Few more changes and tweaks

This commit is contained in:
Colin Kealty 2025-04-02 22:32:59 -04:00
parent 3f8d7a2582
commit 105261d2ba
2 changed files with 114 additions and 45 deletions

View File

@ -378,8 +378,8 @@ typedef struct {
} block_iq3_xxs;
static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_half) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
// 3.4375 bpw
#define IQ3S_N_SCALE QK_K/64
// 3.4375 bpw
typedef struct {
ggml_half d;
uint8_t qs[QK_K/4];

View File

@ -84,10 +84,22 @@ struct quantize_state_impl {
int n_ffn_down = 0;
int n_ffn_gate = 0;
int n_ffn_up = 0;
int n_ffn_down_exp = 0;
int n_ffn_gate_exp = 0;
int n_ffn_up_exp = 0;
int n_ffn_down_shexp = 0;
int n_ffn_gate_shexp = 0;
int n_ffn_up_shexp = 0;
int i_attention_wv = 0;
int i_ffn_down = 0;
int i_ffn_gate = 0;
int i_ffn_up = 0;
int i_ffn_down_exp = 0;
int i_ffn_gate_exp = 0;
int i_ffn_up_exp = 0;
int i_ffn_down_shexp = 0;
int i_ffn_gate_shexp = 0;
int i_ffn_up_shexp = 0;
int n_k_quantized = 0;
int n_fallback = 0;
@ -175,6 +187,23 @@ static void llama_tensor_dequantize_impl(
workers.clear();
}
// Check if ftype is specifically IQ2_S or IQ2_M
static inline bool is_iq2s_or_iq2m(llama_ftype ftype) {
return ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M;
}
// Check if ftype belongs to the IQ1 group
static inline bool is_iq1_group(llama_ftype ftype) {
return ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M;
}
// Returns the appropriate type for expert _exps tensors based on ftype
static inline ggml_type get_expert_exps_type(llama_ftype ftype) {
if (is_iq1_group(ftype)) return GGML_TYPE_IQ2_XXS;
if (is_iq2s_or_iq2m(ftype)) return GGML_TYPE_IQ3_XXS;
/* otherwise */ return GGML_TYPE_IQ2_XS;
}
static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
const std::string name = ggml_get_name(tensor);
@ -242,7 +271,7 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
new_type = GGML_TYPE_Q2_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
else if (is_iq2s_or_iq2m(ftype)) {
new_type = GGML_TYPE_IQ3_S;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
@ -256,7 +285,7 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
if (name.find("attn_v.weight") != std::string::npos) {
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
else new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
++qs.i_attention_wv;
}
else if (qs.model.hparams.n_expert >= 8 && name.find("attn_k.weight") != std::string::npos) {
@ -266,11 +295,11 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t
new_type = GGML_TYPE_Q4_K;
}
else if (qs.model.hparams.n_expert >= 8 && name.find("attn_kv_b.weight") != std::string::npos) {
if (qs.i_attention_wv < qs.n_attention_wv/16) {
if (qs.i_attention_wv < qs.n_attention_wv/8) {
new_type = GGML_TYPE_Q4_K;
}
else if (use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) {
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
}
++qs.i_attention_wv;
}
@ -278,47 +307,83 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t
new_type = GGML_TYPE_Q4_K;
}
else if (qs.model.hparams.n_expert >= 8 && name.find("attn_q_b.weight") != std::string::npos) {
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
}
else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_down") != std::string::npos) {
else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_down.weight") != std::string::npos) {
if (qs.i_ffn_down < qs.n_ffn_down/16) {
new_type = GGML_TYPE_Q4_K;
}
else if (qs.i_ffn_down < qs.n_ffn_down/8) {
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
}
++qs.i_ffn_down;
}
else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_gate") != std::string::npos) {
else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_gate.weight") != std::string::npos) {
if (qs.i_ffn_gate < qs.n_ffn_gate/16) {
new_type = GGML_TYPE_Q4_K;
}
else if (qs.i_ffn_gate < qs.n_ffn_gate/8 || qs.i_ffn_gate >= 7*qs.n_ffn_gate/8) {
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
else if (qs.i_ffn_gate < qs.n_ffn_gate/8) {
new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
}
++qs.i_ffn_gate;
}
else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_up") != std::string::npos) {
else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_up.weight") != std::string::npos) {
if (qs.i_ffn_up < qs.n_ffn_up/16) {
new_type = GGML_TYPE_Q4_K;
}
else if (qs.i_ffn_up < qs.n_ffn_up/8) {
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
}
++qs.i_ffn_up;
}
else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_down_exps.weight") != std::string::npos) {
if (qs.i_ffn_down_exp < qs.n_ffn_down_exp/8) {
new_type = get_expert_exps_type(ftype);
}
++qs.i_ffn_down_exp;
}
else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_gate_exps.weight") != std::string::npos) {
if (qs.i_ffn_gate_exp < qs.n_ffn_gate_exp/8) {
new_type = get_expert_exps_type(ftype);
}
++qs.i_ffn_gate_exp;
}
else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_up_exps.weight") != std::string::npos) {
if (qs.i_ffn_up_exp < qs.n_ffn_up_exp/8) {
new_type = get_expert_exps_type(ftype);
}
++qs.i_ffn_up_exp;
}
else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_down_shexp.weight") != std::string::npos) {
if (use_more_bits(qs.i_ffn_down_shexp, qs.n_ffn_down_shexp)) {
new_type = GGML_TYPE_Q4_K;
}
++qs.i_ffn_down_shexp;
}
else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_gate_shexp.weight") != std::string::npos) {
if (use_more_bits(qs.i_ffn_gate_shexp, qs.n_ffn_gate_shexp)) {
new_type = GGML_TYPE_Q4_K;
}
++qs.i_ffn_gate_shexp;
}
else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_up_shexp.weight") != std::string::npos) {
if (use_more_bits(qs.i_ffn_up_shexp, qs.n_ffn_up_shexp)) {
new_type = GGML_TYPE_Q4_K;
}
++qs.i_ffn_up_shexp;
}
else if (name.find("ffn_down") != std::string::npos) {
if (qs.i_ffn_down < qs.n_ffn_down/8) {
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
}
++qs.i_ffn_down;
}
else if (name.find("attn_output.weight") != std::string::npos) {
if (qs.model.hparams.n_expert >= 8) {
new_type = GGML_TYPE_Q5_K;
new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
if (is_iq1_group(ftype)) new_type = GGML_TYPE_IQ2_XXS;
else if (is_iq2s_or_iq2m(ftype)) new_type = GGML_TYPE_IQ3_S;
}
}
} else if (name.find("attn_v.weight") != std::string::npos) {
@ -465,38 +530,28 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t
new_type = GGML_TYPE_IQ3_XXS;
}
++qs.i_ffn_up;
} else if (name.find("attn_kv_a_mqa") != std::string::npos) {
if (qs.model.hparams.n_expert >= 8) {
} else if (qs.model.hparams.n_expert >= 8 && name.find("attn_kv_a_mqa.weight") != std::string::npos) {
new_type = GGML_TYPE_Q8_0;
} else if (qs.model.hparams.n_expert >= 8 && name.find("attn_kv_b.weight") != std::string::npos) {
new_type = GGML_TYPE_Q4_K;
if (qs.i_attention_wv < qs.n_attention_wv/16) {
new_type = GGML_TYPE_Q8_0;
} else if (use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) {
new_type = GGML_TYPE_Q6_K;
}
} else if (name.find("attn_kv_b.weight") != std::string::npos) {
if (qs.model.hparams.n_expert >= 8) {
new_type = GGML_TYPE_Q4_K;
if (qs.i_attention_wv < qs.n_attention_wv/16) {
new_type = GGML_TYPE_Q8_0;
} else if (use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) {
new_type = GGML_TYPE_Q6_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
++qs.i_attention_wv;
} else if (name.find("attn_q_b.weight") != std::string::npos) {
if (qs.model.hparams.n_expert >= 8) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
}
} else if (name.find("attn_q_a.weight") != std::string::npos) {
if (qs.model.hparams.n_expert >= 8) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
} else if (qs.model.hparams.n_expert >= 8 &&name.find("attn_q_b.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
} else if (qs.model.hparams.n_expert >= 8 && name.find("attn_q_a.weight") != std::string::npos) {
new_type = GGML_TYPE_Q5_K;
if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q8_0;
}
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
@ -793,11 +848,25 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
++qs.n_attention_wv;
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
qs.has_output = true;
} else if (name.find("ffn_gate_exps.weight") != std::string::npos) {
++qs.n_ffn_gate_exp;
} else if (name.find("ffn_gate_shexp.weight") != std::string::npos) {
++qs.n_ffn_gate_shexp;
} else if (name.find("ffn_down_exps.weight") != std::string::npos) {
++qs.n_ffn_down_exp;
} else if (name.find("ffn_down_shexp.weight") != std::string::npos) {
++qs.n_ffn_down_shexp;
} else if (name.find("ffn_up_exps.weight") != std::string::npos) {
++qs.n_ffn_up_exp;
} else if (name.find("ffn_up_shexp.weight") != std::string::npos) {
++qs.n_ffn_up_shexp;
}
is_clip_model |= name.rfind("mm.", 0) == 0; // check the "mm." prefix
}
GGML_ASSERT(qs.n_ffn_down_exp != 0);
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
// sanity checks for models that have attention layers