// Copyright 2024 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // SIMD functions for Gemma/Griffin transformers. // Include guard (still compiled once per target) #if defined(THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_) == \ defined(HWY_TARGET_TOGGLE) #ifdef THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_ #undef THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_ #else #define THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_ #endif #include #include #include // std::min #include // std::unique_ptr #include #include #include #include "gemma/activations.h" #include "gemma/common.h" #include "gemma/configs.h" #include "gemma/gemma.h" #include "gemma/weights.h" // Placeholder for internal test4, do not remove #include "ops/matmul-inl.h" #include "ops/ops-inl.h" #include "hwy/aligned_allocator.h" #include "hwy/base.h" #include "hwy/bit_set.h" #include "hwy/contrib/matvec/matvec-inl.h" #include "hwy/contrib/thread_pool/thread_pool.h" #include "hwy/contrib/thread_pool/topology.h" #include "hwy/highway.h" #include "hwy/profiler.h" #include "hwy/timer.h" #ifndef GEMMA_CONFIG #if HWY_IDE // Provide a definition so the IDE does not complain. #define GEMMA_CONFIG ConfigGemmaTiny #else #error "Only include from instantiations/*.cc, which must define GEMMA_CONFIG" #endif // HWY_IDE #endif // GEMMA_CONFIG HWY_BEFORE_NAMESPACE(); namespace gcpp { namespace HWY_NAMESPACE { // Different functions use different naming conventions for the number of // tokens. Functions that are query-independent, such as RMSNorm*, call the // count `num_interleaved`. Functions that are query-dependent, such as // `Attention`, use separate `num_tokens` and `num_queries`. template HWY_NOINLINE void GriffinRecurrent( size_t batch_start, size_t num_tokens, size_t num_queries, size_t layer, Activations& activations, const CompressedLayer* layer_weights, const std::vector& kv_caches, hwy::ThreadPool& pool) { PROFILER_ZONE("Gen.Griffin"); HWY_ASSERT(num_queries == 1); // TODO: add batch query support for Griffin. KVCache& kv_cache = *kv_caches[0]; namespace hn = hwy::HWY_NAMESPACE; using D = hn::ScalableTag; static constexpr size_t kModelDim = TConfig::kModelDim; static constexpr size_t kConv1dWidth = TConfig::kConv1dWidth; static constexpr size_t kHeads = TConfig::kHeads; // X / Y linear layers. for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { float* HWY_RESTRICT y = activations.griffin_y.Batch(batch_idx); float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx); TwoMatVecAdd( layer_weights->griffin.linear_x_w, layer_weights->griffin.linear_y_w, 0, activations.pre_att_rms_out.Batch(batch_idx), /*add0=*/layer_weights->griffin.linear_x_biases.data_scale1(), /*add1=*/layer_weights->griffin.linear_y_biases.data_scale1(), /*out0=*/x, /*out1=*/y, pool); Gelu(y, kModelDim); } // Conv1D. for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { const size_t pos = batch_start + batch_idx; float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx); HWY_FULL(float) df; HWY_DASSERT(kModelDim % hn::Lanes(df) == 0); const size_t layer_offset = layer * kModelDim * (kConv1dWidth - 1); // cache[i] = input at time t-i. float* HWY_RESTRICT cache[HWY_MAX(kConv1dWidth, 1)]; cache[0] = x; for (size_t i = 1; i < kConv1dWidth; i++) { cache[i] = kv_cache.conv1d_cache.get() + layer_offset + ((pos + kConv1dWidth - 1 - i) % (kConv1dWidth - 1)) * kModelDim; } for (size_t i = 0; i < kModelDim; i += hn::Lanes(df)) { auto xv = hn::Load(df, x + i); auto accum0 = hn::Load(df, layer_weights->griffin.conv_biases.data_scale1() + i); auto accum1 = hn::Zero(df); static_assert(kConv1dWidth % 2 == 0, "Conv width must be even"); for (size_t l = 0; 2 * l < kConv1dWidth; l++) { auto wv0 = hn::Load(df, layer_weights->griffin.conv_w.data_scale1() + (kConv1dWidth - 1 - 2 * l) * kModelDim + i); auto wv1 = hn::Load(df, layer_weights->griffin.conv_w.data_scale1() + (kConv1dWidth - 2 - 2 * l) * kModelDim + i); accum0 = hn::MulAdd(wv0, hn::Load(df, cache[l * 2] + i), accum0); accum1 = hn::MulAdd(wv1, hn::Load(df, cache[l * 2 + 1] + i), accum1); } hn::Store(hn::Add(accum0, accum1), df, x + i); hn::Store(xv, df, cache[HWY_MAX(kConv1dWidth, 1) - 1] + i); } } // RGLRU for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { const size_t pos = batch_start + batch_idx; float* HWY_RESTRICT y = activations.griffin_y.Batch(batch_idx); float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx); float* HWY_RESTRICT gate_x = activations.griffin_gate_x.Batch(batch_idx); float* HWY_RESTRICT a = activations.griffin_multiplier.Batch(batch_idx); float* HWY_RESTRICT rnn_state = kv_cache.rglru_cache.get() + layer * kModelDim; pool.Run(0, kHeads, [&](const uint64_t head, size_t /*thread*/) HWY_ATTR { constexpr size_t kHeadDim = kModelDim / kHeads; constexpr size_t kMatrixSize = kHeadDim * kHeadDim; size_t head_offset = head * kHeadDim; TwoOfsMatVecAddLoop( layer_weights->griffin.gate_w, kMatrixSize * head, kMatrixSize * (kHeads + head), x + head_offset, /*add0=*/layer_weights->griffin.gate_biases.data_scale1() + head_offset, /*add1=*/layer_weights->griffin.gate_biases.data_scale1() + kModelDim + head_offset, /*out0=*/gate_x + head_offset, /*out1=*/a + head_offset); Sigmoid(gate_x + head_offset, kHeadDim); Sigmoid(a + head_offset, kHeadDim); const auto fn_mul = [](D d, hn::Vec x, hn::Vec gate_x) HWY_ATTR { return hn::Mul(x, gate_x); }; hn::Transform1(D(), a + head_offset, kHeadDim, layer_weights->griffin.a.data_scale1() + head_offset, fn_mul); hn::Transform1(D(), x + head_offset, kHeadDim, gate_x + head_offset, fn_mul); // RNN scan HWY_FULL(float) df; HWY_DASSERT(kHeadDim % hn::Lanes(df) == 0); for (size_t i = 0; i < kHeadDim; i += hn::Lanes(df)) { auto log_a = hn::Load(df, a + head_offset + i); auto gated_x = hn::Load(df, x + head_offset + i); auto rnn = hn::Load(df, rnn_state + head_offset + i); auto a = hn::Exp(df, log_a); auto x_multiplier = hn::Sqrt(hn::NegMulAdd(a, a, hn::Set(df, 1.0f))); if (pos == 0) { x_multiplier = hn::Set(df, 1.0f); } auto new_x = hn::MulAdd(x_multiplier, gated_x, hn::Mul(a, rnn)); hn::Store(new_x, df, rnn_state + head_offset + i); // Join branches. auto yv = hn::Load(df, y + head_offset + i); auto pre_out = hn::Mul(yv, new_x); hn::Store(pre_out, df, x + head_offset + i); } }); } // Final linear layer. for (size_t batch_idx = 0; batch_idx < num_tokens; ++batch_idx) { float* HWY_RESTRICT x = activations.griffin_x.Batch(batch_idx); float* out_ptr = activations.att_post2.Batch(batch_idx); MatVecAdd( layer_weights->griffin.linear_out_w, 0, x, layer_weights->griffin.linear_out_biases.data_scale1(), activations.even_odd.All(), out_ptr, pool); } } template HWY_NOINLINE void PostQK(T* HWY_RESTRICT inout, size_t pos, size_t layer) { constexpr size_t kQKVDim = TConfig::kQKVDim; // PostQKType::Rope Rope(inout, TConfig::kUseHalfRope ? kQKVDim / 2 : kQKVDim, pos); } template HWY_NOINLINE void GemmaAttention(size_t interleaved_start, size_t num_tokens, size_t num_queries, size_t layer, Activations& activations, const CompressedLayer* layer_weights, const std::vector& kv_caches, hwy::ThreadPool& pool) { PROFILER_ZONE("Gen.Attention"); HWY_DASSERT(interleaved_start % num_queries == 0); constexpr size_t kQKVDim = TConfig::kQKVDim; constexpr size_t kQStride = Activations::QStride(); constexpr size_t kCachePosSize = CachePosSize()(); constexpr size_t kCacheLayerSize = CacheLayerSize()(); constexpr size_t kModelDim = TConfig::kModelDim; constexpr size_t kHeads = TConfig::kHeads; constexpr size_t kKVHeads = TConfig::kKVHeads; constexpr size_t kSeqLen = TConfig::kSeqLen; GEMMA_CONSTEXPR_SQRT float kQueryScale = ChooseQueryScale(); // Multi-Head Attention a.k.a. "use_qkv_einsum". constexpr bool kIsMHA = Activations::IsMHA(); static_assert(!kIsMHA || TConfig::kInterleaveQKV); // MHA => interleaved const size_t batch_start = interleaved_start / num_queries; const size_t num_interleaved = num_tokens * num_queries; // For the computation of Q, K, and V, it is useful to remember that // qkv_einsum_w has shape [(kHeads + kKVHeads * 2), kKQVDim, kModelDim] // and kQStride = kQKVDim * (kIsMHA ? 3 : 1); // // Compute Q only or QKV (if MHA). // If MHA, this also computes KV, which we copy to the KV cache below. const float scale = layer_weights->qkv_einsum_w.scale(); MatMul_4x4_Batch( num_interleaved, activations.pre_att_rms_out.All(), layer_weights->qkv_einsum_w.data(), scale, activations.q.All(), pool); // Compute KV if not MHA. if constexpr (!kIsMHA) { for (size_t interleaved_idx = 0; interleaved_idx < num_interleaved; ++interleaved_idx) { const float* x = activations.pre_att_rms_out.Batch(interleaved_idx); const size_t query_idx = interleaved_idx % num_queries; const size_t batch_idx = interleaved_idx / num_queries; KVCache& kv_cache = *kv_caches[query_idx]; const size_t pos = batch_start + batch_idx; const size_t cache_pos = pos % (kSeqLen + kPrefillBatchSize); const size_t kv_offset = cache_pos * kCachePosSize + layer * kCacheLayerSize; float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset; // KV structure is [k, v, k, v, ....] = kKVHeads pairs of (k, v). // TODO: requires MatMul support for offsets. MatVec( layer_weights->qkv_einsum_w, kHeads * kQKVDim * kModelDim, x, activations.even_odd.All(), kv, pool); } } // Apply positional encodings for K (and copy KV to cache if MHA). pool.Run( 0, kKVHeads * num_interleaved, [&](uint64_t task, size_t thread) HWY_ATTR { const size_t head = task % kKVHeads; const size_t interleaved_idx = task / kKVHeads; const size_t query_idx = interleaved_idx % num_queries; const size_t batch_idx = interleaved_idx / num_queries; const size_t pos = batch_start + batch_idx; const size_t cache_pos = pos % (kSeqLen + kPrefillBatchSize); const size_t kv_offset = cache_pos * kCachePosSize + layer * kCacheLayerSize + head * kQKVDim * 2; KVCache& kv_cache = *kv_caches[query_idx]; float* HWY_RESTRICT kv = kv_cache.kv_cache.get() + kv_offset; if constexpr (kIsMHA) { // For MHA, copy KV into the KV cache from scratch space (see above). const float* HWY_RESTRICT q = activations.q.Batch(interleaved_idx) + head * kQStride; // Skip past the Q part of `q`, and copy KV to `kv`. hwy::CopyBytes(q + kQKVDim, kv, 2 * kQKVDim * sizeof(float)); } PostQK(kv, pos, layer); }); static_assert((kHeads % kKVHeads) == 0, "query heads must be a multiple of key-value heads"); constexpr size_t kGroupHeads = kHeads / kKVHeads; // For each head (token, query), compute Q.K, softmax, and weighted V. pool.Run( 0, kHeads * num_interleaved, [&](uint64_t task, size_t thread) HWY_ATTR { const size_t head = task % kHeads; const size_t interleaved_idx = task / kHeads; const size_t query_idx = interleaved_idx % num_queries; const size_t batch_idx = interleaved_idx / num_queries; const size_t head_offset = (head / kGroupHeads) * kQKVDim * 2; KVCache& kv_cache = *kv_caches[query_idx]; float* HWY_RESTRICT q = activations.q.Batch(interleaved_idx) + head * kQStride; // Apply rope and scaling to Q. const size_t pos = batch_start + batch_idx; PostQK(q, pos, layer); MulByConst(kQueryScale, q, kQKVDim); // Compute Q.K scores, yielding "logits" (or scores) in head_att. float* HWY_RESTRICT head_att = activations.att.Batch(interleaved_idx) + head * kSeqLen; const size_t start_pos = pos - std::min(TConfig::kAttentionWindowSizes[layer] - 1, pos); for (size_t pos2 = start_pos; pos2 <= pos; ++pos2) { const size_t cache_pos = pos2 % (kSeqLen + kPrefillBatchSize); const size_t kv_offset = cache_pos * kCachePosSize + layer * kCacheLayerSize + head_offset; const float* HWY_RESTRICT k2 = kv_cache.kv_cache.get() + kv_offset; const float score = Dot(q, k2, kQKVDim); head_att[pos2 % kSeqLen] = score; } // SoftMax. May be preceded by SoftCap. Yields "probabilities" in // head_att. const size_t head_att_len = std::min(pos + 1, kSeqLen); if constexpr (TConfig::kAttCap > 0.0f) { LogitsSoftCap(TConfig::kAttCap, head_att, head_att_len); } Softmax(head_att, head_att_len); // Summation of v (kv_cache) weighted by probs (head_att) // into "encoded" (att_out). Compare gemma/modules.py: // encoded = jnp.einsum('BTNS,BSNH->BTNH', probs, value_proj) float* HWY_RESTRICT att_out = activations.att_out.Batch(interleaved_idx) + head * kQKVDim; hwy::ZeroBytes(att_out, kQKVDim * sizeof(*att_out)); for (size_t pos2 = start_pos; pos2 <= pos; ++pos2) { const size_t cache_pos = pos2 % (kSeqLen + kPrefillBatchSize); const size_t kv_offset = cache_pos * kCachePosSize + layer * kCacheLayerSize + head_offset; float* HWY_RESTRICT v2 = kv_cache.kv_cache.get() + kv_offset + kQKVDim; MulByConstAndAdd(head_att[pos2 % kSeqLen], v2, att_out, kQKVDim); } }); // Sum encoded (att_out) over num_heads and head_dim (kQKVDim) // into output (layer_out). Compare gemma/modules.py: // attn_output = self.attn_vec_einsum('BTNH,NHD->BTD', encoded) for (size_t interleaved_idx = 0; interleaved_idx < num_interleaved; ++interleaved_idx) { // TODO(szabadka) Use a single MatVecAdd like in GriffinRecurrent() after // rearranging the weights. float* HWY_RESTRICT att_out = activations.att_out.Batch(interleaved_idx); float* HWY_RESTRICT layer_out = activations.att_post2.Batch(interleaved_idx); // Head 0 (and potentially biases) -> layer_out. // attn_vec_einsum_w has shape [kHeads, kQKVDim, kModelDim]. MatVecT( layer_weights->attn_vec_einsum_w, 0, att_out, layer_weights->attention_output_biases.data_scale1(), activations.even_odd.All(), layer_out, pool); // Head 1 and following are added to layer_out. for (size_t head = 1; head < kHeads; ++head) { // NOTE: this is a single kModelDim temp output. If parallelized or using // MatMul, add per-thread storage. float* HWY_RESTRICT head_out = activations.att_post1.All(); // TODO: requires MatMul support for offsets. MatVec( layer_weights->attn_vec_einsum_w, head * kModelDim * kQKVDim, att_out + head * kQKVDim, activations.even_odd.All(), head_out, pool); AddFrom(head_out, layer_out, kModelDim); } } } template HWY_NOINLINE void Attention(LayerAttentionType type, size_t interleaved_start, size_t num_tokens, size_t num_queries, size_t layer, Activations& activations, const CompressedLayer* layer_weights, const std::vector& kv_caches, hwy::ThreadPool& pool) { if (type == LayerAttentionType::kGemma) { GemmaAttention(interleaved_start, num_tokens, num_queries, layer, activations, layer_weights, kv_caches, pool); } else { // Only reached if the model is Griffin. `if constexpr` prevents generating // this code for non-Griffin models. if constexpr (TConfig::kGriffinLayers > 0) { HWY_ASSERT(num_queries == 1); GriffinRecurrent(interleaved_start, num_tokens, num_queries, layer, activations, layer_weights, kv_caches, pool); } } } template HWY_NOINLINE void Activation(T* HWY_RESTRICT c1, T* HWY_RESTRICT c2, size_t count) { namespace hn = hwy::HWY_NAMESPACE; using DF = hn::ScalableTag; using VF = hn::Vec; // ActivationType::Gelu hn::Transform1(DF(), c1, count, c2, [](DF df, VF v, VF mul) HWY_ATTR { return hn::Mul(mul, Gelu(df, v)); }); } template HWY_NOINLINE void FFW(Activations& activations, size_t num_interleaved, const CompressedLayer* layer_weights, hwy::ThreadPool& pool) { PROFILER_ZONE("Gen.FFW"); constexpr size_t kModelDim = TConfig::kModelDim; constexpr size_t kFFHiddenDim = TConfig::kFFHiddenDim; // MatMul expects col-major B, which is what we have: kModelDim consecutive // elements in memory, repeated kFFHiddenDim times. constexpr size_t kColsA = kModelDim; constexpr size_t kColsB = kFFHiddenDim; HWY_DASSERT(num_interleaved <= activations.bf_pre_ffw_rms_out.BatchSize()); const auto A = activations.bf_pre_ffw_rms_out.All(); const float scale = layer_weights->gating_einsum_w.scale(); const auto B1 = layer_weights->gating_einsum_w.data(); const auto B2 = B1 + kColsA * kColsB; auto C1 = activations.C1.All(); auto C2 = activations.C2.All(); constexpr bool kAddBias = TConfig::kFFBiases; const auto bias1 = layer_weights->ffw_gating_biases.data_scale1(); const auto bias2 = bias1 + kFFHiddenDim; // Will go through GELU. MatMul_4x4_Batch_Add(num_interleaved, A, B1, scale, C1, bias1, pool); // What to multiply by. MatMul_4x4_Batch_Add(num_interleaved, A, B2, scale, C2, bias2, pool); // Activation (Gelu) and multiply by gate. Store activations in C1. Activation(C1, C2, kFFHiddenDim * num_interleaved); // Hidden layer -> output layer. MatMul_4x4_Batch_Add( num_interleaved, C1, layer_weights->linear_w.data(), layer_weights->linear_w.scale(), activations.ffw_out.All(), layer_weights->ffw_output_biases.data_scale1(), pool); } // TODO: pass Activations.x instead of Activations. // `pos` is for the entire batch and does not include `batch_idx`. template HWY_NOINLINE void EmbedToken(int token, size_t batch_idx, size_t pos, const CompressedWeights& weights, Activations& activations) { constexpr size_t kModelDim = TConfig::kModelDim; GEMMA_CONSTEXPR_EMBSCALING const float kEmbScaling = EmbeddingScaling(); HWY_DASSERT(token >= 0); HWY_DASSERT(token < TConfig::kVocabSize); Decompress(weights.embedder_input_embedding, token * kModelDim, activations.x.Batch(batch_idx), kModelDim); MulByConst(kEmbScaling, activations.x.Batch(batch_idx), kModelDim); if constexpr (TConfig::kAbsolutePE) { AddAbsolutePositionalEmbeddings(activations.x.Batch(batch_idx), kModelDim, pos + batch_idx); }; } template HWY_NOINLINE void ResidualConnection( size_t num_interleaved, T* HWY_RESTRICT other, T* HWY_RESTRICT x, const CompressedLayer* layer_weights, bool is_attention) { constexpr size_t kModelDim = TConfig::kModelDim; // ResidualType::Add AddFromBatched(num_interleaved, other, x, kModelDim); } template void PostNorm(size_t num_interleaved, const WeightT* weights, InOutT* inout) { if (TConfig::kPostNorm == PostNormType::Scale) { RMSNormInplaceBatched(num_interleaved, weights, inout, TConfig::kModelDim); } } template HWY_NOINLINE void TransformerLayer( size_t num_tokens, size_t num_queries, size_t pos, size_t layer, const CompressedLayer* layer_weights, Activations& activations, const std::vector& kv_caches, hwy::ThreadPool& pool) { constexpr size_t kModelDim = TConfig::kModelDim; const size_t num_interleaved = num_tokens * num_queries; auto type = TConfig::kLayerConfig[layer]; size_t layer_of_type = NumLayersOfTypeBefore(TConfig::kLayerConfig, type, layer); RMSNormBatched(num_interleaved, activations.x.All(), layer_weights->pre_attention_norm_scale.data_scale1(), activations.pre_att_rms_out.All(), kModelDim); Attention(type, pos, num_tokens, num_queries, layer_of_type, activations, layer_weights, kv_caches, pool); PostNorm(num_interleaved, layer_weights->post_attention_norm_scale.data_scale1(), activations.att_post2.All()); ResidualConnection(num_interleaved, activations.att_post2.All(), activations.x.All(), layer_weights, /*is_attention=*/true); RMSNormBatched(num_interleaved, activations.x.All(), layer_weights->pre_ffw_norm_scale.data_scale1(), activations.bf_pre_ffw_rms_out.All(), kModelDim); FFW(activations, num_interleaved, layer_weights, pool); PostNorm(num_interleaved, layer_weights->post_ffw_norm_scale.data_scale1(), activations.ffw_out.All()); ResidualConnection(num_interleaved, activations.ffw_out.All(), activations.x.All(), layer_weights, /*is_attention=*/false); } // For prefill, we have two-level parallelism: // - Outer: input tokens are split into batches, each of which is one task // processed by a worker in `outer_pool_`, which includes the main thread // because it is the one that calls `Prefill`. // - Inner: each `outer` worker passes `inner_pools_[outer]` to // `TransformerLayer` for tensor-level parallelism. // // This class holds the thread pools and activations, recreated for each query. // // It is safe to parallelize batches because we write to KVCache at // `pos % kSeqLen`, which is far greater than the number of workers. // Note however that this currently leads to nondeterministic results because // the RNG is invoked in different order. class PrefillState { public: explicit PrefillState(hwy::ThreadPool& main_pool) : main_pool_(&main_pool) {} ~PrefillState() { DeleteInnerPools(); } // Called before each query. Recreates thread pools, which has the advantage // of tailoring the parallelism to the prompt length. template void Init(size_t prefill_size) { // Would be zero for single-token prompts (prefill_size == num_tokens - 1). num_batches_ = HWY_MAX(size_t{1}, hwy::DivCeil(prefill_size, kPrefillBatchSize)); // More than num_batches_ would waste workers on idling in the outer Run; // more than NumWorkers() would exceed the global --num_threads. const size_t outer_workers = HWY_MIN(num_batches_, main_pool_->NumWorkers()); HWY_ASSERT(outer_workers != 0); // Otherwise activations_ is empty. // One activation per outer worker. Allocating in parallel saves 30 ms. activations_.resize(outer_workers); main_pool_->Run(0, outer_workers, [this](uint64_t task, size_t /*thread*/) { activations_[task].Allocate(kPrefillBatchSize); }); DeleteInnerPools(); // If we'd create just one inner pool with all the workers, skip the cost of // thread creation and pinning (about 60 ms) by reusing the main pool. if (outer_workers <= 1) { // Still allocate a dummy pool to simplify Prefill(). outer_pool_ = std::make_unique(1); inner_pools_.push_back(main_pool_); return; } // Before creating new threads, stop the old ones from spinning. Caller is // responsible for undoing this by calling `ResumeMainSpinning`. main_pool_->SetWaitMode(hwy::PoolWaitMode::kBlock); outer_pool_ = std::make_unique(outer_workers); outer_pool_->SetWaitMode(hwy::PoolWaitMode::kSpin); // Assign up to `max_workers` to inner pools. Each inner pool creates // `workers_per_outer - 1` threads in addition to its 'main' thread, which // is the one calling `inner_pools[outer]->Run`, i.e., `outer`. In total, // `outer_workers * (max_workers / outer_workers)` workers are used. const size_t workers_per_outer = main_pool_->NumWorkers() / outer_workers; for (size_t outer = 0; outer < outer_workers; ++outer) { inner_pools_.push_back(new hwy::ThreadPool(workers_per_outer)); inner_pools_.back()->SetWaitMode(hwy::PoolWaitMode::kSpin); } PinThreads(outer_workers, workers_per_outer); } // `tokens` are from interleaved queries. (See InterleaveQueries() below.) template HWY_NOINLINE void Prefill(hwy::Span tokens, size_t num_queries, size_t pos, const CompressedWeights& weights, const RuntimeConfig& runtime_config, const std::vector& kv_caches) { PROFILER_ZONE("Gen.Prefill"); HWY_ASSERT(activations_.size() == outer_pool_->NumWorkers()); HWY_ASSERT(inner_pools_.size() == outer_pool_->NumWorkers()); outer_pool_->Run( 0, num_batches_, [&](const uint64_t batch_num, size_t thread) HWY_ATTR { const size_t batch_start = batch_num * kPrefillBatchSize; const size_t batch_size = HWY_MIN(kPrefillBatchSize, tokens.size() - batch_start); HWY_DASSERT(batch_start % num_queries == 0); HWY_DASSERT(batch_size % num_queries == 0); const size_t pos_per_query = pos + batch_start / num_queries; const size_t num_tokens = batch_size / num_queries; // Negligible time compared to TransformerLayer. for (size_t batch_idx = 0; batch_idx < batch_size; ++batch_idx) { EmbedToken(tokens[batch_start + batch_idx], batch_idx, pos_per_query, weights, activations_[thread]); } for (size_t layer = 0; layer < TConfig::kLayers; ++layer) { const auto* layer_weights = weights.GetLayer(layer); TransformerLayer( num_tokens, num_queries, pos_per_query, layer, layer_weights, activations_[thread], kv_caches, *inner_pools_[thread]); } // NOTE: we unconditionally call StreamToken, even if EOS. for (size_t i = 0; i < batch_size; ++i) { const size_t query_idx = i % num_queries; const size_t batch_idx = i / num_queries; runtime_config.StreamToken(query_idx, pos_per_query + batch_idx, tokens[i], 0.0f); } }); } // Stops spinning in our pools and resume spinning in main_pool_. void ResumeMainSpinning() { // If we didn't create a new inner pool, we didn't stop spinning on the // main pool, so nothing to do here. if (inner_pools_[0] == main_pool_) return; for (hwy::ThreadPool* p : inner_pools_) { p->SetWaitMode(hwy::PoolWaitMode::kBlock); } outer_pool_->SetWaitMode(hwy::PoolWaitMode::kBlock); main_pool_->SetWaitMode(hwy::PoolWaitMode::kSpin); } private: // Pins each outer thread after their inner threads so they are likely to // run on the same socket. void PinThreads(size_t outer_workers, size_t workers_per_outer) { outer_pool_->Run( 0, outer_workers, [this, workers_per_outer](uint64_t outer, size_t outer_thread) { HWY_ASSERT(outer == outer_thread); // Pins inner *and* `outer` - the latter is the calling thread. inner_pools_[outer]->Run( 0, workers_per_outer, [outer, workers_per_outer](uint64_t task, size_t thread) { HWY_ASSERT(task == thread); // each worker has one task const size_t lp = outer * workers_per_outer + task; hwy::PinThreadToLogicalProcessor(lp); }); }); } void DeleteInnerPools() { for (hwy::ThreadPool* p : inner_pools_) { if (p != main_pool_) delete p; } inner_pools_.clear(); } hwy::ThreadPool* main_pool_; std::unique_ptr outer_pool_; // always allocated std::vector activations_; // size == outer_pool->NumWorkers() // Either there is a single pointer equal to main_pool, or newly created pools // that we own. The former case avoids thread creation overhead for prompts // that fit in a single batch. std::vector inner_pools_; size_t num_batches_ = 0; }; // `tokens` is length `num_tokens * num_queries`. In autoregressive decode, // `num_tokens == 1`. template HWY_NOINLINE void Transformer(const int* tokens, size_t num_tokens, size_t num_queries, size_t pos, const CompressedWeights& weights, Activations& activations, const std::vector& kv_caches, hwy::ThreadPool& pool, const LayersOutputFunc& layers_output) { const size_t num_interleaved = num_tokens * num_queries; if (layers_output) { for (size_t token_idx = 0; token_idx < num_interleaved; ++token_idx) { float token_f = tokens[token_idx]; layers_output(pos + token_idx, "Tokens", &token_f, 1); } } constexpr size_t kModelDim = TConfig::kModelDim; for (size_t token_idx = 0; token_idx < num_interleaved; ++token_idx) { EmbedToken(tokens[token_idx], token_idx, pos, weights, activations); } for (size_t layer = 0; layer < TConfig::kLayers; ++layer) { const CompressedLayer* layer_weights = weights.GetLayer(layer); TransformerLayer(num_tokens, num_queries, pos, layer, layer_weights, activations, kv_caches, pool); if (layers_output) { const std::string block_name = "blocks." + std::to_string(layer); for (size_t token_idx = 0; token_idx < num_interleaved; ++token_idx) { layers_output(pos + token_idx, block_name, activations.x.Batch(token_idx), kModelDim); } } } RMSNormInplaceBatched(num_interleaved, weights.final_norm_scale.data_scale1(), activations.x.All(), kModelDim); if (layers_output) { for (size_t token_idx = 0; token_idx < num_interleaved; ++token_idx) { layers_output(pos + token_idx, "final_norm", activations.x.Batch(token_idx), kModelDim); } } } template void RangeChecks(size_t& max_tokens, size_t& max_generated_tokens, size_t& prompt_size) { if (!TConfig::kUseLocalAttention) { if (max_tokens > TConfig::kSeqLen) { fprintf(stderr, "WARNING: max_tokens %zu > kSeqLen %d, truncating.\n", max_tokens, TConfig::kSeqLen); max_tokens = static_cast(TConfig::kSeqLen); } } if (max_generated_tokens > max_tokens) { fprintf(stderr, "WARNING: max_generated_tokens %zu > max_tokens %zu, truncating.\n", max_generated_tokens, max_tokens); max_generated_tokens = max_tokens - 1; } if (!TConfig::kUseLocalAttention) { if (prompt_size + max_generated_tokens > max_tokens) { fprintf(stderr, "WARNING: prompt_size %zu + max_generated_tokens %zu > " "max_tokens %zu, truncating to ", prompt_size, max_generated_tokens, max_tokens); prompt_size = std::min(prompt_size, max_tokens - max_generated_tokens); fprintf(stderr, "%zu\n", prompt_size); } } HWY_ASSERT(prompt_size > 0); } // Placeholder for internal test3, do not remove // Returns interleaved tokens: one from each query, followed by the second from // all queries, with EOS padding. static std::vector InterleaveQueries( const hwy::Span>& queries, const RuntimeConfig& runtime_config, size_t& min_prompt_size, size_t& max_prompt_size) { const size_t num_queries = queries.size(); min_prompt_size = hwy::LimitsMax(); max_prompt_size = 0; for (size_t i = 0; i < num_queries; ++i) { min_prompt_size = std::min(min_prompt_size, queries[i].size()); max_prompt_size = std::max(max_prompt_size, queries[i].size()); } std::vector prompt; prompt.reserve(max_prompt_size * num_queries); for (size_t pos = 0; pos < max_prompt_size; ++pos) { for (size_t q = 0; q < num_queries; ++q) { if (pos < queries[q].size()) { prompt.push_back(queries[q][pos]); } else { prompt.push_back(runtime_config.eos_id); } } } return prompt; } // Holds "is at end of stream" state for each query. class TokenStreamer { public: explicit TokenStreamer(const RuntimeConfig& runtime_config) : runtime_config_(runtime_config) {} // Returns whether the query was already at, or has just reached, the end of // the stream: either via token == eos_id, or StreamToken returning false. bool operator()(size_t query_idx, size_t pos, int token, float prob) { if (HWY_UNLIKELY(is_eos_.Get(query_idx))) return true; if (!runtime_config_.StreamToken(query_idx, pos, token, prob) || token == runtime_config_.eos_id) { is_eos_.Set(query_idx); return true; } return false; } private: const RuntimeConfig& runtime_config_; // BitSet4096 divides the arg by 64, so ensure it is at least 64. hwy::BitSet4096 is_eos_; }; // Generates one token per query in the batch. // // pos indexes the KV cache. In the first turn of a chat, pos = 0, and it // continues to increase by one for each prefilled/generated token per query. // query_idx_start is the first query index in the batch. template void GenerateT(const ByteStorageT& weights_u8, Activations& activations, const RuntimeConfig& runtime_config, const hwy::Span>& prompts, const size_t pos, const size_t query_idx_start, const std::vector& kv_caches, hwy::ThreadPool& pool, TimingInfo& timing_info) { constexpr size_t kVocabSize = TConfig::kVocabSize; const CompressedWeights& weights = *reinterpret_cast*>(weights_u8.get()); const size_t num_queries = prompts.size(); HWY_DASSERT(num_queries <= kQueryBatchSize); size_t min_prompt_size, max_prompt_size; const std::vector prompt = InterleaveQueries( prompts, runtime_config, min_prompt_size, max_prompt_size); size_t max_tokens = runtime_config.max_tokens; size_t max_generated_tokens = runtime_config.max_generated_tokens; RangeChecks(max_tokens, max_generated_tokens, max_prompt_size); if (pos >= max_tokens) { fprintf(stderr, "Warning: pos %zu >= max_tokens %zu, aborting.\n", pos, max_tokens); return; } // If no sample_func is provided, we use top-k sampling. const SampleFunc sample_token = runtime_config.sample_func ? runtime_config.sample_func : [&](const float* logits, size_t vocab_size) -> int { return SampleTopK(logits, vocab_size, *runtime_config.gen, runtime_config.temperature, runtime_config.accept_token); }; // Prefill stops before min_prompt_size - 1 because the last prompt token is // the first input token for generation. const size_t prefill_per_query = min_prompt_size - 1; const hwy::Span prefill_tokens(prompt.data(), prefill_per_query * num_queries); PrefillState prefill(pool); prefill.Init(prefill_tokens.size()); const double prefill_start = hwy::platform::Now(); size_t interleaved_pos = pos * num_queries; prefill.Prefill(prefill_tokens, num_queries, interleaved_pos, weights, runtime_config, kv_caches); interleaved_pos += prefill_tokens.size(); timing_info.NotifyPrefill(prefill_tokens.size(), prefill_start); prefill.ResumeMainSpinning(); // Storage for the last generated token from each query, passed to the next // Transformer() call. std::vector gen_tokens(num_queries); // Stream the last prompt token from each query and fill gen_tokens. hwy::CopyBytes(&prompt[prefill_tokens.size()], gen_tokens.data(), num_queries * sizeof(prompt[0])); TokenStreamer token_streamer(runtime_config); for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) { (void)token_streamer(query_idx_start + query_idx, prefill_per_query, gen_tokens[query_idx], 0.0f); } const double gen_start = hwy::platform::Now(); for (size_t gen_per_query = 0; gen_per_query < HWY_MIN(max_tokens, max_generated_tokens); ++gen_per_query) { // Decode: generate one token for each query. Transformer(gen_tokens.data(), /*num_tokens=*/1, num_queries, interleaved_pos, weights, activations, kv_caches, pool, runtime_config.layers_output); interleaved_pos += num_queries; bool all_queries_eos = true; PROFILER_ZONE("Gen.Embedding"); for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) { float* HWY_RESTRICT logits = activations.logits.Batch(query_idx); // Compute logits from last layer activations. TODO: MatMul MatVec( weights.embedder_input_embedding, 0, activations.x.Batch(query_idx), activations.even_odd.All(), logits, pool); if constexpr (TConfig::kFinalCap > 0.0f) { LogitsSoftCap(TConfig::kFinalCap, logits, kVocabSize); } Softmax(logits, kVocabSize); const int token = sample_token(logits, kVocabSize); timing_info.NotifyGenerated(prefill_start); const bool is_eos = token_streamer(query_idx_start + query_idx, prefill_per_query + 1 + gen_per_query, token, logits[token]); all_queries_eos &= is_eos; gen_tokens[query_idx] = is_eos ? runtime_config.eos_id : token; } if (all_queries_eos) break; } // foreach token to generate timing_info.NotifyGenerateDone(gen_start); } // TODO: prompt should also be span, not a vector. template void GenerateSingleT(const ByteStorageT& weights_u8, Activations& activations, const RuntimeConfig& runtime_config, const std::vector& prompt, size_t pos, KVCache& kv_cache, hwy::ThreadPool& pool, TimingInfo& timing_info) { const hwy::Span prompt_span(const_cast(prompt.data()), prompt.size()); const hwy::Span> prompts(&prompt_span, 1); // TODO: also span of kv_cache, or batching inside KVCache? std::vector kv_caches = {&kv_cache}; const size_t query_idx_start = 0; GenerateT( weights_u8, activations, runtime_config, prompts, pos, query_idx_start, kv_caches, pool, timing_info); } template void GenerateBatchT(const ByteStorageT& weights_u8, Activations& activations, const RuntimeConfig& runtime_config, const hwy::Span>& prompts, size_t pos, const std::vector& kv_caches, hwy::ThreadPool& pool, TimingInfo& timing_info) { // Disable query batching for Griffin models. constexpr size_t kQueryBatchSize = (TConfig::kGriffinLayers > 0) ? 1 : kBatchedQueryBatchSize; for (size_t query_idx_start = 0; query_idx_start < prompts.size(); query_idx_start += kQueryBatchSize) { const size_t num_queries = std::min(prompts.size() - query_idx_start, kQueryBatchSize); const hwy::Span> query_batch( prompts.data() + query_idx_start, num_queries); GenerateT(weights_u8, activations, runtime_config, query_batch, pos, query_idx_start, kv_caches, pool, timing_info); } } } // namespace HWY_NAMESPACE #if HWY_ONCE // These are extern functions defined by instantiations/*.cc, which include this // 'header' after defining GEMMA_CONFIG, which is for function overloading. void GenerateSingle( // NOLINT(misc-definitions-in-headers) GEMMA_CONFIG, const ByteStorageT& weights_u8, Activations& activations, const RuntimeConfig& runtime_config, const std::vector& prompt, size_t pos, KVCache& kv_cache, hwy::ThreadPool& pool, TimingInfo& timing_info) { HWY_EXPORT_AND_DYNAMIC_DISPATCH_T(GenerateSingleT) (weights_u8, activations, runtime_config, prompt, pos, kv_cache, pool, timing_info); } void GenerateBatch( // NOLINT(misc-definitions-in-headers) GEMMA_CONFIG, const ByteStorageT& weights_u8, Activations& activations, const RuntimeConfig& runtime_config, const hwy::Span>& prompts, size_t pos, const std::vector& kv_caches, hwy::ThreadPool& pool, TimingInfo& timing_info) { HWY_EXPORT_AND_DYNAMIC_DISPATCH_T(GenerateBatchT) (weights_u8, activations, runtime_config, prompts, pos, kv_caches, pool, timing_info); } #endif // HWY_ONCE } // namespace gcpp HWY_AFTER_NAMESPACE(); #endif // THIRD_PARTY_GEMMA_CPP_GEMMA_GEMMA_INL_H_