refine processor, extract data from pcap

This commit is contained in:
HappyZ 2019-05-05 22:13:01 -05:00
parent 5879df253f
commit 071c0f045b
4 changed files with 458 additions and 26 deletions

View File

@ -4,15 +4,172 @@ from PIL import Image
from PIL import ImageDraw from PIL import ImageDraw
from PIL import ImageChops from PIL import ImageChops
from libs.tshark import Tshark
def build_map(slam_data, map_image_data): RED = (255, 0, 0, 255)
def extract_dev_from_combined(fp, minimalCounts=100, cleanup=True):
'''
extract each device data from combined file `fp`
'''
files = []
counters = []
folderpath, ext = os.path.splitext(fp)
try:
os.mkdir(folderpath)
except FileExistsError:
pass
except BaseException:
raise
with open(fp) as f:
lines = f.readlines()
for line in lines[1:]:
tmp = line.rstrip().split(",")
addr = tmp[2].replace(":", "")
if addr not in files:
files.append(addr)
counters.append(1)
else:
counters[files.index(addr)] += 1
for i in range(len(counters)-1, -1, -1):
if counters[i] < minimalCounts:
counters.pop(i)
files.pop(i)
title = lines[0].rstrip().split(",")
filepaths = ["{}/{}.csv".format(folderpath, file) for file in files]
for filepath in filepaths:
with open(filepath, "w") as f:
f.write(",".join(title[:2] + title[3:]) + "\n")
for line in lines[1:]:
tmp = line.rstrip().split(",")
addr = tmp[2].replace(":", "")
if addr not in files:
continue
filepath = filepaths[files.index(addr)]
with open(filepath, "a+") as f:
f.write(",".join(tmp[:2] + tmp[3:]) + "\n")
if len(files) > 0 and cleanup:
os.remove(fp)
return filepaths
def combine_sig_loc(sig_fp, loc_fp):
'''
append location to signal data
'''
filename, ext = os.path.splitext(loc_fp)
with open(sig_fp) as f:
sig_data = f.readlines()
with open(loc_fp) as f:
loc_data = f.readlines()
i_s = 1 # remove first line on info
i_l = 1 # remove first line on info
len_sig = len(sig_data)
len_loc = len(loc_data)
outfile = "{0}_sig.csv".format(filename.rstrip("_loc"))
with open(outfile, 'w') as f:
f.write("#x,y," + sig_data[0][1:])
prev_i_s = 0
prev_i_l = 0
while i_s < len_sig:
if prev_i_s != i_s:
sig_tmp = sig_data[i_s].rstrip().split(',')
prev_i_s = i_s
if prev_i_l != i_l:
loc_tmp = loc_data[i_l].rstrip().split(',')
prev_i_l = i_l
epoch_sig = float(sig_tmp[1])
epoch_loc = float(loc_tmp[2]) / 1000.0
x = float(loc_tmp[3])
y = float(loc_tmp[4])
if epoch_sig > epoch_loc:
i_l += 1
if i_l >= len_loc:
i_l = len_loc - 1
continue
f.write("{},{},{}\n".format(x, y, ",".join(sig_tmp)))
i_s += 1
return outfile
def translate_pcap(pcap_fp, is_csi):
tshark = Tshark()
filepath, ext = os.path.splitext(pcap_fp)
outputfp = "{}.csv".format(filepath)
if os.path.isfile(outputfp):
return outputfp
if is_csi:
tshark.translateCSI(pcap_fp, outputfp)
else:
tshark.translatePcap(pcap_fp, outputfp)
return outputfp
def normalize_rss(rss):
rss = max(min(rss, -20), -85)
return (rss + 85) / 65.0
def get_locs_from_parsed_sig_data(sig_data, is_csi=False):
# loop each loc
locs_data = []
if is_csi:
print("Not implemented yet")
return locs_data
for line in sig_data:
tmp = line.rstrip().split(",")
x = float(tmp[0])
y = float(tmp[1])
rss = float(tmp[4])
# calculate color of rss
color = (RED[0], RED[1], RED[2], int(255 * normalize_rss(rss)))
pos = (x, y, color)
locs_data.append(pos)
return locs_data
def get_locs_from_slam_data(slam_data):
# loop each loc
locs_data = []
for line in slam_data:
tmp = line.rstrip().split(",")
robotime = float(tmp[1])
epoch = int(tmp[2])
x = float(tmp[3])
y = float(tmp[4])
yaw = float(tmp[5])
pos = (x, y, RED)
locs_data.append(pos)
return locs_data
def build_map(locs_data, map_image_data):
''' '''
draws the path into the map. Returns the new map as a BytesIO draws the path into the map. Returns the new map as a BytesIO
modded from https://github.com/dgiese/dustcloud/blob/71f7af3e2b9607548bcd845aca251326128f742c/dustcloud/build_map.py
from https://github.com/dgiese/dustcloud/blob/71f7af3e2b9607548bcd845aca251326128f742c/dustcloud/build_map.py
''' '''
def align_xy(xy, center_x, center_y):
# set x & y by center of the image
# 20 is the factor to fit coordinates in in map
x = center_x + (xy[0] * 20)
y = center_y + (-xy[1] * 20)
return (x, y)
map_image = Image.open(io.BytesIO(map_image_data)) map_image = Image.open(io.BytesIO(map_image_data))
map_image = map_image.convert('RGBA') map_image = map_image.convert('RGBA')
@ -23,8 +180,6 @@ def build_map(slam_data, map_image_data):
# rotate image by -90° # rotate image by -90°
# map_image = map_image.rotate(-90) # map_image = map_image.rotate(-90)
red = (255, 0, 0, 255)
green = (0, 255, 0, 255)
grey = (125, 125, 125, 255) # background color grey = (125, 125, 125, 255) # background color
transparent = (0, 0, 0, 0) transparent = (0, 0, 0, 0)
@ -32,25 +187,12 @@ def build_map(slam_data, map_image_data):
draw = ImageDraw.Draw(map_image) draw = ImageDraw.Draw(map_image)
# loop each loc # loop each loc
prev_pos = None prev_xy = None
for line in slam_data: for loc in locs_data:
tmp = line.rstrip().split(",") xy = align_xy(loc[:2], center_x, center_y)
robotime = float(tmp[1]) if prev_xy:
epoch = int(tmp[2]) draw.line([prev_xy, xy], loc[2])
x = float(tmp[3]) prev_xy = xy
y = float(tmp[4])
yaw = float(tmp[5])
# set x & y by center of the image
# 20 is the factor to fit coordinates in in map
x = center_x + (x * 20)
y = center_y + (-y * 20)
pos = (x, y)
if prev_pos:
draw.line([prev_pos, pos], red)
prev_pos = pos
# rotate image back by 90° # rotate image back by 90°
# map_image = map_image.rotate(90) # map_image = map_image.rotate(90)
@ -58,6 +200,7 @@ def build_map(slam_data, map_image_data):
# crop image # crop image
bgcolor_image = Image.new('RGBA', map_image.size, grey) bgcolor_image = Image.new('RGBA', map_image.size, grey)
cropbox = ImageChops.subtract(map_image, bgcolor_image).getbbox() cropbox = ImageChops.subtract(map_image, bgcolor_image).getbbox()
map_image = map_image.crop(cropbox)
# and replace background with transparent pixels # and replace background with transparent pixels
pixdata = map_image.load() pixdata = map_image.load()
@ -76,9 +219,10 @@ def test(args):
with open(args.loc) as f: with open(args.loc) as f:
# skip the first line which is coumn names # skip the first line which is coumn names
slam_data = f.readlines()[1:] slam_data = f.readlines()[1:]
locs_data = get_locs_from_slam_data(slam_data)
with open(args.map, 'rb') as f: with open(args.map, 'rb') as f:
map_image_data = f.read() map_image_data = f.read()
augmented_map = build_map(slam_data, map_image_data) augmented_map = build_map(locs_data, map_image_data)
filepath, ext = os.path.splitext(args.map) filepath, ext = os.path.splitext(args.map)
with open("{}.png".format(filepath), 'wb') as f: with open("{}.png".format(filepath), 'wb') as f:
f.write(augmented_map.getvalue()) f.write(augmented_map.getvalue())

176
libs/tshark.py Normal file
View File

@ -0,0 +1,176 @@
import sys
import time
import numpy as np
from subprocess import Popen
from subprocess import PIPE
class Tshark():
def __init__(self):
pass
def translateCSI(self, ifp, ofp, bw=20):
'''
extract csi from pcap file according to Nexmon hack
'''
FFTlength = 64
if bw is 40:
FFTlength = 128
elif bw is 80:
FFTlength = 256
cmd = [
'-r{0}'.format(ifp),
'-Tfields',
'-Eseparator=,',
'-eframe.time_epoch',
'-eframe.time_relative',
'-ewlan.ta',
'-eframe.len',
'-edata.data'
]
p = Popen(['tshark'] + cmd, stdout=PIPE)
try:
with open(ofp, 'w') as f:
f.write("#txMAC,time,time_rel")
for i in range(1, FFTlength + 1):
f.write(",sub_{0}_amp,sub_{0}_phase".format(i))
f.write("\n")
for line in p.stdout:
try:
t, t_rel, txMAC, frameLen, data = line.decode().rstrip().split(',')
except BaseException as e:
print(line)
continue
if not frameLen == '1076':
continue
t = float(t)
t_rel = float(t_rel)
data = data.split(':')
if len(data) == 1058:
ta = ':'.join(data[32:38])
csi_data = data[42:]
else:
ta = ':'.join(data[8:14])
csi_data = data[18:]
csi_val = 1j * np.zeros(256)
for i in range(0, len(csi_data), 4):
real_p = int(
"{0}{1}"
.format(csi_data[i+3], csi_data[i+2]),
16
)
if real_p > 0x7FFF:
real_p -= 0x10000
imag_p = int(
"{0}{1}"
.format(csi_data[i+1], csi_data[i+0]),
16
)
if imag_p > 0x7FFF:
imag_p -= 0x10000
csi_val[i / 4] = np.complex(real_p, imag_p)
if FFTlength < 256:
cmplx_bw = np.fft.fftshift(csi_val[1:(FFTlength+1)])
else:
cmplx_bw = np.fft.fftshift(csi_val[:-1])
# set 0 to null carriers
if bw is 20:
cmplx_bw[:4] = 0
cmplx_bw[32] = 0
cmplx_bw[61:64] = 0
elif bw is 40:
cmplx_bw[:6] = 0
cmplx_bw[63:66] = 0
cmplx_bw[123:128] = 0
elif bw is 80:
cmplx_bw[:6] = 0
cmplx_bw[127:130] = 0
cmplx_bw[251:256] = 0
f.write("{0},{1:.4f},{2:.4f}".format(ta, t, t_rel))
for each in zip(np.abs(cmplx_bw), np.angle(cmplx_bw)):
f.write(",{0:.6f},{1:.4f}".format(each[0], each[1]))
f.write("\n")
except KeyboardInterrupt:
p.kill()
except Exception:
raise
def translatePcap(self, ifp, ofp):
'''
translate pcap data into desired format via tshark
'''
cmd = [
'-r{0}'.format(ifp),
'-Tfields',
'-Eseparator=,',
'-ewlan.ta',
'-eframe.time_epoch',
'-eframe.time_relative',
'-ewlan_radio.signal_dbm',
'-ewlan_radio.noise_dbm',
'-eframe.len',
'-eradiotap.channel.freq',
'-ewlan.fc.type_subtype',
'-ewlan.frag'
]
p = Popen(['tshark'] + cmd, stdout=PIPE)
try:
with open(ofp, 'w') as f:
f.write("#txMAC,time,time_rel,RSS,noise,frameLen,channelFreq,type,fragNum\n")
for line in p.stdout:
tmp = line.decode()
if tmp.split(",")[0]:
f.write(tmp)
except KeyboardInterrupt:
p.kill()
except Exception:
raise
def test(args):
if args.outf is None:
print("Must specify output filepath")
return
tshark = Tshark()
if args.rss:
tshark.translatePcap(args.rss, args.outf)
elif args.csi:
tshark.translateCSI(args.csi, args.outf)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description='tshark test'
)
parser.add_argument(
'-rss', '--rss',
dest='rss',
default=None,
help='Specify RSS pcap file path'
)
parser.add_argument(
'-csi', '--csi',
dest='csi',
default=None,
help='Specify CSI pcap file path'
)
parser.add_argument(
'-o', '--outf',
dest='outf',
default=None,
help='Specify output filepath'
)
args, __ = parser.parse_known_args()
test(args)

94
preprocessor.py Normal file
View File

@ -0,0 +1,94 @@
import os
import argparse
from libs.parser_post import build_map
from libs.parser_post import translate_pcap
from libs.parser_post import combine_sig_loc
from libs.parser_post import get_locs_from_slam_data
from libs.parser_post import get_locs_from_parsed_sig_data
from libs.parser_post import extract_dev_from_combined
def get_files(folder):
files = os.listdir(folder)
f_map_image = None
f_loc_est = None
f_sig_data = None
is_csi = False
for file in files:
if '.pcap' in file:
f_sig_data = "{0}/{1}".format(folder, file)
if "csi" in file:
is_csi = True
elif 'loc.csv' in file:
f_loc_est = "{0}/{1}".format(folder, file)
elif 'map.ppm' in file:
f_map_image = "{0}/{1}".format(folder, file)
if f_loc_est is None or f_map_image is None:
f_loc_est = None
f_map_image = None
f_sig_data = None
return f_map_image, f_loc_est, f_sig_data, is_csi
def generate_map(f_map, f_loc, f_sig_extracted, is_csi):
'''
generate maps for path and signals
'''
# get map image
with open(f_map, 'rb') as f:
map_image_data = f.read()
# build a general map without signal
with open(f_loc) as f:
# skip the first line which is coumn names
slam_data = f.readlines()[1:]
augmented_map = build_map(
get_locs_from_slam_data(slam_data),
map_image_data
)
filepath, ext = os.path.splitext(f_map)
with open("{}.png".format(filepath), 'wb') as f:
f.write(augmented_map.getvalue())
for f_each in f_sig_extracted:
with open(f_each) as f:
# skip the first line which is coumn names
parsed_sig_data = f.readlines()[1:]
augmented_map = build_map(
get_locs_from_parsed_sig_data(parsed_sig_data, is_csi),
map_image_data
)
filepath, ext = os.path.splitext(f_each)
with open("{}.png".format(filepath), 'wb') as f:
f.write(augmented_map.getvalue())
def main(args):
if not os.path.isdir(args.folder):
print("Err: folder {} does not exist".format(args.folder))
exit(2)
f_map, f_loc, f_sig, is_csi = get_files(args.folder)
if f_map is None or f_loc is None or f_sig is None:
print("Err: desired files not exist")
exit(2)
# parse pcap into csv, and add location if it has one
f_sig_parsed = translate_pcap(f_sig, is_csi)
f_sig_combined = combine_sig_loc(f_sig_parsed, f_loc)
f_sig_extracted = extract_dev_from_combined(f_sig_combined, minimalCounts=100)
# generate path in map for visualization
generate_map(f_map, f_loc, f_sig_extracted, is_csi)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Data Pre-Processor'
)
parser.add_argument(
dest='folder',
help='Specify folder path of data'
)
args, __ = parser.parse_known_args()
main(args)

18
visualize.m Normal file
View File

@ -0,0 +1,18 @@
rawdata = readtable('./test/20190505_170223_sig/98fc11691fc5.csv');
data = table2array(rawdata(:, [1,2,4,5,9]));
unique_types = unique(data(:,5));
for j = 1:size(unique_types, 1)
figure(j); clf;
logistics = data(:,5) == unique_types(j);
tmpdata = data(logistics, :);
unique_xys = unique(tmpdata(:, 1:2), 'row');
tmpdata_avg = [];
for i = size(unique_xys, 1):-1:1
xy_logistics = unique_xys(i, 1:2) == tmpdata(:, 1:2);
xy_logistics = xy_logistics(:,1) & xy_logistics(:,2);
tmpdata_avg(i, :) = [unique_xys(i, 1:2), mean(tmpdata(xy_logistics, 3:end), 1)];
end
scatter3(tmpdata_avg(:,1), tmpdata_avg(:,2), tmpdata_avg(:,3), 100, tmpdata_avg(:,4), '.');
colorbar;
end