diff --git a/ggml/src/ggml-common.h b/ggml/src/ggml-common.h index 93ab7ea446..5e61c44f34 100644 --- a/ggml/src/ggml-common.h +++ b/ggml/src/ggml-common.h @@ -378,8 +378,8 @@ typedef struct { } block_iq3_xxs; static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_half) + 3*(QK_K/8), "wrong iq3_xxs block size/padding"); -// 3.4375 bpw #define IQ3S_N_SCALE QK_K/64 +// 3.4375 bpw typedef struct { ggml_half d; uint8_t qs[QK_K/4]; diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp index 7f854d0cb0..3e56b2b86c 100644 --- a/src/llama-quant.cpp +++ b/src/llama-quant.cpp @@ -84,10 +84,22 @@ struct quantize_state_impl { int n_ffn_down = 0; int n_ffn_gate = 0; int n_ffn_up = 0; + int n_ffn_down_exp = 0; + int n_ffn_gate_exp = 0; + int n_ffn_up_exp = 0; + int n_ffn_down_shexp = 0; + int n_ffn_gate_shexp = 0; + int n_ffn_up_shexp = 0; int i_attention_wv = 0; int i_ffn_down = 0; int i_ffn_gate = 0; int i_ffn_up = 0; + int i_ffn_down_exp = 0; + int i_ffn_gate_exp = 0; + int i_ffn_up_exp = 0; + int i_ffn_down_shexp = 0; + int i_ffn_gate_shexp = 0; + int i_ffn_up_shexp = 0; int n_k_quantized = 0; int n_fallback = 0; @@ -175,6 +187,23 @@ static void llama_tensor_dequantize_impl( workers.clear(); } +// Check if ftype is specifically IQ2_S or IQ2_M +static inline bool is_iq2s_or_iq2m(llama_ftype ftype) { + return ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M; +} + +// Check if ftype belongs to the IQ1 group +static inline bool is_iq1_group(llama_ftype ftype) { + return ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M; +} + +// Returns the appropriate type for expert _exps tensors based on ftype +static inline ggml_type get_expert_exps_type(llama_ftype ftype) { + if (is_iq1_group(ftype)) return GGML_TYPE_IQ2_XXS; + if (is_iq2s_or_iq2m(ftype)) return GGML_TYPE_IQ3_XXS; + /* otherwise */ return GGML_TYPE_IQ2_XS; +} + static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) { const std::string name = ggml_get_name(tensor); @@ -242,7 +271,7 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { new_type = GGML_TYPE_Q2_K; } - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { + else if (is_iq2s_or_iq2m(ftype)) { new_type = GGML_TYPE_IQ3_S; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { @@ -256,7 +285,7 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { if (name.find("attn_v.weight") != std::string::npos) { if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K; - else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + else new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; ++qs.i_attention_wv; } else if (qs.model.hparams.n_expert >= 8 && name.find("attn_k.weight") != std::string::npos) { @@ -266,11 +295,11 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t new_type = GGML_TYPE_Q4_K; } else if (qs.model.hparams.n_expert >= 8 && name.find("attn_kv_b.weight") != std::string::npos) { - if (qs.i_attention_wv < qs.n_attention_wv/16) { + if (qs.i_attention_wv < qs.n_attention_wv/8) { new_type = GGML_TYPE_Q4_K; } else if (use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) { - new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; } ++qs.i_attention_wv; } @@ -278,47 +307,83 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t new_type = GGML_TYPE_Q4_K; } else if (qs.model.hparams.n_expert >= 8 && name.find("attn_q_b.weight") != std::string::npos) { - new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; } - else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_down") != std::string::npos) { + else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_down.weight") != std::string::npos) { if (qs.i_ffn_down < qs.n_ffn_down/16) { new_type = GGML_TYPE_Q4_K; } else if (qs.i_ffn_down < qs.n_ffn_down/8) { - new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; } ++qs.i_ffn_down; } - else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_gate") != std::string::npos) { + else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_gate.weight") != std::string::npos) { if (qs.i_ffn_gate < qs.n_ffn_gate/16) { new_type = GGML_TYPE_Q4_K; } - else if (qs.i_ffn_gate < qs.n_ffn_gate/8 || qs.i_ffn_gate >= 7*qs.n_ffn_gate/8) { - new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + else if (qs.i_ffn_gate < qs.n_ffn_gate/8) { + new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; } ++qs.i_ffn_gate; } - else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_up") != std::string::npos) { + else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_up.weight") != std::string::npos) { if (qs.i_ffn_up < qs.n_ffn_up/16) { new_type = GGML_TYPE_Q4_K; } else if (qs.i_ffn_up < qs.n_ffn_up/8) { - new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; } ++qs.i_ffn_up; } + else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_down_exps.weight") != std::string::npos) { + if (qs.i_ffn_down_exp < qs.n_ffn_down_exp/8) { + new_type = get_expert_exps_type(ftype); + } + ++qs.i_ffn_down_exp; + } + else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_gate_exps.weight") != std::string::npos) { + if (qs.i_ffn_gate_exp < qs.n_ffn_gate_exp/8) { + new_type = get_expert_exps_type(ftype); + } + ++qs.i_ffn_gate_exp; + } + else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_up_exps.weight") != std::string::npos) { + if (qs.i_ffn_up_exp < qs.n_ffn_up_exp/8) { + new_type = get_expert_exps_type(ftype); + } + ++qs.i_ffn_up_exp; + } + else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_down_shexp.weight") != std::string::npos) { + if (use_more_bits(qs.i_ffn_down_shexp, qs.n_ffn_down_shexp)) { + new_type = GGML_TYPE_Q4_K; + } + ++qs.i_ffn_down_shexp; + } + else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_gate_shexp.weight") != std::string::npos) { + if (use_more_bits(qs.i_ffn_gate_shexp, qs.n_ffn_gate_shexp)) { + new_type = GGML_TYPE_Q4_K; + } + ++qs.i_ffn_gate_shexp; + } + else if (qs.model.hparams.n_expert >= 8 && name.find("ffn_up_shexp.weight") != std::string::npos) { + if (use_more_bits(qs.i_ffn_up_shexp, qs.n_ffn_up_shexp)) { + new_type = GGML_TYPE_Q4_K; + } + ++qs.i_ffn_up_shexp; + } else if (name.find("ffn_down") != std::string::npos) { if (qs.i_ffn_down < qs.n_ffn_down/8) { - new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; } ++qs.i_ffn_down; } else if (name.find("attn_output.weight") != std::string::npos) { if (qs.model.hparams.n_expert >= 8) { - new_type = GGML_TYPE_Q5_K; + new_type = is_iq2s_or_iq2m(ftype) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else { - if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS; - else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S; + if (is_iq1_group(ftype)) new_type = GGML_TYPE_IQ2_XXS; + else if (is_iq2s_or_iq2m(ftype)) new_type = GGML_TYPE_IQ3_S; } } } else if (name.find("attn_v.weight") != std::string::npos) { @@ -465,38 +530,28 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t new_type = GGML_TYPE_IQ3_XXS; } ++qs.i_ffn_up; - } else if (name.find("attn_kv_a_mqa") != std::string::npos) { - if (qs.model.hparams.n_expert >= 8) { + } else if (qs.model.hparams.n_expert >= 8 && name.find("attn_kv_a_mqa.weight") != std::string::npos) { + new_type = GGML_TYPE_Q8_0; + } else if (qs.model.hparams.n_expert >= 8 && name.find("attn_kv_b.weight") != std::string::npos) { + new_type = GGML_TYPE_Q4_K; + if (qs.i_attention_wv < qs.n_attention_wv/16) { new_type = GGML_TYPE_Q8_0; + } else if (use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) { + new_type = GGML_TYPE_Q6_K; } - } else if (name.find("attn_kv_b.weight") != std::string::npos) { - if (qs.model.hparams.n_expert >= 8) { - new_type = GGML_TYPE_Q4_K; - if (qs.i_attention_wv < qs.n_attention_wv/16) { - new_type = GGML_TYPE_Q8_0; - } else if (use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) { - new_type = GGML_TYPE_Q6_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) new_type = GGML_TYPE_Q5_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; - } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) new_type = GGML_TYPE_Q5_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; ++qs.i_attention_wv; - } else if (name.find("attn_q_b.weight") != std::string::npos) { - if (qs.model.hparams.n_expert >= 8) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { - new_type = GGML_TYPE_Q4_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; - } - } else if (name.find("attn_q_a.weight") != std::string::npos) { - if (qs.model.hparams.n_expert >= 8) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { - new_type = GGML_TYPE_Q4_K; - } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; + } else if (qs.model.hparams.n_expert >= 8 &&name.find("attn_q_b.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { + new_type = GGML_TYPE_Q4_K; } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q5_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; + } else if (qs.model.hparams.n_expert >= 8 && name.find("attn_q_a.weight") != std::string::npos) { + new_type = GGML_TYPE_Q5_K; + if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q6_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q8_0; } // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; @@ -793,11 +848,25 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std:: ++qs.n_attention_wv; } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) { qs.has_output = true; + } else if (name.find("ffn_gate_exps.weight") != std::string::npos) { + ++qs.n_ffn_gate_exp; + } else if (name.find("ffn_gate_shexp.weight") != std::string::npos) { + ++qs.n_ffn_gate_shexp; + } else if (name.find("ffn_down_exps.weight") != std::string::npos) { + ++qs.n_ffn_down_exp; + } else if (name.find("ffn_down_shexp.weight") != std::string::npos) { + ++qs.n_ffn_down_shexp; + } else if (name.find("ffn_up_exps.weight") != std::string::npos) { + ++qs.n_ffn_up_exp; + } else if (name.find("ffn_up_shexp.weight") != std::string::npos) { + ++qs.n_ffn_up_shexp; } is_clip_model |= name.rfind("mm.", 0) == 0; // check the "mm." prefix } + GGML_ASSERT(qs.n_ffn_down_exp != 0); + qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer; // sanity checks for models that have attention layers