mirror of https://github.com/google/gemma.cpp.git
1003 lines
43 KiB
C++
1003 lines
43 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// SIMD functions for Gemma/Griffin transformers.
|
|
|
|
// Include guard (still compiled once per target)
|
|
#if defined(THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_) == \
|
|
defined(HWY_TARGET_TOGGLE)
|
|
#ifdef THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_
|
|
#undef THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_
|
|
#else
|
|
#define THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_
|
|
#endif
|
|
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
|
|
#include <algorithm> // std::min
|
|
#include <memory> // std::unique_ptr
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#include "gemma/activations.h"
|
|
#include "gemma/common.h"
|
|
#include "gemma/configs.h"
|
|
#include "gemma/gemma.h"
|
|
#include "gemma/weights.h"
|
|
// Placeholder for internal test4, do not remove
|
|
#include "ops/matmul-inl.h"
|
|
#include "ops/ops-inl.h"
|
|
#include "hwy/aligned_allocator.h"
|
|
#include "hwy/base.h"
|
|
#include "hwy/bit_set.h"
|
|
#include "hwy/contrib/matvec/matvec-inl.h"
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
#include "hwy/contrib/thread_pool/topology.h"
|
|
#include "hwy/highway.h"
|
|
#include "hwy/profiler.h"
|
|
#include "hwy/timer.h"
|
|
|
|
#ifndef GEMMA_CONFIG
|
|
#if HWY_IDE
|
|
// Provide a definition so the IDE does not complain.
|
|
#define GEMMA_CONFIG ConfigGemmaTiny<float>
|
|
#else
|
|
#error "Only include from instantiations/*.cc, which must define GEMMA_CONFIG"
|
|
#endif // HWY_IDE
|
|
#endif // GEMMA_CONFIG
|
|
|
|
HWY_BEFORE_NAMESPACE();
|
|
namespace gcpp {
|
|
namespace HWY_NAMESPACE {
|
|
|
|
// Different functions use different naming conventions for the number of
|
|
// tokens. Functions that are query-independent, such as RMSNorm*, call the
|
|
// count `num_interleaved`. Functions that are query-dependent, such as
|
|
// `Attention`, use separate `num_tokens` and `num_queries`.
|
|
|
|
template <class TConfig>
|
|
HWY_NOINLINE void GriffinRecurrent(
|
|
size_t batch_start, size_t num_tokens, size_t num_queries, size_t layer,
|
|
Activations& activations, const CompressedLayer<TConfig>* layer_weights,
|
|
const std::vector<KVCache*>& kv_caches, hwy::ThreadPool& pool) {
|
|
PROFILER_ZONE("Gen.Griffin");
|
|
HWY_ASSERT(num_queries == 1); // TODO: add batch query support for Griffin.
|
|
KVCache& kv_cache = *kv_caches[0];
|
|
namespace hn = hwy::HWY_NAMESPACE;
|
|
using D = hn::ScalableTag<float>;
|
|
static constexpr size_t kModelDim = TConfig::kModelDim;
|
|
static constexpr size_t kConv1dWidth = TConfig::kConv1dWidth;
|
|
static constexpr size_t kHeads = TConfig::kHeads;
|
|
|
|
// X / Y linear layers.
|
|
for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) {
|
|
float* HWY_RESTRICT y = activations.griffin_y.Batch(batch_idx);
|
|
float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx);
|
|
TwoMatVecAdd<kModelDim, kModelDim>(
|
|
layer_weights->griffin.linear_x_w, layer_weights->griffin.linear_y_w, 0,
|
|
activations.pre_att_rms_out.Batch(batch_idx),
|
|
/*add0=*/layer_weights->griffin.linear_x_biases.data_scale1(),
|
|
/*add1=*/layer_weights->griffin.linear_y_biases.data_scale1(),
|
|
/*out0=*/x, /*out1=*/y, pool);
|
|
Gelu(y, kModelDim);
|
|
}
|
|
|
|
// Conv1D.
|
|
for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) {
|
|
const size_t pos = batch_start + batch_idx;
|
|
float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx);
|
|
HWY_FULL(float) df;
|
|
HWY_DASSERT(kModelDim % hn::Lanes(df) == 0);
|
|
const size_t layer_offset = layer * kModelDim * (kConv1dWidth - 1);
|
|
|
|
// cache[i] = input at time t-i.
|
|
float* HWY_RESTRICT cache[HWY_MAX(kConv1dWidth, 1)];
|
|
cache[0] = x;
|
|
for (size_t i = 1; i < kConv1dWidth; i++) {
|
|
cache[i] =
|
|
kv_cache.conv1d_cache.get() + layer_offset +
|
|
((pos + kConv1dWidth - 1 - i) % (kConv1dWidth - 1)) * kModelDim;
|
|
}
|
|
for (size_t i = 0; i < kModelDim; i += hn::Lanes(df)) {
|
|
auto xv = hn::Load(df, x + i);
|
|
auto accum0 =
|
|
hn::Load(df, layer_weights->griffin.conv_biases.data_scale1() + i);
|
|
auto accum1 = hn::Zero(df);
|
|
static_assert(kConv1dWidth % 2 == 0, "Conv width must be even");
|
|
for (size_t l = 0; 2 * l < kConv1dWidth; l++) {
|
|
auto wv0 = hn::Load(df, layer_weights->griffin.conv_w.data_scale1() +
|
|
(kConv1dWidth - 1 - 2 * l) * kModelDim + i);
|
|
auto wv1 = hn::Load(df, layer_weights->griffin.conv_w.data_scale1() +
|
|
(kConv1dWidth - 2 - 2 * l) * kModelDim + i);
|
|
accum0 = hn::MulAdd(wv0, hn::Load(df, cache[l * 2] + i), accum0);
|
|
accum1 = hn::MulAdd(wv1, hn::Load(df, cache[l * 2 + 1] + i), accum1);
|
|
}
|
|
hn::Store(hn::Add(accum0, accum1), df, x + i);
|
|
hn::Store(xv, df, cache[HWY_MAX(kConv1dWidth, 1) - 1] + i);
|
|
}
|
|
}
|
|
|
|
// RGLRU
|
|
for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) {
|
|
const size_t pos = batch_start + batch_idx;
|
|
float* HWY_RESTRICT y = activations.griffin_y.Batch(batch_idx);
|
|
float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx);
|
|
float* HWY_RESTRICT gate_x = activations.griffin_gate_x.Batch(batch_idx);
|
|
float* HWY_RESTRICT a = activations.griffin_multiplier.Batch(batch_idx);
|
|
float* HWY_RESTRICT rnn_state =
|
|
kv_cache.rglru_cache.get() + layer * kModelDim;
|
|
|
|
pool.Run(0, kHeads, [&](const uint64_t head, size_t /*thread*/) HWY_ATTR {
|
|
constexpr size_t kHeadDim = kModelDim / kHeads;
|
|
constexpr size_t kMatrixSize = kHeadDim * kHeadDim;
|
|
size_t head_offset = head * kHeadDim;
|
|
TwoOfsMatVecAddLoop<kHeadDim, kHeadDim>(
|
|
layer_weights->griffin.gate_w, kMatrixSize * head,
|
|
kMatrixSize * (kHeads + head), x + head_offset,
|
|
/*add0=*/layer_weights->griffin.gate_biases.data_scale1() +
|
|
head_offset,
|
|
/*add1=*/layer_weights->griffin.gate_biases.data_scale1() +
|
|
kModelDim + head_offset,
|
|
/*out0=*/gate_x + head_offset, /*out1=*/a + head_offset);
|
|
Sigmoid(gate_x + head_offset, kHeadDim);
|
|
Sigmoid(a + head_offset, kHeadDim);
|
|
const auto fn_mul = [](D d, hn::Vec<D> x, hn::Vec<D> gate_x)
|
|
HWY_ATTR { return hn::Mul(x, gate_x); };
|
|
hn::Transform1(D(), a + head_offset, kHeadDim,
|
|
layer_weights->griffin.a.data_scale1() + head_offset,
|
|
fn_mul);
|
|
hn::Transform1(D(), x + head_offset, kHeadDim, gate_x + head_offset,
|
|
fn_mul);
|
|
// RNN scan
|
|
HWY_FULL(float) df;
|
|
HWY_DASSERT(kHeadDim % hn::Lanes(df) == 0);
|
|
for (size_t i = 0; i < kHeadDim; i += hn::Lanes(df)) {
|
|
auto log_a = hn::Load(df, a + head_offset + i);
|
|
auto gated_x = hn::Load(df, x + head_offset + i);
|
|
auto rnn = hn::Load(df, rnn_state + head_offset + i);
|
|
auto a = hn::Exp(df, log_a);
|
|
auto x_multiplier = hn::Sqrt(hn::NegMulAdd(a, a, hn::Set(df, 1.0f)));
|
|
if (pos == 0) {
|
|
x_multiplier = hn::Set(df, 1.0f);
|
|
}
|
|
auto new_x = hn::MulAdd(x_multiplier, gated_x, hn::Mul(a, rnn));
|
|
hn::Store(new_x, df, rnn_state + head_offset + i);
|
|
|
|
// Join branches.
|
|
auto yv = hn::Load(df, y + head_offset + i);
|
|
auto pre_out = hn::Mul(yv, new_x);
|
|
hn::Store(pre_out, df, x + head_offset + i);
|
|
}
|
|
});
|
|
}
|
|
|
|
// Final linear layer.
|
|
for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) {
|
|
float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx);
|
|
float* out_ptr = activations.att_post2.Batch(batch_idx);
|
|
MatVecAdd<kModelDim, kModelDim>(
|
|
layer_weights->griffin.linear_out_w, 0, x,
|
|
layer_weights->griffin.linear_out_biases.data_scale1(),
|
|
activations.even_odd.All(), out_ptr, pool);
|
|
}
|
|
}
|
|
|
|
template <class TConfig, typename T>
|
|
HWY_NOINLINE void PostQK(T* HWY_RESTRICT inout, size_t pos, size_t layer) {
|
|
constexpr size_t kQKVDim = TConfig::kQKVDim;
|
|
// PostQKType::Rope
|
|
Rope(inout, TConfig::kUseHalfRope ? kQKVDim / 2 : kQKVDim, pos);
|
|
}
|
|
|
|
template <class TConfig>
|
|
HWY_NOINLINE void GemmaAttention(size_t interleaved_start, size_t num_tokens,
|
|
size_t num_queries, size_t layer,
|
|
Activations& activations,
|
|
const CompressedLayer<TConfig>* layer_weights,
|
|
const std::vector<KVCache*>& kv_caches,
|
|
hwy::ThreadPool& pool) {
|
|
PROFILER_ZONE("Gen.Attention");
|
|
HWY_DASSERT(interleaved_start % num_queries == 0);
|
|
constexpr size_t kQKVDim = TConfig::kQKVDim;
|
|
constexpr size_t kQStride = Activations::QStride<TConfig>();
|
|
constexpr size_t kCachePosSize = CachePosSize<TConfig>()();
|
|
constexpr size_t kCacheLayerSize = CacheLayerSize<TConfig>()();
|
|
constexpr size_t kModelDim = TConfig::kModelDim;
|
|
constexpr size_t kHeads = TConfig::kHeads;
|
|
constexpr size_t kKVHeads = TConfig::kKVHeads;
|
|
constexpr size_t kSeqLen = TConfig::kSeqLen;
|
|
GEMMA_CONSTEXPR_SQRT float kQueryScale = ChooseQueryScale<TConfig>();
|
|
// Multi-Head Attention a.k.a. "use_qkv_einsum".
|
|
constexpr bool kIsMHA = Activations::IsMHA<TConfig>();
|
|
static_assert(!kIsMHA || TConfig::kInterleaveQKV); // MHA => interleaved
|
|
const size_t batch_start = interleaved_start / num_queries;
|
|
const size_t num_interleaved = num_tokens * num_queries;
|
|
|
|
// For the computation of Q, K, and V, it is useful to remember that
|
|
// qkv_einsum_w has shape [(kHeads + kKVHeads * 2), kKQVDim, kModelDim]
|
|
// and kQStride = kQKVDim * (kIsMHA ? 3 : 1);
|
|
//
|
|
// Compute Q only or QKV (if MHA).
|
|
// If MHA, this also computes KV, which we copy to the KV cache below.
|
|
const float scale = layer_weights->qkv_einsum_w.scale();
|
|
MatMul_4x4_Batch<kModelDim, kHeads * kQStride>(
|
|
num_interleaved, activations.pre_att_rms_out.All(),
|
|
layer_weights->qkv_einsum_w.data(), scale, activations.q.All(), pool);
|
|
|
|
// Compute KV if not MHA.
|
|
if constexpr (!kIsMHA) {
|
|
for (size_t interleaved_idx = 0; interleaved_idx < num_interleaved;
|
|
++interleaved_idx) {
|
|
const float* x = activations.pre_att_rms_out.Batch(interleaved_idx);
|
|
const size_t query_idx = interleaved_idx % num_queries;
|
|
const size_t batch_idx = interleaved_idx / num_queries;
|
|
KVCache& kv_cache = *kv_caches[query_idx];
|
|
const size_t pos = batch_start + batch_idx;
|
|
const size_t cache_pos = pos % (kSeqLen + kPrefillBatchSize);
|
|
const size_t kv_offset =
|
|
cache_pos * kCachePosSize + layer * kCacheLayerSize;
|
|
float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset;
|
|
// KV structure is [k, v, k, v, ....] = kKVHeads pairs of (k, v).
|
|
// TODO: requires MatMul support for offsets.
|
|
MatVec<kKVHeads * 2 * kQKVDim, kModelDim>(
|
|
layer_weights->qkv_einsum_w, kHeads * kQKVDim * kModelDim, x,
|
|
activations.even_odd.All(), kv, pool);
|
|
}
|
|
}
|
|
|
|
// Apply positional encodings for K (and copy KV to cache if MHA).
|
|
pool.Run(
|
|
0, kKVHeads * num_interleaved,
|
|
[&](uint64_t task, size_t thread) HWY_ATTR {
|
|
const size_t head = task % kKVHeads;
|
|
const size_t interleaved_idx = task / kKVHeads;
|
|
const size_t query_idx = interleaved_idx % num_queries;
|
|
const size_t batch_idx = interleaved_idx / num_queries;
|
|
const size_t pos = batch_start + batch_idx;
|
|
const size_t cache_pos = pos % (kSeqLen + kPrefillBatchSize);
|
|
const size_t kv_offset = cache_pos * kCachePosSize +
|
|
layer * kCacheLayerSize + head * kQKVDim * 2;
|
|
KVCache& kv_cache = *kv_caches[query_idx];
|
|
float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset;
|
|
if constexpr (kIsMHA) {
|
|
// For MHA, copy KV into the KV cache from scratch space (see above).
|
|
const float* HWY_RESTRICT q =
|
|
activations.q.Batch(interleaved_idx) + head * kQStride;
|
|
// Skip past the Q part of `q`, and copy KV to `kv`.
|
|
hwy::CopyBytes(q + kQKVDim, kv, 2 * kQKVDim * sizeof(float));
|
|
}
|
|
PostQK<TConfig>(kv, pos, layer);
|
|
});
|
|
|
|
static_assert((kHeads % kKVHeads) == 0,
|
|
"query heads must be a multiple of key-value heads");
|
|
constexpr size_t kGroupHeads = kHeads / kKVHeads;
|
|
// For each head (token, query), compute Q.K, softmax, and weighted V.
|
|
pool.Run(
|
|
0, kHeads * num_interleaved, [&](uint64_t task, size_t thread) HWY_ATTR {
|
|
const size_t head = task % kHeads;
|
|
const size_t interleaved_idx = task / kHeads;
|
|
const size_t query_idx = interleaved_idx % num_queries;
|
|
const size_t batch_idx = interleaved_idx / num_queries;
|
|
const size_t head_offset = (head / kGroupHeads) * kQKVDim * 2;
|
|
KVCache& kv_cache = *kv_caches[query_idx];
|
|
float* HWY_RESTRICT q =
|
|
activations.q.Batch(interleaved_idx) + head * kQStride;
|
|
|
|
// Apply rope and scaling to Q.
|
|
const size_t pos = batch_start + batch_idx;
|
|
PostQK<TConfig>(q, pos, layer);
|
|
MulByConst(kQueryScale, q, kQKVDim);
|
|
|
|
// Compute Q.K scores, yielding "logits" (or scores) in head_att.
|
|
float* HWY_RESTRICT head_att =
|
|
activations.att.Batch(interleaved_idx) + head * kSeqLen;
|
|
const size_t start_pos =
|
|
pos - std::min(TConfig::kAttentionWindowSizes[layer] - 1, pos);
|
|
for (size_t pos2 = start_pos; pos2 <= pos; ++pos2) {
|
|
const size_t cache_pos = pos2 % (kSeqLen + kPrefillBatchSize);
|
|
const size_t kv_offset =
|
|
cache_pos * kCachePosSize + layer * kCacheLayerSize + head_offset;
|
|
const float* HWY_RESTRICT k2 = kv_cache.kv_cache.get() + kv_offset;
|
|
const float score = Dot(q, k2, kQKVDim);
|
|
head_att[pos2 % kSeqLen] = score;
|
|
}
|
|
|
|
// SoftMax. May be preceded by SoftCap. Yields "probabilities" in
|
|
// head_att.
|
|
const size_t head_att_len = std::min(pos + 1, kSeqLen);
|
|
if constexpr (TConfig::kAttCap > 0.0f) {
|
|
LogitsSoftCap(TConfig::kAttCap, head_att, head_att_len);
|
|
}
|
|
Softmax(head_att, head_att_len);
|
|
|
|
// Summation of v (kv_cache) weighted by probs (head_att)
|
|
// into "encoded" (att_out). Compare gemma/modules.py:
|
|
// encoded = jnp.einsum('BTNS,BSNH->BTNH', probs, value_proj)
|
|
float* HWY_RESTRICT att_out =
|
|
activations.att_out.Batch(interleaved_idx) + head * kQKVDim;
|
|
hwy::ZeroBytes(att_out, kQKVDim * sizeof(*att_out));
|
|
for (size_t pos2 = start_pos; pos2 <= pos; ++pos2) {
|
|
const size_t cache_pos = pos2 % (kSeqLen + kPrefillBatchSize);
|
|
const size_t kv_offset =
|
|
cache_pos * kCachePosSize + layer * kCacheLayerSize + head_offset;
|
|
float* HWY_RESTRICT v2 =
|
|
kv_cache.kv_cache.get() + kv_offset + kQKVDim;
|
|
MulByConstAndAdd(head_att[pos2 % kSeqLen], v2, att_out, kQKVDim);
|
|
}
|
|
});
|
|
|
|
// Sum encoded (att_out) over num_heads and head_dim (kQKVDim)
|
|
// into output (layer_out). Compare gemma/modules.py:
|
|
// attn_output = self.attn_vec_einsum('BTNH,NHD->BTD', encoded)
|
|
for (size_t interleaved_idx = 0; interleaved_idx < num_interleaved;
|
|
++interleaved_idx) {
|
|
// TODO(szabadka) Use a single MatVecAdd like in GriffinRecurrent() after
|
|
// rearranging the weights.
|
|
float* HWY_RESTRICT att_out = activations.att_out.Batch(interleaved_idx);
|
|
float* HWY_RESTRICT layer_out =
|
|
activations.att_post2.Batch(interleaved_idx);
|
|
// Head 0 (and potentially biases) -> layer_out.
|
|
// attn_vec_einsum_w has shape [kHeads, kQKVDim, kModelDim].
|
|
MatVecT</*kAdd=*/TConfig::kSoftmaxAttnOutputBiases, kModelDim, kQKVDim>(
|
|
layer_weights->attn_vec_einsum_w, 0, att_out,
|
|
layer_weights->attention_output_biases.data_scale1(),
|
|
activations.even_odd.All(), layer_out, pool);
|
|
// Head 1 and following are added to layer_out.
|
|
for (size_t head = 1; head < kHeads; ++head) {
|
|
// NOTE: this is a single kModelDim temp output. If parallelized or using
|
|
// MatMul, add per-thread storage.
|
|
float* HWY_RESTRICT head_out = activations.att_post1.All();
|
|
// TODO: requires MatMul support for offsets.
|
|
MatVec<kModelDim, kQKVDim>(
|
|
layer_weights->attn_vec_einsum_w, head * kModelDim * kQKVDim,
|
|
att_out + head * kQKVDim, activations.even_odd.All(), head_out, pool);
|
|
AddFrom(head_out, layer_out, kModelDim);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class TConfig>
|
|
HWY_NOINLINE void Attention(LayerAttentionType type, size_t interleaved_start,
|
|
size_t num_tokens, size_t num_queries, size_t layer,
|
|
Activations& activations,
|
|
const CompressedLayer<TConfig>* layer_weights,
|
|
const std::vector<KVCache*>& kv_caches,
|
|
hwy::ThreadPool& pool) {
|
|
if (type == LayerAttentionType::kGemma) {
|
|
GemmaAttention<TConfig>(interleaved_start, num_tokens, num_queries, layer,
|
|
activations, layer_weights, kv_caches, pool);
|
|
} else {
|
|
// Only reached if the model is Griffin. `if constexpr` prevents generating
|
|
// this code for non-Griffin models.
|
|
if constexpr (TConfig::kGriffinLayers > 0) {
|
|
HWY_ASSERT(num_queries == 1);
|
|
GriffinRecurrent<TConfig>(interleaved_start, num_tokens, num_queries,
|
|
layer, activations, layer_weights, kv_caches,
|
|
pool);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class TConfig, typename T>
|
|
HWY_NOINLINE void Activation(T* HWY_RESTRICT c1, T* HWY_RESTRICT c2,
|
|
size_t count) {
|
|
namespace hn = hwy::HWY_NAMESPACE;
|
|
using DF = hn::ScalableTag<T>;
|
|
using VF = hn::Vec<DF>;
|
|
// ActivationType::Gelu
|
|
hn::Transform1(DF(), c1, count, c2, [](DF df, VF v, VF mul) HWY_ATTR {
|
|
return hn::Mul(mul, Gelu(df, v));
|
|
});
|
|
}
|
|
|
|
template <class TConfig>
|
|
HWY_NOINLINE void FFW(Activations& activations, size_t num_interleaved,
|
|
const CompressedLayer<TConfig>* layer_weights,
|
|
hwy::ThreadPool& pool) {
|
|
PROFILER_ZONE("Gen.FFW");
|
|
constexpr size_t kModelDim = TConfig::kModelDim;
|
|
constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim;
|
|
|
|
// MatMul expects col-major B, which is what we have: kModelDim consecutive
|
|
// elements in memory, repeated kFFHiddenDim times.
|
|
constexpr size_t kColsA = kModelDim;
|
|
constexpr size_t kColsB = kFFHiddenDim;
|
|
HWY_DASSERT(num_interleaved <= activations.bf_pre_ffw_rms_out.BatchSize());
|
|
const auto A = activations.bf_pre_ffw_rms_out.All();
|
|
const float scale = layer_weights->gating_einsum_w.scale();
|
|
const auto B1 = layer_weights->gating_einsum_w.data();
|
|
const auto B2 = B1 + kColsA * kColsB;
|
|
auto C1 = activations.C1.All();
|
|
auto C2 = activations.C2.All();
|
|
constexpr bool kAddBias = TConfig::kFFBiases;
|
|
const auto bias1 = layer_weights->ffw_gating_biases.data_scale1();
|
|
const auto bias2 = bias1 + kFFHiddenDim;
|
|
|
|
// Will go through GELU.
|
|
MatMul_4x4_Batch_Add<kColsA, kColsB, kAddBias>(num_interleaved, A, B1, scale,
|
|
C1, bias1, pool);
|
|
// What to multiply by.
|
|
MatMul_4x4_Batch_Add<kColsA, kColsB, kAddBias>(num_interleaved, A, B2, scale,
|
|
C2, bias2, pool);
|
|
|
|
// Activation (Gelu) and multiply by gate. Store activations in C1.
|
|
Activation<TConfig>(C1, C2, kFFHiddenDim * num_interleaved);
|
|
|
|
// Hidden layer -> output layer.
|
|
MatMul_4x4_Batch_Add<kFFHiddenDim, kModelDim, kAddBias>(
|
|
num_interleaved, C1, layer_weights->linear_w.data(),
|
|
layer_weights->linear_w.scale(), activations.ffw_out.All(),
|
|
layer_weights->ffw_output_biases.data_scale1(), pool);
|
|
}
|
|
|
|
// TODO: pass Activations.x instead of Activations.
|
|
// `pos` is for the entire batch and does not include `batch_idx`.
|
|
template <class TConfig>
|
|
HWY_NOINLINE void EmbedToken(int token, size_t batch_idx, size_t pos,
|
|
const CompressedWeights<TConfig>& weights,
|
|
Activations& activations) {
|
|
constexpr size_t kModelDim = TConfig::kModelDim;
|
|
GEMMA_CONSTEXPR_EMBSCALING const float kEmbScaling =
|
|
EmbeddingScaling<TConfig>();
|
|
|
|
HWY_DASSERT(token >= 0);
|
|
HWY_DASSERT(token < TConfig::kVocabSize);
|
|
|
|
Decompress(weights.embedder_input_embedding, token * kModelDim,
|
|
activations.x.Batch(batch_idx), kModelDim);
|
|
MulByConst(kEmbScaling, activations.x.Batch(batch_idx), kModelDim);
|
|
if constexpr (TConfig::kAbsolutePE) {
|
|
AddAbsolutePositionalEmbeddings(activations.x.Batch(batch_idx), kModelDim,
|
|
pos + batch_idx);
|
|
};
|
|
}
|
|
|
|
template <class TConfig, typename T>
|
|
HWY_NOINLINE void ResidualConnection(
|
|
size_t num_interleaved, T* HWY_RESTRICT other, T* HWY_RESTRICT x,
|
|
const CompressedLayer<TConfig>* layer_weights, bool is_attention) {
|
|
constexpr size_t kModelDim = TConfig::kModelDim;
|
|
// ResidualType::Add
|
|
AddFromBatched(num_interleaved, other, x, kModelDim);
|
|
}
|
|
|
|
template <class TConfig, typename WeightT, typename InOutT>
|
|
void PostNorm(size_t num_interleaved, const WeightT* weights, InOutT* inout) {
|
|
if (TConfig::kPostNorm == PostNormType::Scale) {
|
|
RMSNormInplaceBatched(num_interleaved, weights, inout, TConfig::kModelDim);
|
|
}
|
|
}
|
|
|
|
template <class TConfig>
|
|
HWY_NOINLINE void TransformerLayer(
|
|
size_t num_tokens, size_t num_queries, size_t pos, size_t layer,
|
|
const CompressedLayer<TConfig>* layer_weights, Activations& activations,
|
|
const std::vector<KVCache*>& kv_caches, hwy::ThreadPool& pool) {
|
|
constexpr size_t kModelDim = TConfig::kModelDim;
|
|
const size_t num_interleaved = num_tokens * num_queries;
|
|
auto type = TConfig::kLayerConfig[layer];
|
|
size_t layer_of_type =
|
|
NumLayersOfTypeBefore(TConfig::kLayerConfig, type, layer);
|
|
|
|
RMSNormBatched(num_interleaved, activations.x.All(),
|
|
layer_weights->pre_attention_norm_scale.data_scale1(),
|
|
activations.pre_att_rms_out.All(), kModelDim);
|
|
|
|
Attention<TConfig>(type, pos, num_tokens, num_queries, layer_of_type,
|
|
activations, layer_weights, kv_caches, pool);
|
|
|
|
PostNorm<TConfig>(num_interleaved,
|
|
layer_weights->post_attention_norm_scale.data_scale1(),
|
|
activations.att_post2.All());
|
|
|
|
ResidualConnection<TConfig>(num_interleaved, activations.att_post2.All(),
|
|
activations.x.All(), layer_weights,
|
|
/*is_attention=*/true);
|
|
|
|
RMSNormBatched(num_interleaved, activations.x.All(),
|
|
layer_weights->pre_ffw_norm_scale.data_scale1(),
|
|
activations.bf_pre_ffw_rms_out.All(), kModelDim);
|
|
|
|
FFW<TConfig>(activations, num_interleaved, layer_weights, pool);
|
|
|
|
PostNorm<TConfig>(num_interleaved,
|
|
layer_weights->post_ffw_norm_scale.data_scale1(),
|
|
activations.ffw_out.All());
|
|
|
|
ResidualConnection<TConfig>(num_interleaved, activations.ffw_out.All(),
|
|
activations.x.All(), layer_weights,
|
|
/*is_attention=*/false);
|
|
}
|
|
|
|
// For prefill, we have two-level parallelism:
|
|
// - Outer: input tokens are split into batches, each of which is one task
|
|
// processed by a worker in `outer_pool_`, which includes the main thread
|
|
// because it is the one that calls `Prefill`.
|
|
// - Inner: each `outer` worker passes `inner_pools_[outer]` to
|
|
// `TransformerLayer` for tensor-level parallelism.
|
|
//
|
|
// This class holds the thread pools and activations, recreated for each query.
|
|
//
|
|
// It is safe to parallelize batches because we write to KVCache at
|
|
// `pos % kSeqLen`, which is far greater than the number of workers.
|
|
// Note however that this currently leads to nondeterministic results because
|
|
// the RNG is invoked in different order.
|
|
class PrefillState {
|
|
public:
|
|
explicit PrefillState(hwy::ThreadPool& main_pool) : main_pool_(&main_pool) {}
|
|
|
|
~PrefillState() { DeleteInnerPools(); }
|
|
|
|
// Called before each query. Recreates thread pools, which has the advantage
|
|
// of tailoring the parallelism to the prompt length.
|
|
template <class TConfig>
|
|
void Init(size_t prefill_size) {
|
|
// Would be zero for single-token prompts (prefill_size == num_tokens - 1).
|
|
num_batches_ =
|
|
HWY_MAX(size_t{1}, hwy::DivCeil(prefill_size, kPrefillBatchSize));
|
|
// More than num_batches_ would waste workers on idling in the outer Run;
|
|
// more than NumWorkers() would exceed the global --num_threads.
|
|
const size_t outer_workers =
|
|
HWY_MIN(num_batches_, main_pool_->NumWorkers());
|
|
HWY_ASSERT(outer_workers != 0); // Otherwise activations_ is empty.
|
|
|
|
// One activation per outer worker. Allocating in parallel saves 30 ms.
|
|
activations_.resize(outer_workers);
|
|
main_pool_->Run(0, outer_workers, [this](uint64_t task, size_t /*thread*/) {
|
|
activations_[task].Allocate<TConfig>(kPrefillBatchSize);
|
|
});
|
|
|
|
DeleteInnerPools();
|
|
|
|
// If we'd create just one inner pool with all the workers, skip the cost of
|
|
// thread creation and pinning (about 60 ms) by reusing the main pool.
|
|
if (outer_workers <= 1) {
|
|
// Still allocate a dummy pool to simplify Prefill().
|
|
outer_pool_ = std::make_unique<hwy::ThreadPool>(1);
|
|
inner_pools_.push_back(main_pool_);
|
|
return;
|
|
}
|
|
|
|
// Before creating new threads, stop the old ones from spinning. Caller is
|
|
// responsible for undoing this by calling `ResumeMainSpinning`.
|
|
main_pool_->SetWaitMode(hwy::PoolWaitMode::kBlock);
|
|
outer_pool_ = std::make_unique<hwy::ThreadPool>(outer_workers);
|
|
outer_pool_->SetWaitMode(hwy::PoolWaitMode::kSpin);
|
|
|
|
// Assign up to `max_workers` to inner pools. Each inner pool creates
|
|
// `workers_per_outer - 1` threads in addition to its 'main' thread, which
|
|
// is the one calling `inner_pools[outer]->Run`, i.e., `outer`. In total,
|
|
// `outer_workers * (max_workers / outer_workers)` workers are used.
|
|
const size_t workers_per_outer = main_pool_->NumWorkers() / outer_workers;
|
|
for (size_t outer = 0; outer < outer_workers; ++outer) {
|
|
inner_pools_.push_back(new hwy::ThreadPool(workers_per_outer));
|
|
inner_pools_.back()->SetWaitMode(hwy::PoolWaitMode::kSpin);
|
|
}
|
|
|
|
PinThreads(outer_workers, workers_per_outer);
|
|
}
|
|
|
|
// `tokens` are from interleaved queries. (See InterleaveQueries() below.)
|
|
template <class TConfig>
|
|
HWY_NOINLINE void Prefill(hwy::Span<const int> tokens, size_t num_queries,
|
|
size_t pos,
|
|
const CompressedWeights<TConfig>& weights,
|
|
const RuntimeConfig& runtime_config,
|
|
const std::vector<KVCache*>& kv_caches) {
|
|
PROFILER_ZONE("Gen.Prefill");
|
|
|
|
HWY_ASSERT(activations_.size() == outer_pool_->NumWorkers());
|
|
HWY_ASSERT(inner_pools_.size() == outer_pool_->NumWorkers());
|
|
|
|
outer_pool_->Run(
|
|
0, num_batches_, [&](const uint64_t batch_num, size_t thread) HWY_ATTR {
|
|
const size_t batch_start = batch_num * kPrefillBatchSize;
|
|
const size_t batch_size =
|
|
HWY_MIN(kPrefillBatchSize, tokens.size() - batch_start);
|
|
HWY_DASSERT(batch_start % num_queries == 0);
|
|
HWY_DASSERT(batch_size % num_queries == 0);
|
|
const size_t pos_per_query = pos + batch_start / num_queries;
|
|
const size_t num_tokens = batch_size / num_queries;
|
|
|
|
// Negligible time compared to TransformerLayer.
|
|
for (size_t batch_idx = 0; batch_idx < batch_size; ++batch_idx) {
|
|
EmbedToken<TConfig>(tokens[batch_start + batch_idx], batch_idx,
|
|
pos_per_query, weights, activations_[thread]);
|
|
}
|
|
|
|
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
|
|
const auto* layer_weights = weights.GetLayer(layer);
|
|
TransformerLayer<TConfig>(
|
|
num_tokens, num_queries, pos_per_query, layer, layer_weights,
|
|
activations_[thread], kv_caches, *inner_pools_[thread]);
|
|
}
|
|
|
|
// NOTE: we unconditionally call StreamToken, even if EOS.
|
|
for (size_t i = 0; i < batch_size; ++i) {
|
|
const size_t query_idx = i % num_queries;
|
|
const size_t batch_idx = i / num_queries;
|
|
runtime_config.StreamToken(query_idx, pos_per_query + batch_idx,
|
|
tokens[i], 0.0f);
|
|
}
|
|
});
|
|
}
|
|
|
|
// Stops spinning in our pools and resume spinning in main_pool_.
|
|
void ResumeMainSpinning() {
|
|
// If we didn't create a new inner pool, we didn't stop spinning on the
|
|
// main pool, so nothing to do here.
|
|
if (inner_pools_[0] == main_pool_) return;
|
|
|
|
for (hwy::ThreadPool* p : inner_pools_) {
|
|
p->SetWaitMode(hwy::PoolWaitMode::kBlock);
|
|
}
|
|
outer_pool_->SetWaitMode(hwy::PoolWaitMode::kBlock);
|
|
main_pool_->SetWaitMode(hwy::PoolWaitMode::kSpin);
|
|
}
|
|
|
|
private:
|
|
// Pins each outer thread after their inner threads so they are likely to
|
|
// run on the same socket.
|
|
void PinThreads(size_t outer_workers, size_t workers_per_outer) {
|
|
outer_pool_->Run(
|
|
0, outer_workers,
|
|
[this, workers_per_outer](uint64_t outer, size_t outer_thread) {
|
|
HWY_ASSERT(outer == outer_thread);
|
|
// Pins inner *and* `outer` - the latter is the calling thread.
|
|
inner_pools_[outer]->Run(
|
|
0, workers_per_outer,
|
|
[outer, workers_per_outer](uint64_t task, size_t thread) {
|
|
HWY_ASSERT(task == thread); // each worker has one task
|
|
const size_t lp = outer * workers_per_outer + task;
|
|
hwy::PinThreadToLogicalProcessor(lp);
|
|
});
|
|
});
|
|
}
|
|
|
|
void DeleteInnerPools() {
|
|
for (hwy::ThreadPool* p : inner_pools_) {
|
|
if (p != main_pool_) delete p;
|
|
}
|
|
inner_pools_.clear();
|
|
}
|
|
|
|
hwy::ThreadPool* main_pool_;
|
|
std::unique_ptr<hwy::ThreadPool> outer_pool_; // always allocated
|
|
std::vector<Activations> activations_; // size == outer_pool->NumWorkers()
|
|
// Either there is a single pointer equal to main_pool, or newly created pools
|
|
// that we own. The former case avoids thread creation overhead for prompts
|
|
// that fit in a single batch.
|
|
std::vector<hwy::ThreadPool*> inner_pools_;
|
|
size_t num_batches_ = 0;
|
|
};
|
|
|
|
// `tokens` is length `num_tokens * num_queries`. In autoregressive decode,
|
|
// `num_tokens == 1`.
|
|
template <class TConfig>
|
|
HWY_NOINLINE void Transformer(const int* tokens, size_t num_tokens,
|
|
size_t num_queries, size_t pos,
|
|
const CompressedWeights<TConfig>& weights,
|
|
Activations& activations,
|
|
const std::vector<KVCache*>& kv_caches,
|
|
hwy::ThreadPool& pool,
|
|
const LayersOutputFunc& layers_output) {
|
|
const size_t num_interleaved = num_tokens * num_queries;
|
|
if (layers_output) {
|
|
for (size_t token_idx = 0; token_idx < num_interleaved; ++token_idx) {
|
|
float token_f = tokens[token_idx];
|
|
layers_output(pos + token_idx, "Tokens", &token_f, 1);
|
|
}
|
|
}
|
|
constexpr size_t kModelDim = TConfig::kModelDim;
|
|
for (size_t token_idx = 0; token_idx < num_interleaved; ++token_idx) {
|
|
EmbedToken<TConfig>(tokens[token_idx], token_idx, pos, weights,
|
|
activations);
|
|
}
|
|
|
|
for (size_t layer = 0; layer < TConfig::kLayers; ++layer) {
|
|
const CompressedLayer<TConfig>* layer_weights = weights.GetLayer(layer);
|
|
TransformerLayer<TConfig>(num_tokens, num_queries, pos, layer,
|
|
layer_weights, activations, kv_caches, pool);
|
|
|
|
if (layers_output) {
|
|
const std::string block_name = "blocks." + std::to_string(layer);
|
|
for (size_t token_idx = 0; token_idx < num_interleaved; ++token_idx) {
|
|
layers_output(pos + token_idx, block_name,
|
|
activations.x.Batch(token_idx), kModelDim);
|
|
}
|
|
}
|
|
}
|
|
|
|
RMSNormInplaceBatched(num_interleaved, weights.final_norm_scale.data_scale1(),
|
|
activations.x.All(), kModelDim);
|
|
if (layers_output) {
|
|
for (size_t token_idx = 0; token_idx < num_interleaved; ++token_idx) {
|
|
layers_output(pos + token_idx, "final_norm",
|
|
activations.x.Batch(token_idx), kModelDim);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class TConfig>
|
|
void RangeChecks(size_t& max_tokens, size_t& max_generated_tokens,
|
|
size_t& prompt_size) {
|
|
if (!TConfig::kUseLocalAttention) {
|
|
if (max_tokens > TConfig::kSeqLen) {
|
|
fprintf(stderr, "WARNING: max_tokens %zu > kSeqLen %d, truncating.\n",
|
|
max_tokens, TConfig::kSeqLen);
|
|
max_tokens = static_cast<size_t>(TConfig::kSeqLen);
|
|
}
|
|
}
|
|
|
|
if (max_generated_tokens > max_tokens) {
|
|
fprintf(stderr,
|
|
"WARNING: max_generated_tokens %zu > max_tokens %zu, truncating.\n",
|
|
max_generated_tokens, max_tokens);
|
|
max_generated_tokens = max_tokens - 1;
|
|
}
|
|
|
|
if (!TConfig::kUseLocalAttention) {
|
|
if (prompt_size + max_generated_tokens > max_tokens) {
|
|
fprintf(stderr,
|
|
"WARNING: prompt_size %zu + max_generated_tokens %zu > "
|
|
"max_tokens %zu, truncating to ",
|
|
prompt_size, max_generated_tokens, max_tokens);
|
|
prompt_size = std::min(prompt_size, max_tokens - max_generated_tokens);
|
|
fprintf(stderr, "%zu\n", prompt_size);
|
|
}
|
|
}
|
|
|
|
HWY_ASSERT(prompt_size > 0);
|
|
}
|
|
|
|
// Placeholder for internal test3, do not remove
|
|
|
|
// Returns interleaved tokens: one from each query, followed by the second from
|
|
// all queries, with EOS padding.
|
|
static std::vector<int> InterleaveQueries(
|
|
const hwy::Span<const hwy::Span<int>>& queries,
|
|
const RuntimeConfig& runtime_config, size_t& min_prompt_size,
|
|
size_t& max_prompt_size) {
|
|
const size_t num_queries = queries.size();
|
|
min_prompt_size = hwy::LimitsMax<size_t>();
|
|
max_prompt_size = 0;
|
|
for (size_t i = 0; i < num_queries; ++i) {
|
|
min_prompt_size = std::min(min_prompt_size, queries[i].size());
|
|
max_prompt_size = std::max(max_prompt_size, queries[i].size());
|
|
}
|
|
|
|
std::vector<int> prompt;
|
|
prompt.reserve(max_prompt_size * num_queries);
|
|
for (size_t pos = 0; pos < max_prompt_size; ++pos) {
|
|
for (size_t q = 0; q < num_queries; ++q) {
|
|
if (pos < queries[q].size()) {
|
|
prompt.push_back(queries[q][pos]);
|
|
} else {
|
|
prompt.push_back(runtime_config.eos_id);
|
|
}
|
|
}
|
|
}
|
|
return prompt;
|
|
}
|
|
|
|
// Holds "is at end of stream" state for each query.
|
|
class TokenStreamer {
|
|
public:
|
|
explicit TokenStreamer(const RuntimeConfig& runtime_config)
|
|
: runtime_config_(runtime_config) {}
|
|
|
|
// Returns whether the query was already at, or has just reached, the end of
|
|
// the stream: either via token == eos_id, or StreamToken returning false.
|
|
bool operator()(size_t query_idx, size_t pos, int token, float prob) {
|
|
if (HWY_UNLIKELY(is_eos_.Get(query_idx))) return true;
|
|
|
|
if (!runtime_config_.StreamToken(query_idx, pos, token, prob) ||
|
|
token == runtime_config_.eos_id) {
|
|
is_eos_.Set(query_idx);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
const RuntimeConfig& runtime_config_;
|
|
// BitSet4096 divides the arg by 64, so ensure it is at least 64.
|
|
hwy::BitSet4096<HWY_MAX(64, kBatchedQueryBatchSize)> is_eos_;
|
|
};
|
|
|
|
// Generates one token per query in the batch.
|
|
//
|
|
// pos indexes the KV cache. In the first turn of a chat, pos = 0, and it
|
|
// continues to increase by one for each prefilled/generated token per query.
|
|
// query_idx_start is the first query index in the batch.
|
|
template <class TConfig, size_t kQueryBatchSize>
|
|
void GenerateT(const ByteStorageT& weights_u8, Activations& activations,
|
|
const RuntimeConfig& runtime_config,
|
|
const hwy::Span<const hwy::Span<int>>& prompts, const size_t pos,
|
|
const size_t query_idx_start,
|
|
const std::vector<KVCache*>& kv_caches, hwy::ThreadPool& pool,
|
|
TimingInfo& timing_info) {
|
|
constexpr size_t kVocabSize = TConfig::kVocabSize;
|
|
const CompressedWeights<TConfig>& weights =
|
|
*reinterpret_cast<const CompressedWeights<TConfig>*>(weights_u8.get());
|
|
|
|
const size_t num_queries = prompts.size();
|
|
HWY_DASSERT(num_queries <= kQueryBatchSize);
|
|
size_t min_prompt_size, max_prompt_size;
|
|
const std::vector<int> prompt = InterleaveQueries(
|
|
prompts, runtime_config, min_prompt_size, max_prompt_size);
|
|
|
|
size_t max_tokens = runtime_config.max_tokens;
|
|
size_t max_generated_tokens = runtime_config.max_generated_tokens;
|
|
RangeChecks<TConfig>(max_tokens, max_generated_tokens, max_prompt_size);
|
|
if (pos >= max_tokens) {
|
|
fprintf(stderr, "Warning: pos %zu >= max_tokens %zu, aborting.\n", pos,
|
|
max_tokens);
|
|
return;
|
|
}
|
|
|
|
// If no sample_func is provided, we use top-k sampling.
|
|
const SampleFunc sample_token =
|
|
runtime_config.sample_func
|
|
? runtime_config.sample_func
|
|
: [&](const float* logits, size_t vocab_size) -> int {
|
|
return SampleTopK<TConfig::kTopK>(logits, vocab_size, *runtime_config.gen,
|
|
runtime_config.temperature,
|
|
runtime_config.accept_token);
|
|
};
|
|
|
|
// Prefill stops before min_prompt_size - 1 because the last prompt token is
|
|
// the first input token for generation.
|
|
const size_t prefill_per_query = min_prompt_size - 1;
|
|
const hwy::Span<const int> prefill_tokens(prompt.data(),
|
|
prefill_per_query * num_queries);
|
|
PrefillState prefill(pool);
|
|
prefill.Init<TConfig>(prefill_tokens.size());
|
|
const double prefill_start = hwy::platform::Now();
|
|
size_t interleaved_pos = pos * num_queries;
|
|
prefill.Prefill<TConfig>(prefill_tokens, num_queries, interleaved_pos,
|
|
weights, runtime_config, kv_caches);
|
|
interleaved_pos += prefill_tokens.size();
|
|
timing_info.NotifyPrefill(prefill_tokens.size(), prefill_start);
|
|
|
|
prefill.ResumeMainSpinning();
|
|
|
|
// Storage for the last generated token from each query, passed to the next
|
|
// Transformer() call.
|
|
std::vector<int> gen_tokens(num_queries);
|
|
|
|
// Stream the last prompt token from each query and fill gen_tokens.
|
|
hwy::CopyBytes(&prompt[prefill_tokens.size()], gen_tokens.data(),
|
|
num_queries * sizeof(prompt[0]));
|
|
TokenStreamer token_streamer(runtime_config);
|
|
for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) {
|
|
(void)token_streamer(query_idx_start + query_idx, prefill_per_query,
|
|
gen_tokens[query_idx], 0.0f);
|
|
}
|
|
|
|
const double gen_start = hwy::platform::Now();
|
|
for (size_t gen_per_query = 0;
|
|
gen_per_query < HWY_MIN(max_tokens, max_generated_tokens);
|
|
++gen_per_query) {
|
|
// Decode: generate one token for each query.
|
|
Transformer<TConfig>(gen_tokens.data(), /*num_tokens=*/1, num_queries,
|
|
interleaved_pos, weights, activations, kv_caches, pool,
|
|
runtime_config.layers_output);
|
|
interleaved_pos += num_queries;
|
|
|
|
bool all_queries_eos = true;
|
|
PROFILER_ZONE("Gen.Embedding");
|
|
for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) {
|
|
float* HWY_RESTRICT logits = activations.logits.Batch(query_idx);
|
|
// Compute logits from last layer activations. TODO: MatMul
|
|
MatVec<kVocabSize, TConfig::kModelDim>(
|
|
weights.embedder_input_embedding, 0, activations.x.Batch(query_idx),
|
|
activations.even_odd.All(), logits, pool);
|
|
if constexpr (TConfig::kFinalCap > 0.0f) {
|
|
LogitsSoftCap(TConfig::kFinalCap, logits, kVocabSize);
|
|
}
|
|
Softmax(logits, kVocabSize);
|
|
const int token = sample_token(logits, kVocabSize);
|
|
timing_info.NotifyGenerated(prefill_start);
|
|
|
|
const bool is_eos = token_streamer(query_idx_start + query_idx,
|
|
prefill_per_query + 1 + gen_per_query,
|
|
token, logits[token]);
|
|
all_queries_eos &= is_eos;
|
|
gen_tokens[query_idx] = is_eos ? runtime_config.eos_id : token;
|
|
}
|
|
if (all_queries_eos) break;
|
|
} // foreach token to generate
|
|
|
|
timing_info.NotifyGenerateDone(gen_start);
|
|
}
|
|
|
|
// TODO: prompt should also be span, not a vector.
|
|
template <class TConfig>
|
|
void GenerateSingleT(const ByteStorageT& weights_u8, Activations& activations,
|
|
const RuntimeConfig& runtime_config,
|
|
const std::vector<int>& prompt, size_t pos,
|
|
KVCache& kv_cache, hwy::ThreadPool& pool,
|
|
TimingInfo& timing_info) {
|
|
const hwy::Span<int> prompt_span(const_cast<int*>(prompt.data()),
|
|
prompt.size());
|
|
const hwy::Span<const hwy::Span<int>> prompts(&prompt_span, 1);
|
|
// TODO: also span of kv_cache, or batching inside KVCache?
|
|
std::vector<KVCache*> kv_caches = {&kv_cache};
|
|
const size_t query_idx_start = 0;
|
|
GenerateT<TConfig, /*kQueryBatchSize=*/1>(
|
|
weights_u8, activations, runtime_config, prompts, pos, query_idx_start,
|
|
kv_caches, pool, timing_info);
|
|
}
|
|
|
|
template <class TConfig>
|
|
void GenerateBatchT(const ByteStorageT& weights_u8, Activations& activations,
|
|
const RuntimeConfig& runtime_config,
|
|
const hwy::Span<const hwy::Span<int>>& prompts, size_t pos,
|
|
const std::vector<KVCache*>& kv_caches,
|
|
hwy::ThreadPool& pool, TimingInfo& timing_info) {
|
|
// Disable query batching for Griffin models.
|
|
constexpr size_t kQueryBatchSize =
|
|
(TConfig::kGriffinLayers > 0) ? 1 : kBatchedQueryBatchSize;
|
|
for (size_t query_idx_start = 0; query_idx_start < prompts.size();
|
|
query_idx_start += kQueryBatchSize) {
|
|
const size_t num_queries =
|
|
std::min(prompts.size() - query_idx_start, kQueryBatchSize);
|
|
const hwy::Span<const hwy::Span<int>> query_batch(
|
|
prompts.data() + query_idx_start, num_queries);
|
|
GenerateT<TConfig, kQueryBatchSize>(weights_u8, activations, runtime_config,
|
|
query_batch, pos, query_idx_start,
|
|
kv_caches, pool, timing_info);
|
|
}
|
|
}
|
|
|
|
} // namespace HWY_NAMESPACE
|
|
|
|
#if HWY_ONCE
|
|
|
|
// These are extern functions defined by instantiations/*.cc, which include this
|
|
// 'header' after defining GEMMA_CONFIG, which is for function overloading.
|
|
void GenerateSingle( // NOLINT(misc-definitions-in-headers)
|
|
GEMMA_CONFIG, const ByteStorageT& weights_u8, Activations& activations,
|
|
const RuntimeConfig& runtime_config, const std::vector<int>& prompt,
|
|
size_t pos, KVCache& kv_cache, hwy::ThreadPool& pool,
|
|
TimingInfo& timing_info) {
|
|
HWY_EXPORT_AND_DYNAMIC_DISPATCH_T(GenerateSingleT<GEMMA_CONFIG>)
|
|
(weights_u8, activations, runtime_config, prompt, pos, kv_cache, pool,
|
|
timing_info);
|
|
}
|
|
|
|
void GenerateBatch( // NOLINT(misc-definitions-in-headers)
|
|
GEMMA_CONFIG, const ByteStorageT& weights_u8, Activations& activations,
|
|
const RuntimeConfig& runtime_config,
|
|
const hwy::Span<const hwy::Span<int>>& prompts, size_t pos,
|
|
const std::vector<KVCache*>& kv_caches, hwy::ThreadPool& pool,
|
|
TimingInfo& timing_info) {
|
|
HWY_EXPORT_AND_DYNAMIC_DISPATCH_T(GenerateBatchT<GEMMA_CONFIG>)
|
|
(weights_u8, activations, runtime_config, prompts, pos, kv_caches, pool,
|
|
timing_info);
|
|
}
|
|
|
|
#endif // HWY_ONCE
|
|
|
|
} // namespace gcpp
|
|
HWY_AFTER_NAMESPACE();
|
|
|
|
#endif // THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_
|