum ggml_type src0t = src0->type;
|
||||
const enum ggml_type src1t = src1->type;
|
||||
|
||||
GGML_ASSERT(src0t == GGML_TYPE_Q8_0);
|
||||
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
||||
|
||||
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||
|
||||
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
||||
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||
|
||||
ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
|
||||
|
||||
GGML_ASSERT(src1->view_offs == 0);
|
||||
GGML_ASSERT(dst->view_offs == 0);
|
||||
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
const int ne02 = src0->ne[2];
|
||||
|
||||
const int ne10 = src1->ne[0];
|
||||
const int ne12 = src1->ne[2];
|
||||
|
||||
const int ne0 = dst->ne[0];
|
||||
const int ne1 = dst->ne[1];
|
||||
|
||||
GGML_ASSERT(ne00 == ne10);
|
||||
GGML_ASSERT((ne00 % 32) == 0);
|
||||
GGML_ASSERT(ne0 == ne01);
|
||||
|
||||
cl_context context = backend_ctx->context;
|
||||
cl_kernel kernel;
|
||||
|
||||
// init CL objects
|
||||
cl_int status;
|
||||
cl_image_format img_fmt_1d;
|
||||
cl_image_desc img_desc_1d;
|
||||
cl_buffer_region region;
|
||||
cl_mem A_image1d;
|
||||
cl_mem B_image1d;
|
||||
cl_mem B_sub_buffer;
|
||||
cl_mem S_image1d;
|
||||
|
||||
cl_mem D_image1d;
|
||||
cl_mem D_sub_buffer;
|
||||
|
||||
int M = ne01;
|
||||
int N = ne1;
|
||||
int K = ne00;
|
||||
|
||||
// create an image for A
|
||||
img_fmt_1d = { CL_R, CL_FLOAT};
|
||||
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
||||
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
||||
img_desc_1d.image_width = M * K / 4; // Divide by 4 for char -> float
|
||||
img_desc_1d.buffer = extra0_q8_0->q;
|
||||
A_image1d = clCreateImage(context, CL_MEM_READ_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
|
||||
CL_CHECK(status);
|
||||
|
||||
// create an image for Scale
|
||||
img_fmt_1d = { CL_R, CL_HALF_FLOAT};
|
||||
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
||||
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
||||
img_desc_1d.image_width = M * K / 32; // Block size is 32
|
||||
img_desc_1d.buffer = extra0_q8_0->d;
|
||||
S_image1d = clCreateImage(context, CL_MEM_READ_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
|
||||
CL_CHECK(status);
|
||||
|
||||
// create a sub_buffer for B
|
||||
region.origin = (extra1->offset); // + src1->view_offs);
|
||||
region.size = K * N * sizeof(float);
|
||||
B_sub_buffer = clCreateSubBuffer((extra1->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status);
|
||||
CL_CHECK(status);
|
||||
|
||||
// create an image for B from sub_buffer: RGBA (OCL)
|
||||
img_fmt_1d = {CL_RGBA, CL_FLOAT};
|
||||
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
||||
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
||||
img_desc_1d.image_width = K * N / 4;
|
||||
img_desc_1d.buffer = B_sub_buffer;
|
||||
B_image1d = clCreateImage(context, CL_MEM_READ_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
|
||||
CL_CHECK(status);
|
||||
|
||||
// Create subbuffer and image1d_buffer for dst
|
||||
region.origin = (extrad->offset); // + dst->view_offs;
|
||||
region.size = M * N * sizeof(float);
|
||||
D_sub_buffer = clCreateSubBuffer((extrad->data_device), 0, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status);
|
||||
CL_CHECK(status);
|
||||
|
||||
img_fmt_1d = {CL_R, CL_FLOAT};
|
||||
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
||||
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
||||
img_desc_1d.image_width = M * N;
|
||||
img_desc_1d.buffer = D_sub_buffer;
|
||||
D_image1d = clCreateImage(context, CL_MEM_WRITE_ONLY, &img_fmt_1d, &img_desc_1d, NULL, &status);
|
||||
CL_CHECK(status);
|
||||
|
||||
size_t local_work_size[3] = {1, 1, 1};
|
||||
size_t global_work_size[3] = {1, 1, 1};
|
||||
|
||||
if (N == 1) {
|
||||
kernel = backend_ctx->CL_mul_mat_vec_q8_0_f32;
|
||||
|
||||
int r2 = 1;
|
||||
int r3 = 1;
|
||||
cl_uint k_arg = 0;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q8_0->d));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
|
||||
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
|
||||
|
||||
size_t wavesize = backend_ctx->adreno_wave_size;
|
||||
local_work_size[0] = wavesize;
|
||||
local_work_size[1] = 4; // reduce factor
|
||||
local_work_size[2] = 1;
|
||||
|
||||
global_work_size[0] = ((M + wavesize - 1) / wavesize) * wavesize;
|
||||
global_work_size[1] = 4; // reduce factor
|
||||
global_work_size[2] = 1;
|
||||
} else {
|
||||
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||
cl_mem B_image1d_trans = nullptr;
|
||||
// for B transpose
|
||||
cl_mem B_d = nullptr;
|
||||
int padding;
|
||||
|
||||
//how many extra elements beyond multiple of 8
|
||||
int extra_elements = N % 8;
|
||||
|
||||
//how much padding to add
|
||||
padding = 0;
|
||||
if (extra_elements > 0){
|
||||
padding = 8 - extra_elements;
|
||||
}
|
||||
|
||||
// Specify the starting offset (in bytes)
|
||||
region.origin = 0;
|
||||
// Specify the size of the sub-buffer (divide by 2 for FP16)
|
||||
region.size = K * (N + padding) * sizeof(float)/2;
|
||||
backend_ctx->prealloc_act_trans.allocate(context, region.size);
|
||||
B_d = clCreateSubBuffer(
|
||||
backend_ctx->prealloc_act_trans.buffer,
|
||||
0,
|
||||
CL_BUFFER_CREATE_TYPE_REGION,
|
||||
®ion,
|
||||
&status);
|
||||
CL_CHECK(status);
|
||||
|
||||
cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
|
||||
cl_image_desc image_desc_B_d_output = {
|
||||
CL_MEM_OBJECT_IMAGE1D_BUFFER,
|
||||
static_cast<size_t>(K * (N + padding)/4),
|
||||
0, 0, 0, 0, 0, 0, 0, { B_d }
|
||||
};
|
||||
B_image1d_trans = clCreateImage(
|
||||
context,
|
||||
0,
|
||||
&image_format_B_d_output,
|
||||
&image_desc_B_d_output,
|
||||
NULL,
|
||||
&status);
|
||||
CL_CHECK(status);
|
||||
|
||||
int height_B = N/4;
|
||||
if (height_B == 0) {
|
||||
height_B = 1;
|
||||
}
|
||||
int width_B = K/4;
|
||||
int padded_height_B = (N + padding)/4;
|
||||
|
||||
kernel = backend_ctx->kernel_transpose_32_16;
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_image1d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d_trans));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
|
||||
|
||||
size_t local_size_t[2] = { 1, 16 };
|
||||
size_t global_size_t[2] = {
|
||||
static_cast<size_t>(width_B),
|
||||
static_cast<size_t>(padded_height_B)
|
||||
};
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_size_t, local_size_t, dst);
|
||||
|
||||
kernel = backend_ctx->kernel_mul_mm_q8_0_f32_8x4;
|
||||
|
||||
int N_with_padding = N + padding;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d_trans));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &K));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &M));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &N_with_padding));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &N));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
|
||||
|
||||
global_work_size[0] = (size_t)(N + 7) / 8;
|
||||
global_work_size[1] = (size_t)(M + 3) / 4;
|
||||
global_work_size[2] = 1;
|
||||
|
||||
local_work_size[0] = 2;
|
||||
local_work_size[1] = 128;
|
||||
local_work_size[2] = 1;
|
||||
}
|
||||
|
||||
// enqueue kernel with profiling
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
||||
|
||||
// deallocate sub buffers and images
|
||||
CL_CHECK(clReleaseMemObject(A_image1d));
|
||||
CL_CHECK(clReleaseMemObject(B_sub_buffer));
|
||||
CL_CHECK(clReleaseMemObject(B_image1d));
|
||||
CL_CHECK(clReleaseMemObject(S_image1d));
|
||||
CL_CHECK(clReleaseMemObject(D_sub_buffer));
|
||||
CL_CHECK(clReleaseMemObject(D_image1d));
|
||||
#else
|
||||
GGML_UNUSED(src0);
|
||||
GGML_UNUSED(src1);
|
||||
GGML_UNUSED(dst);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0);
|
||||
GGML_ASSERT(src0->extra);
|
||||
|
|
@ -8064,6 +8517,13 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
|
|||
int padding;
|
||||
// <--------------------------------------------> //
|
||||
|
||||
// q8_0 x fp32
|
||||
if (src0t == GGML_TYPE_Q8_0 && src1t == GGML_TYPE_F32 &&
|
||||
enable_adreno_trans_weight(backend_ctx, src0)) {
|
||||
ggml_cl_mul_mat_q8_0_f32_adreno(backend, src0, src1, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
// q4_0 x fp32
|
||||
if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
|
||||
// TODO: remove duplicate definitions of image description + format -- move to top
|
||||
|
|
|
|||
|
|
@ -274,6 +274,37 @@ kernel void kernel_restore_block_q8_0(
|
|||
}
|
||||
}
|
||||
|
||||
kernel void kernel_restore_block_q8_0_trans(
|
||||
global uchar * src_q,
|
||||
global half * src_d,
|
||||
global block_q8_0 * dst,
|
||||
uint ne00,
|
||||
uint ne01
|
||||
){
|
||||
uint num_blk_per_row = ne00 / QK8_0;
|
||||
|
||||
global block_q8_0 * b = (global block_q8_0 *) dst + get_global_id(0) * num_blk_per_row;
|
||||
global uchar * q = (global uchar *) src_q + get_global_id(0) * 4; // 4 8-bit packed
|
||||
global half * d = (global half *) src_d + get_global_id(0);
|
||||
|
||||
for (uint blk = 0; blk < num_blk_per_row; blk++) {
|
||||
b->d = *d;
|
||||
|
||||
for (uint i = 0; i < QK8_0; i+=4) {
|
||||
b->qs[i] = q[0];
|
||||
b->qs[i+1] = q[1];
|
||||
b->qs[i+2] = q[2];
|
||||
b->qs[i+3] = q[3];
|
||||
|
||||
q += 4 * ne01; // M stride
|
||||
}
|
||||
|
||||
d += ne01;
|
||||
|
||||
b++;
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// kernel_convert_block_q6_K
|
||||
// Convert the block_q6_K format to 3 separate arrays (AOS -> SOA).
|
||||
|
|
|
|||
|
|
@ -0,0 +1,195 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
|
||||
#ifdef cl_qcom_reqd_sub_group_size
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#endif
|
||||
|
||||
#define QK8_0 32
|
||||
#define N_SIMDGROUP 4
|
||||
|
||||
#define dequantizeBlockAccum_ns_sgbroadcast_1(total_sums, bits8, scale, y) \
|
||||
float shared_y; \
|
||||
char elem; \
|
||||
\
|
||||
shared_y = sub_group_broadcast(y.s0, 0); \
|
||||
elem = (char)(bits8.s0 & 0x000000FF); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s1, 0); \
|
||||
elem = (char)((bits8.s0 & 0x0000FF00) >> 8); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s2, 0); \
|
||||
elem = (char)((bits8.s0 & 0x00FF0000) >> 16); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s3, 0); \
|
||||
elem = (char)((bits8.s0 & 0xFF000000) >> 24); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
\
|
||||
shared_y = sub_group_broadcast(y.s4, 0); \
|
||||
elem = (char)(bits8.s1 & 0x000000FF); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s5, 0); \
|
||||
elem = (char)((bits8.s1 & 0x0000FF00) >> 8); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s6, 0); \
|
||||
elem = (char)((bits8.s1 & 0x00FF0000) >> 16); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s7, 0); \
|
||||
elem = (char)((bits8.s1 & 0xFF000000) >> 24); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
\
|
||||
shared_y = sub_group_broadcast(y.s0, 1); \
|
||||
elem = (char)(bits8.s2 & 0x000000FF); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s1, 1); \
|
||||
elem = (char)((bits8.s2 & 0x0000FF00) >> 8); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s2, 1); \
|
||||
elem = (char)((bits8.s2 & 0x00FF0000) >> 16); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s3, 1); \
|
||||
elem = (char)((bits8.s2 & 0xFF000000) >> 24); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
\
|
||||
shared_y = sub_group_broadcast(y.s4, 1); \
|
||||
elem = (char)(bits8.s3 & 0x000000FF); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s5, 1); \
|
||||
elem = (char)((bits8.s3 & 0x0000FF00) >> 8); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s6, 1); \
|
||||
elem = (char)((bits8.s3 & 0x00FF0000) >> 16); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s7, 1); \
|
||||
elem = (char)((bits8.s3 & 0xFF000000) >> 24); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
\
|
||||
shared_y = sub_group_broadcast(y.s0, 2); \
|
||||
elem = (char)(bits8.s4 & 0x000000FF); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s1, 2); \
|
||||
elem = (char)((bits8.s4 & 0x0000FF00) >> 8); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s2, 2); \
|
||||
elem = (char)((bits8.s4 & 0x00FF0000) >> 16); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s3, 2); \
|
||||
elem = (char)((bits8.s4 & 0xFF000000) >> 24); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
\
|
||||
shared_y = sub_group_broadcast(y.s4, 2); \
|
||||
elem = (char)(bits8.s5 & 0x000000FF); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s5, 2); \
|
||||
elem = (char)((bits8.s5 & 0x0000FF00) >> 8); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s6, 2); \
|
||||
elem = (char)((bits8.s5 & 0x00FF0000) >> 16); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s7, 2); \
|
||||
elem = (char)((bits8.s5 & 0xFF000000) >> 24); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
\
|
||||
shared_y = sub_group_broadcast(y.s0, 3); \
|
||||
elem = (char)(bits8.s6 & 0x000000FF); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s1, 3); \
|
||||
elem = (char)((bits8.s6 & 0x0000FF00) >> 8); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s2, 3); \
|
||||
elem = (char)((bits8.s6 & 0x00FF0000) >> 16); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s3, 3); \
|
||||
elem = (char)((bits8.s6 & 0xFF000000) >> 24); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
\
|
||||
shared_y = sub_group_broadcast(y.s4, 3); \
|
||||
elem = (char)(bits8.s7 & 0x000000FF); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s5, 3); \
|
||||
elem = (char)((bits8.s7 & 0x0000FF00) >> 8); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s6, 3); \
|
||||
elem = (char)((bits8.s7 & 0x00FF0000) >> 16); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
shared_y = sub_group_broadcast(y.s7, 3); \
|
||||
elem = (char)((bits8.s7 & 0xFF000000) >> 24); \
|
||||
total_sums += convert_int(elem) * scale * shared_y; \
|
||||
|
||||
#ifdef ADRENO_GPU
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
__kernel void kernel_gemv_noshuffle(
|
||||
__read_only image1d_buffer_t src0_q, // quantized A
|
||||
global half * src0_d, // A scales
|
||||
__read_only image1d_buffer_t src1, // B
|
||||
ulong offset1, // offset to B (0)
|
||||
global float * dst, // C
|
||||
ulong offsetd, // offset to C
|
||||
int ne00, // K
|
||||
int ne01, // M
|
||||
int ne02, // 1
|
||||
int ne10, // K
|
||||
int ne12, // 1
|
||||
int ne0, // M
|
||||
int ne1, // N
|
||||
int r2, // 1
|
||||
int r3)
|
||||
{
|
||||
uint groupId = get_local_id(1);
|
||||
uint gid = get_global_id(0);
|
||||
ushort slid = get_sub_group_local_id();
|
||||
|
||||
uint K = ne00;
|
||||
uint M = ne01;
|
||||
|
||||
uint LINE_STRIDE_A = M;
|
||||
uint BLOCK_STRIDE_A = 8 * M; // 32 / 4 = 8
|
||||
|
||||
__private uint8 regA;
|
||||
__private half regS;
|
||||
__private float8 regB;
|
||||
|
||||
__private float totalSum = (float)(0.0f);
|
||||
|
||||
// loop along K in block granularity, skip 4 blocks every iter
|
||||
#pragma unroll 1 /* tell compiler not to unroll */
|
||||
for (uint k = groupId; k < (K / QK8_0); k += N_SIMDGROUP) {
|
||||
regS = src0_d[gid + k * LINE_STRIDE_A]; // each fiber loads scale of one rows
|
||||
// first 4 fibers in each wave load 8 B values to its private scope
|
||||
if (slid < 4) {
|
||||
regB.s0123 = read_imagef(src1, (slid * 2 + k * 8));
|
||||
regB.s4567 = read_imagef(src1, (1 + slid * 2 + k * 8));
|
||||
}
|
||||
|
||||
// load weights for one block in consecutive rows
|
||||
regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 0)).x;
|
||||
regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 1)).x;
|
||||
regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 2)).x;
|
||||
regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 3)).x;
|
||||
regA.s4 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 4)).x;
|
||||
regA.s5 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 5)).x;
|
||||
regA.s6 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 6)).x;
|
||||
regA.s7 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 7)).x;
|
||||
|
||||
dequantizeBlockAccum_ns_sgbroadcast_1(totalSum, regA, regS, regB);
|
||||
}
|
||||
|
||||
// reduction in local memory, assumes #wave=4
|
||||
__local float reduceLM[SIMDGROUP_WIDTH * 3];
|
||||
if (groupId == 1) reduceLM[SIMDGROUP_WIDTH * 0 + slid] = totalSum;
|
||||
if (groupId == 2) reduceLM[SIMDGROUP_WIDTH * 1 + slid] = totalSum;
|
||||
if (groupId == 3) reduceLM[SIMDGROUP_WIDTH * 2 + slid] = totalSum;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 0 + slid];
|
||||
if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 1 + slid];
|
||||
if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 2 + slid];
|
||||
|
||||
// 1 outputs per fiber in wave 0
|
||||
if (groupId == 0) {
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
dst[gid] = totalSum;
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,129 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
|
||||
#ifdef cl_qcom_reqd_sub_group_size
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#ifdef ADRENO_GPU
|
||||
REQD_SUBGROUP_SIZE_128
|
||||
#endif
|
||||
|
||||
kernel void kernel_mul_mm_q8_0_f32_8x4(
|
||||
global const uint * src0_q,
|
||||
global const half * src0_d,
|
||||
__read_only image1d_buffer_t src1,
|
||||
global float * dst,
|
||||
int k,
|
||||
int m,
|
||||
int n,
|
||||
int n_no_padding,
|
||||
ulong offsetd
|
||||
) {
|
||||
|
||||
int m_4 = m >> 2;
|
||||
int n_4 = n >> 2;
|
||||
|
||||
int gy = get_global_id(0);
|
||||
int gx = get_global_id(1);
|
||||
int gx_2 = gx << 2;
|
||||
dst = (global float *)((global char*)dst + offsetd);
|
||||
|
||||
|
||||
half8 c0 = 0, c1 = 0, c2 = 0, c3 = 0;
|
||||
half8 B;
|
||||
half4 deq;
|
||||
|
||||
__global const uint* wptr = src0_q + gx_2;
|
||||
__global const half* sptr = src0_d + gx_2;
|
||||
|
||||
for (int i = 0; i < k; i += 4) {
|
||||
uint4 pack4 = vload4(0, wptr + (i / 4) * m);
|
||||
half4 scale = vload4(0, sptr + (i / 32) * m);
|
||||
|
||||
char4 p0 = as_char4(pack4.s0);
|
||||
char4 p1 = as_char4(pack4.s1);
|
||||
char4 p2 = as_char4(pack4.s2);
|
||||
char4 p3 = as_char4(pack4.s3);
|
||||
|
||||
// ------------------- j = 0 (k = i+0) -------------------
|
||||
B.s0123 = read_imageh(src1, gy * 2 + (i + 0) * n_4);
|
||||
B.s4567 = read_imageh(src1, gy * 2 + (i + 0) * n_4 + 1);
|
||||
|
||||
half4 wj0 = convert_half4((char4)(p0.s0, p1.s0, p2.s0, p3.s0)) * scale;
|
||||
|
||||
c0 += B * wj0.s0;
|
||||
c1 += B * wj0.s1;
|
||||
c2 += B * wj0.s2;
|
||||
c3 += B * wj0.s3;
|
||||
|
||||
// ------------------- j = 1 (k = i+1) -------------------
|
||||
B.s0123 = read_imageh(src1, gy * 2 + (i + 1) * n_4);
|
||||
B.s4567 = read_imageh(src1, gy * 2 + (i + 1) * n_4 + 1);
|
||||
|
||||
half4 wj1 = convert_half4((char4)(p0.s1, p1.s1, p2.s1, p3.s1)) * scale;
|
||||
|
||||
c0 += B * wj1.s0;
|
||||
c1 += B * wj1.s1;
|
||||
c2 += B * wj1.s2;
|
||||
c3 += B * wj1.s3;
|
||||
|
||||
// ------------------- j = 2 (k = i+2) -------------------
|
||||
B.s0123 = read_imageh(src1, gy * 2 + (i + 2) * n_4);
|
||||
B.s4567 = read_imageh(src1, gy * 2 + (i + 2) * n_4 + 1);
|
||||
|
||||
half4 wj2 = convert_half4((char4)(p0.s2, p1.s2, p2.s2, p3.s2)) * scale;
|
||||
|
||||
c0 += B * wj2.s0;
|
||||
c1 += B * wj2.s1;
|
||||
c2 += B * wj2.s2;
|
||||
c3 += B * wj2.s3;
|
||||
|
||||
// ------------------- j = 3 (k = i+3) -------------------
|
||||
B.s0123 = read_imageh(src1, gy * 2 + (i + 3) * n_4);
|
||||
B.s4567 = read_imageh(src1, gy * 2 + (i + 3) * n_4 + 1);
|
||||
|
||||
half4 wj3 = convert_half4((char4)(p0.s3, p1.s3, p2.s3, p3.s3)) * scale;
|
||||
|
||||
c0 += B * wj3.s0;
|
||||
c1 += B * wj3.s1;
|
||||
c2 += B * wj3.s2;
|
||||
c3 += B * wj3.s3;
|
||||
}
|
||||
|
||||
int idx = (gy << 3) * m + (gx << 2);
|
||||
|
||||
if(idx+3 < m*n_no_padding){
|
||||
vstore4((float4)(c0.s0, c1.s0, c2.s0, c3.s0), 0, dst + idx);
|
||||
idx += m;
|
||||
}
|
||||
if(idx+3 < m*n_no_padding){
|
||||
vstore4((float4)(c0.s1, c1.s1, c2.s1, c3.s1), 0, dst + idx);
|
||||
idx += m;
|
||||
}
|
||||
if(idx+3 < m*n_no_padding){
|
||||
vstore4((float4)(c0.s2, c1.s2, c2.s2, c3.s2), 0, dst + idx);
|
||||
idx += m;
|
||||
}
|
||||
if(idx+3 < m*n_no_padding){
|
||||
vstore4((float4)(c0.s3, c1.s3, c2.s3, c3.s3), 0, dst + idx);
|
||||
idx += m;
|
||||
}
|
||||
if(idx+3 < m*n_no_padding){
|
||||
vstore4((float4)(c0.s4, c1.s4, c2.s4, c3.s4), 0, dst + idx);
|
||||
idx += m;
|
||||
}
|
||||
if(idx+3 < m*n_no_padding){
|
||||
vstore4((float4)(c0.s5, c1.s5, c2.s5, c3.s5), 0, dst + idx);
|
||||
idx += m;
|
||||
}
|
||||
if(idx+3 < m*n_no_padding){
|
||||
vstore4((float4)(c0.s6, c1.s6, c2.s6, c3.s6), 0, dst + idx);
|
||||
idx += m;
|
||||
}
|
||||
if(idx+3 < m*n_no_padding){
|
||||
vstore4((float4)(c0.s7, c1.s7, c2.s7, c3.s7), 0, dst + idx);
|
||||
}
|
||||
}
|
||||
|
|
@ -123,6 +123,15 @@ static __dpct_inline__ T op_log(T x) {
|
|||
return sycl::log(x);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static __dpct_inline__ T op_softplus(T x) {
|
||||
const float xf = (float) x;
|
||||
const float ax = sycl::fabs(xf);
|
||||
const float m = sycl::fmax(xf, 0.0f);
|
||||
const float y = m + sycl::log1p(sycl::exp(-ax));
|
||||
return (T) y;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static __dpct_inline__ T op_neg(T x) {
|
||||
return -x;
|
||||
|
|
@ -695,6 +704,12 @@ static inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, ggml_tensor
|
|||
});
|
||||
}
|
||||
|
||||
static inline void ggml_sycl_op_softplus(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
|
||||
return op_softplus(x);
|
||||
});
|
||||
}
|
||||
|
||||
static inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
|
||||
return op_neg(x);
|
||||
|
|
@ -1101,6 +1116,11 @@ void ggml_sycl_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
|||
ggml_sycl_op_log(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_sycl_softplus(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
||||
ggml_sycl_op_softplus(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_sycl_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
|
||||
ggml_sycl_op_neg(ctx, dst);
|
||||
|
|
|
|||
|
|
@ -61,6 +61,8 @@ void ggml_sycl_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
|||
|
||||
void ggml_sycl_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_sycl_softplus(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_sycl_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_sycl_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
|
||||
|
|
|
|||
|
|
@ -2263,6 +2263,65 @@ inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, ggml_ten
|
|||
diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
|
||||
}
|
||||
|
||||
static void tri_f32_sycl(
|
||||
const float * src,
|
||||
float * dst,
|
||||
const int64_t ne0,
|
||||
const int64_t ne1,
|
||||
const int64_t ne2,
|
||||
const int64_t ne3,
|
||||
const ggml_tri_type ttype,
|
||||
dpct::queue_ptr main_stream
|
||||
) {
|
||||
const size_t total = (size_t) ne0 * (size_t) ne1 * (size_t) ne2 * (size_t) ne3;
|
||||
|
||||
main_stream->parallel_for(sycl::range<1>(total), [=](sycl::id<1> tid) {
|
||||
const int64_t idx = (int64_t) tid[0];
|
||||
|
||||
const int64_t i0 = idx % ne0;
|
||||
const int64_t t1 = idx / ne0;
|
||||
const int64_t i1 = t1 % ne1;
|
||||
|
||||
bool keep = false;
|
||||
switch (ttype) {
|
||||
case GGML_TRI_TYPE_LOWER: keep = (i0 < i1); break;
|
||||
case GGML_TRI_TYPE_LOWER_DIAG: keep = (i0 <= i1); break;
|
||||
case GGML_TRI_TYPE_UPPER: keep = (i0 > i1); break;
|
||||
case GGML_TRI_TYPE_UPPER_DIAG: keep = (i0 >= i1); break;
|
||||
default: keep = false; break;
|
||||
}
|
||||
|
||||
dst[idx] = keep ? src[idx] : 0.0f;
|
||||
});
|
||||
}
|
||||
|
||||
static void ggml_sycl_op_tri(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
GGML_ASSERT(src0);
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||||
|
||||
dpct::queue_ptr main_stream = ctx.stream();
|
||||
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
||||
|
||||
const float * src0_dd = static_cast<const float *>(src0->data);
|
||||
float * dst_dd = static_cast<float *>(dst->data);
|
||||
|
||||
const ggml_tri_type ttype = (ggml_tri_type) ggml_get_op_params_i32(dst, 0);
|
||||
|
||||
const int64_t ne0 = src0->ne[0];
|
||||
const int64_t ne1 = src0->ne[1];
|
||||
const int64_t ne2 = src0->ne[2];
|
||||
const int64_t ne3 = src0->ne[3];
|
||||
|
||||
tri_f32_sycl(src0_dd, dst_dd, ne0, ne1, ne2, ne3, ttype, main_stream);
|
||||
}
|
||||
|
||||
|
||||
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
|
@ -3786,6 +3845,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
|
|||
case GGML_UNARY_OP_EXP:
|
||||
ggml_sycl_exp(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_SOFTPLUS:
|
||||
ggml_sycl_softplus(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_SGN:
|
||||
ggml_sycl_sgn(ctx, dst);
|
||||
break;
|
||||
|
|
@ -3912,6 +3974,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
|
|||
case GGML_OP_TRANSPOSE:
|
||||
GGML_SYCL_DEBUG("%s: Tensor NO-OP\n", __func__);
|
||||
break;
|
||||
case GGML_OP_TRI:
|
||||
ggml_sycl_op_tri(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
ggml_sycl_diag_mask_inf(ctx, dst);
|
||||
break;
|
||||
|
|
@ -4404,6 +4469,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_GELU_ERF:
|
||||
case GGML_UNARY_OP_EXP:
|
||||
case GGML_UNARY_OP_SOFTPLUS:
|
||||
case GGML_UNARY_OP_ELU:
|
||||
return true;
|
||||
case GGML_UNARY_OP_FLOOR:
|
||||
|
|
@ -4616,6 +4682,13 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
return true;
|
||||
case GGML_OP_CONT:
|
||||
return op->src[0]->type != GGML_TYPE_BF16;
|
||||
case GGML_OP_TRI:
|
||||
{
|
||||
const ggml_tensor * src0 = op->src[0];
|
||||
return src0 &&
|
||||
op->type == GGML_TYPE_F32 &&
|
||||
ggml_is_contiguous(src0);
|
||||
}
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
return true;
|
||||
case GGML_OP_SOFT_MAX:
|
||||
|
|
|
|||
|
|
@ -11956,7 +11956,8 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
|
|||
}
|
||||
}
|
||||
if (mmq) {
|
||||
ggml_pipeline_request_descriptor_sets(ctx, ctx->device->pipeline_quantize_q8_1, num_it);
|
||||
vk_pipeline pipeline_quantize_q8_1 = ggml_vk_get_quantize_pipeline(ctx, GGML_TYPE_Q8_1);
|
||||
ggml_pipeline_request_descriptor_sets(ctx, pipeline_quantize_q8_1, num_it);
|
||||
}
|
||||
|
||||
ggml_pipeline_allocate_descriptor_sets(ctx);
|
||||
|
|
|
|||
|
|
@ -114,7 +114,7 @@ struct Params {
|
|||
#define PARAMS_BINDING 4
|
||||
#endif
|
||||
|
||||
@group(0) @binding(DST_BINDING) var<storage, read_write> dst: array<f32>;
|
||||
@group(0) @binding(DST_BINDING) var<storage, read_write> dst: array<vec4<f32>>;
|
||||
@group(0) @binding(PARAMS_BINDING) var<uniform> params: Params;
|
||||
|
||||
// Just a very small float value.
|
||||
|
|
@ -160,14 +160,21 @@ fn calc_softmax_term(kv_idx: u32, q_tile_row: u32, slope: f32) -> f32 {
|
|||
return v;
|
||||
}
|
||||
|
||||
fn load_f32x4(buf: ptr<storage, array<vec4<f32>>, read_write>, scalar_index: u32) -> vec4<f32> {
|
||||
return (*buf)[scalar_index >> 2u];
|
||||
}
|
||||
|
||||
fn load_kvx4(buf: ptr<storage, array<vec4<KV_TYPE>>, read_write>, scalar_index: u32) -> vec4<KV_TYPE> {
|
||||
return (*buf)[scalar_index >> 2u];
|
||||
}
|
||||
|
||||
@compute @workgroup_size(WG_SIZE)
|
||||
fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
|
||||
@builtin(local_invocation_id) local_id: vec3<u32>,
|
||||
@builtin(subgroup_id) subgroup_id: u32,
|
||||
@builtin(subgroup_size) subgroup_size: u32,
|
||||
@builtin(num_subgroups) num_subgroups: u32,
|
||||
@builtin(subgroup_invocation_id) sg_inv_id: u32) {
|
||||
@builtin(local_invocation_id) local_id: vec3<u32>,
|
||||
@builtin(subgroup_id) subgroup_id: u32,
|
||||
@builtin(subgroup_size) subgroup_size: u32,
|
||||
@builtin(num_subgroups) num_subgroups: u32,
|
||||
@builtin(subgroup_invocation_id) sg_inv_id: u32) {
|
||||
|
||||
// initialize row max for online softmax
|
||||
for (var i = local_id.x; i < Q_TILE; i += WG_SIZE) {
|
||||
|
|
@ -231,9 +238,9 @@ fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
|
|||
|
||||
for (var kv_tile = 0u; kv_tile < params.seq_len_kv; kv_tile += KV_TILE) {
|
||||
// clear inter_shmem to ensure zero-initialized accumulators
|
||||
for (var elem_idx = local_id.x; elem_idx < Q_TILE * KV_TILE; elem_idx += WG_SIZE) {
|
||||
inter_shmem[elem_idx] = 0.0;
|
||||
}
|
||||
for (var elem_idx = local_id.x; elem_idx < Q_TILE * KV_TILE; elem_idx += WG_SIZE) {
|
||||
inter_shmem[elem_idx] = 0.0;
|
||||
}
|
||||
|
||||
// load k tile into shared memory
|
||||
#if defined(KV_Q4_0)
|
||||
|
|
@ -309,48 +316,77 @@ fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
|
|||
|
||||
// accumulate q block * k block into registers across the entire KV tile
|
||||
// TODO: this loop seems to be the current largest bottleneck
|
||||
for (var kv_block = subgroup_id; kv_block < KV_BLOCKS; kv_block += num_subgroups) {
|
||||
let inter_offset = kv_block * SG_MAT_N;
|
||||
var acc: subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N> = subgroupMatrixLoad<
|
||||
subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N>>(&inter_shmem, inter_offset, false, KV_TILE);
|
||||
// this bracket exists to scope the lifetime of variables, reducing register pressure
|
||||
{
|
||||
#ifdef KV_DIRECT
|
||||
let k_block_row = kv_tile + kv_block * SG_MAT_N;
|
||||
let k_global_offset = k_head_offset + k_block_row * params.stride_k1;
|
||||
let k_block_row = kv_tile + subgroup_id * SG_MAT_N;
|
||||
var k_global_offset = k_head_offset + k_block_row * params.stride_k1;
|
||||
#else
|
||||
let k_block_offset = kv_block * SG_MAT_N * HEAD_DIM_QK;
|
||||
var k_block_offset = subgroup_id * SG_MAT_N * HEAD_DIM_QK;
|
||||
#endif
|
||||
for (var head_dim_block = 0u; head_dim_block < HEAD_DIM_QK; head_dim_block += SG_MAT_K) {
|
||||
// load q submatrix from shared memory
|
||||
var q_sg_mat: subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K> = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(
|
||||
&q_shmem,
|
||||
head_dim_block,
|
||||
false,
|
||||
HEAD_DIM_QK
|
||||
);
|
||||
for (var kv_block = subgroup_id; kv_block < KV_BLOCKS; kv_block += num_subgroups) {
|
||||
let inter_offset = kv_block * SG_MAT_N;
|
||||
var acc: subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_result<f16, SG_MAT_M, SG_MAT_N>>(&inter_shmem, inter_offset, false, KV_TILE);
|
||||
|
||||
var q_cur = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(&q_shmem, 0u, false, HEAD_DIM_QK);
|
||||
|
||||
// load k submatrix from device or shared memory
|
||||
#ifdef KV_DIRECT
|
||||
var k_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
|
||||
&K,
|
||||
k_global_offset + head_dim_block,
|
||||
true,
|
||||
params.stride_k1
|
||||
);
|
||||
var k_cur = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&K, k_global_offset + 0u, true, params.stride_k1);
|
||||
#else
|
||||
var k_sg_mat: subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N> = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(
|
||||
&kv_shmem,
|
||||
k_block_offset + head_dim_block,
|
||||
true,
|
||||
HEAD_DIM_QK
|
||||
);
|
||||
var k_cur = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&kv_shmem, k_block_offset + 0u, true, HEAD_DIM_QK);
|
||||
#endif
|
||||
acc = subgroupMatrixMultiplyAccumulate(q_sg_mat, k_sg_mat, acc);
|
||||
|
||||
var t: u32 = 1u;
|
||||
for (; t + 1u < HEAD_DIM_QK / SG_MAT_K; t += 2u) {
|
||||
let h0 = t * SG_MAT_K;
|
||||
var q0 = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(&q_shmem, h0, false, HEAD_DIM_QK);
|
||||
#ifdef KV_DIRECT
|
||||
var k0 = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&K, k_global_offset + h0, true, params.stride_k1);
|
||||
#else
|
||||
var k0 = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&kv_shmem, k_block_offset + h0, true, HEAD_DIM_QK);
|
||||
#endif
|
||||
acc = subgroupMatrixMultiplyAccumulate(q_cur, k_cur, acc);
|
||||
q_cur = q0;
|
||||
k_cur = k0;
|
||||
|
||||
let h1 = (t + 1u) * SG_MAT_K;
|
||||
var q1g = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(&q_shmem, h1, false, HEAD_DIM_QK);
|
||||
#ifdef KV_DIRECT
|
||||
var k1g = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&K, k_global_offset + h1, true, params.stride_k1);
|
||||
#else
|
||||
var k1g = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&kv_shmem, k_block_offset + h1, true, HEAD_DIM_QK);
|
||||
#endif
|
||||
acc = subgroupMatrixMultiplyAccumulate(q_cur, k_cur, acc);
|
||||
q_cur = q1g;
|
||||
k_cur = k1g;
|
||||
}
|
||||
|
||||
// handle odd tail
|
||||
if (t < HEAD_DIM_QK / SG_MAT_K) {
|
||||
let h = t * SG_MAT_K;
|
||||
var qn = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(&q_shmem, h, false, HEAD_DIM_QK);
|
||||
#ifdef KV_DIRECT
|
||||
var kn = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&K, k_global_offset + h, true, params.stride_k1);
|
||||
#else
|
||||
var kn = subgroupMatrixLoad<subgroup_matrix_right<f16, SG_MAT_K, SG_MAT_N>>(&kv_shmem, k_block_offset + h, true, HEAD_DIM_QK);
|
||||
#endif
|
||||
acc = subgroupMatrixMultiplyAccumulate(q_cur, k_cur, acc);
|
||||
q_cur = qn;
|
||||
k_cur = kn;
|
||||
}
|
||||
|
||||
acc = subgroupMatrixMultiplyAccumulate(q_cur, k_cur, acc);
|
||||
|
||||
#ifdef KV_DIRECT
|
||||
k_global_offset += num_subgroups * SG_MAT_N * params.stride_k1;
|
||||
#else
|
||||
k_block_offset += num_subgroups * SG_MAT_N * HEAD_DIM_QK;
|
||||
#endif
|
||||
subgroupMatrixStore(&inter_shmem, inter_offset, acc, false, KV_TILE);
|
||||
}
|
||||
|
||||
// store acc to shared memory for softmax (S matrix from paper)
|
||||
subgroupMatrixStore(&inter_shmem, inter_offset, acc, false, KV_TILE);
|
||||
}
|
||||
|
||||
|
||||
#ifdef MASK
|
||||
// load mask tile into shared memory for this KV block
|
||||
// TODO: optimize and skip if mask is -INF for the entire tile
|
||||
|
|
@ -495,7 +531,6 @@ fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
|
|||
false,
|
||||
HEAD_DIM_V
|
||||
);
|
||||
|
||||
for (var kv_block = 0u; kv_block < KV_BLOCKS; kv_block++) {
|
||||
let p_offset = kv_block * SG_MAT_N;
|
||||
var p_sg_mat: subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K> = subgroupMatrixLoad<subgroup_matrix_left<f16, SG_MAT_M, SG_MAT_K>>(
|
||||
|
|
@ -527,11 +562,9 @@ fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
|
|||
// O += P * V
|
||||
o_sg_mat = subgroupMatrixMultiplyAccumulate(p_sg_mat, v_sg_mat, o_sg_mat);
|
||||
}
|
||||
|
||||
// store O back to shared memory
|
||||
subgroupMatrixStore(&o_shmem, head_dim_block, o_sg_mat, false, HEAD_DIM_V);
|
||||
}
|
||||
|
||||
workgroupBarrier();
|
||||
}
|
||||
|
||||
|
|
@ -566,26 +599,38 @@ fn main(@builtin(workgroup_id) wg_id: vec3<u32>,
|
|||
o_shmem[idx] = f16(val);
|
||||
}
|
||||
}
|
||||
|
||||
workgroupBarrier();
|
||||
#endif
|
||||
|
||||
// write output back to global memory
|
||||
for (var q_tile_row = subgroup_id;
|
||||
q_tile_row < Q_TILE;
|
||||
q_tile_row += num_subgroups) {
|
||||
let global_q_row = q_row_start + q_tile_row;
|
||||
if (global_q_row >= params.seq_len_q) {
|
||||
break;
|
||||
}
|
||||
q_tile_row < Q_TILE;
|
||||
q_tile_row += num_subgroups) {
|
||||
|
||||
let exp_sum = exp_sum_shmem[q_tile_row];
|
||||
let scale = select(0.0, 1.0 / exp_sum, exp_sum != 0);
|
||||
let global_q_row = q_row_start + q_tile_row;
|
||||
if (global_q_row >= params.seq_len_q) { break; }
|
||||
|
||||
for (var elem_idx = sg_inv_id; elem_idx < HEAD_DIM_V; elem_idx += subgroup_size) {
|
||||
let o_val = o_shmem[q_tile_row * HEAD_DIM_V + elem_idx];
|
||||
let scaled = f32(o_val) * scale;
|
||||
dst[dst_global_offset + q_tile_row * dst2_stride + elem_idx] = scaled;
|
||||
}
|
||||
let exp_sum = exp_sum_shmem[q_tile_row];
|
||||
let scale = select(0.0, 1.0 / exp_sum, exp_sum != 0.0);
|
||||
|
||||
let row_base: u32 = dst_global_offset + q_tile_row * dst2_stride;
|
||||
|
||||
for (var elem_base = sg_inv_id * 4u;
|
||||
elem_base < HEAD_DIM_V;
|
||||
elem_base += subgroup_size * 4u) {
|
||||
|
||||
let i0 = q_tile_row * HEAD_DIM_V + (elem_base + 0u);
|
||||
let i1 = q_tile_row * HEAD_DIM_V + (elem_base + 1u);
|
||||
let i2 = q_tile_row * HEAD_DIM_V + (elem_base + 2u);
|
||||
let i3 = q_tile_row * HEAD_DIM_V + (elem_base + 3u);
|
||||
|
||||
let v = vec4<f32>(
|
||||
f32(o_shmem[i0]) * scale,
|
||||
f32(o_shmem[i1]) * scale,
|
||||
f32(o_shmem[i2]) * scale,
|
||||
f32(o_shmem[i3]) * scale
|
||||
);
|
||||
|
||||
let dst_vec_index: u32 = (row_base + elem_base) >> 2u;
|
||||
dst[dst_vec_index] = v;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,40 @@
|
|||
|
||||
#!/usr/bin/env pwsh
|
||||
|
||||
# Basedir on device
|
||||
$basedir=".\pkg-snapdragon"
|
||||
|
||||
$cli_opts=$args
|
||||
|
||||
$model="Llama-3.2-3B-Instruct-Q4_0.gguf"
|
||||
if ($null -ne $env:M) {
|
||||
$model=$env:M
|
||||
}
|
||||
|
||||
$device="HTP0"
|
||||
if ($null -ne $env:D) {
|
||||
$device=$env:D
|
||||
}
|
||||
|
||||
if ($null -ne $env:V) {
|
||||
$env:GGML_HEXAGON_VERBOSE=$env:V
|
||||
}
|
||||
|
||||
if ($null -ne $env:OPMASK) {
|
||||
$env:GGML_HEXAGON_OPMASK=$env:OPMASK
|
||||
}
|
||||
|
||||
if ($null -ne $env:NHVX) {
|
||||
$env:GGML_HEXAGON_NHVX=$env:NHVX
|
||||
}
|
||||
|
||||
if ($null -ne $env:NDEV) {
|
||||
$env:GGML_HEXAGON_NDEV=$env:NDEV
|
||||
}
|
||||
|
||||
$env:ADSP_LIBRARY_PATH="$basedir\lib"
|
||||
|
||||
& "$basedir\bin\llama-bench.exe" `
|
||||
--mmap 0 -m $basedir\..\..\gguf\$model `
|
||||
--poll 1000 -t 6 --cpu-mask 0xfc --cpu-strict 1 `
|
||||
--batch-size 128 -ngl 99 --device $device $cli_opts
|
||||
|
|
@ -0,0 +1,53 @@
|
|||
|
||||
#!/usr/bin/env pwsh
|
||||
|
||||
# Basedir on device
|
||||
$basedir=".\pkg-snapdragon"
|
||||
|
||||
$cli_opts=$args
|
||||
|
||||
$model="Llama-3.2-3B-Instruct-Q4_0.gguf"
|
||||
if ($null -ne $env:M) {
|
||||
$model=$env:M
|
||||
}
|
||||
|
||||
$device="HTP0"
|
||||
if ($null -ne $env:D) {
|
||||
$device=$env:D
|
||||
}
|
||||
|
||||
if ($null -ne $env:V) {
|
||||
$env:GGML_HEXAGON_VERBOSE=$env:V
|
||||
}
|
||||
|
||||
if ($null -ne $env:E) {
|
||||
$env:GGML_HEXAGON_EXPERIMENTAL=$env:E
|
||||
}
|
||||
|
||||
if ($null -ne $env:SCHED) {
|
||||
$env:GGML_SCHED_DEBUG=$env:SCHED; $cli_opts="$cli_opts -v"
|
||||
}
|
||||
|
||||
if ($null -ne $env:PROF) {
|
||||
$env:GGML_HEXAGON_PROFILE=$env:PROF; $env:GGML_HEXAGON_OPSYNC=1
|
||||
}
|
||||
|
||||
if ($null -ne $env:OPMASK) {
|
||||
$env:GGML_HEXAGON_OPMASK=$env:OPMASK
|
||||
}
|
||||
|
||||
if ($null -ne $env:NHVX) {
|
||||
$env:GGML_HEXAGON_NHVX=$env:NHVX
|
||||
}
|
||||
|
||||
if ($null -ne $env:NDEV) {
|
||||
$env:GGML_HEXAGON_NDEV=$env:NDEV
|
||||
}
|
||||
|
||||
$env:ADSP_LIBRARY_PATH="$basedir\lib"
|
||||
|
||||
& "$basedir\bin\llama-completion.exe" `
|
||||
--no-mmap -no-cnv -m $basedir\..\..\gguf\$model `
|
||||
--poll 1000 -t 6 --cpu-mask 0xfc --cpu-strict 1 `
|
||||
--ctx-size 8192 --batch-size 128 -ctk q8_0 -ctv q8_0 -fa on `
|
||||
-ngl 99 --device $device $cli_opts
|
||||
|
|
@ -0,0 +1,56 @@
|
|||
|
||||
#!/usr/bin/env pwsh
|
||||
|
||||
# Basedir on device
|
||||
$basedir=".\pkg-snapdragon"
|
||||
|
||||
if ($args.Count -eq 0) {
|
||||
Write-Host "No arguments provided.Expected the tool and argument to run."
|
||||
exit -1
|
||||
}
|
||||
|
||||
$tool=$args[0]
|
||||
$cli_opts=@()
|
||||
|
||||
if ($args.Count -gt 1) {
|
||||
$cli_opts=$args[1..($args.Count - 1)]
|
||||
$remainingArgs = $args[1..($args.Count - 1)]
|
||||
}
|
||||
|
||||
$device="HTP0"
|
||||
if ($null -ne $env:D) {
|
||||
$device=$env:D
|
||||
}
|
||||
|
||||
if ($null -ne $env:V) {
|
||||
$env:GGML_HEXAGON_VERBOSE=$env:V
|
||||
}
|
||||
|
||||
if ($null -ne $env:E) {
|
||||
$env:GGML_HEXAGON_EXPERIMENTAL=$env:E
|
||||
}
|
||||
|
||||
if ($null -ne $env:SCHED) {
|
||||
$env:GGML_SCHED_DEBUG=$env:SCHED; $cli_opts="$cli_opts -v"
|
||||
}
|
||||
|
||||
if ($null -ne $env:PROF) {
|
||||
$env:GGML_HEXAGON_PROFILE=$env:PROF; $env:GGML_HEXAGON_OPSYNC=1
|
||||
}
|
||||
|
||||
if ($null -ne $env:OPMASK) {
|
||||
$env:GGML_HEXAGON_OPMASK=$env:OPMASK
|
||||
}
|
||||
|
||||
if ($null -ne $env:NHVX) {
|
||||
$env:GGML_HEXAGON_NHVX=$env:NHVX
|
||||
}
|
||||
|
||||
if ($null -ne $env:NDEV) {
|
||||
$env:GGML_HEXAGON_NDEV=$env:NDEV
|
||||
}
|
||||
|
||||
$env:ADSP_LIBRARY_PATH="$basedir\lib"
|
||||
|
||||
& "$basedir\bin\$tool" `
|
||||
$cli_opts
|
||||
|
|
@ -0,0 +1,105 @@
|
|||
# Requires Run as Administrator is NOT strictly necessary for User-scope env vars,
|
||||
# but recommended for creating directories in C:\ root if permissions are restricted.
|
||||
|
||||
$ErrorActionPreference = "Stop"
|
||||
|
||||
# --- Configuration ---
|
||||
$BaseDir = "C:\Qualcomm"
|
||||
|
||||
# SDK 1: Hexagon
|
||||
$HexagonUrl = "https://github.com/snapdragon-toolchain/hexagon-sdk/releases/download/v6.4.0.2/hexagon-sdk-v6.4.0.2-arm64-wos.tar.xz"
|
||||
$HexagonParent = Join-Path $BaseDir "Hexagon_SDK"
|
||||
$HexagonSdkVersion = "6.4.0.2"
|
||||
$HexagonToolsVersion = "19.0.04"
|
||||
$HexagonSdkTarget = Join-Path $HexagonParent $HexagonSdkVersion
|
||||
$HexagonToolsTarget = Join-Path $HexagonSdkTarget "\tools\HEXAGON_Tools\$HexagonToolsVersion"
|
||||
|
||||
# SDK 2: OpenCL
|
||||
$OpenCLUrl = "https://github.com/snapdragon-toolchain/opencl-sdk/releases/download/v2.3.2/adreno-opencl-sdk-v2.3.2-arm64-wos.tar.xz"
|
||||
$OpenCLParent = Join-Path $BaseDir "OpenCL_SDK"
|
||||
$OpenCLVersion = "2.3.2"
|
||||
$OpenCLTarget = Join-Path $OpenCLParent $OpenCLVersion
|
||||
|
||||
# --- Helper Function ---
|
||||
function Install-QualcommSDK {
|
||||
param (
|
||||
[string]$Url,
|
||||
[string]$ParentDir,
|
||||
[string]$TargetDir,
|
||||
[string]$Name
|
||||
)
|
||||
|
||||
# 1. Create Parent Directory
|
||||
if (-not (Test-Path -Path $ParentDir)) {
|
||||
Write-Host "Creating directory: $ParentDir" -ForegroundColor Cyan
|
||||
New-Item -Path $ParentDir -ItemType Directory -Force | Out-Null
|
||||
}
|
||||
|
||||
# 2. Check for Specific Version Directory
|
||||
if (Test-Path -Path $TargetDir) {
|
||||
Write-Host "$Name ($TargetDir) already exists. Skipping download." -ForegroundColor Green
|
||||
}
|
||||
else {
|
||||
Write-Host "$Name not found. preparing to download..." -ForegroundColor Yellow
|
||||
|
||||
# Create the target directory to extract into
|
||||
New-Item -Path $TargetDir -ItemType Directory -Force | Out-Null
|
||||
|
||||
# Define temporary archive path
|
||||
$TempFile = Join-Path $ParentDir "temp_sdk.tar.xz"
|
||||
|
||||
try {
|
||||
# Download
|
||||
Write-Host "Downloading from: $Url"
|
||||
Invoke-WebRequest -Uri $Url -OutFile $TempFile
|
||||
|
||||
# Untar
|
||||
# Note: We assume Windows includes tar.exe (Win 10 build 17063+)
|
||||
Write-Host "Extracting archive to $TargetDir..."
|
||||
|
||||
# We use -C to extract contents INTO the target directory created above
|
||||
tar -xJvf $TempFile -C $TargetDir\..
|
||||
|
||||
Write-Host "Extraction complete." -ForegroundColor Green
|
||||
}
|
||||
catch {
|
||||
Write-Error "Failed to download or extract $Name. Error: $_"
|
||||
# Cleanup target dir if failed so script tries again next time
|
||||
Remove-Item -Path $TargetDir -Recurse -Force -ErrorAction SilentlyContinue
|
||||
}
|
||||
finally {
|
||||
# Cleanup Archive
|
||||
if (Test-Path $TempFile) { Remove-Item $TempFile -Force }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# --- Execution ---
|
||||
|
||||
# 1. Ensure Base C:\Qualcomm exists
|
||||
if (-not (Test-Path $BaseDir)) {
|
||||
New-Item -Path $BaseDir -ItemType Directory -Force | Out-Null
|
||||
}
|
||||
|
||||
# 2. Run Install Logic
|
||||
Install-QualcommSDK -Url $HexagonUrl -ParentDir $HexagonParent -TargetDir $HexagonSdkTarget -Name "Hexagon SDK"
|
||||
Install-QualcommSDK -Url $OpenCLUrl -ParentDir $OpenCLParent -TargetDir $OpenCLTarget -Name "OpenCL SDK"
|
||||
|
||||
# --- Environment Variables ---
|
||||
|
||||
Write-Host "`nSetting Environment Variables..." -ForegroundColor Cyan
|
||||
|
||||
# Set OPENCL_SDK_ROOT
|
||||
[System.Environment]::SetEnvironmentVariable('OPENCL_SDK_ROOT', $OpenCLTarget, [System.EnvironmentVariableTarget]::User)
|
||||
$env:OPENCL_SDK_ROOT = $OpenCLTarget # Set for current session as well
|
||||
Write-Host "OPENCL_SDK_ROOT set to: $OpenCLTarget"
|
||||
|
||||
# Set HEXAGON_SDK_ROOT
|
||||
[System.Environment]::SetEnvironmentVariable('HEXAGON_SDK_ROOT', $HexagonSdkTarget, [System.EnvironmentVariableTarget]::User)
|
||||
$env:HEXAGON_SDK_ROOT = $HexagonSdkTarget # Set for current session as well
|
||||
Write-Host "HEXAGON_SDK_ROOT set to: $HexagonSdkTarget"
|
||||
|
||||
# Set HEXAGON_SDK_ROOT
|
||||
[System.Environment]::SetEnvironmentVariable('HEXAGON_TOOLS_ROOT', $HexagonToolsTarget, [System.EnvironmentVariableTarget]::User)
|
||||
$env:HEXAGON_TOOLS_ROOT = $HexagonToolsTarget # Set for current session as well
|
||||
Write-Host "HEXAGON_TOOLS_ROOT set to: $HexagonToolsTarget"
|
||||
|
|
@ -1 +1 @@
|
|||
ebc3a0f4a56be1c9424a89fbec09962ac34fde85
|
||||
a8db410a252c8c8f2d120c6f2e7133ebe032f35d
|
||||
|
|
|
|||
|
|
@ -1772,8 +1772,6 @@ void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t
|
|||
io.write(&v_trans, sizeof(v_trans));
|
||||
io.write(&n_layer, sizeof(n_layer));
|
||||
|
||||
std::vector<uint8_t> tmp_buf;
|
||||
|
||||
// Iterate and write all the keys first, each row is a cell
|
||||
// Get whole range at a time
|
||||
for (const auto & layer : layers) {
|
||||
|
|
@ -1791,7 +1789,7 @@ void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t
|
|||
const uint64_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
|
||||
io.write(&k_size_row, sizeof(k_size_row));
|
||||
|
||||
// Read each range of cells of k_size length each into tmp_buf and write out
|
||||
// Read each range of cells of k_size length and write out
|
||||
for (const auto & range : cr.data) {
|
||||
const size_t range_size = range.second - range.first;
|
||||
const size_t buf_size = range_size * k_size_row;
|
||||
|
|
@ -1818,7 +1816,7 @@ void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t
|
|||
const uint64_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
|
||||
io.write(&v_size_row, sizeof(v_size_row));
|
||||
|
||||
// Read each range of cells of v_size length each into tmp_buf and write out
|
||||
// Read each range of cells of v_size length and write out
|
||||
for (const auto & range : cr.data) {
|
||||
const size_t range_size = range.second - range.first;
|
||||
const size_t buf_size = range_size * v_size_row;
|
||||
|
|
@ -1852,7 +1850,7 @@ void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t
|
|||
|
||||
// For each row, we get the element values of each cell
|
||||
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
||||
// Read each range of cells of v_size_el length each into tmp_buf and write out
|
||||
// Read each range of cells of v_size_el length and write out
|
||||
for (const auto & range : cr.data) {
|
||||
const size_t range_size = range.second - range.first;
|
||||
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
|
||||
|
|
|
|||
|
|
@ -785,23 +785,21 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::
|
|||
io.write(&s_trans, sizeof(s_trans));
|
||||
io.write(&n_layer, sizeof(n_layer));
|
||||
|
||||
std::vector<uint8_t> tmp_buf;
|
||||
|
||||
// Iterate and write all the keys first, each row is a cell
|
||||
// Iterate and write all the R tensors first, each row is a cell
|
||||
// Get whole range at a time
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
// skip null layers (read_data will handle this by checking "r_l" and "s_l" for null)
|
||||
if (r_l[il] == nullptr) continue;
|
||||
|
||||
// Write key type
|
||||
// Write R tensor type
|
||||
const int32_t r_type_i = (int32_t)r_l[il]->type;
|
||||
io.write(&r_type_i, sizeof(r_type_i));
|
||||
|
||||
// Write row size of key
|
||||
// Write row size of R tensor
|
||||
const uint64_t r_size_row = ggml_row_size(r_l[il]->type, hparams.n_embd_r());
|
||||
io.write(&r_size_row, sizeof(r_size_row));
|
||||
|
||||
// Read each range of cells of k_size length each into tmp_buf and write out
|
||||
// Write each range of cells of r_size_row length
|
||||
for (const auto & range : cell_ranges) {
|
||||
const size_t range_size = range.second - range.first;
|
||||
const size_t buf_size = range_size * r_size_row;
|
||||
|
|
@ -814,15 +812,15 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::
|
|||
// skip null layers (read_data will handle this by checking "r_l" and "s_l" for null)
|
||||
if (s_l[il] == nullptr) continue;
|
||||
|
||||
// Write value type
|
||||
// Write S tensor type
|
||||
const int32_t s_type_i = (int32_t)s_l[il]->type;
|
||||
io.write(&s_type_i, sizeof(s_type_i));
|
||||
|
||||
// Write row size of value
|
||||
// Write row size of S tensor
|
||||
const uint64_t s_size_row = ggml_row_size(s_l[il]->type, hparams.n_embd_s());
|
||||
io.write(&s_size_row, sizeof(s_size_row));
|
||||
|
||||
// Read each range of cells of s_size length each into tmp_buf and write out
|
||||
// Write each range of S tensor rows
|
||||
for (const auto & range : cell_ranges) {
|
||||
const size_t range_size = range.second - range.first;
|
||||
const size_t buf_size = range_size * s_size_row;
|
||||
|
|
@ -830,7 +828,7 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::
|
|||
}
|
||||
}
|
||||
} else {
|
||||
// When v is transposed, we also need the element size and get the element ranges from each row
|
||||
// When S tensor is transposed, we also need the element size and get the element ranges from each row
|
||||
const uint32_t mem_size = size;
|
||||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||||
// skip null layers (read_data will handle this by checking "r_l" and "s_l" for null)
|
||||
|
|
@ -838,7 +836,7 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::
|
|||
|
||||
const uint32_t n_embd_s = hparams.n_embd_s();
|
||||
|
||||
// Write value type
|
||||
// Write S tensor type
|
||||
const int32_t s_type_i = (int32_t)s_l[il]->type;
|
||||
io.write(&s_type_i, sizeof(s_type_i));
|
||||
|
||||
|
|
@ -851,7 +849,7 @@ void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::
|
|||
|
||||
// For each row, we get the element values of each cell
|
||||
for (uint32_t j = 0; j < n_embd_s; ++j) {
|
||||
// Read each range of cells of v_size_el length each into tmp_buf and write out
|
||||
// Write each range of cells of s_size_el length
|
||||
for (const auto & range : cell_ranges) {
|
||||
const size_t range_size = range.second - range.first;
|
||||
const size_t src_offset = (range.first + j * mem_size) * s_size_el;
|
||||
|
|
|
|||
|
|
@ -8233,11 +8233,13 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|||
if (!mask && max_bias > 0.0f) continue;
|
||||
for (float logit_softcap : {0.0f, 10.0f}) {
|
||||
if (hsk != 128 && logit_softcap != 0.0f) continue;
|
||||
for (int nh : { 4, }) {
|
||||
for (int nh : { 1, 4 }) {
|
||||
if (nh == 1 && hsk != 576) continue; // GLM 4.7 Flash
|
||||
for (int nr3 : { 1, 3, }) {
|
||||
if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
|
||||
for (int nr2 : { 1, 4, 12 }) {
|
||||
for (int nr2 : { 1, 4, 12, 20 }) {
|
||||
if (nr2 == 12 && hsk != 128) continue;
|
||||
if (nr2 == 20 && (nh != 1 || hsk != 576)) continue;
|
||||
//for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
|
||||
for (int kv : { 113, 512, 1024, }) {
|
||||
if (nr2 != 1 && kv != 512) continue;
|
||||
|
|
|
|||
|
|
@ -1005,6 +1005,8 @@ struct clip_model_loader {
|
|||
hparams.minicpmv_query_num = 64;
|
||||
} else if (hparams.minicpmv_version == 6) {
|
||||
hparams.minicpmv_query_num = 64;
|
||||
} else if (hparams.minicpmv_version == 100045) {
|
||||
hparams.minicpmv_query_num = 64;
|
||||
} else {
|
||||
hparams.minicpmv_query_num = 96;
|
||||
}
|
||||
|
|
@ -3209,6 +3211,9 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
|
|||
} else if (params.minicpmv_version == 6) {
|
||||
// MiniCPM-V 4.5
|
||||
n_patches = 64;
|
||||
} else if (params.minicpmv_version == 100045) {
|
||||
// MiniCPM-o 4.5
|
||||
n_patches = 64;
|
||||
} else {
|
||||
GGML_ABORT("Unknown minicpmv version");
|
||||
}
|
||||
|
|
|
|||
|
|
@ -501,7 +501,7 @@ default_image_mean = [0.5, 0.5, 0.5]
|
|||
default_image_std = [0.5, 0.5, 0.5]
|
||||
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
|
||||
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
|
||||
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3; MiniCPM-o-2.6 use 4; MiniCPM-V 4.0 use 5; MiniCPM-o-4.0 use 6', default=2)
|
||||
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3; MiniCPM-o-2.6 use 4; MiniCPM-V 4.0 use 5; MiniCPM-o-4.0 use 6; MiniCPM-o-4.5 use 100045', default=2)
|
||||
|
||||
# with proper
|
||||
args = ap.parse_args()
|
||||
|
|
@ -610,6 +610,9 @@ else:
|
|||
elif minicpmv_version == 6:
|
||||
emb_dim = 4096
|
||||
block_count = 27
|
||||
elif minicpmv_version == 100045:
|
||||
emb_dim = 4096
|
||||
block_count = 27
|
||||
|
||||
default_vision_config = {
|
||||
"hidden_size": 1152,
|
||||
|
|
@ -637,6 +640,10 @@ elif minicpmv_version == 6:
|
|||
default_vision_config["model_type"] = "siglip_vision_model"
|
||||
vision_config = SiglipVisionConfig(**default_vision_config)
|
||||
model = SiglipVisionTransformer(vision_config)
|
||||
elif minicpmv_version == 100045:
|
||||
default_vision_config["model_type"] = "siglip_vision_model"
|
||||
vision_config = SiglipVisionConfig(**default_vision_config)
|
||||
model = SiglipVisionTransformer(vision_config)
|
||||
|
||||
processor = None
|
||||
# if model.attn_pool is not None:
|
||||
|
|
|
|||
|
|
@ -236,7 +236,7 @@ struct mtmd_context {
|
|||
tok_row_end_trail = false; // no trailing end-of-row token
|
||||
ov_img_first = true;
|
||||
|
||||
} else if (minicpmv_version == 3 || minicpmv_version == 4 || minicpmv_version == 5 || minicpmv_version == 6) {
|
||||
} else if (minicpmv_version == 3 || minicpmv_version == 4 || minicpmv_version == 5 || minicpmv_version == 6 || minicpmv_version == 100045) {
|
||||
// minicpmv 2.6 format:
|
||||
// <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ...
|
||||
slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_6;
|
||||
|
|
|
|||
|
|
@ -119,7 +119,7 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
|
|||
[[noreturn]]
|
||||
static void usage(const char * executable) {
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights]\n", executable);
|
||||
printf(" [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--tensor-type] [--prune-layers] [--keep-split] [--override-kv]\n");
|
||||
printf(" [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--tensor-type] [--tensor-type-file] [--prune-layers] [--keep-split] [--override-kv]\n");
|
||||
printf(" model-f32.gguf [model-quant.gguf] type [nthreads]\n\n");
|
||||
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
||||
|
|
@ -131,6 +131,8 @@ static void usage(const char * executable) {
|
|||
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
|
||||
printf(" --tensor-type TENSOR=TYPE: quantize this tensor to this ggml_type. example: --tensor-type attn_q=q8_0\n");
|
||||
printf(" Advanced option to selectively quantize tensors. May be specified multiple times.\n");
|
||||
printf(" --tensor-type-file tensor_type.txt: list of tensors to quantize to specific ggml_type. example: --tensor-type-file tensor_type_list.txt\n");
|
||||
printf(" Advanced option to selectively quantize a long list of tensors. Format to be tensor_name=ggml_type, separated by spaces/newline.\n");
|
||||
printf(" --prune-layers L0,L1,L2...comma-separated list of layer numbers to prune from the model\n");
|
||||
printf(" Advanced option to remove all tensors from the given layers\n");
|
||||
printf(" --keep-split: will generate quantized model in the same shards as input\n");
|
||||
|
|
@ -415,6 +417,23 @@ static bool parse_tensor_type(const char * data, std::vector<tensor_quantization
|
|||
return true;
|
||||
}
|
||||
|
||||
static bool parse_tensor_type_file(const char * filename, std::vector<tensor_quantization> & tensor_type) {
|
||||
std::ifstream file(filename);
|
||||
if (!file) {
|
||||
printf("\n%s: failed to open file '%s': %s\n\n", __func__, filename, std::strerror(errno));
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string arg;
|
||||
while (file >> arg) {
|
||||
if (!parse_tensor_type(arg.c_str(), tensor_type)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool parse_layer_prune(const char * data, std::vector<int> & prune_layers) {
|
||||
if (!data) {
|
||||
printf("\n%s: no layer pruning ids provided\n\n", __func__);
|
||||
|
|
@ -480,6 +499,10 @@ int main(int argc, char ** argv) {
|
|||
if (arg_idx == argc-1 || !parse_tensor_type(argv[++arg_idx], tensor_types)) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--tensor-type-file") == 0) {
|
||||
if (arg_idx == argc-1 || !parse_tensor_type_file(argv[++arg_idx], tensor_types)) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--prune-layers") == 0) {
|
||||
if (arg_idx == argc-1 || !parse_layer_prune(argv[++arg_idx], prune_layers)) {
|
||||
usage(argv[0]);
|
||||
|
|
@ -686,3 +709,4 @@ int main(int argc, char ** argv) {
|
|||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -155,7 +155,7 @@ struct server_slot {
|
|||
double t_prompt_processing; // ms
|
||||
double t_token_generation; // ms
|
||||
|
||||
std::function<void(int /* slot_id */)> callback_on_release;
|
||||
std::function<void(int /* id_slot */)> callback_on_release;
|
||||
|
||||
// Speculative decoding stats
|
||||
int32_t n_draft_total = 0; // Total draft tokens generated
|
||||
|
|
@ -705,6 +705,11 @@ private:
|
|||
params_base.n_cache_reuse = 0;
|
||||
SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
|
||||
}
|
||||
|
||||
if (params_base.speculative.type != COMMON_SPECULATIVE_TYPE_NONE) {
|
||||
params_base.speculative.type = COMMON_SPECULATIVE_TYPE_NONE;
|
||||
SRV_WRN("%s\n", "speculative decoding is not supported by multimodal, it will be disabled");
|
||||
}
|
||||
}
|
||||
|
||||
if (!llama_memory_can_shift(llama_get_memory(ctx))) {
|
||||
|
|
@ -754,16 +759,16 @@ private:
|
|||
SRV_ERR("%s\n", "speculative decoding is not supported with multimodal");
|
||||
return false;
|
||||
}
|
||||
SRV_WRN("%s", "speculative decoding context initialized\n");
|
||||
SLT_INF(slot, "%s", "speculative decoding context initialized\n");
|
||||
} else {
|
||||
SRV_WRN("%s", "speculative decoding context not initialized\n");
|
||||
SLT_INF(slot, "%s", "speculative decoding context not initialized\n");
|
||||
}
|
||||
}
|
||||
|
||||
SLT_INF(slot, "new slot, n_ctx = %d\n", slot.n_ctx);
|
||||
|
||||
slot.callback_on_release = [this](int slot_id) {
|
||||
queue_tasks.pop_deferred_task(slot_id);
|
||||
slot.callback_on_release = [this](int id_slot) {
|
||||
queue_tasks.pop_deferred_task(id_slot);
|
||||
};
|
||||
|
||||
slot.reset();
|
||||
|
|
@ -891,6 +896,9 @@ private:
|
|||
}
|
||||
|
||||
server_slot * get_slot_by_id(int id_slot) {
|
||||
// note: allow id_slot to be out of bounds (wrap around)
|
||||
id_slot = id_slot % slots.size();
|
||||
|
||||
for (server_slot & slot : slots) {
|
||||
if (slot.id == id_slot) {
|
||||
return &slot;
|
||||
|
|
@ -1760,7 +1768,7 @@ private:
|
|||
break;
|
||||
}
|
||||
|
||||
int id_slot = task.slot_action.slot_id;
|
||||
const int id_slot = task.slot_action.id_slot;
|
||||
server_slot * slot = get_slot_by_id(id_slot);
|
||||
if (slot == nullptr) {
|
||||
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
|
||||
|
|
@ -1798,7 +1806,7 @@ private:
|
|||
case SERVER_TASK_TYPE_SLOT_RESTORE:
|
||||
{
|
||||
if (!check_no_mtmd(task.id)) break;
|
||||
int id_slot = task.slot_action.slot_id;
|
||||
const int id_slot = task.slot_action.id_slot;
|
||||
server_slot * slot = get_slot_by_id(id_slot);
|
||||
if (slot == nullptr) {
|
||||
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
|
||||
|
|
@ -1847,7 +1855,7 @@ private:
|
|||
if (!check_no_mtmd(task.id)) {
|
||||
break;
|
||||
}
|
||||
int id_slot = task.slot_action.slot_id;
|
||||
const int id_slot = task.slot_action.id_slot;
|
||||
server_slot * slot = get_slot_by_id(id_slot);
|
||||
if (slot == nullptr) {
|
||||
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
|
||||
|
|
@ -3312,7 +3320,7 @@ void server_routes::init_routes() {
|
|||
}
|
||||
|
||||
// TODO: get rid of this dynamic_cast
|
||||
auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
|
||||
auto * res_task = dynamic_cast<server_task_result_metrics*>(result.get());
|
||||
GGML_ASSERT(res_task != nullptr);
|
||||
|
||||
// optionally return "fail_on_no_slot" error
|
||||
|
|
@ -3335,8 +3343,8 @@ void server_routes::init_routes() {
|
|||
}
|
||||
|
||||
std::string id_slot_str = req.get_param("id_slot");
|
||||
int id_slot;
|
||||
|
||||
int id_slot;
|
||||
try {
|
||||
id_slot = std::stoi(id_slot_str);
|
||||
} catch (const std::exception &) {
|
||||
|
|
@ -3348,14 +3356,16 @@ void server_routes::init_routes() {
|
|||
|
||||
if (action == "save") {
|
||||
return handle_slots_save(req, id_slot);
|
||||
} else if (action == "restore") {
|
||||
return handle_slots_restore(req, id_slot);
|
||||
} else if (action == "erase") {
|
||||
return handle_slots_erase(req, id_slot);
|
||||
} else {
|
||||
res->error(format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
|
||||
return res;
|
||||
}
|
||||
if (action == "restore") {
|
||||
return handle_slots_restore(req, id_slot);
|
||||
}
|
||||
if (action == "erase") {
|
||||
return handle_slots_erase(req, id_slot);
|
||||
}
|
||||
|
||||
res->error(format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
|
||||
return res;
|
||||
};
|
||||
|
||||
this->get_props = [this](const server_http_req &) {
|
||||
|
|
@ -3898,7 +3908,7 @@ std::unique_ptr<server_res_generator> server_routes::handle_slots_save(const ser
|
|||
{
|
||||
server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
|
||||
task.id = rd.get_new_id();
|
||||
task.slot_action.slot_id = id_slot;
|
||||
task.slot_action.id_slot = id_slot;
|
||||
task.slot_action.filename = filename;
|
||||
task.slot_action.filepath = filepath;
|
||||
rd.post_task(std::move(task));
|
||||
|
|
@ -3934,7 +3944,7 @@ std::unique_ptr<server_res_generator> server_routes::handle_slots_restore(const
|
|||
{
|
||||
server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
|
||||
task.id = rd.get_new_id();
|
||||
task.slot_action.slot_id = id_slot;
|
||||
task.slot_action.id_slot = id_slot;
|
||||
task.slot_action.filename = filename;
|
||||
task.slot_action.filepath = filepath;
|
||||
rd.post_task(std::move(task));
|
||||
|
|
@ -3963,7 +3973,7 @@ std::unique_ptr<server_res_generator> server_routes::handle_slots_erase(const se
|
|||
{
|
||||
server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
|
||||
task.id = rd.get_new_id();
|
||||
task.slot_action.slot_id = id_slot;
|
||||
task.slot_action.id_slot = id_slot;
|
||||
rd.post_task(std::move(task));
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -153,7 +153,7 @@ struct server_task {
|
|||
|
||||
// used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
|
||||
struct slot_action {
|
||||
int slot_id;
|
||||
int id_slot;
|
||||
std::string filename;
|
||||
std::string filepath;
|
||||
};
|
||||
|
|
|
|||
Loading…
Reference in New Issue