mtmd: fix tensor names for image newlines and view separator
This commit is contained in:
parent
b26b507c4e
commit
7451b84105
|
|
@ -74,19 +74,19 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
|
|||
}
|
||||
}
|
||||
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
||||
LOG(" [\n");
|
||||
LOG(" [\n");
|
||||
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
|
||||
if (i2 == n && ne[2] > 2*n) {
|
||||
LOG(" ..., \n");
|
||||
LOG(" ..., \n");
|
||||
i2 = ne[2] - n;
|
||||
}
|
||||
LOG(" [\n");
|
||||
LOG(" [\n");
|
||||
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
|
||||
if (i1 == n && ne[1] > 2*n) {
|
||||
LOG(" ..., \n");
|
||||
LOG(" ..., \n");
|
||||
i1 = ne[1] - n;
|
||||
}
|
||||
LOG(" [");
|
||||
LOG(" [");
|
||||
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
|
||||
if (i0 == n && ne[0] > 2*n) {
|
||||
LOG("..., ");
|
||||
|
|
@ -98,10 +98,10 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
|
|||
}
|
||||
LOG("],\n");
|
||||
}
|
||||
LOG(" ],\n");
|
||||
LOG(" ],\n");
|
||||
}
|
||||
LOG(" ]\n");
|
||||
LOG(" sum = %f\n", sum);
|
||||
LOG(" ]\n");
|
||||
LOG(" sum = %f\n", sum);
|
||||
}
|
||||
|
||||
// TODO: make this abort configurable/optional?
|
||||
|
|
@ -136,7 +136,7 @@ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
|
|||
snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
|
||||
}
|
||||
|
||||
LOG("%s: %16s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
|
||||
LOG("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
|
||||
t->name, ggml_type_name(t->type), ggml_op_desc(t),
|
||||
src0->name, ggml_ne_string(src0).c_str(),
|
||||
src1 ? src1_str : "",
|
||||
|
|
|
|||
|
|
@ -1077,7 +1077,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
|||
MODEL_TENSOR.V_MM_GATE: "mm.gate",
|
||||
MODEL_TENSOR.V_TOK_BOI: "v.boi",
|
||||
MODEL_TENSOR.V_TOK_EOI: "v.eoi",
|
||||
# DeepSeek-OCR sam_model
|
||||
# DeepSeek-OCR SAM
|
||||
MODEL_TENSOR.V_SAM_POS_EMBD: "v.sam.pos_embd",
|
||||
MODEL_TENSOR.V_SAM_PATCH_EMBD: "v.sam.patch_embd",
|
||||
MODEL_TENSOR.V_SAM_PRE_NORM: "v.sam.blk.{bid}.pre_ln",
|
||||
|
|
@ -1091,8 +1091,8 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
|||
MODEL_TENSOR.V_SAM_NECK: "v.sam.neck.{bid}",
|
||||
MODEL_TENSOR.V_SAM_NET_2: "v.sam.net_2",
|
||||
MODEL_TENSOR.V_SAM_NET_3: "v.sam.net_3",
|
||||
MODEL_TENSOR.V_ENC_EMBD_IMGNL: "model.image_newline", # Deepseek-OCR
|
||||
MODEL_TENSOR.V_ENC_EMBD_VSEP: "model.view_seperator", # Deepseek-OCR
|
||||
MODEL_TENSOR.V_ENC_EMBD_IMGNL: "v.image_newline", # Deepseek-OCR
|
||||
MODEL_TENSOR.V_ENC_EMBD_VSEP: "v.view_seperator", # Deepseek-OCR
|
||||
# audio (mtmd)
|
||||
MODEL_TENSOR.A_ENC_EMBD_POS: "a.position_embd",
|
||||
MODEL_TENSOR.A_ENC_CONV1D: "a.conv1d.{bid}",
|
||||
|
|
|
|||
|
|
@ -1127,12 +1127,12 @@ class GGUFWriter:
|
|||
def add_vision_is_deepstack_layers(self, layers: Sequence[bool]) -> None:
|
||||
self.add_array(Keys.ClipVision.IS_DEEPSTACK_LAYERS, layers)
|
||||
|
||||
|
||||
def add_vision_sam_layers_count(self, value: int) -> None:
|
||||
self.add_uint32(Keys.ClipVision.SAM.BLOCK_COUNT, value)
|
||||
|
||||
def add_vision_sam_embedding_length(self, value: int) -> None:
|
||||
self.add_uint32(Keys.ClipVision.SAM.EMBEDDING_LENGTH, value)
|
||||
|
||||
# audio models
|
||||
|
||||
def add_audio_projection_dim(self, value: int) -> None:
|
||||
|
|
|
|||
|
|
@ -2,8 +2,6 @@ from __future__ import annotations
|
|||
|
||||
from typing import Sequence
|
||||
|
||||
from numpy.f2py.auxfuncs import throw_error
|
||||
|
||||
from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -86,8 +86,8 @@
|
|||
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
|
||||
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
|
||||
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
|
||||
#define TN_IMAGE_NEWLINE "model.image_newline"
|
||||
#define TN_IMAGE_SEPERATOR "model.view_seperator"
|
||||
#define TN_IMAGE_NEWLINE "v.image_newline"
|
||||
#define TN_IMAGE_SEPERATOR "v.view_seperator"
|
||||
#define TN_MM_INP_NORM "mm.input_norm.weight"
|
||||
#define TN_MM_INP_NORM_B "mm.input_norm.bias"
|
||||
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
|
||||
|
|
@ -443,7 +443,6 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
|||
// debugging
|
||||
//
|
||||
|
||||
|
||||
static std::string to_ne_string(const ggml_tensor * t) {
|
||||
std::string str;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
||||
|
|
|
|||
|
|
@ -561,9 +561,9 @@ struct clip_graph {
|
|||
hparams(model.hparams),
|
||||
img(img),
|
||||
patch_size(hparams.patch_size),
|
||||
n_patches_x(img.nx / patch_size), // sam 1024 / 16 = 64
|
||||
n_patches_y(img.ny / patch_size), // sam 1024 / 16 = 64
|
||||
n_patches(n_patches_x * n_patches_y), // sam 64 * 64 = 4096
|
||||
n_patches_x(img.nx / patch_size),
|
||||
n_patches_y(img.ny / patch_size),
|
||||
n_patches(n_patches_x * n_patches_y),
|
||||
n_embd(hparams.n_embd),
|
||||
n_head(hparams.n_head),
|
||||
d_head(n_embd / n_head),
|
||||
|
|
@ -1302,7 +1302,7 @@ struct clip_graph {
|
|||
norm_t,
|
||||
hparams.ffn_op,
|
||||
model.position_embeddings,
|
||||
nullptr); // shape [1024, 16, 16]
|
||||
nullptr);
|
||||
|
||||
// remove CLS token
|
||||
cur = ggml_view_2d(ctx0, cur,
|
||||
|
|
@ -2399,18 +2399,15 @@ private:
|
|||
// build the input after conv2d (inp_raw --> patches)
|
||||
// returns tensor with shape [n_embd, n_patches]
|
||||
ggml_tensor * build_inp() {
|
||||
// Image to Patch Embedding.
|
||||
ggml_tensor * inp_raw = build_inp_raw(); // sam shape = [1024, 1024, 3]
|
||||
// sam patch_embeddings_0 shape = [768, 3, 16, 16]
|
||||
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1); // sam shape = [64, 64, 768]
|
||||
inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd); // sam shape = [4096, 768]
|
||||
inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp)); // sam shape = [768, 4096]
|
||||
ggml_tensor * inp_raw = build_inp_raw();
|
||||
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
|
||||
inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
|
||||
inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
|
||||
if (model.patch_bias) {
|
||||
// sam patch_bias shape = [768]
|
||||
inp = ggml_add(ctx0, inp, model.patch_bias);
|
||||
cb(inp, "patch_bias", -1);
|
||||
}
|
||||
return inp; // shape = [n_embd, n_patches] same as [768, 4096]
|
||||
return inp;
|
||||
}
|
||||
|
||||
ggml_tensor * build_inp_raw(int channels = 3) {
|
||||
|
|
@ -3710,22 +3707,19 @@ struct clip_model_loader {
|
|||
layer.ff_down_w = get_tensor(string_format(TN_SAM_FFN_DOWN, il, "weight"));
|
||||
layer.ff_down_b = get_tensor(string_format(TN_SAM_FFN_DOWN, il, "bias"));
|
||||
}
|
||||
model.neck_0_w = get_tensor(string_format(TN_SAM_NECK, 0, "weight"));
|
||||
model.neck_1_b = get_tensor(string_format(TN_SAM_NECK, 1, "bias"));
|
||||
model.neck_1_w = get_tensor(string_format(TN_SAM_NECK, 1, "weight"));
|
||||
model.neck_2_w = get_tensor(string_format(TN_SAM_NECK, 2, "weight"));
|
||||
model.neck_3_b = get_tensor(string_format(TN_SAM_NECK, 3, "bias"));
|
||||
model.neck_3_w = get_tensor(string_format(TN_SAM_NECK, 3, "weight"));
|
||||
model.net_2 = get_tensor(string_format(TN_SAM_NET, 2, "weight"));
|
||||
model.net_3 = get_tensor(string_format(TN_SAM_NET, 3, "weight"));
|
||||
}
|
||||
model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
|
||||
model.view_seperator = get_tensor(TN_IMAGE_SEPERATOR, false);
|
||||
model.fc_w = get_tensor(string_format(TN_MM_PROJECTOR, "weight"));
|
||||
model.fc_b = get_tensor(string_format(TN_MM_PROJECTOR, "bias"));
|
||||
|
||||
|
||||
break;
|
||||
model.neck_0_w = get_tensor(string_format(TN_SAM_NECK, 0, "weight"));
|
||||
model.neck_1_b = get_tensor(string_format(TN_SAM_NECK, 1, "bias"));
|
||||
model.neck_1_w = get_tensor(string_format(TN_SAM_NECK, 1, "weight"));
|
||||
model.neck_2_w = get_tensor(string_format(TN_SAM_NECK, 2, "weight"));
|
||||
model.neck_3_b = get_tensor(string_format(TN_SAM_NECK, 3, "bias"));
|
||||
model.neck_3_w = get_tensor(string_format(TN_SAM_NECK, 3, "weight"));
|
||||
model.net_2 = get_tensor(string_format(TN_SAM_NET, 2, "weight"));
|
||||
model.net_3 = get_tensor(string_format(TN_SAM_NET, 3, "weight"));
|
||||
model.image_newline = get_tensor(TN_IMAGE_NEWLINE);
|
||||
model.view_seperator = get_tensor(TN_IMAGE_SEPERATOR);
|
||||
model.fc_w = get_tensor(string_format(TN_MM_PROJECTOR, "weight"));
|
||||
model.fc_b = get_tensor(string_format(TN_MM_PROJECTOR, "bias"));
|
||||
} break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown projector type");
|
||||
}
|
||||
|
|
@ -5847,11 +5841,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
case PROJECTOR_TYPE_VOXTRAL:
|
||||
case PROJECTOR_TYPE_JANUS_PRO:
|
||||
case PROJECTOR_TYPE_COGVLM:
|
||||
{
|
||||
// do nothing
|
||||
} break;
|
||||
case PROJECTOR_TYPE_DEEPSEEKOCR:
|
||||
{
|
||||
// do nothing
|
||||
} break;
|
||||
case PROJECTOR_TYPE_LLAMA4:
|
||||
{
|
||||
|
|
|
|||
Loading…
Reference in New Issue