adapt to new data format

This commit is contained in:
HappyZ 2018-02-01 21:30:16 -06:00
parent 7d8adf67d6
commit 2742e2fe10
2 changed files with 143 additions and 45 deletions

View File

@ -1,48 +1,122 @@
figure(1);
clf; hold on;
clear all;
% desired_result = [60:30:1200, 120, 170, 200, 430, 1000, 1300:100:2000];
desired_result = 100:100:2500;
median_result = zeros(size(desired_result));
mean_result = zeros(size(desired_result));
diff_result = zeros(size(desired_result));
folder = 'calibration_data/new_indoor/';
files = dir(folder);
targets = zeros(1, length(files));
for i = length(files):-1:1
if (~contains(files(i).name, 'result') ||...
contains(files(i).name, 'left') ||...
contains(files(i).name, 'right') ||...
contains(files(i).name, 'ap') ||...
contains(files(i).name, 'down') ||...
contains(files(i).name, 'up'))
files(i) = [];
targets(i) = [];
else
targets(i) = sscanf(files(i).name, 'result_%dcm.txt');
end
end
[targets, orderI] = sort(targets);
files = files(orderI);
median_result = zeros(1, length(files));
mean_result = zeros(1, length(files));
all_data = [];
for i = 1:length(desired_result)
dist = desired_result(i);
filename = ['calibration_data/outdoor/result_', num2str(dist), 'cm.txt'];
figure(1); clf; hold on;
for i = 1:length(files)
filename = [folder, files(i).name];
fileID = fopen(filename, 'r');
sizeData = [9 Inf];
formatSpec = [...
'Target: %x:%x:%x:%x:%x:%x, status: %d, ',...
'rtt: %d psec, distance: %d cm\n'...
];
data = fscanf(fileID, formatSpec, sizeData);
data(:, data(7, :) ~= 0) = [];
data(:, data(9, :) < -1000) = [];
data = fscanf(fileID, formatSpec, [9 Inf]);
fclose(fileID);
if isempty(data)
data = readtable(filename);
if isempty(data)
continue
end
caliDist = table2array(data(:, 2))';
rawRTT = table2array(data(:, 3))';
rawRTTVar = table2array(data(:, 4))';
rawDist = table2array(data(:, 5))';
rawDistVar = table2array(data(:, 6))';
rssi = table2array(data(:, 7))';
time = table2array(data(:, 8))';
else
% get rid of invalid data
data(:, data(7, :) ~= 0) = [];
data(:, data(9, :) < -1000) = [];
rawDist = data(9, :);
end
fprintf('distance: %d:\n', dist);
fprintf('* mean: %.2fcm\n', mean(data(9, :)));
fprintf('* median: %.2fcm\n', median(data(9, :)));
cdfplot(data(9, :));
mean_result(i) = mean(rawDist);
median_result(i) = median(rawDist);
mean_result(i) = mean(data(9, :));
median_result(i) = median(data(9, :));
all_data = [all_data, [data(9, :); dist * ones(1, length(data(9, :)))]];
diff_result(i) = desired_result(i) - median_result(i);
fprintf('distance: %d:\n', targets(i));
fprintf('* mean: %.2f (uncalibrated)\n', mean_result(i));
fprintf('* median: %.2f (uncalibrated)\n', median_result(i));
fprintf('* std: %.2f (uncalibrated)\n', std(rawDist));
figure(1); cdfplot(rawDist);
all_data = [...
all_data,...
[rawDist; targets(i) * ones(1, size(rawDist, 2))]...
];
end
figure(2); clf;
scatter(all_data(1, :), all_data(2, :), '.');
params = polyfit(all_data(1, :), all_data(2, :), 1)
fitted_data = params(1) * all_data(1, :) + params(2);
params2 = polyfit(median_result, desired_result, 1)
fitted_data2 = params2(1) * all_data(1, :) + params2(2);
params3 = polyfit(mean_result, desired_result, 1)
fitted_data3 = params3(1) * all_data(1, :) + params3(2);
hold on;
plot(all_data(1, :), fitted_data, '-')
plot(all_data(1, :), fitted_data2, '-')
plot(all_data(1, :), fitted_data3, '-')
% % shuffle
% shuffled_data = all_data(:, randperm(size(all_data, 2)));
%
% % 10-fold cross validation
% step = floor(size(shuffled_data, 2) / 20);
% params = zeros(2, 20);
% mse = zeros(1, 20);
% for i = 1:20
% from = step * (i - 1) + 1;
% to = step * i;
% train_data = shuffled_data;
% test_data = train_data(:, from:to);
% train_data(:, from:to) = [];
% params(:, i) = polyfit(train_data(1, :), train_data(2, :), 1);
% test_est = params(1, i) * test_data(1, :) + params(2, i);
% mse(i) = sum((test_est - test_data(2, :)).^2) / size(test_data, 2);
% end
% param(1) = sum(params(1, :)) / size(mse, 2);
% % mse ./ sum(mse) * params(1, :)';
% param(2) = sum(params(2, :)) / size(mse, 2);
% % mse ./ sum(mse) * params(2, :)';
% validated_fit_data = param(1) * all_data(1, :) + param(2);
% mstd_1 = sqrt(sum((validated_fit_data - all_data(2, :)).^2) /...
% size(all_data, 2));
figure(2); clf; hold on;
scatter(all_data(1, :), all_data(2, :), 'b.');
plot(median_result, targets, 'r', 'LineWidth', 2)
% linear fit
param_linear = polyfit(all_data(1, :), all_data(2, :), 1);
data_linear = param_linear(1) * all_data(1, :) + param_linear(2);
mstd_linear = sqrt(...
sum((data_linear - all_data(2, :)).^2) / size(all_data, 2));
scatter(all_data(1, :), data_linear, 'c.');
% parabolic fit
param_parabolic = polyfit(all_data(1, :), all_data(2, :), 2);
data_parabolic = ...
param_parabolic(1) * all_data(1, :).^2 +...
param_parabolic(2) * all_data(1, :) + ...
param_parabolic(3);
mstd_parabolic = sqrt(...
sum((data_parabolic - all_data(2, :)).^2) / size(all_data, 2));
scatter(all_data(1, :), data_parabolic, 'k.');
fprintf('Std Err:\n');
fprintf(' linear mode: %.6f\n', mstd_linear);
fprintf(' parabolic mode: %.6f\n', mstd_parabolic);

View File

@ -7,6 +7,7 @@ import re
import argparse
from numpy import min, max, median, mean, std
from numpy.random import choice
def wrapper(args):
@ -14,26 +15,43 @@ def wrapper(args):
return
results = []
regex = (
r"Target: (([0-9a-f]{2}:*){6}), " +
r"status: ([0-9]), rtt: ([0-9\-]+) psec, " +
r"distance: ([0-9\-]+) cm"
)
regex_new = (
r"Target: (([0-9a-f]{2}:*){6}), " +
r"status: ([0-9]), rtt: ([0-9\-]+) \(±([0-9\-]+)\) psec, " +
r"distance: ([0-9\-]+) \(±([0-9\-]+)\) cm, rssi: ([0-9\-]+) dBm"
)
with open(args['filepath']) as f:
for line in f:
data_ori = f.readlines()
if args['sample'] is None:
data = data_ori
else:
data = choice(data_ori, size=args['sample'], replace=False)
for line in data:
match = re.search(regex_new, line)
if match:
mac = match.group(1)
status = int(match.group(3))
rtt = int(match.group(4))
rtt_var = int(match.group(5))
raw_distance = int(match.group(6))
raw_distance_var = int(match.group(7))
rssi = int(match.group(8))
else:
match = re.search(regex, line)
if match:
mac = match.group(1)
status = int(match.group(3))
rtt = int(match.group(4))
rtt_var = int(match.group(5))
raw_distance = int(match.group(6))
raw_distance_var = int(match.group(7))
rssi = int(match.group(8))
raw_distance = int(match.group(5))
else:
continue
if status is not 0 or raw_distance < -1000:
continue
results.append(raw_distance * args['cali'][0] + args['cali'][1])
if status is not 0 or raw_distance < -1000:
continue
results.append(raw_distance * args['cali'][0] + args['cali'][1])
print('statics of results')
print('* num of valid data: {0}'.format(len(results)))
print('* min: {0:.2f}cm'.format(min(results)))
@ -52,10 +70,17 @@ def main():
p.add_argument(
'--cali',
nargs=2,
default=(0.9234, 534.7103),
default=(0.9376, 558.0551),
# default=(0.9234, 534.7103),
type=float,
help="calibrate final result"
)
p.add_argument(
'--sample',
default=None,
type=int,
help="if set (an integer), sample data for accuracy testing"
)
try:
args = vars(p.parse_args())
except Exception as e:
@ -64,6 +89,5 @@ def main():
wrapper(args)
if __name__ == '__main__':
main()