iw_intel8260_localization/calibration_plot.m

123 lines
3.8 KiB
Matlab

clear all;
folder = 'calibration_data/new_indoor/';
files = dir(folder);
targets = zeros(1, length(files));
for i = length(files):-1:1
if (~contains(files(i).name, 'result') ||...
contains(files(i).name, 'left') ||...
contains(files(i).name, 'right') ||...
contains(files(i).name, 'ap') ||...
contains(files(i).name, 'down') ||...
contains(files(i).name, 'up'))
files(i) = [];
targets(i) = [];
else
targets(i) = sscanf(files(i).name, 'result_%dcm.txt');
end
end
[targets, orderI] = sort(targets);
files = files(orderI);
median_result = zeros(1, length(files));
mean_result = zeros(1, length(files));
all_data = [];
figure(1); clf; hold on;
for i = 1:length(files)
filename = [folder, files(i).name];
fileID = fopen(filename, 'r');
formatSpec = [...
'Target: %x:%x:%x:%x:%x:%x, status: %d, ',...
'rtt: %d psec, distance: %d cm\n'...
];
data = fscanf(fileID, formatSpec, [9 Inf]);
fclose(fileID);
if isempty(data)
data = readtable(filename);
if isempty(data)
continue
end
caliDist = table2array(data(:, 2))';
rawRTT = table2array(data(:, 3))';
rawRTTVar = table2array(data(:, 4))';
rawDist = table2array(data(:, 5))';
rawDistVar = table2array(data(:, 6))';
rssi = table2array(data(:, 7))';
time = table2array(data(:, 8))';
else
% get rid of invalid data
data(:, data(7, :) ~= 0) = [];
data(:, data(9, :) < -1000) = [];
rawDist = data(9, :);
end
mean_result(i) = mean(rawDist);
median_result(i) = median(rawDist);
fprintf('distance: %d:\n', targets(i));
fprintf('* mean: %.2f (uncalibrated)\n', mean_result(i));
fprintf('* median: %.2f (uncalibrated)\n', median_result(i));
fprintf('* std: %.2f (uncalibrated)\n', std(rawDist));
figure(1); cdfplot(rawDist);
all_data = [...
all_data,...
[rawDist; targets(i) * ones(1, size(rawDist, 2))]...
];
end
% % shuffle
% shuffled_data = all_data(:, randperm(size(all_data, 2)));
%
% % 10-fold cross validation
% step = floor(size(shuffled_data, 2) / 20);
% params = zeros(2, 20);
% mse = zeros(1, 20);
% for i = 1:20
% from = step * (i - 1) + 1;
% to = step * i;
% train_data = shuffled_data;
% test_data = train_data(:, from:to);
% train_data(:, from:to) = [];
% params(:, i) = polyfit(train_data(1, :), train_data(2, :), 1);
% test_est = params(1, i) * test_data(1, :) + params(2, i);
% mse(i) = sum((test_est - test_data(2, :)).^2) / size(test_data, 2);
% end
% param(1) = sum(params(1, :)) / size(mse, 2);
% % mse ./ sum(mse) * params(1, :)';
% param(2) = sum(params(2, :)) / size(mse, 2);
% % mse ./ sum(mse) * params(2, :)';
% validated_fit_data = param(1) * all_data(1, :) + param(2);
% mstd_1 = sqrt(sum((validated_fit_data - all_data(2, :)).^2) /...
% size(all_data, 2));
figure(2); clf; hold on;
scatter(all_data(1, :), all_data(2, :), 'b.');
plot(median_result, targets, 'r', 'LineWidth', 2)
% linear fit
param_linear = polyfit(all_data(1, :), all_data(2, :), 1);
data_linear = param_linear(1) * all_data(1, :) + param_linear(2);
mstd_linear = sqrt(...
sum((data_linear - all_data(2, :)).^2) / size(all_data, 2));
scatter(all_data(1, :), data_linear, 'c.');
% parabolic fit
param_parabolic = polyfit(all_data(1, :), all_data(2, :), 2);
data_parabolic = ...
param_parabolic(1) * all_data(1, :).^2 +...
param_parabolic(2) * all_data(1, :) + ...
param_parabolic(3);
mstd_parabolic = sqrt(...
sum((data_parabolic - all_data(2, :)).^2) / size(all_data, 2));
scatter(all_data(1, :), data_parabolic, 'k.');
fprintf('Std Err:\n');
fprintf(' linear mode: %.6f\n', mstd_linear);
fprintf(' parabolic mode: %.6f\n', mstd_parabolic);