xiaomi_vacuum_as_data_colle.../libs/parser_post.py

248 lines
6.5 KiB
Python

import io
import os
from PIL import Image
from PIL import ImageDraw
from PIL import ImageChops
from libs.tshark import Tshark
RED = (255, 0, 0, 255)
def extract_dev_from_combined(fp, minimalCounts=100, cleanup=True):
'''
extract each device data from combined file `fp`
'''
files = {}
folderpath, ext = os.path.splitext(fp)
try:
os.mkdir(folderpath)
except FileExistsError:
pass
except BaseException:
raise
with open(fp) as f:
lines = f.readlines()
for line in lines[1:]:
tmp = line.rstrip().split(",")
addr = tmp[2].replace(":", "")
if addr not in files:
files[addr] = []
files[addr].append(",".join(tmp[:2] + tmp[3:]))
for addr in list(files.keys()):
if len(files[addr]) < minimalCounts:
del files[addr]
title = lines[0].rstrip().split(",")
headline = ",".join(title[:2] + title[3:]) + "\n"
filepaths = []
for addr in files.keys():
filepath = "{}/{}.csv".format(folderpath, addr)
filepaths.append(filepath)
with open(filepath, "w") as f:
f.write(headline)
for line in files[addr]:
f.write("{}\n".format(line))
if len(files) > 0 and cleanup:
os.remove(fp)
return filepaths
def combine_sig_loc(sig_fp, loc_fp):
'''
append location to signal data
'''
filename, ext = os.path.splitext(loc_fp)
with open(sig_fp) as f:
sig_data = f.readlines()
with open(loc_fp) as f:
loc_data = f.readlines()
i_s = 1 # remove first line on info
i_l = 1 # remove first line on info
len_sig = len(sig_data)
len_loc = len(loc_data)
outfile = "{0}_sig.csv".format(filename.rstrip("_loc"))
with open(outfile, 'w') as f:
f.write("#x,y," + sig_data[0][1:])
prev_i_s = 0
prev_i_l = 0
while i_s < len_sig:
if prev_i_s != i_s:
sig_tmp = sig_data[i_s].rstrip().split(',')
prev_i_s = i_s
if prev_i_l != i_l:
loc_tmp = loc_data[i_l].rstrip().split(',')
prev_i_l = i_l
epoch_sig = float(sig_tmp[1])
epoch_loc = float(loc_tmp[2]) / 1000.0
x = float(loc_tmp[3])
y = float(loc_tmp[4])
if epoch_sig > epoch_loc:
i_l += 1
if i_l >= len_loc:
i_l = len_loc - 1
continue
f.write("{},{},{}\n".format(x, y, ",".join(sig_tmp)))
i_s += 1
return outfile
def translate_pcap(pcap_fp, is_csi):
tshark = Tshark()
filepath, ext = os.path.splitext(pcap_fp)
outputfp = "{}.csv".format(filepath)
if os.path.isfile(outputfp):
return outputfp
if is_csi:
tshark.translateCSI(pcap_fp, outputfp)
else:
tshark.translatePcap(pcap_fp, outputfp)
return outputfp
def normalize_rss(rss):
rss = max(min(rss, -20), -85)
return (rss + 85) / 65.0
def get_locs_from_parsed_sig_data(sig_data, is_csi=False):
# loop each loc
locs_data = []
if is_csi:
print("Not implemented yet")
return locs_data
for line in sig_data:
tmp = line.rstrip().split(",")
x = float(tmp[0])
y = float(tmp[1])
rss = float(tmp[4])
# calculate color of rss
color = (RED[0], RED[1], RED[2], int(255 * normalize_rss(rss)))
pos = (x, y, color)
locs_data.append(pos)
return locs_data
def get_locs_from_slam_data(slam_data):
# loop each loc
locs_data = []
for line in slam_data:
tmp = line.rstrip().split(",")
robotime = float(tmp[1])
epoch = int(tmp[2])
x = float(tmp[3])
y = float(tmp[4])
yaw = float(tmp[5])
pos = (x, y, RED)
locs_data.append(pos)
return locs_data
def build_map(locs_data, map_image_data):
'''
draws the path into the map. Returns the new map as a BytesIO
modded from https://github.com/dgiese/dustcloud/blob/71f7af3e2b9607548bcd845aca251326128f742c/dustcloud/build_map.py
'''
def align_xy(xy, center_x, center_y):
# set x & y by center of the image
# 20 is the factor to fit coordinates in in map
x = center_x + (xy[0] * 20)
y = center_y + (-xy[1] * 20)
return (x, y)
map_image = Image.open(io.BytesIO(map_image_data))
map_image = map_image.convert('RGBA')
# calculate center of the image
center_x = map_image.size[0] / 2
center_y = map_image.size[0] / 2
# rotate image by -90°
# map_image = map_image.rotate(-90)
grey = (125, 125, 125, 255) # background color
transparent = (0, 0, 0, 0)
# prepare for drawing
draw = ImageDraw.Draw(map_image)
# loop each loc
prev_xy = None
for loc in locs_data:
xy = align_xy(loc[:2], center_x, center_y)
if prev_xy:
draw.line([prev_xy, xy], loc[2])
prev_xy = xy
# rotate image back by 90°
# map_image = map_image.rotate(90)
# crop image
bgcolor_image = Image.new('RGBA', map_image.size, grey)
cropbox = ImageChops.subtract(map_image, bgcolor_image).getbbox()
map_image = map_image.crop(cropbox)
# and replace background with transparent pixels
pixdata = map_image.load()
for y in range(map_image.size[1]):
for x in range(map_image.size[0]):
if pixdata[x, y] == grey:
pixdata[x, y] = transparent
temp = io.BytesIO()
map_image.save(temp, format="png")
return temp
def test(args):
if args.loc and args.map:
with open(args.loc) as f:
# skip the first line which is coumn names
slam_data = f.readlines()[1:]
locs_data = get_locs_from_slam_data(slam_data)
with open(args.map, 'rb') as f:
map_image_data = f.read()
augmented_map = build_map(locs_data, map_image_data)
filepath, ext = os.path.splitext(args.map)
with open("{}.png".format(filepath), 'wb') as f:
f.write(augmented_map.getvalue())
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description='post processing test'
)
parser.add_argument(
'-l', '--location',
dest='loc',
default=None,
help='Specify location file path'
)
parser.add_argument(
'-m', '--map',
dest='map',
default=None,
help='Specify map file path'
)
args, __ = parser.parse_known_args()
test(args)