// Copyright 2024 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Defines Gemma member functions which dynamic-dispatch into the SIMD // implementations in gemma-inl.h. #include "gemma/gemma.h" // Compiles this file for multiple architectures via "foreach_target.h", to // which we pass the filename via macro 'argument'. // clang-format off #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "gemma/gemma.cc" // NOLINT // clang-format on #include "hwy/foreach_target.h" // IWYU pragma: keep #include "hwy/highway.h" // After highway.h #include "gemma/attention.h" // includes highway.h #include "gemma/gemma-inl.h" #include "gemma/griffin.h" // includes highway.h #include "gemma/vit.h" // includes highway.h #ifndef GEMMA_CC_ONCE #define GEMMA_CC_ONCE #include // sqrtf #include #include #include #include #include // Placeholder for internal header, do not modify. #include "gemma/configs.h" #include "gemma/model_store.h" #include "gemma/tokenizer.h" #include "gemma/weights.h" #include "io/blob_store.h" #include "io/io.h" // Path #include "ops/matmul.h" #include "paligemma/image.h" #include "util/threading_context.h" #include "hwy/aligned_allocator.h" // Span #include "hwy/base.h" #include "hwy/timer.h" #endif // GEMMA_CC_ONCE HWY_BEFORE_NAMESPACE(); namespace gcpp { namespace HWY_NAMESPACE { void Attention(LayerAttentionType type, size_t num_tokens, const QueriesPos& queries_pos, const QueriesPos& queries_prefix_end, const hwy::Divisor& div_seq_len, const size_t layer_idx, const LayerWeightsPtrs& layer, Activations& activations, const KVCaches& kv_caches, MatMulEnv& env) { if (type == LayerAttentionType::kGemma) { GemmaAttention(num_tokens, queries_pos, &queries_prefix_end, div_seq_len, layer_idx, layer, activations, kv_caches, env, /*flags=*/0); } else { HWY_DASSERT(type == LayerAttentionType::kGriffinRecurrentBlock); // KVCache conv1d_cache and rglru_cache have one row per *Griffin* layer, // so map `layer` to the Griffin layer index. const size_t griffin_layer = activations.weights_config.NumLayersOfTypeBefore(type, layer_idx); GriffinRecurrent(queries_pos, num_tokens, griffin_layer, activations, &layer, kv_caches, env); } } static HWY_NOINLINE void TransformerLayer( const size_t num_tokens, const QueriesPos& queries_pos, const QueriesPos& queries_prefix_end, const hwy::Divisor& div_seq_len, const size_t layer_idx, const LayerWeightsPtrs& layer, Activations& activations, const KVCaches& kv_caches, MatMulEnv& env) { const LayerConfig& layer_config = layer.layer_config; RMSNormBatched(activations.x, layer.pre_attention_norm_scale, activations.pre_att_rms_out); Attention(layer_config.type, num_tokens, queries_pos, queries_prefix_end, div_seq_len, layer_idx, layer, activations, kv_caches, env); PostNorm(layer_config.post_norm, layer.post_attention_norm_scale, activations.att_sums); ResidualConnection(activations.att_sums, activations.x, layer, /*is_attention=*/true); RMSNormBatched(activations.x, layer.pre_ffw_norm_scale, activations.pre_ffw_rms_out); if (layer_config.type == LayerAttentionType::kVit) { FFWVit(layer, activations, env); } else { FFWNoVit(layer, activations, env); } PostNorm(layer_config.post_norm, layer.post_ffw_norm_scale, activations.ffw_out); ResidualConnection(activations.ffw_out, activations.x, layer, /*is_attention=*/false); } // Returns the scale value to use for the embedding (basically sqrt model_dim). static float EmbeddingScaling(size_t model_dim) { // Round to bf16 to match Gemma's Embedder, which casts before mul. return hwy::ConvertScalarTo( hwy::ConvertScalarTo(sqrtf(static_cast(model_dim)))); } // `batch_idx` indicates which row of `x` to write to. // `pos` is the *token*'s position, not the start of the batch, because this is // called for batches of tokens in prefill, but batches of queries in decode. // // For GEMMA_VLM, image tokens are copied into -2 locations (per the Gemma 3 // spec) until we run out of image tokens. This allows for a multi-image prompt // if -2 locations with appropriate begin/end image tokens are created by the // calling application. // Returns new image_token_position. static HWY_NOINLINE size_t EmbedMMToken(int token, size_t batch_idx, size_t pos, size_t pos_in_prompt, const ModelConfig& model_config, const ModelWeightsPtrs& weights, MatStorageT& x, const ImageTokens* image_tokens = nullptr, size_t image_token_position = 0) { // Image tokens just need to be copied. if (model_config.wrapping == PromptWrapping::GEMMA_VLM && image_tokens != nullptr && token == -2 && image_token_position < image_tokens->Rows()) { hwy::CopyBytes(image_tokens->Row(image_token_position), x.Row(batch_idx), x.Cols() * x.ElementBytes()); return image_token_position + 1; } if (model_config.wrapping == PromptWrapping::PALIGEMMA && image_tokens != nullptr && pos_in_prompt < image_tokens->Rows()) { hwy::CopyBytes(image_tokens->Row(pos_in_prompt), x.Row(batch_idx), x.Cols() * x.ElementBytes()); return image_token_position; } const size_t model_dim = model_config.model_dim; const float emb_scaling = EmbeddingScaling(model_dim); HWY_DASSERT(token >= 0); HWY_DASSERT(token < static_cast(model_config.vocab_size)); CallUpcasted(&weights.embedder_input_embedding, [&](const auto* weights_t) { // Using `Stride` to compute the offset works for both NUQ (because we use // an offset and NUQ is never padded) and padded, because non-NUQ types are // seekable, hence the offset can also skip any padding. const size_t embedding_ofs = token * weights_t->Stride(); HWY_ASSERT(weights_t->Cols() == model_dim); const auto embedding_span = MakeSpan(weights_t->Row(0), embedding_ofs + model_dim); const hn::ScalableTag df; DecompressAndZeroPad(df, embedding_span, embedding_ofs, x.Row(batch_idx), model_dim); MulByConst(emb_scaling * weights_t->Scale(), x.Row(batch_idx), model_dim); }); if (model_config.absolute_pe) { AddAbsolutePositionalEmbeddings(x.Row(batch_idx), model_dim, pos); } return image_token_position; } // Prefill() and Transformer() increment positions in-place. using QueriesMutablePos = hwy::Span; // Populates KV cache for batches of tokens from one query at a time. static HWY_NOINLINE void Prefill( const size_t query_idx_start, const QueriesPromptTokens& queries_prompt, const QueriesMutablePos& queries_pos, const QueriesPos& queries_prefix_end, const hwy::Divisor& div_seq_len, const ModelConfig& config, const RuntimeConfig& runtime_config, const ModelWeightsPtrs& weights, Activations& activations, const KVCaches& kv_caches, MatMulEnv& env) { PROFILER_ZONE("Gen.Prefill"); const size_t num_queries = queries_prompt.size(); HWY_DASSERT(queries_pos.size() == num_queries); HWY_DASSERT(queries_prefix_end.size() == num_queries); HWY_DASSERT(kv_caches.size() == num_queries); // Batches are important for amortizing loading weights over multiple tokens. // This is possible in prefill because we know all tokens beforehand, whereas // decode depends on the previous output token. However, each prefill batch of // a query requires that preceding batches already wrote to the KV cache, // hence we sequentially loop over token batches. We can reduce the number of // iterations by increasing the batch size, but this also increases arithmetic // intensity, and so we are eventually compute-limited. We could devote some // threads to parallelizing over queries, but for simplicity we assign them // all to MatMul. const size_t max_tbatch_size = runtime_config.prefill_tbatch_size; // For each query. `qi` is within the batch, not the global query index. for (size_t qi = 0; qi < num_queries; ++qi) { // Single query at a time, so pass slices of the spans because // GemmaAttention will only access the first KV cache and position. QueriesPos single_query_pos(&queries_pos[qi], 1); QueriesPos single_query_prefix_end(&queries_prefix_end[qi], 1); KVCaches single_kv_cache(&kv_caches[qi], 1); const size_t prompt_size = queries_prompt[qi].size(); // In autoregressive mode, we don't need to prefill the last token, so - 1. size_t prefill_this_query = prompt_size - 1; const size_t prefix_end_this_query = queries_prefix_end[qi]; // We can't attend beyond the prompt_size. HWY_ASSERT(prefix_end_this_query <= prompt_size); // Special case: if the prefix includes the last token, we need to prefill // the last token, too. However, we need to rewind this for the generation // of the first token. So we need to keep track of this. // TODO: consider implementing masking instead of this logic? const bool attend_to_last_token = (prefill_this_query < prefix_end_this_query); if (attend_to_last_token) { // The difference can be at most 1. prefill_this_query += 1; HWY_ASSERT(prefill_this_query == prefix_end_this_query); } // In prefix-LM mode, we need to look at all the tokens for the prefix in // one iteration through the layers, so we need a large enough batch size. HWY_ASSERT(prefix_end_this_query == 0 || max_tbatch_size >= prefill_this_query); // For each batch of tokens in the query: for (size_t tbatch_start = 0; tbatch_start < prefill_this_query; tbatch_start += max_tbatch_size) { const size_t tbatch_size = HWY_MIN(max_tbatch_size, prefill_this_query - tbatch_start); activations.SetBatchSize(tbatch_size); // Fill activations.x (much faster than TransformerLayer). size_t image_token_position = 0; for (size_t ti = 0; ti < tbatch_size; ++ti) { const size_t pos = queries_pos[qi] + ti; const size_t pos_in_prompt = tbatch_start + ti; const int token = queries_prompt[qi][pos_in_prompt]; image_token_position = EmbedMMToken( token, ti, pos, pos_in_prompt, config, weights, activations.x, runtime_config.image_tokens, image_token_position); } // Transformer with one batch of tokens from a single query. for (size_t layer_idx = 0; layer_idx < config.layer_configs.size(); ++layer_idx) { TransformerLayer(tbatch_size, single_query_pos, single_query_prefix_end, div_seq_len, layer_idx, *weights.GetLayer(layer_idx), activations, single_kv_cache, env); } // NOTE: we unconditionally call StreamToken, even if EOS. for (size_t ti = 0; ti < tbatch_size; ++ti) { const size_t pos = queries_pos[qi] + ti; const size_t pos_in_prompt = tbatch_start + ti; const int token = queries_prompt[qi][pos_in_prompt]; if (pos_in_prompt < prompt_size - 1) { runtime_config.StreamToken(query_idx_start + qi, pos, token, 0.0f); } else { // The last token will be streamed later and we should only get here // if we need to attend to the last token because it is in the prefix. HWY_ASSERT(attend_to_last_token); } } queries_pos[qi] += tbatch_size; } // for tbatch_start if (attend_to_last_token) { // We need to rewind the position for the last token that we only // attended to to make sure the prefix LM sees everything. // This means we duplicate work on the last prompt token in autoregressive // decoding. Alternatives: (1) real masking; (2) always prefill the last // token and only generate the next one from the already prefilled // activations. queries_pos[qi] -= 1; } } } // Generates one token for each query. `queries_token` is the previous token // from each query, and `queries_pos` are their position in the sequence. static HWY_NOINLINE void Transformer( const QueriesToken& queries_token, const QueriesMutablePos& queries_pos, const QueriesPos& queries_prefix_end, const hwy::Divisor& div_seq_len, const ModelConfig& config, const ModelWeightsPtrs& weights, Activations& activations, const KVCaches& kv_caches, MatMulEnv& env, const LayersOutputFunc& layers_output, const ActivationsObserverFunc& activations_observer) { const size_t num_queries = queries_token.size(); HWY_DASSERT(queries_pos.size() == num_queries); HWY_DASSERT(queries_prefix_end.size() == num_queries); if (layers_output) { for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) { const float token_f = queries_token[query_idx]; layers_output(query_idx, queries_pos[query_idx], "tokens", -1, &token_f, 1); } } for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) { EmbedMMToken(queries_token[query_idx], query_idx, queries_pos[query_idx], /*pos_in_prompt=*/0, config, weights, activations.x); } for (size_t layer_idx = 0; layer_idx < weights.c_layers.size(); ++layer_idx) { TransformerLayer(/*num_tokens=*/1, queries_pos, queries_prefix_end, div_seq_len, layer_idx, *weights.GetLayer(layer_idx), activations, kv_caches, env); if (activations_observer) { activations_observer(queries_pos, layer_idx, activations); } } RMSNormInplaceBatched(weights.final_norm_scale, activations.x); if (activations_observer) { activations_observer(queries_pos, -1, activations); } for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) { queries_pos[query_idx] += 1; } } void RangeChecks(const ModelConfig& weights_config, size_t& max_generated_tokens, const size_t prompt_size) { if (!weights_config.use_local_attention) { if (max_generated_tokens > weights_config.seq_len) { HWY_WARN("max_generated_tokens %zu > kSeqLen %u, truncating.", max_generated_tokens, weights_config.seq_len); max_generated_tokens = weights_config.seq_len; } } HWY_ASSERT(prompt_size > 0); } // Holds "is at end of stream" state for each query. class TokenStreamer { public: TokenStreamer(const RuntimeConfig& runtime_config, const ModelConfig& model_config) : runtime_config_(runtime_config), model_config_(model_config) {} // Returns whether the query was already at, or has just reached, the end of // the stream: either via token == eos_id, or StreamToken returning false. bool operator()(size_t query_idx, size_t pos, int token, float prob) { if (HWY_UNLIKELY(is_eos_.Get(query_idx))) return true; if (!runtime_config_.StreamToken(query_idx, pos, token, prob) || model_config_.IsEOS(token)) { is_eos_.Set(query_idx); return true; } return false; } private: const RuntimeConfig& runtime_config_; const ModelConfig& model_config_; hwy::BitSet4096<> is_eos_; }; // Runs one decode step for all the queries in the batch. Returns true if all // queries are at . static bool DecodeStepT( const ModelConfig& config, const ModelWeightsPtrs& weights, const RuntimeConfig& runtime_config, const size_t query_idx_start, const QueriesPromptTokens& queries_prompt, const QueriesMutablePos& queries_mutable_pos, const QueriesPos& queries_prefix_end, const hwy::Divisor div_seq_len, const size_t vocab_size, const SampleFunc& sample_token, Activations& activations, const KVCaches& kv_caches, TokenStreamer& token_streamer, std::vector& gen_tokens, TimingInfo& timing_info, MatMulEnv& env) { const size_t num_queries = queries_prompt.size(); // Decode generates one token per query and increments // queries_mutable_pos. Transformer(QueriesToken(gen_tokens.data(), num_queries), queries_mutable_pos, queries_prefix_end, div_seq_len, config, weights, activations, kv_caches, env, runtime_config.layers_output, runtime_config.activations_observer); // queries_pos are incremented by Transformer. HWY_DASSERT(num_queries == activations.x.Rows()); bool all_queries_eos = true; { PROFILER_ZONE("Gen.EmbeddingMatmul"); // Compute logits from last layer activations. CallMatMul(activations.x, weights.embedder_input_embedding, /*add=*/nullptr, env, activations.logits); } PROFILER_ZONE("Gen.Softcap+Sample+Stream"); for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) { float* HWY_RESTRICT logits = activations.logits.Row(query_idx); MaybeLogitsSoftCap(config.final_cap, logits, vocab_size); const TokenAndProb tp = sample_token(logits, vocab_size); timing_info.NotifyGenerated(); const bool is_eos = token_streamer(query_idx_start + query_idx, queries_mutable_pos[query_idx], tp.token, tp.prob); all_queries_eos &= is_eos; gen_tokens[query_idx] = is_eos ? config.eos_id : tp.token; } return all_queries_eos; } static HWY_INLINE SampleFunc ChooseSampleFunc(const RuntimeConfig& runtime_config) { // If user provided a sample_func, use it. if (runtime_config.sample_func) return runtime_config.sample_func; // Fast path for top-1 with no accept_token. if (runtime_config.top_k == 1 && !runtime_config.accept_token) { return [](float* logits, size_t vocab_size) HWY_ATTR -> TokenAndProb { PROFILER_ZONE("Gen.Sample Top1"); return Top1OfSoftmax(logits, vocab_size); }; } // General case: Softmax with top-k sampling. return [&runtime_config](float* logits, size_t vocab_size) HWY_ATTR -> TokenAndProb { PROFILER_ZONE("Gen.Sample general"); return FusedSoftmaxAndSampleTopK( logits, runtime_config.top_k, vocab_size, *runtime_config.gen, runtime_config.temperature, runtime_config.accept_token); }; } // Returns the min and max number of tokens for all queries. static size_t MaxQueryLength(const QueriesPromptTokens& queries_prompt) { size_t max_prompt_size = 0; for (size_t i = 0; i < queries_prompt.size(); ++i) { max_prompt_size = HWY_MAX(max_prompt_size, queries_prompt[i].size()); } return max_prompt_size; } // Generates one continuation for each query in `queries_prompt`, which is one // qbatch whose size is at most the `batch_size` passed to // `activations.Allocate`. // // `queries_pos` stores the KV cache position for each query. In the first turn // of a chat, pos = 0; we increment each query's position after each token. // // `query_idx_start` is the query_idx of the first query in the batch, so that // `StreamFunc` gets the global query index, not relative to the batch. // // `kv_caches` is for the batch, size must match `queries_prompt`. static void GenerateT( const ModelConfig& config, const ModelWeightsPtrs& weights, const RuntimeConfig& runtime_config, const size_t query_idx_start, const QueriesPromptTokens& queries_prompt, const QueriesPos& queries_pos_in, const QueriesPos& queries_prefix_end, Activations& activations, const KVCaches& kv_caches, TimingInfo& timing_info, MatMulEnv& env) { HWY_ASSERT(queries_pos_in.size() == kv_caches.size()); // Griffin assumes that the recurrent block cache is zero-initialized. for (size_t i = 0; i < kv_caches.size(); ++i) { if (queries_pos_in[i] == 0) { kv_caches[i].ZeroGriffinCache(); // No-op for non-Griffin models. } } // Copy so we can increment without requiring users to pass in a mutable span. std::vector queries_pos_copy(queries_pos_in.cbegin(), queries_pos_in.cend()); const QueriesMutablePos queries_mutable_pos(queries_pos_copy.data(), queries_pos_copy.size()); // Sanity check: prompts should not be empty, nor start with EOS. for (size_t query_idx = 0; query_idx < queries_prompt.size(); ++query_idx) { const PromptTokens& prompt = queries_prompt[query_idx]; HWY_ASSERT(prompt.size() != 0 && prompt[0] != config.eos_id); } const size_t num_queries = queries_prompt.size(); HWY_ASSERT(num_queries <= 4096); // TokenStreamer uses BitSet4096. HWY_ASSERT(num_queries <= activations.x.Rows()); HWY_ASSERT(queries_pos_in.size() == num_queries); HWY_ASSERT(kv_caches.size() == num_queries); const hwy::Divisor div_seq_len(static_cast(kv_caches[0].seq_len)); size_t max_prompt_size = MaxQueryLength(queries_prompt); size_t max_generated_tokens = runtime_config.max_generated_tokens; RangeChecks(config, max_generated_tokens, max_prompt_size); const SampleFunc sample_token = ChooseSampleFunc(runtime_config); // Prefill stops before min_prompt_size - 1 because the last prompt // token is the first input token for generation. timing_info.prefill_start = hwy::platform::Now(); // Note that Prefill calls activations.SetBatchSize, so we reset it below. Prefill(query_idx_start, queries_prompt, queries_mutable_pos, queries_prefix_end, div_seq_len, config, runtime_config, weights, activations, kv_caches, env); // Compute the number of tokens that were prefilled and notify timing_info. size_t prefilled_tokens = 0; for (size_t qi = 0; qi < num_queries; ++qi) { prefilled_tokens += queries_prompt[qi].size() - 1; } timing_info.NotifyPrefill(prefilled_tokens); // queries_pos are incremented by Prefill. activations.SetBatchSize(num_queries); // Storage for the last generated token from each query, passed to the next // Transformer() call. std::vector gen_tokens(num_queries); // Stream the last prompt token from each query and fill gen_tokens. TokenStreamer token_streamer(runtime_config, config); for (size_t query_idx = 0; query_idx < num_queries; ++query_idx) { size_t last_token_pos_in_prompt = queries_mutable_pos[query_idx] - queries_pos_in[query_idx]; gen_tokens[query_idx] = queries_prompt[query_idx][last_token_pos_in_prompt]; (void)token_streamer(query_idx_start + query_idx, queries_mutable_pos[query_idx], gen_tokens[query_idx], 0.0f); } { const size_t vocab_size = config.vocab_size; timing_info.generate_start = hwy::platform::Now(); for (size_t gen = 0; gen < max_generated_tokens; ++gen) { bool all_queries_eos = DecodeStepT(config, weights, runtime_config, query_idx_start, queries_prompt, queries_mutable_pos, queries_prefix_end, div_seq_len, vocab_size, sample_token, activations, kv_caches, token_streamer, gen_tokens, timing_info, env); if (all_queries_eos) break; } // foreach token to generate timing_info.NotifyGenerateDone(); } } void GenerateSingleT(const ModelConfig& config, const ModelWeightsPtrs& weights, const RuntimeConfig& runtime_config, const PromptTokens& prompt, size_t pos, size_t prefix_end, KVCache& kv_cache, MatMulEnv& env, TimingInfo& timing_info) { constexpr size_t kNumQueries = 1; const size_t qbatch_start = 0; const size_t max_batch_size = HWY_MAX(kNumQueries, runtime_config.prefill_tbatch_size); // TODO: move into Gemma? Activations activations(config, max_batch_size, env.row_ptrs); const QueriesPromptTokens queries_prompt(&prompt, kNumQueries); QueriesPos queries_pos(&pos, kNumQueries); const QueriesPos queries_prefix_end(&prefix_end, kNumQueries); const KVCaches kv_caches{&kv_cache, kNumQueries}; GenerateT(config, weights, runtime_config, qbatch_start, queries_prompt, queries_pos, queries_prefix_end, activations, kv_caches, timing_info, env); } void GenerateBatchT(const ModelConfig& config, const ModelWeightsPtrs& weights, const RuntimeConfig& runtime_config, const QueriesPromptTokens& queries_prompt, const QueriesPos& queries_pos, const QueriesPos& queries_prefix_end, const KVCaches& kv_caches, MatMulEnv& env, TimingInfo& timing_info) { const size_t num_queries = queries_prompt.size(); HWY_ASSERT(queries_pos.size() == num_queries); HWY_ASSERT(kv_caches.size() >= num_queries); const size_t max_qbatch_size = runtime_config.decode_qbatch_size; const size_t max_batch_size = HWY_MAX(max_qbatch_size, runtime_config.prefill_tbatch_size); Activations activations(config, max_batch_size, env.row_ptrs); for (size_t qbatch_start = 0; qbatch_start < num_queries; qbatch_start += max_qbatch_size) { // Generate one batch of tokens from `qbatch_size` queries. const size_t qbatch_size = HWY_MIN(num_queries - qbatch_start, max_qbatch_size); const QueriesPromptTokens qbatch_prompts(&queries_prompt[qbatch_start], qbatch_size); QueriesPos qbatch_pos(&queries_pos[qbatch_start], qbatch_size); const QueriesPos qbatch_prefix_end(&queries_prefix_end[qbatch_start], qbatch_size); const KVCaches qbatch_kv(&kv_caches[qbatch_start], qbatch_size); GenerateT(config, weights, runtime_config, qbatch_start, qbatch_prompts, qbatch_pos, qbatch_prefix_end, activations, qbatch_kv, timing_info, env); } } void GenerateImageTokensT(const ModelConfig& config, const ModelWeightsPtrs& weights, const RuntimeConfig& runtime_config, const Image& image, ImageTokens& image_tokens, MatMulEnv& env) { if (config.vit_config.layer_configs.empty()) { HWY_ABORT("Model does not support generating image tokens."); } RuntimeConfig prefill_runtime_config = runtime_config; ModelConfig vit_config = GetVitConfig(config); prefill_runtime_config.prefill_tbatch_size = vit_config.seq_len / (vit_config.pool_dim * vit_config.pool_dim); Activations prefill_activations(vit_config, vit_config.seq_len, env.row_ptrs); // Weights are for the full PaliGemma model, not just the ViT part. PrefillVit(config, weights, prefill_runtime_config, image, image_tokens, prefill_activations, env); } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace gcpp HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace gcpp { HWY_EXPORT(GenerateSingleT); HWY_EXPORT(GenerateBatchT); HWY_EXPORT(GenerateImageTokensT); // Internal init must run before I/O. This helper function takes care of that, // plus calling `SetArgs`. MatMulEnv MakeMatMulEnv(const ThreadingArgs& threading_args) { // Placeholder for internal init, do not modify. ThreadingContext::SetArgs(threading_args); return MatMulEnv(ThreadingContext::Get()); } Gemma::Gemma(const LoaderArgs& loader, const InferenceArgs& inference, MatMulEnv& env) : env_(env), reader_(loader.weights), model_(reader_, loader.tokenizer, loader.wrapping), weights_(model_.Config()), chat_template_(model_.Tokenizer(), model_.Config().model) { weights_.ReadFromBlobs(model_, reader_, loader, inference, mat_owners_, env.ctx.pools.Pool()); reader_.CloseFile(); } Gemma::~Gemma() = default; void Gemma::Save(const Path& weights_path, hwy::ThreadPool& pool) const { BlobWriter writer; const std::vector serialized_mat_ptrs = weights_.AddTensorDataToWriter(writer); WriteSingleFile(model_.Config(), model_.Tokenizer(), serialized_mat_ptrs, writer, env_.ctx.pools.Pool(), weights_path); } void Gemma::Generate(const RuntimeConfig& runtime_config, const PromptTokens& prompt, size_t pos, size_t prefix_end, KVCache& kv_cache, TimingInfo& timing_info) const { env_.ctx.pools.MaybeStartSpinning(runtime_config.use_spinning); HWY_DYNAMIC_DISPATCH(GenerateSingleT)(model_.Config(), weights_, runtime_config, prompt, pos, prefix_end, kv_cache, env_, timing_info); env_.ctx.pools.MaybeStopSpinning(runtime_config.use_spinning); } void Gemma::GenerateBatch(const RuntimeConfig& runtime_config, const QueriesPromptTokens& queries_prompt, const QueriesPos& queries_pos, const QueriesPos& queries_prefix_end, const KVCaches& kv_caches, TimingInfo& timing_info) const { // If we did not get passed prefix ends (size 0), assume 0 and pass that on. QueriesPos mutable_queries_prefix_end = queries_prefix_end; std::vector prefix_end_vec; if (queries_prefix_end.size() == 0) { // hwy::Span lacks empty() prefix_end_vec.resize(queries_prompt.size(), 0); mutable_queries_prefix_end = QueriesPos(prefix_end_vec.data(), prefix_end_vec.size()); } env_.ctx.pools.MaybeStartSpinning(runtime_config.use_spinning); HWY_DYNAMIC_DISPATCH(GenerateBatchT)( model_.Config(), weights_, runtime_config, queries_prompt, queries_pos, mutable_queries_prefix_end, kv_caches, env_, timing_info); env_.ctx.pools.MaybeStopSpinning(runtime_config.use_spinning); } void Gemma::GenerateImageTokens(const RuntimeConfig& runtime_config, const Image& image, ImageTokens& image_tokens) const { env_.ctx.pools.MaybeStartSpinning(runtime_config.use_spinning); HWY_DYNAMIC_DISPATCH(GenerateImageTokensT)( model_.Config(), weights_, runtime_config, image, image_tokens, env_); env_.ctx.pools.MaybeStopSpinning(runtime_config.use_spinning); } } // namespace gcpp #endif // HWY_ONCE