gemma.cpp/backprop/optimizer.cc

136 lines
4.6 KiB
C++

// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "backprop/optimizer.h"
#include <cmath>
#include <random>
#include "compression/compress.h"
#include "gemma/common.h"
#include "gemma/weights.h"
#include "hwy/base.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
namespace gcpp {
namespace {
class WeightInitializer {
public:
WeightInitializer(std::mt19937& gen) : dist_(0.0f, 1.0f), gen_(gen) {}
template <size_t N>
void operator()(const char* name, CompressedArray<float, N>& tensor) {
float* data = tensor.data();
for (size_t i = 0; i < N; ++i) {
data[i] = dist_(gen_);
}
tensor.set_scale(1.0f);
}
private:
std::normal_distribution<float> dist_;
std::mt19937& gen_;
};
template <typename TConfig>
struct RandInitWeightsT {
void operator()(const ByteStorageT& weights_u8, hwy::ThreadPool& pool,
std::mt19937& gen) const {
auto& weights =
*reinterpret_cast<CompressedWeights<TConfig>*>(weights_u8.get());
// TODO(szabadka) Use the same weight initialization method as in the python
// version.
WeightInitializer init(gen);
ForEachTensor1<TConfig>(init, weights);
}
};
class AdamUpdater {
public:
explicit AdamUpdater(float alpha, float beta1, float beta2, float epsilon,
size_t t)
: alpha_(alpha), beta1_(beta1), beta2_(beta2), cbeta1_(1.0f - beta1),
cbeta2_(1.0f - beta2), norm1_(1.0 / (1.0 - std::pow(beta1, t))),
norm2_(1.0 / (1.0 - std::pow(beta2, t))), epsilon_(epsilon) {}
template <size_t kCapacity>
void operator()(const char* name,
const CompressedArray<float, kCapacity>& grad,
CompressedArray<float, kCapacity>& weights,
CompressedArray<float, kCapacity>& grad_m,
CompressedArray<float, kCapacity>& grad_v) {
const float* HWY_RESTRICT g = grad.data();
float* HWY_RESTRICT w = weights.data();
float* HWY_RESTRICT m = grad_m.data();
float* HWY_RESTRICT v = grad_v.data();
for (size_t i = 0; i < kCapacity; ++i) {
m[i] *= beta1_;
m[i] += cbeta1_ * g[i];
v[i] *= beta2_;
v[i] += cbeta2_ * g[i] * g[i];
const float mhat = m[i] * norm1_;
const float vhat = v[i] * norm2_;
w[i] -= alpha_ * mhat / (std::sqrt(vhat) + epsilon_);
}
}
private:
float alpha_;
float beta1_;
float beta2_;
float cbeta1_;
float cbeta2_;
float norm1_;
float norm2_;
float epsilon_;
};
template <typename TConfig>
struct AdamUpdateT {
void operator()(const ByteStorageT& grad_u8, float alpha, float beta1,
float beta2, float epsilon, size_t t,
const ByteStorageT& weights_u8, const ByteStorageT& grad_m_u8,
const ByteStorageT& grad_v_u8, hwy::ThreadPool& pool) const {
using TWeights = CompressedWeights<TConfig>;
const auto& grad = *reinterpret_cast<const TWeights*>(grad_u8.get());
auto& weights = *reinterpret_cast<TWeights*>(weights_u8.get());
auto& grad_m = *reinterpret_cast<TWeights*>(grad_m_u8.get());
auto& grad_v = *reinterpret_cast<TWeights*>(grad_v_u8.get());
AdamUpdater updater(alpha, beta1, beta2, epsilon, t);
ForEachTensor4<TConfig>(updater, grad, weights, grad_m, grad_v);
}
};
} // namespace
void RandInitWeights(Model model_type, Type weight_type,
const ByteStorageT& weights, hwy::ThreadPool& pool,
std::mt19937& gen) {
HWY_ASSERT(weight_type == Type::kF32);
CallForModel<float, RandInitWeightsT>(model_type, weights, pool, gen);
}
void AdamUpdate(Model model_type, Type weight_type, const ByteStorageT& grad,
float alpha, float beta1, float beta2, float epsilon, size_t t,
const ByteStorageT& weights, const ByteStorageT& grad_m,
const ByteStorageT& grad_v, hwy::ThreadPool& pool) {
HWY_ASSERT(weight_type == Type::kF32);
CallForModel<float, AdamUpdateT>(model_type, grad, alpha, beta1, beta2,
epsilon, t, weights, grad_m, grad_v, pool);
}
} // namespace gcpp