vulkan: Fuse mul_mat_id+add_id+mul and mul_mat+add+add. (#17287)
These both show up in gpt-oss. Also, cleanup the mul_mat_vec fusion code a bit.
This commit is contained in:
parent
4dca015b7e
commit
24dc769f1b
|
|
@ -32,6 +32,7 @@ DispatchLoaderDynamic & ggml_vk_default_dispatcher();
|
|||
#include <memory>
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <unordered_map>
|
||||
#include <memory>
|
||||
#include <mutex>
|
||||
|
|
@ -824,6 +825,12 @@ struct vk_mat_mat_push_constants {
|
|||
uint32_t ne02; uint32_t ne12; uint32_t broadcast2; uint32_t broadcast3;
|
||||
uint32_t padded_N;
|
||||
};
|
||||
|
||||
#define MAT_VEC_FUSION_FLAGS_BIAS0 0x1
|
||||
#define MAT_VEC_FUSION_FLAGS_BIAS1 0x2
|
||||
#define MAT_VEC_FUSION_FLAGS_SCALE0 0x4
|
||||
#define MAT_VEC_FUSION_FLAGS_SCALE1 0x8
|
||||
|
||||
struct vk_mat_vec_push_constants {
|
||||
uint32_t ncols;
|
||||
uint32_t stride_a;
|
||||
|
|
@ -832,8 +839,7 @@ struct vk_mat_vec_push_constants {
|
|||
uint32_t batch_stride_a;
|
||||
uint32_t batch_stride_b;
|
||||
uint32_t batch_stride_d;
|
||||
uint32_t enable_bias;
|
||||
uint32_t enable_scale;
|
||||
uint32_t fusion_flags;
|
||||
uint32_t ne02;
|
||||
uint32_t ne12;
|
||||
uint32_t broadcast2;
|
||||
|
|
@ -847,7 +853,7 @@ struct vk_mat_vec_p021_push_constants {
|
|||
uint32_t nchannels_y;
|
||||
uint32_t b_offset;
|
||||
uint32_t d_offset;
|
||||
uint32_t enable_bias;
|
||||
uint32_t fusion_flags;
|
||||
};
|
||||
|
||||
struct vk_mat_vec_nc_push_constants {
|
||||
|
|
@ -863,7 +869,7 @@ struct vk_mat_vec_nc_push_constants {
|
|||
uint32_t nb03;
|
||||
uint32_t nb13;
|
||||
uint32_t nb23;
|
||||
uint32_t enable_bias;
|
||||
uint32_t fusion_flags;
|
||||
};
|
||||
|
||||
struct vk_mat_mat_id_push_constants {
|
||||
|
|
@ -881,8 +887,7 @@ struct vk_mat_vec_id_push_constants {
|
|||
uint32_t batch_stride_a;
|
||||
uint32_t batch_stride_b;
|
||||
uint32_t batch_stride_d;
|
||||
uint32_t enable_bias;
|
||||
uint32_t enable_scale;
|
||||
uint32_t fusion_flags;
|
||||
uint32_t nei0;
|
||||
uint32_t ne11;
|
||||
};
|
||||
|
|
@ -3465,8 +3470,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
|
||||
const uint32_t force_subgroup_size = use_subgroups ? subgroup_size : 0;
|
||||
const uint32_t force_subgroup_size16 = use_subgroups16 ? subgroup_size16 : 0;
|
||||
static constexpr uint32_t mul_mat_vec_num_bindings = 4;
|
||||
static constexpr uint32_t mul_mat_vec_id_num_bindings = 5;
|
||||
static constexpr uint32_t mul_mat_vec_num_bindings = 5;
|
||||
static constexpr uint32_t mul_mat_vec_id_num_bindings = 6;
|
||||
|
||||
for (uint32_t w = 0; w < DMMV_WG_SIZE_COUNT; ++w) {
|
||||
const uint32_t wg_size_subgroup = (w == DMMV_WG_SIZE_SUBGROUP) ? subgroup_size : (subgroup_size * 4);
|
||||
|
|
@ -6871,21 +6876,31 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
groups_x = CEIL_DIV(groups_x, groups_z);
|
||||
}
|
||||
|
||||
uint32_t enable_bias = ctx->num_additional_fused_ops > 0;
|
||||
uint32_t fusion_flags = 0;
|
||||
|
||||
vk_subbuffer d_B = d_D;
|
||||
|
||||
if (enable_bias) {
|
||||
vk_subbuffer d_F0 = d_D;
|
||||
if (ctx->num_additional_fused_ops > 0) {
|
||||
const ggml_tensor * add = cgraph->nodes[node_idx + 1];
|
||||
const ggml_tensor * bias = add->src[0] == dst ? add->src[1] : add->src[0];
|
||||
|
||||
d_B = ggml_vk_tensor_subbuffer(ctx, bias);
|
||||
d_F0 = ggml_vk_tensor_subbuffer(ctx, bias);
|
||||
fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS0;
|
||||
}
|
||||
|
||||
vk_subbuffer d_F1 = d_D;
|
||||
if (ctx->num_additional_fused_ops == 2) {
|
||||
const ggml_tensor * add = cgraph->nodes[node_idx + 2];
|
||||
const ggml_tensor * bias = add->src[0] == cgraph->nodes[node_idx + 1] ? add->src[1] : add->src[0];
|
||||
|
||||
d_F1 = ggml_vk_tensor_subbuffer(ctx, bias);
|
||||
fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS1;
|
||||
}
|
||||
|
||||
// compute
|
||||
const vk_mat_vec_push_constants pc = {
|
||||
(uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01,
|
||||
stride_batch_x, stride_batch_y, stride_batch_d, enable_bias, 0,
|
||||
stride_batch_x, stride_batch_y, stride_batch_d,
|
||||
fusion_flags,
|
||||
(uint32_t)ne02, (uint32_t)ne12, (uint32_t)r2, (uint32_t)r3,
|
||||
};
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
|
||||
|
|
@ -6893,7 +6908,8 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
d_X,
|
||||
d_Y,
|
||||
d_D,
|
||||
d_B,
|
||||
d_F0,
|
||||
d_F1,
|
||||
},
|
||||
pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z });
|
||||
|
||||
|
|
@ -6946,22 +6962,31 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
|||
vk_subbuffer d_Qx = ggml_vk_tensor_subbuffer(ctx, src0);
|
||||
vk_subbuffer d_Qy = ggml_vk_tensor_subbuffer(ctx, src1, true);
|
||||
|
||||
vk_subbuffer d_B = d_D;
|
||||
vk_subbuffer d_F0 = d_D;
|
||||
|
||||
uint32_t enable_bias = ctx->num_additional_fused_ops > 0;
|
||||
uint32_t fusion_flags = 0;
|
||||
|
||||
if (enable_bias) {
|
||||
if (ctx->num_additional_fused_ops > 0) {
|
||||
const ggml_tensor * add = cgraph->nodes[node_idx + 1];
|
||||
const ggml_tensor * bias = add->src[0] == dst ? add->src[1] : add->src[0];
|
||||
|
||||
d_B = ggml_vk_tensor_subbuffer(ctx, bias);
|
||||
d_F0 = ggml_vk_tensor_subbuffer(ctx, bias);
|
||||
fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS0;
|
||||
}
|
||||
|
||||
vk_subbuffer d_F1 = d_D;
|
||||
if (ctx->num_additional_fused_ops > 1) {
|
||||
const ggml_tensor * bias = cgraph->nodes[node_idx + 2]->src[1];
|
||||
|
||||
d_F1 = ggml_vk_tensor_subbuffer(ctx, bias);
|
||||
fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS1;
|
||||
}
|
||||
|
||||
// compute
|
||||
|
||||
vk_mat_vec_p021_push_constants pc = {
|
||||
(uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12,
|
||||
0, 0, enable_bias
|
||||
0, 0, fusion_flags
|
||||
};
|
||||
|
||||
init_pushconst_tensor_offsets(ctx, pc, src0, src1, nullptr, nullptr, cgraph->nodes[node_idx + ctx->num_additional_fused_ops]);
|
||||
|
|
@ -6977,7 +7002,8 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
|||
d_Qx,
|
||||
d_Qy,
|
||||
d_D,
|
||||
d_B,
|
||||
d_F0,
|
||||
d_F1,
|
||||
}, pc, { 1, (uint32_t)ne01, workgroups_z });
|
||||
}
|
||||
|
||||
|
|
@ -7029,15 +7055,24 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||
vk_subbuffer d_D = ggml_vk_tensor_subbuffer(ctx, cgraph->nodes[node_idx + ctx->num_additional_fused_ops], true);
|
||||
vk_subbuffer d_Qx = ggml_vk_tensor_subbuffer(ctx, src0);
|
||||
vk_subbuffer d_Qy = ggml_vk_tensor_subbuffer(ctx, src1, true);
|
||||
vk_subbuffer d_B = d_D;
|
||||
vk_subbuffer d_F0 = d_D;
|
||||
|
||||
uint32_t enable_bias = ctx->num_additional_fused_ops > 0;
|
||||
uint32_t fusion_flags = 0;
|
||||
|
||||
if (enable_bias) {
|
||||
if (ctx->num_additional_fused_ops > 0) {
|
||||
const ggml_tensor * add = cgraph->nodes[node_idx + 1];
|
||||
const ggml_tensor * bias = add->src[0] == dst ? add->src[1] : add->src[0];
|
||||
|
||||
d_B = ggml_vk_tensor_subbuffer(ctx, bias);
|
||||
d_F0 = ggml_vk_tensor_subbuffer(ctx, bias);
|
||||
fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS0;
|
||||
}
|
||||
|
||||
vk_subbuffer d_F1 = d_D;
|
||||
if (ctx->num_additional_fused_ops > 1) {
|
||||
const ggml_tensor * bias = cgraph->nodes[node_idx + 2]->src[1];
|
||||
|
||||
d_F1 = ggml_vk_tensor_subbuffer(ctx, bias);
|
||||
fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS1;
|
||||
}
|
||||
|
||||
// compute
|
||||
|
|
@ -7046,7 +7081,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||
row_stride_x, channel_stride_x, channel_stride_y,
|
||||
(uint32_t)(ne12 / ne02), (uint32_t)ne12,
|
||||
0, 0,
|
||||
nb03, nb13, nb23, enable_bias
|
||||
nb03, nb13, nb23, fusion_flags
|
||||
};
|
||||
|
||||
init_pushconst_tensor_offsets(ctx, pc, src0, src1, nullptr, nullptr, cgraph->nodes[node_idx + ctx->num_additional_fused_ops]);
|
||||
|
|
@ -7056,7 +7091,8 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||
d_Qx,
|
||||
d_Qy,
|
||||
d_D,
|
||||
d_B,
|
||||
d_F0,
|
||||
d_F1,
|
||||
}, pc, { (uint32_t)ne03, (uint32_t)ne01, (uint32_t)ne12 });
|
||||
}
|
||||
|
||||
|
|
@ -7477,7 +7513,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
|
|||
vk_subbuffer d_Qx = ggml_vk_tensor_subbuffer(ctx, src0);
|
||||
vk_subbuffer d_Qy = ggml_vk_tensor_subbuffer(ctx, src1);
|
||||
vk_subbuffer d_ids = ggml_vk_tensor_subbuffer(ctx, ids);
|
||||
vk_subbuffer d_B = d_D;
|
||||
vk_subbuffer d_F0 = d_D;
|
||||
vk_subbuffer d_X, d_Y;
|
||||
|
||||
if (qx_needs_dequant) {
|
||||
|
|
@ -7530,30 +7566,34 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
|
|||
groups_x = CEIL_DIV(groups_x, groups_z);
|
||||
}
|
||||
|
||||
uint32_t enable_bias = 0;
|
||||
uint32_t enable_scale = 0;
|
||||
if (ctx->num_additional_fused_ops > 0) {
|
||||
if (cgraph->nodes[node_idx + 1]->op == GGML_OP_MUL) {
|
||||
enable_scale = 1;
|
||||
} else {
|
||||
GGML_ASSERT(cgraph->nodes[node_idx + 1]->op == GGML_OP_ADD_ID);
|
||||
enable_bias = 1;
|
||||
}
|
||||
}
|
||||
uint32_t fusion_flags = 0;
|
||||
|
||||
if (enable_bias || enable_scale) {
|
||||
if (ctx->num_additional_fused_ops > 0) {
|
||||
const ggml_tensor * bias = cgraph->nodes[node_idx + 1]->src[1];
|
||||
|
||||
d_B = ggml_vk_tensor_subbuffer(ctx, bias);
|
||||
d_F0 = ggml_vk_tensor_subbuffer(ctx, bias);
|
||||
|
||||
if (cgraph->nodes[node_idx + 1]->op == GGML_OP_MUL) {
|
||||
fusion_flags |= MAT_VEC_FUSION_FLAGS_SCALE0;
|
||||
} else {
|
||||
GGML_ASSERT(cgraph->nodes[node_idx + 1]->op == GGML_OP_ADD_ID);
|
||||
fusion_flags |= MAT_VEC_FUSION_FLAGS_BIAS0;
|
||||
}
|
||||
}
|
||||
|
||||
vk_subbuffer d_F1 = d_D;
|
||||
if (ctx->num_additional_fused_ops > 1) {
|
||||
const ggml_tensor * scale = cgraph->nodes[node_idx + 2]->src[1];
|
||||
|
||||
d_F1 = ggml_vk_tensor_subbuffer(ctx, scale);
|
||||
fusion_flags |= MAT_VEC_FUSION_FLAGS_SCALE1;
|
||||
}
|
||||
|
||||
// compute
|
||||
const vk_mat_vec_id_push_constants pc = {
|
||||
(uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01,
|
||||
(uint32_t)(ne00 * ne01), stride_batch_y, (uint32_t)(ne20 * ne21),
|
||||
|
||||
enable_bias, enable_scale,
|
||||
|
||||
fusion_flags,
|
||||
(uint32_t)nei0, (uint32_t)ne11,
|
||||
};
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
|
||||
|
|
@ -7561,7 +7601,8 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
|
|||
d_X,
|
||||
d_Y,
|
||||
d_D,
|
||||
d_B,
|
||||
d_F0,
|
||||
d_F1,
|
||||
d_ids,
|
||||
},
|
||||
pc, { groups_x, (uint32_t)nei0, groups_z });
|
||||
|
|
@ -12305,10 +12346,7 @@ static bool ggml_vk_can_fuse(const ggml_backend_vk_context * ctx, const struct g
|
|||
return false;
|
||||
}
|
||||
}
|
||||
if (ops.size() == 2 && ops.begin()[0] == GGML_OP_MUL_MAT && ops.begin()[1] == GGML_OP_ADD) {
|
||||
// additional constraints specific to this fusion
|
||||
const ggml_tensor *mul = cgraph->nodes[node_idx];
|
||||
const ggml_tensor *add = cgraph->nodes[node_idx + 1];
|
||||
auto const &mm_add_ok = [&](const ggml_tensor *mul, const ggml_tensor *add) {
|
||||
const ggml_tensor *bias = add->src[0] == mul ? add->src[1] : add->src[0];
|
||||
|
||||
// mat-vec only
|
||||
|
|
@ -12328,8 +12366,60 @@ static bool ggml_vk_can_fuse(const ggml_backend_vk_context * ctx, const struct g
|
|||
if (get_misalign_bytes(ctx, bias) != 0) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
};
|
||||
|
||||
if ((ops.size() == 2 || ops.size() == 3) && ops.begin()[0] == GGML_OP_MUL_MAT && ops.begin()[1] == GGML_OP_ADD) {
|
||||
// additional constraints specific to this fusion
|
||||
const ggml_tensor *mul = cgraph->nodes[node_idx];
|
||||
const ggml_tensor *add = cgraph->nodes[node_idx + 1];
|
||||
|
||||
if (!mm_add_ok(mul, add)) {
|
||||
return false;
|
||||
}
|
||||
if (ops.size() == 2 && ops.begin()[0] == GGML_OP_MUL_MAT_ID && ops.begin()[1] == GGML_OP_ADD_ID) {
|
||||
if (ops.size() == 3) {
|
||||
if (ops.begin()[2] != GGML_OP_ADD) {
|
||||
return false;
|
||||
}
|
||||
if (!mm_add_ok(add, cgraph->nodes[node_idx + 2])) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
auto const &mmid_mul_ok = [&](const ggml_tensor *mmid, const ggml_tensor *mul) {
|
||||
const ggml_tensor *scale = mul->src[1];
|
||||
|
||||
if (mmid != mul->src[0]) {
|
||||
return false;
|
||||
}
|
||||
// mat-vec only
|
||||
if (!ggml_vk_use_mul_mat_vec_id(cgraph, node_idx)) {
|
||||
return false;
|
||||
}
|
||||
// shaders assume the types match
|
||||
if (mmid->type != scale->type) {
|
||||
return false;
|
||||
}
|
||||
// shaders assume the bias is contiguous
|
||||
if (!ggml_is_contiguous(scale)) {
|
||||
return false;
|
||||
}
|
||||
// unaligned bias isn't handled
|
||||
if (get_misalign_bytes(ctx, scale) != 0) {
|
||||
return false;
|
||||
}
|
||||
// shader only indexes by expert index
|
||||
if (scale->ne[0] != 1 ||
|
||||
scale->ne[1] != mul->ne[1] ||
|
||||
scale->ne[2] != 1 ||
|
||||
scale->ne[3] != 1) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
};
|
||||
|
||||
if ((ops.size() == 2 || ops.size() == 3) && ops.begin()[0] == GGML_OP_MUL_MAT_ID && ops.begin()[1] == GGML_OP_ADD_ID) {
|
||||
// additional constraints specific to this fusion
|
||||
const ggml_tensor *mul = cgraph->nodes[node_idx];
|
||||
const ggml_tensor *add = cgraph->nodes[node_idx + 1];
|
||||
|
|
@ -12358,38 +12448,22 @@ static bool ggml_vk_can_fuse(const ggml_backend_vk_context * ctx, const struct g
|
|||
if (get_misalign_bytes(ctx, bias) != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (ops.size() == 3) {
|
||||
if (ops.begin()[2] != GGML_OP_MUL) {
|
||||
return false;
|
||||
}
|
||||
const ggml_tensor *mul = cgraph->nodes[node_idx + 2];
|
||||
return mmid_mul_ok(add, mul);
|
||||
}
|
||||
}
|
||||
|
||||
if (ops.size() == 2 && ops.begin()[0] == GGML_OP_MUL_MAT_ID && ops.begin()[1] == GGML_OP_MUL) {
|
||||
// additional constraints specific to this fusion
|
||||
const ggml_tensor *mmid = cgraph->nodes[node_idx];
|
||||
const ggml_tensor *mul = cgraph->nodes[node_idx + 1];
|
||||
const ggml_tensor *scale = mul->src[1];
|
||||
|
||||
if (mmid != mul->src[0]) {
|
||||
return false;
|
||||
}
|
||||
// mat-vec only
|
||||
if (!ggml_vk_use_mul_mat_vec_id(cgraph, node_idx)) {
|
||||
return false;
|
||||
}
|
||||
// shaders assume the types match
|
||||
if (mmid->type != scale->type) {
|
||||
return false;
|
||||
}
|
||||
// shaders assume the bias is contiguous
|
||||
if (!ggml_is_contiguous(scale)) {
|
||||
return false;
|
||||
}
|
||||
// unaligned bias isn't handled
|
||||
if (get_misalign_bytes(ctx, scale) != 0) {
|
||||
return false;
|
||||
}
|
||||
// shader only indexes by expert index
|
||||
if (scale->ne[0] != 1 ||
|
||||
scale->ne[1] != mul->ne[1] ||
|
||||
scale->ne[2] != 1 ||
|
||||
scale->ne[3] != 1) {
|
||||
if (!mmid_mul_ok(mmid, mul)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
|
@ -12704,8 +12778,12 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
|||
uint32_t num_adds = ggml_vk_fuse_multi_add(ctx, cgraph, i);
|
||||
if (num_adds) {
|
||||
ctx->num_additional_fused_ops = num_adds - 1;
|
||||
} else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_MUL_MAT, GGML_OP_ADD, GGML_OP_ADD })) {
|
||||
ctx->num_additional_fused_ops = 2;
|
||||
} else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_MUL_MAT, GGML_OP_ADD })) {
|
||||
ctx->num_additional_fused_ops = 1;
|
||||
} else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID, GGML_OP_MUL })) {
|
||||
ctx->num_additional_fused_ops = 2;
|
||||
} else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID })) {
|
||||
ctx->num_additional_fused_ops = 1;
|
||||
} else if (ggml_vk_can_fuse(ctx, cgraph, i, { GGML_OP_MUL_MAT_ID, GGML_OP_MUL })) {
|
||||
|
|
@ -12872,6 +12950,8 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
|
|||
|
||||
std::vector<ggml_tensor *> new_order;
|
||||
std::vector<bool> used(graph->n_nodes, false);
|
||||
std::set<ggml_tensor *> used_node_set;
|
||||
|
||||
int first_unused = 0;
|
||||
while (first_unused < graph->n_nodes) {
|
||||
std::vector<int> current_set;
|
||||
|
|
@ -12894,6 +12974,7 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
|
|||
if (match_pattern(pattern, first_unused)) {
|
||||
for (size_t j = 0; j < pattern.size(); ++j) {
|
||||
new_order.push_back(graph->nodes[first_unused + j]);
|
||||
used_node_set.insert(graph->nodes[first_unused + j]);
|
||||
used[first_unused + j] = true;
|
||||
}
|
||||
while (first_unused < graph->n_nodes && used[first_unused]) {
|
||||
|
|
@ -12997,6 +13078,36 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
|
|||
used[set_rows_idx] = true;
|
||||
}
|
||||
}
|
||||
// Look for MUL_MAT_ID + ADD_ID + MUL
|
||||
if (j > 0 &&
|
||||
graph->nodes[j]->op == GGML_OP_ADD_ID &&
|
||||
graph->nodes[j-1]->op == GGML_OP_MUL_MAT_ID) {
|
||||
for (int k = j + 1; k < std::min(j + 15, graph->n_nodes); ++k) {
|
||||
if (graph->nodes[k]->op == GGML_OP_MUL &&
|
||||
graph->nodes[k]->src[0] == graph->nodes[j] &&
|
||||
// src1 must either be weights or already processed
|
||||
(graph->nodes[k]->src[1]->op == GGML_OP_NONE || used_node_set.find(graph->nodes[k]->src[1]) != used_node_set.end())) {
|
||||
current_set.push_back(k);
|
||||
used[k] = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Look for MUL_MAT + ADD + ADD
|
||||
if (j > 0 &&
|
||||
graph->nodes[j]->op == GGML_OP_ADD &&
|
||||
graph->nodes[j-1]->op == GGML_OP_MUL_MAT) {
|
||||
for (int k = j + 1; k < std::min(j + 15, graph->n_nodes); ++k) {
|
||||
if (graph->nodes[k]->op == GGML_OP_ADD &&
|
||||
graph->nodes[k]->src[0] == graph->nodes[j] &&
|
||||
// src1 must either be weights or already processed
|
||||
(graph->nodes[k]->src[1]->op == GGML_OP_NONE || used_node_set.find(graph->nodes[k]->src[1]) != used_node_set.end())) {
|
||||
current_set.push_back(k);
|
||||
used[k] = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Second pass grabs view nodes.
|
||||
|
|
@ -13029,6 +13140,7 @@ static void ggml_vk_graph_optimize(ggml_backend_t backend, struct ggml_cgraph *
|
|||
// Push the current set into new_order
|
||||
for (auto c : current_set) {
|
||||
new_order.push_back(graph->nodes[c]);
|
||||
used_node_set.insert(graph->nodes[c]);
|
||||
used[c] = true;
|
||||
}
|
||||
while (first_unused < graph->n_nodes && used[first_unused]) {
|
||||
|
|
|
|||
|
|
@ -11,29 +11,7 @@
|
|||
#define EXPERT_COUNT 8
|
||||
#endif
|
||||
|
||||
#include "types.glsl"
|
||||
|
||||
#ifndef MMQ
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
#else
|
||||
layout (binding = 0) readonly buffer A {A_TYPE_PACKED16 data_a[];};
|
||||
#endif
|
||||
|
||||
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
|
||||
#ifdef B_TYPE_VEC2
|
||||
layout (binding = 1) readonly buffer BV2 {B_TYPE_VEC2 data_b_v2[];};
|
||||
#endif
|
||||
#ifdef B_TYPE_VEC4
|
||||
layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];};
|
||||
#endif
|
||||
|
||||
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
|
||||
|
||||
layout (binding = 3) readonly buffer Bias {D_TYPE data_bias[];};
|
||||
|
||||
#ifdef MUL_MAT_ID
|
||||
layout (binding = 4) readonly buffer IDS {int data_ids[];};
|
||||
#endif
|
||||
#include "mul_mat_vec_iface.glsl"
|
||||
|
||||
#include "dequant_funcs.glsl"
|
||||
|
||||
|
|
@ -48,8 +26,7 @@ layout (push_constant) uniform parameter
|
|||
uint batch_stride_b;
|
||||
uint batch_stride_d;
|
||||
|
||||
uint enable_bias;
|
||||
uint enable_scale;
|
||||
uint fusion_flags;
|
||||
|
||||
#ifdef MUL_MAT_ID
|
||||
uint nei0;
|
||||
|
|
@ -123,17 +100,24 @@ void reduce_result(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t
|
|||
if (tid == 0) {
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
if (p.enable_bias != 0) {
|
||||
#ifdef MUL_MAT_ID
|
||||
temp[j][n] += FLOAT_TYPE(data_bias[expert_id*p.stride_d + first_row + n]);
|
||||
#else
|
||||
temp[j][n] += FLOAT_TYPE(data_bias[j*p.batch_stride_d + d_offset + first_row + n]);
|
||||
#endif
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_BIAS0) != 0) {
|
||||
temp[j][n] += FLOAT_TYPE(data_fuse0[expert_id*p.stride_d + first_row + n]);
|
||||
}
|
||||
#ifdef MUL_MAT_ID
|
||||
if (p.enable_scale != 0) {
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_SCALE0) != 0) {
|
||||
const uint expert_idx = gl_GlobalInvocationID.y;
|
||||
temp[j][n] *= FLOAT_TYPE(data_bias[expert_idx]);
|
||||
temp[j][n] *= FLOAT_TYPE(data_fuse0[expert_idx]);
|
||||
}
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_SCALE1) != 0) {
|
||||
const uint expert_idx = gl_GlobalInvocationID.y;
|
||||
temp[j][n] *= FLOAT_TYPE(data_fuse1[expert_idx]);
|
||||
}
|
||||
#else
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_BIAS0) != 0) {
|
||||
temp[j][n] += FLOAT_TYPE(data_fuse0[j*p.batch_stride_d + d_offset + first_row + n]);
|
||||
}
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_BIAS1) != 0) {
|
||||
temp[j][n] += FLOAT_TYPE(data_fuse1[j*p.batch_stride_d + d_offset + first_row + n]);
|
||||
}
|
||||
#endif
|
||||
data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(temp[j][n]);
|
||||
|
|
@ -171,17 +155,24 @@ void reduce_result(FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offs
|
|||
[[unroll]] for (uint s = 0; s < gl_NumSubgroups; ++s) {
|
||||
temp[j][n] += tmpsh[j][n][s];
|
||||
}
|
||||
if (p.enable_bias != 0) {
|
||||
#ifdef MUL_MAT_ID
|
||||
temp[j][n] += FLOAT_TYPE(data_bias[expert_id*p.stride_d + first_row + n]);
|
||||
#else
|
||||
temp[j][n] += FLOAT_TYPE(data_bias[j*p.batch_stride_d + d_offset + first_row + n]);
|
||||
#endif
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_BIAS0) != 0) {
|
||||
temp[j][n] += FLOAT_TYPE(data_fuse0[expert_id*p.stride_d + first_row + n]);
|
||||
}
|
||||
#ifdef MUL_MAT_ID
|
||||
if (p.enable_scale != 0) {
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_SCALE0) != 0) {
|
||||
const uint expert_idx = gl_GlobalInvocationID.y;
|
||||
temp[j][n] *= FLOAT_TYPE(data_bias[expert_idx]);
|
||||
temp[j][n] *= FLOAT_TYPE(data_fuse0[expert_idx]);
|
||||
}
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_SCALE1) != 0) {
|
||||
const uint expert_idx = gl_GlobalInvocationID.y;
|
||||
temp[j][n] *= FLOAT_TYPE(data_fuse1[expert_idx]);
|
||||
}
|
||||
#else
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_BIAS0) != 0) {
|
||||
temp[j][n] += FLOAT_TYPE(data_fuse0[j*p.batch_stride_d + d_offset + first_row + n]);
|
||||
}
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_BIAS1) != 0) {
|
||||
temp[j][n] += FLOAT_TYPE(data_fuse1[j*p.batch_stride_d + d_offset + first_row + n]);
|
||||
}
|
||||
#endif
|
||||
data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(temp[j][n]);
|
||||
|
|
@ -209,17 +200,24 @@ void reduce_result(FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offs
|
|||
if (tid == 0) {
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
if (p.enable_bias != 0) {
|
||||
#ifdef MUL_MAT_ID
|
||||
tmpsh[j][n][0] += FLOAT_TYPE(data_bias[expert_id*p.stride_d + first_row + n]);
|
||||
#else
|
||||
tmpsh[j][n][0] += FLOAT_TYPE(data_bias[j*p.batch_stride_d + d_offset + first_row + n]);
|
||||
#endif
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_BIAS0) != 0) {
|
||||
tmpsh[j][n][0] += FLOAT_TYPE(data_fuse0[expert_id*p.stride_d + first_row + n]);
|
||||
}
|
||||
#ifdef MUL_MAT_ID
|
||||
if (p.enable_scale != 0) {
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_SCALE0) != 0) {
|
||||
const uint expert_idx = gl_GlobalInvocationID.y;
|
||||
tmpsh[j][n][0] *= FLOAT_TYPE(data_bias[expert_idx]);
|
||||
tmpsh[j][n][0] *= FLOAT_TYPE(data_fuse0[expert_idx]);
|
||||
}
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_SCALE1) != 0) {
|
||||
const uint expert_idx = gl_GlobalInvocationID.y;
|
||||
tmpsh[j][n][0] *= FLOAT_TYPE(data_fuse1[expert_idx]);
|
||||
}
|
||||
#else
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_BIAS0) != 0) {
|
||||
tmpsh[j][n][0] += FLOAT_TYPE(data_fuse0[j*p.batch_stride_d + d_offset + first_row + n]);
|
||||
}
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_BIAS1) != 0) {
|
||||
tmpsh[j][n][0] += FLOAT_TYPE(data_fuse1[j*p.batch_stride_d + d_offset + first_row + n]);
|
||||
}
|
||||
#endif
|
||||
data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(tmpsh[j][n][0]);
|
||||
|
|
|
|||
|
|
@ -0,0 +1,33 @@
|
|||
#include "types.glsl"
|
||||
|
||||
#define MAT_VEC_FUSION_FLAGS_BIAS0 0x1
|
||||
#define MAT_VEC_FUSION_FLAGS_BIAS1 0x2
|
||||
#define MAT_VEC_FUSION_FLAGS_SCALE0 0x4
|
||||
#define MAT_VEC_FUSION_FLAGS_SCALE1 0x8
|
||||
|
||||
#ifndef MMQ
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
#if defined(A_TYPE_VEC4)
|
||||
layout (binding = 0) readonly buffer AV4 {A_TYPE_VEC4 data_a_v4[];};
|
||||
#endif
|
||||
#else
|
||||
layout (binding = 0) readonly buffer A {A_TYPE_PACKED16 data_a[];};
|
||||
#endif
|
||||
|
||||
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
|
||||
#ifdef B_TYPE_VEC2
|
||||
layout (binding = 1) readonly buffer BV2 {B_TYPE_VEC2 data_b_v2[];};
|
||||
#endif
|
||||
#ifdef B_TYPE_VEC4
|
||||
layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];};
|
||||
#endif
|
||||
|
||||
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
|
||||
|
||||
layout (binding = 3) readonly buffer Fuse0 {D_TYPE data_fuse0[];};
|
||||
layout (binding = 4) readonly buffer Fuse1 {D_TYPE data_fuse1[];};
|
||||
|
||||
#ifdef MUL_MAT_ID
|
||||
layout (binding = 5) readonly buffer IDS {int data_ids[];};
|
||||
#endif
|
||||
|
||||
|
|
@ -8,14 +8,7 @@
|
|||
|
||||
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
|
||||
layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
|
||||
|
||||
layout (binding = 0) readonly buffer AV4 {A_TYPE_VEC4 data_a_v4[];};
|
||||
layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];};
|
||||
|
||||
layout (binding = 3) readonly buffer Bias {D_TYPE data_bias[];};
|
||||
#include "mul_mat_vec_iface.glsl"
|
||||
|
||||
layout (push_constant) uniform parameter
|
||||
{
|
||||
|
|
@ -31,7 +24,7 @@ layout (push_constant) uniform parameter
|
|||
uint nb03;
|
||||
uint nb13;
|
||||
uint nb23;
|
||||
uint enable_bias;
|
||||
uint fusion_flags;
|
||||
} p;
|
||||
|
||||
shared FLOAT_TYPE tmp[BLOCK_SIZE];
|
||||
|
|
@ -120,9 +113,12 @@ void main() {
|
|||
}
|
||||
|
||||
if (tid == 0) {
|
||||
if (p.enable_bias != 0) {
|
||||
tmp[0] += FLOAT_TYPE(data_bias[idst]);
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_BIAS0) != 0) {
|
||||
tmp[0] += FLOAT_TYPE(data_fuse0[idst]);
|
||||
}
|
||||
dst[idst] = tmp[0];
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_BIAS1) != 0) {
|
||||
tmp[0] += FLOAT_TYPE(data_fuse1[idst]);
|
||||
}
|
||||
data_d[idst] = tmp[0];
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -10,14 +10,7 @@
|
|||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
|
||||
layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
|
||||
|
||||
layout (binding = 0) readonly buffer AV4 {A_TYPE_VEC4 data_a_v4[];};
|
||||
layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];};
|
||||
|
||||
layout (binding = 3) readonly buffer Bias {D_TYPE data_bias[];};
|
||||
#include "mul_mat_vec_iface.glsl"
|
||||
|
||||
layout(constant_id = 0) const int BLOCK_SIZE = 32;
|
||||
// gqa_ratio is in the range [1,8]
|
||||
|
|
@ -31,7 +24,7 @@ layout (push_constant) uniform parameter
|
|||
uint nchannels_y;
|
||||
uint b_offset;
|
||||
uint d_offset;
|
||||
uint enable_bias;
|
||||
uint fusion_flags;
|
||||
} p;
|
||||
|
||||
#if !USE_SUBGROUP_ADD
|
||||
|
|
@ -151,10 +144,13 @@ void main() {
|
|||
[[unroll]] for (uint c = 0; c < gqa_ratio; ++c) {
|
||||
// dst is not transposed and not permuted
|
||||
const uint idst = (channel + c)*nrows_dst + row_dst;
|
||||
if (p.enable_bias != 0) {
|
||||
temp[c] += FLOAT_TYPE(data_bias[idst]);
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_BIAS0) != 0) {
|
||||
temp[c] += FLOAT_TYPE(data_fuse0[idst]);
|
||||
}
|
||||
dst[idst] = temp[c];
|
||||
if ((p.fusion_flags & MAT_VEC_FUSION_FLAGS_BIAS1) != 0) {
|
||||
temp[c] += FLOAT_TYPE(data_fuse1[idst]);
|
||||
}
|
||||
data_d[idst] = temp[c];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -5002,17 +5002,19 @@ struct test_mul_mat_vec_fusion : public test_case {
|
|||
const bool b; // broadcast b matrix (only for use_id)
|
||||
const bool with_bias;
|
||||
const bool with_gate;
|
||||
std::array<int64_t, 2> batch_dims;
|
||||
|
||||
test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
|
||||
bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true)
|
||||
: type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate) {
|
||||
bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true,
|
||||
std::array<int64_t, 2> batch_dims = {4, 2})
|
||||
: type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate), batch_dims(batch_dims) {
|
||||
if (use_id) {
|
||||
GGML_ASSERT(n_used <= n_mats);
|
||||
}
|
||||
}
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR11(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate);
|
||||
return VARS_TO_STR12(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate, batch_dims);
|
||||
}
|
||||
|
||||
std::string op_desc(ggml_tensor * t) override {
|
||||
|
|
@ -5038,8 +5040,8 @@ struct test_mul_mat_vec_fusion : public test_case {
|
|||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
if (!use_id) {
|
||||
const int channels = 4;
|
||||
const int samples = 2;
|
||||
const int channels = batch_dims[0];
|
||||
const int samples = batch_dims[1];
|
||||
std::array<int64_t, 4> ne = { k, m, channels, samples };
|
||||
std::array<int64_t, 4> ne0 = { k, n, channels, samples };
|
||||
|
||||
|
|
@ -5062,6 +5064,11 @@ struct test_mul_mat_vec_fusion : public test_case {
|
|||
}
|
||||
|
||||
ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
|
||||
|
||||
std::array<int64_t, 4> bias2_ne = { out->ne[0], 1, channels, samples };
|
||||
ggml_tensor * bias2 = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias2_ne.data());
|
||||
out = ggml_add(ctx, out, bias2);
|
||||
|
||||
ggml_set_name(out, "out");
|
||||
return out;
|
||||
} else {
|
||||
|
|
@ -5089,6 +5096,11 @@ struct test_mul_mat_vec_fusion : public test_case {
|
|||
}
|
||||
|
||||
ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
|
||||
|
||||
std::array<int64_t, 4> scale_ne { 1, out->ne[1], out->ne[2], out->ne[3] };
|
||||
ggml_tensor * scale = ggml_new_tensor(ctx, out->type, 4, scale_ne.data());
|
||||
out = ggml_mul(ctx, out, scale);
|
||||
|
||||
ggml_set_name(out, "out");
|
||||
return out;
|
||||
}
|
||||
|
|
@ -7645,6 +7657,8 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|||
}
|
||||
test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
|
||||
use_id, 16, 8, b, with_bias, with_gate));
|
||||
test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
|
||||
use_id, 16, 8, b, with_bias, with_gate, {1, 1}));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue