gemma.cpp/gemma/gemma.cc

719 lines
30 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Defines Gemma member functions which dynamic-dispatch into the SIMD
// implementations in gemma-inl.h.
#include "gemma/gemma.h"
// Compiles this file for multiple architectures via "foreach_target.h", to
// which we pass the filename via macro 'argument'.
// clang-format off
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "gemma/gemma.cc" // NOLINT
// clang-format on
#include "hwy/foreach_target.h" // IWYU pragma: keep
#include "hwy/highway.h"
// After highway.h
#include "gemma/attention.h" // includes highway.h
#include "gemma/gemma-inl.h"
#include "gemma/griffin.h" // includes highway.h
#include "gemma/vit.h" // includes highway.h
#ifndef GEMMA_CC_ONCE
#define GEMMA_CC_ONCE
#include <math.h> // sqrtf
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
// Placeholder for internal header, do not modify.
#include "gemma/configs.h"
#include "gemma/model_store.h"
#include "gemma/tokenizer.h"
#include "gemma/weights.h"
#include "io/blob_store.h"
#include "io/io.h" // Path
#include "ops/matmul.h"
#include "paligemma/image.h"
#include "util/threading_context.h"
#include "hwy/aligned_allocator.h" // Span
#include "hwy/base.h"
#include "hwy/timer.h"
#endif // GEMMA_CC_ONCE
HWY_BEFORE_NAMESPACE();
namespace gcpp {
namespace HWY_NAMESPACE {
void Attention(LayerAttentionType type, size_t num_tokens,
const QueriesPos& queries_pos,
const QueriesPos& queries_prefix_end,
const hwy::Divisor& div_seq_len, const size_t layer_idx,
const LayerWeightsPtrs& layer, Activations& activations,
const KVCaches& kv_caches, MatMulEnv& env) {
if (type == LayerAttentionType::kGemma) {
GemmaAttention(num_tokens, queries_pos, &queries_prefix_end, div_seq_len,
layer_idx, layer, activations, kv_caches, env,
/*flags=*/0);
} else {
HWY_DASSERT(type == LayerAttentionType::kGriffinRecurrentBlock);
// KVCache conv1d_cache and rglru_cache have one row per *Griffin* layer,
// so map `layer` to the Griffin layer index.
const size_t griffin_layer =
activations.weights_config.NumLayersOfTypeBefore(type, layer_idx);
GriffinRecurrent(queries_pos, num_tokens, griffin_layer, activations,
&layer, kv_caches, env);
}
}
static HWY_NOINLINE void TransformerLayer(
const size_t num_tokens, const QueriesPos& queries_pos,
const QueriesPos& queries_prefix_end, const hwy::Divisor& div_seq_len,
const size_t layer_idx, const LayerWeightsPtrs& layer,
Activations& activations, const KVCaches& kv_caches, MatMulEnv& env) {
const LayerConfig& layer_config = layer.layer_config;
RMSNormBatched(activations.x, layer.pre_attention_norm_scale,
activations.pre_att_rms_out);
Attention(layer_config.type, num_tokens, queries_pos, queries_prefix_end,
div_seq_len, layer_idx, layer, activations, kv_caches, env);
PostNorm(layer_config.post_norm, layer.post_attention_norm_scale,
activations.att_sums);
ResidualConnection(activations.att_sums, activations.x, layer,
/*is_attention=*/true);
RMSNormBatched(activations.x, layer.pre_ffw_norm_scale,
activations.pre_ffw_rms_out);
if (layer_config.type == LayerAttentionType::kVit) {
FFWVit(layer, activations, env);
} else {
FFWNoVit(layer, activations, env);
}
PostNorm(layer_config.post_norm, layer.post_ffw_norm_scale,
activations.ffw_out);
ResidualConnection(activations.ffw_out, activations.x, layer,
/*is_attention=*/false);
}
// Returns the scale value to use for the embedding (basically sqrt model_dim).
static float EmbeddingScaling(size_t model_dim) {
// Round to bf16 to match Gemma's Embedder, which casts before mul.
return hwy::ConvertScalarTo<float>(
hwy::ConvertScalarTo<BF16>(sqrtf(static_cast<float>(model_dim))));
}
// `batch_idx` indicates which row of `x` to write to.
// `pos` is the *token*'s position, not the start of the batch, because this is
// called for batches of tokens in prefill, but batches of queries in decode.
//
// For GEMMA_VLM, image tokens are copied into -2 locations (per the Gemma 3
// spec) until we run out of image tokens. This allows for a multi-image prompt
// if -2 locations with appropriate begin/end image tokens are created by the
// calling application.
// Returns new image_token_position.
static HWY_NOINLINE size_t
EmbedMMToken(int token, size_t batch_idx, size_t pos, size_t pos_in_prompt,
const ModelConfig& model_config, const ModelWeightsPtrs& weights,
MatStorageT<float>& x, const ImageTokens* image_tokens = nullptr,
size_t image_token_position = 0) {
// Image tokens just need to be copied.
if (model_config.wrapping == PromptWrapping::GEMMA_VLM &&
image_tokens != nullptr && token == -2 &&
image_token_position < image_tokens->Rows()) {
hwy::CopyBytes(image_tokens->Row(image_token_position), x.Row(batch_idx),
x.Cols() * x.ElementBytes());
return image_token_position + 1;
}
if (model_config.wrapping == PromptWrapping::PALIGEMMA &&
image_tokens != nullptr && pos_in_prompt < image_tokens->Rows()) {
hwy::CopyBytes(image_tokens->Row(pos_in_prompt), x.Row(batch_idx),
x.Cols() * x.ElementBytes());
return image_token_position;
}
const size_t model_dim = model_config.model_dim;
const float emb_scaling = EmbeddingScaling(model_dim);
HWY_DASSERT(token >= 0);
HWY_DASSERT(token < static_cast<int>(model_config.vocab_size));
CallUpcasted(&weights.embedder_input_embedding, [&](const auto* weights_t) {
// Using `Stride` to compute the offset works for both NUQ (because we use
// an offset and NUQ is never padded) and padded, because non-NUQ types are
// seekable, hence the offset can also skip any padding.
const size_t embedding_ofs = token * weights_t->Stride();
HWY_ASSERT(weights_t->Cols() == model_dim);
const auto embedding_span =
MakeSpan(weights_t->Row(0), embedding_ofs + model_dim);
const hn::ScalableTag<float> df;
DecompressAndZeroPad(df, embedding_span, embedding_ofs, x.Row(batch_idx),
model_dim);
MulByConst(emb_scaling * weights_t->Scale(), x.Row(batch_idx), model_dim);
});
if (model_config.absolute_pe) {
AddAbsolutePositionalEmbeddings(x.Row(batch_idx), model_dim, pos);
}
return image_token_position;
}
// Prefill() and Transformer() increment positions in-place.
using QueriesMutablePos = hwy::Span<size_t>;
// Populates KV cache for batches of tokens from one query at a time.
static HWY_NOINLINE void Prefill(
const size_t query_idx_start, const QueriesPromptTokens& queries_prompt,
const QueriesMutablePos& queries_pos, const QueriesPos& queries_prefix_end,
const hwy::Divisor& div_seq_len, const ModelConfig& config,
const RuntimeConfig& runtime_config, const ModelWeightsPtrs& weights,
Activations& activations, const KVCaches& kv_caches, MatMulEnv& env) {
PROFILER_ZONE("Gen.Prefill");
const size_t num_queries = queries_prompt.size();
HWY_DASSERT(queries_pos.size() == num_queries);
HWY_DASSERT(queries_prefix_end.size() == num_queries);
HWY_DASSERT(kv_caches.size() == num_queries);
// Batches are important for amortizing loading weights over multiple tokens.
// This is possible in prefill because we know all tokens beforehand, whereas
// decode depends on the previous output token. However, each prefill batch of
// a query requires that preceding batches already wrote to the KV cache,
// hence we sequentially loop over token batches. We can reduce the number of
// iterations by increasing the batch size, but this also increases arithmetic
// intensity, and so we are eventually compute-limited. We could devote some
// threads to parallelizing over queries, but for simplicity we assign them
// all to MatMul.
const size_t max_tbatch_size = runtime_config.prefill_tbatch_size;
// For each query. `qi` is within the batch, not the global query index.
for (size_t qi = 0; qi < num_queries; ++qi) {
// Single query at a time, so pass slices of the spans because
// GemmaAttention will only access the first KV cache and position.
QueriesPos single_query_pos(&queries_pos[qi], 1);
QueriesPos single_query_prefix_end(&queries_prefix_end[qi], 1);
KVCaches single_kv_cache(&kv_caches[qi], 1);
const size_t prompt_size = queries_prompt[qi].size();
// In autoregressive mode, we don't need to prefill the last token, so - 1.
size_t prefill_this_query = prompt_size - 1;
const size_t prefix_end_this_query = queries_prefix_end[qi];
// We can't attend beyond the prompt_size.
HWY_ASSERT(prefix_end_this_query <= prompt_size);
// Special case: if the prefix includes the last token, we need to prefill
// the last token, too. However, we need to rewind this for the generation
// of the first token. So we need to keep track of this.
// TODO: consider implementing masking instead of this logic?
const bool attend_to_last_token =
(prefill_this_query < prefix_end_this_query);
if (attend_to_last_token) {
// The difference can be at most 1.
prefill_this_query += 1;
HWY_ASSERT(prefill_this_query == prefix_end_this_query);
}
// In prefix-LM mode, we need to look at all the tokens for the prefix in
// one iteration through the layers, so we need a large enough batch size.
HWY_ASSERT(prefix_end_this_query == 0 ||
max_tbatch_size >= prefill_this_query);
// For each batch of tokens in the query:
for (size_t tbatch_start = 0; tbatch_start < prefill_this_query;
tbatch_start += max_tbatch_size) {
const size_t tbatch_size =
HWY_MIN(max_tbatch_size, prefill_this_query - tbatch_start);
activations.SetBatchSize(tbatch_size);
// Fill activations.x (much faster than TransformerLayer).
size_t image_token_position = 0;
for (size_t ti = 0; ti < tbatch_size; ++ti) {
const size_t pos = queries_pos[qi] + ti;
const size_t pos_in_prompt = tbatch_start + ti;
const int token = queries_prompt[qi][pos_in_prompt];
image_token_position = EmbedMMToken(
token, ti, pos, pos_in_prompt, config, weights, activations.x,
runtime_config.image_tokens, image_token_position);
}
// Transformer with one batch of tokens from a single query.
for (size_t layer_idx = 0; layer_idx < config.layer_configs.size();
++layer_idx) {
TransformerLayer(tbatch_size, single_query_pos, single_query_prefix_end,
div_seq_len, layer_idx, *weights.GetLayer(layer_idx),
activations, single_kv_cache, env);
}
// NOTE: we unconditionally call StreamToken, even if EOS.
for (size_t ti = 0; ti < tbatch_size; ++ti) {
const size_t pos = queries_pos[qi] + ti;
const size_t pos_in_prompt = tbatch_start + ti;
const int token = queries_prompt[qi][pos_in_prompt];
if (pos_in_prompt < prompt_size - 1) {
runtime_config.StreamToken(query_idx_start + qi, pos, token, 0.0f);
} else {
// The last token will be streamed later and we should only get here
// if we need to attend to the last token because it is in the prefix.
HWY_ASSERT(attend_to_last_token);
}
}
queries_pos[qi] += tbatch_size;
} // for tbatch_start
if (attend_to_last_token) {
// We need to rewind the position for the last token that we only
// attended to to make sure the prefix LM sees everything.
// This means we duplicate work on the last prompt token in autoregressive
// decoding. Alternatives: (1) real masking; (2) always prefill the last
// token and only generate the next one from the already prefilled
// activations.
queries_pos[qi] -= 1;
}
}
}
// Generates one token for each query. `queries_token` is the previous token
// from each query, and `queries_pos` are their position in the sequence.
static HWY_NOINLINE void Transformer(
const QueriesToken& queries_token, const QueriesMutablePos& queries_pos,
const QueriesPos& queries_prefix_end, const hwy::Divisor& div_seq_len,
const ModelConfig& config, const ModelWeightsPtrs& weights,
Activations& activations, const KVCaches& kv_caches, MatMulEnv& env,
const LayersOutputFunc& layers_output,
const ActivationsObserverFunc& activations_observer) {
const size_t num_queries = queries_token.size();
HWY_DASSERT(queries_pos.size() == num_queries);
HWY_DASSERT(queries_prefix_end.size() == num_queries);
if (layers_output) {
for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) {
const float token_f = queries_token[query_idx];
layers_output(query_idx, queries_pos[query_idx], "tokens", -1, &token_f,
1);
}
}
for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) {
EmbedMMToken(queries_token[query_idx], query_idx, queries_pos[query_idx],
/*pos_in_prompt=*/0, config, weights, activations.x);
}
for (size_t layer_idx = 0; layer_idx < weights.c_layers.size(); ++layer_idx) {
TransformerLayer(/*num_tokens=*/1, queries_pos, queries_prefix_end,
div_seq_len, layer_idx, *weights.GetLayer(layer_idx),
activations, kv_caches, env);
if (activations_observer) {
activations_observer(queries_pos, layer_idx, activations);
}
}
RMSNormInplaceBatched(weights.final_norm_scale, activations.x);
if (activations_observer) {
activations_observer(queries_pos, -1, activations);
}
for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) {
queries_pos[query_idx] += 1;
}
}
void RangeChecks(const ModelConfig& weights_config,
size_t& max_generated_tokens, const size_t prompt_size) {
if (!weights_config.use_local_attention) {
if (max_generated_tokens > weights_config.seq_len) {
HWY_WARN("max_generated_tokens %zu > kSeqLen %u, truncating.",
max_generated_tokens, weights_config.seq_len);
max_generated_tokens = weights_config.seq_len;
}
}
HWY_ASSERT(prompt_size > 0);
}
// Holds "is at end of stream" state for each query.
class TokenStreamer {
public:
TokenStreamer(const RuntimeConfig& runtime_config,
const ModelConfig& model_config)
: runtime_config_(runtime_config), model_config_(model_config) {}
// Returns whether the query was already at, or has just reached, the end of
// the stream: either via token == eos_id, or StreamToken returning false.
bool operator()(size_t query_idx, size_t pos, int token, float prob) {
if (HWY_UNLIKELY(is_eos_.Get(query_idx))) return true;
if (!runtime_config_.StreamToken(query_idx, pos, token, prob) ||
model_config_.IsEOS(token)) {
is_eos_.Set(query_idx);
return true;
}
return false;
}
private:
const RuntimeConfig& runtime_config_;
const ModelConfig& model_config_;
hwy::BitSet4096<> is_eos_;
};
// Runs one decode step for all the queries in the batch. Returns true if all
// queries are at <end_of_sentence>.
static bool DecodeStepT(
const ModelConfig& config, const ModelWeightsPtrs& weights,
const RuntimeConfig& runtime_config, const size_t query_idx_start,
const QueriesPromptTokens& queries_prompt,
const QueriesMutablePos& queries_mutable_pos,
const QueriesPos& queries_prefix_end, const hwy::Divisor div_seq_len,
const size_t vocab_size, const SampleFunc& sample_token,
Activations& activations, const KVCaches& kv_caches,
TokenStreamer& token_streamer, std::vector<int>& gen_tokens,
TimingInfo& timing_info, MatMulEnv& env) {
const size_t num_queries = queries_prompt.size();
// Decode generates one token per query and increments
// queries_mutable_pos.
Transformer(QueriesToken(gen_tokens.data(), num_queries), queries_mutable_pos,
queries_prefix_end, div_seq_len, config, weights, activations,
kv_caches, env, runtime_config.layers_output,
runtime_config.activations_observer);
// queries_pos are incremented by Transformer.
HWY_DASSERT(num_queries == activations.x.Rows());
bool all_queries_eos = true;
{
PROFILER_ZONE("Gen.EmbeddingMatmul");
// Compute logits from last layer activations.
CallMatMul(activations.x, weights.embedder_input_embedding,
/*add=*/nullptr, env, activations.logits);
}
PROFILER_ZONE("Gen.Softcap+Sample+Stream");
for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) {
float* HWY_RESTRICT logits = activations.logits.Row(query_idx);
MaybeLogitsSoftCap(config.final_cap, logits, vocab_size);
const TokenAndProb tp = sample_token(logits, vocab_size);
timing_info.NotifyGenerated();
const bool is_eos =
token_streamer(query_idx_start + query_idx,
queries_mutable_pos[query_idx], tp.token, tp.prob);
all_queries_eos &= is_eos;
gen_tokens[query_idx] = is_eos ? config.eos_id : tp.token;
}
return all_queries_eos;
}
static HWY_INLINE SampleFunc
ChooseSampleFunc(const RuntimeConfig& runtime_config) {
// If user provided a sample_func, use it.
if (runtime_config.sample_func) return runtime_config.sample_func;
// Fast path for top-1 with no accept_token.
if (runtime_config.top_k == 1 && !runtime_config.accept_token) {
return [](float* logits, size_t vocab_size) HWY_ATTR -> TokenAndProb {
PROFILER_ZONE("Gen.Sample Top1");
return Top1OfSoftmax(logits, vocab_size);
};
}
// General case: Softmax with top-k sampling.
return [&runtime_config](float* logits,
size_t vocab_size) HWY_ATTR -> TokenAndProb {
PROFILER_ZONE("Gen.Sample general");
return FusedSoftmaxAndSampleTopK(
logits, runtime_config.top_k, vocab_size, *runtime_config.gen,
runtime_config.temperature, runtime_config.accept_token);
};
}
// Returns the min and max number of tokens for all queries.
static size_t MaxQueryLength(const QueriesPromptTokens& queries_prompt) {
size_t max_prompt_size = 0;
for (size_t i = 0; i < queries_prompt.size(); ++i) {
max_prompt_size = HWY_MAX(max_prompt_size, queries_prompt[i].size());
}
return max_prompt_size;
}
// Generates one continuation for each query in `queries_prompt`, which is one
// qbatch whose size is at most the `batch_size` passed to
// `activations.Allocate`.
//
// `queries_pos` stores the KV cache position for each query. In the first turn
// of a chat, pos = 0; we increment each query's position after each token.
//
// `query_idx_start` is the query_idx of the first query in the batch, so that
// `StreamFunc` gets the global query index, not relative to the batch.
//
// `kv_caches` is for the batch, size must match `queries_prompt`.
static void GenerateT(
const ModelConfig& config, const ModelWeightsPtrs& weights,
const RuntimeConfig& runtime_config, const size_t query_idx_start,
const QueriesPromptTokens& queries_prompt, const QueriesPos& queries_pos_in,
const QueriesPos& queries_prefix_end, Activations& activations,
const KVCaches& kv_caches, TimingInfo& timing_info, MatMulEnv& env) {
HWY_ASSERT(queries_pos_in.size() == kv_caches.size());
// Griffin assumes that the recurrent block cache is zero-initialized.
for (size_t i = 0; i < kv_caches.size(); ++i) {
if (queries_pos_in[i] == 0) {
kv_caches[i].ZeroGriffinCache(); // No-op for non-Griffin models.
}
}
// Copy so we can increment without requiring users to pass in a mutable span.
std::vector<size_t> queries_pos_copy(queries_pos_in.cbegin(),
queries_pos_in.cend());
const QueriesMutablePos queries_mutable_pos(queries_pos_copy.data(),
queries_pos_copy.size());
// Sanity check: prompts should not be empty, nor start with EOS.
for (size_t query_idx = 0; query_idx < queries_prompt.size(); ++query_idx) {
const PromptTokens& prompt = queries_prompt[query_idx];
HWY_ASSERT(prompt.size() != 0 && prompt[0] != config.eos_id);
}
const size_t num_queries = queries_prompt.size();
HWY_ASSERT(num_queries <= 4096); // TokenStreamer uses BitSet4096.
HWY_ASSERT(num_queries <= activations.x.Rows());
HWY_ASSERT(queries_pos_in.size() == num_queries);
HWY_ASSERT(kv_caches.size() == num_queries);
const hwy::Divisor div_seq_len(static_cast<uint32_t>(kv_caches[0].seq_len));
size_t max_prompt_size = MaxQueryLength(queries_prompt);
size_t max_generated_tokens = runtime_config.max_generated_tokens;
RangeChecks(config, max_generated_tokens, max_prompt_size);
const SampleFunc sample_token = ChooseSampleFunc(runtime_config);
// Prefill stops before min_prompt_size - 1 because the last prompt
// token is the first input token for generation.
timing_info.prefill_start = hwy::platform::Now();
// Note that Prefill calls activations.SetBatchSize, so we reset it below.
Prefill(query_idx_start, queries_prompt, queries_mutable_pos,
queries_prefix_end, div_seq_len, config, runtime_config, weights,
activations, kv_caches, env);
// Compute the number of tokens that were prefilled and notify timing_info.
size_t prefilled_tokens = 0;
for (size_t qi = 0; qi < num_queries; ++qi) {
prefilled_tokens += queries_prompt[qi].size() - 1;
}
timing_info.NotifyPrefill(prefilled_tokens);
// queries_pos are incremented by Prefill.
activations.SetBatchSize(num_queries);
// Storage for the last generated token from each query, passed to the next
// Transformer() call.
std::vector<int> gen_tokens(num_queries);
// Stream the last prompt token from each query and fill gen_tokens.
TokenStreamer token_streamer(runtime_config, config);
for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) {
size_t last_token_pos_in_prompt =
queries_mutable_pos[query_idx] - queries_pos_in[query_idx];
gen_tokens[query_idx] = queries_prompt[query_idx][last_token_pos_in_prompt];
(void)token_streamer(query_idx_start + query_idx,
queries_mutable_pos[query_idx], gen_tokens[query_idx],
0.0f);
}
{
const size_t vocab_size = config.vocab_size;
timing_info.generate_start = hwy::platform::Now();
for (size_t gen = 0; gen < max_generated_tokens; ++gen) {
bool all_queries_eos =
DecodeStepT(config, weights, runtime_config, query_idx_start,
queries_prompt, queries_mutable_pos, queries_prefix_end,
div_seq_len, vocab_size, sample_token, activations,
kv_caches, token_streamer, gen_tokens, timing_info, env);
if (all_queries_eos) break;
} // foreach token to generate
timing_info.NotifyGenerateDone();
}
}
void GenerateSingleT(const ModelConfig& config, const ModelWeightsPtrs& weights,
const RuntimeConfig& runtime_config,
const PromptTokens& prompt, size_t pos, size_t prefix_end,
KVCache& kv_cache, MatMulEnv& env,
TimingInfo& timing_info) {
constexpr size_t kNumQueries = 1;
const size_t qbatch_start = 0;
const size_t max_batch_size =
HWY_MAX(kNumQueries, runtime_config.prefill_tbatch_size);
// TODO: move into Gemma?
Activations activations(config, max_batch_size, env.row_ptrs);
const QueriesPromptTokens queries_prompt(&prompt, kNumQueries);
QueriesPos queries_pos(&pos, kNumQueries);
const QueriesPos queries_prefix_end(&prefix_end, kNumQueries);
const KVCaches kv_caches{&kv_cache, kNumQueries};
GenerateT(config, weights, runtime_config, qbatch_start, queries_prompt,
queries_pos, queries_prefix_end, activations, kv_caches,
timing_info, env);
}
void GenerateBatchT(const ModelConfig& config, const ModelWeightsPtrs& weights,
const RuntimeConfig& runtime_config,
const QueriesPromptTokens& queries_prompt,
const QueriesPos& queries_pos,
const QueriesPos& queries_prefix_end,
const KVCaches& kv_caches, MatMulEnv& env,
TimingInfo& timing_info) {
const size_t num_queries = queries_prompt.size();
HWY_ASSERT(queries_pos.size() == num_queries);
HWY_ASSERT(kv_caches.size() >= num_queries);
const size_t max_qbatch_size = runtime_config.decode_qbatch_size;
const size_t max_batch_size =
HWY_MAX(max_qbatch_size, runtime_config.prefill_tbatch_size);
Activations activations(config, max_batch_size, env.row_ptrs);
for (size_t qbatch_start = 0; qbatch_start < num_queries;
qbatch_start += max_qbatch_size) {
// Generate one batch of tokens from `qbatch_size` queries.
const size_t qbatch_size =
HWY_MIN(num_queries - qbatch_start, max_qbatch_size);
const QueriesPromptTokens qbatch_prompts(&queries_prompt[qbatch_start],
qbatch_size);
QueriesPos qbatch_pos(&queries_pos[qbatch_start], qbatch_size);
const QueriesPos qbatch_prefix_end(&queries_prefix_end[qbatch_start],
qbatch_size);
const KVCaches qbatch_kv(&kv_caches[qbatch_start], qbatch_size);
GenerateT(config, weights, runtime_config, qbatch_start, qbatch_prompts,
qbatch_pos, qbatch_prefix_end, activations, qbatch_kv,
timing_info, env);
}
}
void GenerateImageTokensT(const ModelConfig& config,
const ModelWeightsPtrs& weights,
const RuntimeConfig& runtime_config,
const Image& image, ImageTokens& image_tokens,
MatMulEnv& env) {
if (config.vit_config.layer_configs.empty()) {
HWY_ABORT("Model does not support generating image tokens.");
}
RuntimeConfig prefill_runtime_config = runtime_config;
ModelConfig vit_config = GetVitConfig(config);
prefill_runtime_config.prefill_tbatch_size =
vit_config.seq_len / (vit_config.pool_dim * vit_config.pool_dim);
Activations prefill_activations(vit_config, vit_config.seq_len, env.row_ptrs);
// Weights are for the full PaliGemma model, not just the ViT part.
PrefillVit(config, weights, prefill_runtime_config, image, image_tokens,
prefill_activations, env);
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace gcpp
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace gcpp {
HWY_EXPORT(GenerateSingleT);
HWY_EXPORT(GenerateBatchT);
HWY_EXPORT(GenerateImageTokensT);
// Internal init must run before I/O. This helper function takes care of that,
// plus calling `SetArgs`.
MatMulEnv MakeMatMulEnv(const ThreadingArgs& threading_args) {
// Placeholder for internal init, do not modify.
ThreadingContext::SetArgs(threading_args);
return MatMulEnv(ThreadingContext::Get());
}
Gemma::Gemma(const LoaderArgs& loader, const InferenceArgs& inference,
MatMulEnv& env)
: env_(env),
reader_(loader.weights),
model_(reader_, loader.tokenizer, loader.wrapping),
weights_(model_.Config()),
chat_template_(model_.Tokenizer(), model_.Config().model) {
weights_.ReadFromBlobs(model_, reader_, loader, inference, mat_owners_,
env.ctx.pools.Pool());
reader_.CloseFile();
}
Gemma::~Gemma() = default;
void Gemma::Save(const Path& weights_path, hwy::ThreadPool& pool) const {
BlobWriter writer;
const std::vector<uint32_t> serialized_mat_ptrs =
weights_.AddTensorDataToWriter(writer);
WriteSingleFile(model_.Config(), model_.Tokenizer(), serialized_mat_ptrs,
writer, env_.ctx.pools.Pool(), weights_path);
}
void Gemma::Generate(const RuntimeConfig& runtime_config,
const PromptTokens& prompt, size_t pos, size_t prefix_end,
KVCache& kv_cache, TimingInfo& timing_info) const {
env_.ctx.pools.MaybeStartSpinning(runtime_config.use_spinning);
HWY_DYNAMIC_DISPATCH(GenerateSingleT)(model_.Config(), weights_,
runtime_config, prompt, pos, prefix_end,
kv_cache, env_, timing_info);
env_.ctx.pools.MaybeStopSpinning(runtime_config.use_spinning);
}
void Gemma::GenerateBatch(const RuntimeConfig& runtime_config,
const QueriesPromptTokens& queries_prompt,
const QueriesPos& queries_pos,
const QueriesPos& queries_prefix_end,
const KVCaches& kv_caches,
TimingInfo& timing_info) const {
// If we did not get passed prefix ends (size 0), assume 0 and pass that on.
QueriesPos mutable_queries_prefix_end = queries_prefix_end;
std::vector<size_t> prefix_end_vec;
if (queries_prefix_end.size() == 0) { // hwy::Span lacks empty()
prefix_end_vec.resize(queries_prompt.size(), 0);
mutable_queries_prefix_end =
QueriesPos(prefix_end_vec.data(), prefix_end_vec.size());
}
env_.ctx.pools.MaybeStartSpinning(runtime_config.use_spinning);
HWY_DYNAMIC_DISPATCH(GenerateBatchT)(
model_.Config(), weights_, runtime_config, queries_prompt, queries_pos,
mutable_queries_prefix_end, kv_caches, env_, timing_info);
env_.ctx.pools.MaybeStopSpinning(runtime_config.use_spinning);
}
void Gemma::GenerateImageTokens(const RuntimeConfig& runtime_config,
const Image& image,
ImageTokens& image_tokens) const {
env_.ctx.pools.MaybeStartSpinning(runtime_config.use_spinning);
HWY_DYNAMIC_DISPATCH(GenerateImageTokensT)(
model_.Config(), weights_, runtime_config, image, image_tokens, env_);
env_.ctx.pools.MaybeStopSpinning(runtime_config.use_spinning);
}
} // namespace gcpp
#endif // HWY_ONCE