mtmd: refactor code & remove unused helper functions

This commit is contained in:
bluebread 2025-12-03 16:23:46 +00:00
parent b696c54756
commit b26b507c4e
1 changed files with 224 additions and 331 deletions

View File

@ -659,237 +659,44 @@ struct clip_graph {
return gf;
}
ggml_tensor * build_sam_enc(ggml_tensor * inp_raw) {
constexpr int enc_n_embd = 768;
constexpr int _depth = 12;
constexpr int enc_n_heads = 12;
constexpr int enc_d_heads = enc_n_embd / enc_n_heads;
ggml_tensor * inpL;
inpL = ggml_conv_2d_sk_p0(ctx0, model.patch_embed_proj_w, inp_raw);
inpL = ggml_add(ctx0, inpL, ggml_reshape_3d(ctx0, model.patch_embed_proj_b, 1, 1, enc_n_embd));
inpL = ggml_cont(ctx0, ggml_permute(ctx0, inpL, 1, 2, 0, 3));
ggml_tensor * cur;
const auto tgt_size = inpL->ne[1];
const auto str_size = model.pos_embed->ne[1];
if (str_size != tgt_size) {
ggml_tensor * old_pos_embed = nullptr;
old_pos_embed = ggml_cont(ctx0, ggml_permute(ctx0, model.pos_embed, 2, 0, 1, 3));
ggml_tensor * new_pos_embed = ggml_interpolate(
ctx0,
old_pos_embed,
tgt_size,
tgt_size,
enc_n_embd,
1,
ggml_scale_mode::GGML_SCALE_MODE_BICUBIC
);
new_pos_embed = ggml_cont(ctx0, ggml_permute(ctx0, new_pos_embed, 1, 2, 0, 3));
cur = ggml_add(ctx0, inpL, new_pos_embed);
} else {
cur = ggml_add(ctx0, inpL, model.pos_embed);
}
// loop over layers
for (int il = 0; il < _depth; il++) {
auto & layer = model.sam_layers[il];
ggml_tensor * shortcut = cur;
// layernorm1
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
const int64_t w0 = cur->ne[1];
const int64_t h0 = cur->ne[2];
if (hparams.is_global_attn(il) == false) {
// local attention layer - apply window partition
// ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L169-L172
//cur = ggml_win_part(ctx0, cur, 14);
cur = window_partition(ctx0, cur, 14); // TODO: make this configurable
}
const int64_t W = cur->ne[1];
const int64_t H = cur->ne[2];
// self-attention
{
const int B = cur->ne[3];
cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
cur = ggml_add(ctx0, cur, layer.qkv_b);
cur = ggml_cont(ctx0, cur); // Ensure tensor is contiguous before reshape
cur = ggml_reshape_4d(ctx0, cur, enc_n_embd, 3, W*H, B);
ggml_tensor * Q;
ggml_tensor * K;
ggml_tensor * V;
Q = ggml_view_3d (ctx0, cur, enc_n_embd, W*H, B, cur->nb[2], cur->nb[3], 0*cur->nb[1]);
Q = ggml_reshape_4d(ctx0, ggml_cont(ctx0, Q), enc_d_heads, enc_n_heads, W*H, B);
Q = ggml_cont (ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); // [B, enc_n_heads, H*W, enc_d_heads]
K = ggml_view_3d (ctx0, cur, enc_n_embd, W*H, B, cur->nb[2], cur->nb[3], 1*cur->nb[1]);
K = ggml_reshape_4d(ctx0, ggml_cont(ctx0, K), enc_d_heads, enc_n_heads, W*H, B);
K = ggml_cont (ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); // [B, enc_n_heads, H*W, enc_d_heads]
V = ggml_view_3d (ctx0, cur, enc_n_embd, W*H, B, cur->nb[2], cur->nb[3], 2*cur->nb[1]);
V = ggml_reshape_4d(ctx0, ggml_cont(ctx0, V), enc_d_heads, enc_n_heads, W*H, B);
V = ggml_cont (ctx0, ggml_permute(ctx0, V, 0, 2, 1, 3)); // [B, enc_n_heads, H*W, enc_d_heads]
ggml_tensor * mask;
ggml_tensor * rw;
ggml_tensor * rh;
ggml_tensor * qr;
rw = get_rel_pos(ctx0, layer.rel_pos_w, W, W); // [W, W, C]
rh = get_rel_pos(ctx0, layer.rel_pos_h, H, H); // [H, H, C]
qr = ggml_reshape_4d(ctx0, Q, enc_d_heads, W, H, B*enc_n_heads);
const int WH_pad = GGML_PAD(W*H, GGML_KQ_MASK_PAD) - W*H;
rw = ggml_mul_mat (ctx0, rw, ggml_cont(ctx0, ggml_permute(ctx0, qr, 0, 2, 1, 3))); // [B*enc_n_heads, W, H, W]
rw = ggml_cont (ctx0, ggml_permute(ctx0, rw, 0, 2, 1, 3)); // [B*enc_n_heads, H, W, W]
rw = ggml_reshape_4d(ctx0, rw, W, 1, W*H, enc_n_heads*B);
rw = ggml_repeat_4d (ctx0, rw, W, H, W*H, enc_n_heads*B);
rh = ggml_mul_mat (ctx0, rh, qr); // [B*enc_n_heads, H, W, H]
rh = ggml_reshape_4d(ctx0, rh, 1, H, W*H, enc_n_heads*B);
mask = ggml_add (ctx0, rw, rh); // [B*enc_n_heads, H*W, H, W]
mask = ggml_reshape_4d(ctx0, mask, W*H, W*H, enc_n_heads, B);
mask = ggml_pad (ctx0, mask, 0, WH_pad, 0, 0);
mask = ggml_cast (ctx0, mask, GGML_TYPE_F16);
float scale = 1.0f / sqrtf((float)enc_d_heads);
cur = ggml_flash_attn_ext(ctx0, Q, K, V, mask, scale, 0.0f, 0.0f); // [B, H*W, enc_n_heads, enc_d_heads]
cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur), enc_n_embd, W, H, B);
cur = ggml_mul_mat(ctx0, layer.o_w, cur);
cur = ggml_add_inplace(ctx0, cur, layer.o_b);
}
if (hparams.is_global_attn(il) == false) {
// local attention layer - reverse window partition
cur = window_unpartition(ctx0, cur, w0, h0, 14); // TODO: make window size configurable
}
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, shortcut);
ggml_tensor * inpFF = cur;
// layernorm2
cur = build_norm(inpFF, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
// ffn
cur = build_ffn(cur, layer.ff_up_w, layer.ff_up_b, nullptr, nullptr, layer.ff_down_w,
layer.ff_down_b, hparams.ffn_op, il);
// residual 2
cur = ggml_add(ctx0, cur, inpFF);
cb(cur, "sam_layer_out", il);
}
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 2, 0, 1, 3));
const int out_chans = model.neck_0_w->ne[3];
cur = ggml_conv_2d(ctx0, model.neck_0_w, cur, 1, 1, 0, 0, 1, 1);
cur = sam_layer_norm_2d(ctx0, cur, out_chans, model.neck_1_w, model.neck_1_b, hparams.eps);
cur = ggml_conv_2d(ctx0, model.neck_2_w, cur, 1, 1, 1, 1, 1, 1);
cur = sam_layer_norm_2d(ctx0, cur, out_chans, model.neck_3_w, model.neck_3_b, hparams.eps);
cur = ggml_conv_2d(ctx0, model.net_2, cur, 2, 2, 1, 1, 1, 1);
cur = ggml_conv_2d(ctx0, model.net_3, cur, 2, 2, 1, 1, 1, 1);
cb(cur, "sam_output", -1);
ggml_build_forward_expand(gf, cur);
return cur;
}
ggml_tensor * sam_layer_norm_2d(ggml_context * ctx0,
ggml_tensor * layer,
int n_channels,
ggml_tensor * w,
ggml_tensor * b,
float eps) {
// LayerNorm2d
// normalize along channel dimmension
// TODO: better implementation
layer = ggml_permute(ctx0, ggml_norm(ctx0, ggml_cont(ctx0, ggml_permute(ctx0, layer, 1, 2, 0, 3)), eps), 2, 0,
1, 3);
layer = ggml_cont(ctx0, layer);
layer =
ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, ggml_reshape_3d(ctx0, w, 1, 1, n_channels), layer), layer),
ggml_repeat(ctx0, ggml_reshape_3d(ctx0, b, 1, 1, n_channels), layer));
return layer;
}
ggml_cgraph * build_deepseek_ocr() {
//patch embedding
ggml_tensor * inp_raw = build_inp_raw();
ggml_tensor * global_features_1 = build_sam_enc(inp_raw);
ggml_tensor * global_features_2 = build_dp_ocr_clip(global_features_1);
ggml_tensor * sam_out = build_sam(inp_raw);
ggml_tensor * clip_out = build_dsocr_clip(sam_out);
// FIXME remove n_patches is hardcoded
int clip_n_patches = sam_out->ne[0] * sam_out->ne[1];
// torch global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
global_features_1 = ggml_cont(ctx0,ggml_permute(ctx0, global_features_1, 1, 2, 0, 3));
int clip_n_patches = global_features_1->ne[1] * global_features_1->ne[2];
// flatten 2nd and 3rd dims
global_features_1 = ggml_reshape_2d(ctx0, global_features_1, global_features_1->ne[0], clip_n_patches);
// remove CLS token
global_features_2 = ggml_view_2d(ctx0, global_features_2, n_embd, clip_n_patches,
global_features_2->nb[1], global_features_2->nb[1]);
sam_out = ggml_cont(ctx0, ggml_permute(ctx0, sam_out, 1, 2, 0, 3));
sam_out = ggml_reshape_2d(ctx0, sam_out, sam_out->ne[0], clip_n_patches);
clip_out = ggml_view_2d(ctx0, clip_out, n_embd, clip_n_patches, clip_out->nb[1], clip_out->nb[1]);
ggml_tensor * global_features = ggml_concat(ctx0, global_features_2, global_features_1, 0);
global_features = ggml_reshape_2d(ctx0, global_features, 2* n_embd,clip_n_patches);
global_features = ggml_cont(ctx0, global_features);
global_features = ggml_mul_mat(ctx0, model.fc_w, global_features);
global_features = ggml_add(ctx0, global_features, model.fc_b);
global_features = build_global_local_features(ctx0,global_features);
cb(global_features, "dsocr_output", -1);
ggml_build_forward_expand(gf, global_features);
return gf;
}
// global_features: [n_dim, h*w]
// image_newline: [n_dim]
// view_separator: [n_dim]
ggml_tensor * build_global_local_features(ggml_context * ctx0,
ggml_tensor * global_features) {
GGML_ASSERT(model.image_newline != nullptr);
GGML_ASSERT(model.view_seperator != nullptr);
const auto h = static_cast<int>(std::sqrt(static_cast<float>(global_features->ne[1])));
const auto w = h;
const auto n_dim = global_features->ne[0];
ggml_tensor * cur;
cur = ggml_concat(ctx0, clip_out, sam_out, 0);
cur = ggml_reshape_2d(ctx0, cur, 2*n_embd,clip_n_patches);
cur = ggml_cont(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.fc_w, cur);
cur = ggml_add(ctx0, cur, model.fc_b);
const auto h = static_cast<int>(std::sqrt(static_cast<float>(cur->ne[1])));
const auto w = h;
const auto n_dim = cur->ne[0];
ggml_tensor * imgnl;
ggml_tensor * vs;
cur = ggml_reshape_3d(ctx0, global_features, n_dim, w, h);
imgnl = ggml_repeat_4d(ctx0, model.image_newline, n_dim, 1, h, 1);
cur = ggml_reshape_2d(ctx0, ggml_concat(ctx0, cur, imgnl, 1), n_dim, (w+1)*h);
cb(cur, "insert_imgnl", -1);
vs = ggml_reshape_2d(ctx0, model.view_seperator, n_dim, 1); // (n_dim, 1)
cur = ggml_reshape_3d(ctx0, cur, n_dim, w, h);
cur = ggml_reshape_2d(ctx0, ggml_concat(ctx0, cur, imgnl, 1), n_dim, (w+1)*h);
cur = ggml_concat(ctx0, cur, vs, 1); // (n_dim, h*(w+1) + 1)
cb(cur, "insert_vs", -1);
return cur;
cb(cur, "dsocr_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
ggml_cgraph * build_pixtral() {
const int n_merge = hparams.n_merge;
@ -1541,62 +1348,6 @@ struct clip_graph {
return gf;
}
ggml_tensor * build_dp_ocr_clip(ggml_tensor * patch_embeds) {
GGML_ASSERT(model.class_embedding != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
ggml_tensor * inp = ggml_cpy(ctx0, patch_embeds, ggml_dup_tensor(ctx0, patch_embeds));
inp = ggml_reshape_2d(ctx0, inp, inp->ne[0]*inp->ne[1], inp->ne[2]);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
ggml_tensor * new_pos_embd = ggml_cpy(ctx0, model.position_embeddings, ggml_dup_tensor(ctx0, model.position_embeddings));
int n_pos = new_pos_embd->ne[1]; // +1 for [CLS]
const auto tgt_size = static_cast<int>(std::sqrt(inp->ne[1]));
const auto src_size = static_cast<int>(std::sqrt(n_pos - 1));
if (tgt_size != src_size) {
//ggml_tensor * old_pos_embd = ggml_new_tensor_2d(ctx0, model.position_embeddings->type, model.position_embeddings->ne[0], str_size * str_size);
ggml_tensor * old_pos_embd = ggml_view_2d(ctx0, new_pos_embd,
new_pos_embd->ne[0], src_size * src_size,
ggml_row_size(new_pos_embd->type, new_pos_embd->ne[0]), 0);
ggml_tensor * cls_tok = ggml_view_2d(ctx0, new_pos_embd,
new_pos_embd->ne[0], 1,
ggml_row_size(new_pos_embd->type, new_pos_embd->ne[0]), src_size * src_size);
new_pos_embd = ggml_interpolate(ctx0,
old_pos_embd,
tgt_size,
tgt_size,
new_pos_embd->ne[0], 1, GGML_SCALE_MODE_BICUBIC);
new_pos_embd = ggml_reshape_3d(ctx0, new_pos_embd, n_embd, tgt_size * tgt_size, 1);
//new_pos_embd = ggml_cont(ctx0, ggml_permute(ctx0, new_pos_embd, 2,1,0,3));
new_pos_embd = ggml_concat(ctx0, new_pos_embd, cls_tok, 1);
n_pos = tgt_size * tgt_size + 1;
}
// add CLS token
inp = ggml_concat(ctx0, model.class_embedding, inp, 1);
//TODO : check norm type for dp-ocr-clip
norm_type norm_t = NORM_TYPE_NORMAL;
// for selecting learned pos embd, used by ViT
ggml_tensor * positions = ggml_cast(ctx0, ggml_arange(ctx0, 0, n_pos, 1), GGML_TYPE_I32);
ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, new_pos_embd, positions);
ggml_tensor * cur = build_vit(inp, n_pos, norm_t, ffn_op_type::FFN_GELU_QUICK,
learned_pos_embd, nullptr); // shape [1024, 16, 16]
ggml_build_forward_expand(gf, cur);
return cur;
}
ggml_cgraph * build_llama4() {
GGML_ASSERT(model.class_embedding != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
@ -2500,44 +2251,6 @@ private:
return inpL;
}
// attn: [q_h*q_w, k_h*k_w]
// rel_h: [q_h, q_w, k_h]
// rel_w: [q_h, q_w, k_w]
static ggml_tensor * add_rel_pos_inplace(
ggml_context * ctx,
ggml_tensor * attn,
ggml_tensor * rel_w,
ggml_tensor * rel_h
) {
const int k_w = rel_w->ne[0];
const int k_h = rel_h->ne[0];
const int q_w = rel_h->ne[1];
const int q_h = rel_h->ne[2];
GGML_ASSERT(q_w == rel_w->ne[1]);
GGML_ASSERT(q_h == rel_w->ne[2]);
GGML_ASSERT(attn->ne[0] == k_h*k_w);
GGML_ASSERT(attn->ne[1] == q_h*q_w);
ggml_tensor *attn_4d = ggml_reshape_4d(ctx, attn, k_w, k_h, attn->ne[1], attn->ne[2]);
ggml_tensor *rel_h_4d = ggml_reshape_4d(ctx, rel_h, 1, k_h, attn->ne[1], attn->ne[2]);
ggml_tensor *rel_h_rep = ggml_repeat(ctx, rel_h_4d, attn_4d); // now same shape as attn_5d
ggml_tensor *rel_w_4d = ggml_reshape_4d(ctx, rel_w, k_w, 1, attn->ne[1], attn->ne[2]);
ggml_tensor *rel_w_rep = ggml_repeat(ctx, rel_w_4d, attn_4d); // now same shape as attn_5d
ggml_tensor * result = ggml_add_inplace(ctx, attn_4d, ggml_add_inplace(ctx, rel_h_rep, rel_w_rep));
result = ggml_reshape_3d(ctx, result, attn->ne[0], attn->ne[1], attn->ne[2]);
return result;
}
static ggml_tensor * get_rel_pos(
ggml_context * ctx,
ggml_tensor * rel_pos, // [L, C]
@ -2683,28 +2396,6 @@ private:
return x;
}
// build the input after conv2d (inp_raw --> patches)
// returns tensor with shape [n_embd, n_patches]
ggml_tensor * build_enc_inp(ggml_tensor * inp_raw,
const int enc_patch_size,
const int enc_n_patches,
const int enc_n_embd) {
GGML_ASSERT(model.patch_embed_proj_w != nullptr);
GGML_ASSERT(model.patch_embed_proj_b != nullptr);
// Image to Patch Embedding.
// ggml_tensor * inp_raw = build_inp_raw(); // sam shape = [1024, 1024, 3]
// patch_embed_proj_w shape = [768, 3, 16, 16]
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embed_proj_w, inp_raw, enc_patch_size, enc_patch_size, 0, 0,
1, 1); // [64, 64, 768]
inp = ggml_reshape_2d(ctx0, inp, enc_n_patches * enc_n_patches, enc_n_embd); // [4096, 768]
inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp)); // [768, 4096]
inp = ggml_add(ctx0, inp, model.patch_embed_proj_b);
inp = ggml_cont(ctx0, inp);
inp = ggml_reshape_4d(ctx0, inp, enc_n_embd, enc_n_patches, enc_n_patches, 1);
cb(inp, "enc_patch_bias", -1);
return inp;
}
// build the input after conv2d (inp_raw --> patches)
// returns tensor with shape [n_embd, n_patches]
ggml_tensor * build_inp() {
@ -3009,6 +2700,208 @@ private:
return cur;
}
ggml_tensor * build_sam(ggml_tensor * inp_raw) {
const int n_embd = 768;
const int _depth = 12;
const int n_heads = 12;
const int d_heads = n_embd / n_heads;
ggml_tensor * inpL;
inpL = ggml_conv_2d_sk_p0(ctx0, model.patch_embed_proj_w, inp_raw);
inpL = ggml_add(ctx0, inpL, ggml_reshape_3d(ctx0, model.patch_embed_proj_b, 1, 1, n_embd));
inpL = ggml_cont(ctx0, ggml_permute(ctx0, inpL, 1, 2, 0, 3));
ggml_tensor * cur;
const auto tgt_size = inpL->ne[1];
const auto str_size = model.pos_embed->ne[1];
if (str_size != tgt_size) {
ggml_tensor * old_pos_embed = nullptr;
old_pos_embed = ggml_cont(ctx0, ggml_permute(ctx0, model.pos_embed, 2, 0, 1, 3));
ggml_tensor * new_pos_embed = ggml_interpolate(
ctx0,
old_pos_embed,
tgt_size,
tgt_size,
n_embd,
1,
ggml_scale_mode::GGML_SCALE_MODE_BICUBIC
);
new_pos_embed = ggml_cont(ctx0, ggml_permute(ctx0, new_pos_embed, 1, 2, 0, 3));
cur = ggml_add(ctx0, inpL, new_pos_embed);
} else {
cur = ggml_add(ctx0, inpL, model.pos_embed);
}
// loop over layers
for (int il = 0; il < _depth; il++) {
auto & layer = model.sam_layers[il];
ggml_tensor * shortcut = cur;
// layernorm1
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
const int64_t w0 = cur->ne[1];
const int64_t h0 = cur->ne[2];
if (hparams.is_global_attn(il) == false) {
// local attention layer - apply window partition
cur = window_partition(ctx0, cur, 14); // TODO: make this configurable
}
const int64_t W = cur->ne[1];
const int64_t H = cur->ne[2];
// self-attention
{
const int B = cur->ne[3];
cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
cur = ggml_add(ctx0, cur, layer.qkv_b);
cur = ggml_cont(ctx0, cur); // Ensure tensor is contiguous before reshape
cur = ggml_reshape_4d(ctx0, cur, n_embd, 3, W*H, B);
ggml_tensor * Q;
ggml_tensor * K;
ggml_tensor * V;
Q = ggml_view_3d (ctx0, cur, n_embd, W*H, B, cur->nb[2], cur->nb[3], 0*cur->nb[1]);
Q = ggml_reshape_4d(ctx0, ggml_cont(ctx0, Q), d_heads, n_heads, W*H, B);
Q = ggml_cont (ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); // [B, n_heads, H*W, d_heads]
K = ggml_view_3d (ctx0, cur, n_embd, W*H, B, cur->nb[2], cur->nb[3], 1*cur->nb[1]);
K = ggml_reshape_4d(ctx0, ggml_cont(ctx0, K), d_heads, n_heads, W*H, B);
K = ggml_cont (ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); // [B, n_heads, H*W, d_heads]
V = ggml_view_3d (ctx0, cur, n_embd, W*H, B, cur->nb[2], cur->nb[3], 2*cur->nb[1]);
V = ggml_reshape_4d(ctx0, ggml_cont(ctx0, V), d_heads, n_heads, W*H, B);
V = ggml_cont (ctx0, ggml_permute(ctx0, V, 0, 2, 1, 3)); // [B, n_heads, H*W, d_heads]
ggml_tensor * mask;
ggml_tensor * rw;
ggml_tensor * rh;
ggml_tensor * qr;
rw = get_rel_pos(ctx0, layer.rel_pos_w, W, W); // [W, W, C]
rh = get_rel_pos(ctx0, layer.rel_pos_h, H, H); // [H, H, C]
qr = ggml_reshape_4d(ctx0, Q, d_heads, W, H, B*n_heads);
const int WH_pad = GGML_PAD(W*H, GGML_KQ_MASK_PAD) - W*H;
rw = ggml_mul_mat (ctx0, rw, ggml_cont(ctx0, ggml_permute(ctx0, qr, 0, 2, 1, 3))); // [B*n_heads, W, H, W]
rw = ggml_cont (ctx0, ggml_permute(ctx0, rw, 0, 2, 1, 3)); // [B*n_heads, H, W, W]
rw = ggml_reshape_4d(ctx0, rw, W, 1, W*H, n_heads*B);
rw = ggml_repeat_4d (ctx0, rw, W, H, W*H, n_heads*B);
rh = ggml_mul_mat (ctx0, rh, qr); // [B*n_heads, H, W, H]
rh = ggml_reshape_4d(ctx0, rh, 1, H, W*H, n_heads*B);
mask = ggml_add (ctx0, rw, rh); // [B*n_heads, H*W, H, W]
mask = ggml_reshape_4d(ctx0, mask, W*H, W*H, n_heads, B);
mask = ggml_pad (ctx0, mask, 0, WH_pad, 0, 0);
mask = ggml_cast (ctx0, mask, GGML_TYPE_F16);
float scale = 1.0f / sqrtf((float)d_heads);
cur = ggml_flash_attn_ext(ctx0, Q, K, V, mask, scale, 0.0f, 0.0f); // [B, H*W, n_heads, d_heads]
cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur), n_embd, W, H, B);
cur = ggml_mul_mat(ctx0, layer.o_w, cur);
cur = ggml_add_inplace(ctx0, cur, layer.o_b);
}
if (hparams.is_global_attn(il) == false) {
// local attention layer - reverse window partition
cur = window_unpartition(ctx0, cur, w0, h0, 14); // TODO: make window size configurable
}
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, shortcut);
ggml_tensor * inpFF = cur;
// layernorm2
cur = build_norm(inpFF, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
// ffn
cur = build_ffn(cur, layer.ff_up_w, layer.ff_up_b, nullptr, nullptr, layer.ff_down_w,
layer.ff_down_b, hparams.ffn_op, il);
// residual 2
cur = ggml_add(ctx0, cur, inpFF);
cb(cur, "sam_layer_out", il);
}
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 2, 0, 1, 3));
cur = ggml_conv_2d(ctx0, model.neck_0_w, cur, 1, 1, 0, 0, 1, 1);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3));
cur = build_norm(cur, model.neck_1_w, model.neck_1_b, NORM_TYPE_NORMAL, hparams.eps, -1);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 2, 0, 1, 3));
cur = ggml_conv_2d(ctx0, model.neck_2_w, cur, 1, 1, 1, 1, 1, 1);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3));
cur = build_norm(cur, model.neck_3_w, model.neck_3_b, NORM_TYPE_NORMAL, hparams.eps, -1);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 2, 0, 1, 3));
cur = ggml_conv_2d(ctx0, model.net_2, cur, 2, 2, 1, 1, 1, 1);
cur = ggml_conv_2d(ctx0, model.net_3, cur, 2, 2, 1, 1, 1, 1);
cb(cur, "sam_output", -1);
ggml_build_forward_expand(gf, cur);
return cur;
}
ggml_tensor * build_dsocr_clip(ggml_tensor * patch_embeds) {
ggml_tensor * inp;
inp = ggml_cpy(ctx0, patch_embeds, ggml_dup_tensor(ctx0, patch_embeds));
inp = ggml_reshape_2d(ctx0, inp, inp->ne[0]*inp->ne[1], inp->ne[2]);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
ggml_tensor * new_pos_embd = ggml_cpy(ctx0, model.position_embeddings, ggml_dup_tensor(ctx0, model.position_embeddings));
int n_pos = new_pos_embd->ne[1]; // +1 for [CLS]
const auto tgt_size = static_cast<int>(std::sqrt(inp->ne[1]));
const auto src_size = static_cast<int>(std::sqrt(n_pos - 1));
if (tgt_size != src_size) {
ggml_tensor * old_pos_embd;
ggml_tensor * cls_tok;
old_pos_embd = ggml_view_2d(
ctx0, new_pos_embd,
new_pos_embd->ne[0], src_size * src_size,
ggml_row_size(new_pos_embd->type, new_pos_embd->ne[0]), 0
);
cls_tok = ggml_view_2d(
ctx0, new_pos_embd,
new_pos_embd->ne[0], 1,
ggml_row_size(new_pos_embd->type, new_pos_embd->ne[0]), src_size * src_size
);
new_pos_embd = ggml_interpolate(ctx0,
old_pos_embd,
tgt_size,
tgt_size,
new_pos_embd->ne[0], 1, GGML_SCALE_MODE_BICUBIC
);
new_pos_embd = ggml_reshape_3d(ctx0, new_pos_embd, n_embd, tgt_size * tgt_size, 1);
new_pos_embd = ggml_concat(ctx0, new_pos_embd, cls_tok, 1);
n_pos = tgt_size * tgt_size + 1;
}
// add CLS token
inp = ggml_concat(ctx0, model.class_embedding, inp, 1);
// for selecting learned pos embd, used by ViT
ggml_tensor * positions = ggml_cast(ctx0, ggml_arange(ctx0, 0, n_pos, 1), GGML_TYPE_I32);
ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, new_pos_embd, positions);
ggml_tensor * cur = build_vit(inp, n_pos, NORM_TYPE_NORMAL, ffn_op_type::FFN_GELU_QUICK,
learned_pos_embd, nullptr); // shape [1024, 16, 16]
ggml_build_forward_expand(gf, cur);
return cur;
}
};
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {