mirror of https://github.com/google/gemma.cpp.git
136 lines
4.6 KiB
C++
136 lines
4.6 KiB
C++
// Copyright 2024 Google LLC
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "backprop/optimizer.h"
|
|
|
|
#include <cmath>
|
|
#include <random>
|
|
|
|
#include "compression/compress.h"
|
|
#include "gemma/common.h"
|
|
#include "gemma/weights.h"
|
|
#include "hwy/base.h"
|
|
#include "hwy/contrib/thread_pool/thread_pool.h"
|
|
|
|
namespace gcpp {
|
|
|
|
namespace {
|
|
|
|
class WeightInitializer {
|
|
public:
|
|
WeightInitializer(std::mt19937& gen) : dist_(0.0f, 1.0f), gen_(gen) {}
|
|
|
|
template <size_t N>
|
|
void operator()(const char* name, CompressedArray<float, N>& tensor) {
|
|
float* data = tensor.data();
|
|
for (size_t i = 0; i < N; ++i) {
|
|
data[i] = dist_(gen_);
|
|
}
|
|
tensor.set_scale(1.0f);
|
|
}
|
|
private:
|
|
std::normal_distribution<float> dist_;
|
|
std::mt19937& gen_;
|
|
};
|
|
|
|
template <typename TConfig>
|
|
struct RandInitWeightsT {
|
|
void operator()(const ByteStorageT& weights_u8, hwy::ThreadPool& pool,
|
|
std::mt19937& gen) const {
|
|
auto& weights =
|
|
*reinterpret_cast<CompressedWeights<TConfig>*>(weights_u8.get());
|
|
// TODO(szabadka) Use the same weight initialization method as in the python
|
|
// version.
|
|
WeightInitializer init(gen);
|
|
ForEachTensor1<TConfig>(init, weights);
|
|
}
|
|
};
|
|
|
|
class AdamUpdater {
|
|
public:
|
|
explicit AdamUpdater(float alpha, float beta1, float beta2, float epsilon,
|
|
size_t t)
|
|
: alpha_(alpha), beta1_(beta1), beta2_(beta2), cbeta1_(1.0f - beta1),
|
|
cbeta2_(1.0f - beta2), norm1_(1.0 / (1.0 - std::pow(beta1, t))),
|
|
norm2_(1.0 / (1.0 - std::pow(beta2, t))), epsilon_(epsilon) {}
|
|
|
|
template <size_t kCapacity>
|
|
void operator()(const char* name,
|
|
const CompressedArray<float, kCapacity>& grad,
|
|
CompressedArray<float, kCapacity>& weights,
|
|
CompressedArray<float, kCapacity>& grad_m,
|
|
CompressedArray<float, kCapacity>& grad_v) {
|
|
const float* HWY_RESTRICT g = grad.data();
|
|
float* HWY_RESTRICT w = weights.data();
|
|
float* HWY_RESTRICT m = grad_m.data();
|
|
float* HWY_RESTRICT v = grad_v.data();
|
|
for (size_t i = 0; i < kCapacity; ++i) {
|
|
m[i] *= beta1_;
|
|
m[i] += cbeta1_ * g[i];
|
|
v[i] *= beta2_;
|
|
v[i] += cbeta2_ * g[i] * g[i];
|
|
const float mhat = m[i] * norm1_;
|
|
const float vhat = v[i] * norm2_;
|
|
w[i] -= alpha_ * mhat / (std::sqrt(vhat) + epsilon_);
|
|
}
|
|
}
|
|
|
|
private:
|
|
float alpha_;
|
|
float beta1_;
|
|
float beta2_;
|
|
float cbeta1_;
|
|
float cbeta2_;
|
|
float norm1_;
|
|
float norm2_;
|
|
float epsilon_;
|
|
};
|
|
|
|
template <typename TConfig>
|
|
struct AdamUpdateT {
|
|
void operator()(const ByteStorageT& grad_u8, float alpha, float beta1,
|
|
float beta2, float epsilon, size_t t,
|
|
const ByteStorageT& weights_u8, const ByteStorageT& grad_m_u8,
|
|
const ByteStorageT& grad_v_u8, hwy::ThreadPool& pool) const {
|
|
using TWeights = CompressedWeights<TConfig>;
|
|
const auto& grad = *reinterpret_cast<const TWeights*>(grad_u8.get());
|
|
auto& weights = *reinterpret_cast<TWeights*>(weights_u8.get());
|
|
auto& grad_m = *reinterpret_cast<TWeights*>(grad_m_u8.get());
|
|
auto& grad_v = *reinterpret_cast<TWeights*>(grad_v_u8.get());
|
|
AdamUpdater updater(alpha, beta1, beta2, epsilon, t);
|
|
ForEachTensor4<TConfig>(updater, grad, weights, grad_m, grad_v);
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void RandInitWeights(Model model_type, Type weight_type,
|
|
const ByteStorageT& weights, hwy::ThreadPool& pool,
|
|
std::mt19937& gen) {
|
|
HWY_ASSERT(weight_type == Type::kF32);
|
|
CallForModel<float, RandInitWeightsT>(model_type, weights, pool, gen);
|
|
}
|
|
|
|
void AdamUpdate(Model model_type, Type weight_type, const ByteStorageT& grad,
|
|
float alpha, float beta1, float beta2, float epsilon, size_t t,
|
|
const ByteStorageT& weights, const ByteStorageT& grad_m,
|
|
const ByteStorageT& grad_v, hwy::ThreadPool& pool) {
|
|
HWY_ASSERT(weight_type == Type::kF32);
|
|
CallForModel<float, AdamUpdateT>(model_type, grad, alpha, beta1, beta2,
|
|
epsilon, t, weights, grad_m, grad_v, pool);
|
|
}
|
|
|
|
} // namespace gcpp
|