propagation_gan/opencellid_parsing/003d_optional.generate_imag...

60 lines
1.4 KiB
Python

#!/usr/bin/python
import os
import sys
import glob
import pickle
import numpy as np
import matplotlib.pyplot as plt
def blocking_display_signal_map(
data_vector: np.ndarray,
fp: str,
vmin: float = -80.0,
vmax: float = -40.0
):
'''
'''
plt.scatter(data_vector[:, 3], data_vector[:, 4], s=50, c=data_vector[:, 2])
# plt.xlim()
# plt.ylim()
plt.colorbar()
plt.xlabel('loc x (m)')
plt.ylabel('loc y (m)')
# plt.show()
plt.draw()
plt.savefig(fp, dpi=50)
# plt.pause(0.1)
# q = input("press Enter to continue... type q to quit: ")
# if q == 'q':
# sys.exit()
plt.close()
if len(sys.argv) < 3:
print('Usage: {} pickle_fp outputfolder'.format(sys.argv[0]))
sys.exit(0)
pickle_fp = sys.argv[1]
outputfolder = sys.argv[2]
if not os.path.isdir(outputfolder):
try:
os.makedirs(outputfolder)
except BaseException:
raise
############################
# load
############################
all_data = pickle.load(open(pickle_fp, 'rb'))
for data in all_data:
num_of_entries = len(data['measurements'])
filename = (
"{}_{}_{}_{}_{}_{}_{}entries.png"
.format(data['country_code'], data['radio'], data['mcc'], data['mnc'], data['area'], data['cell'], num_of_entries)
)
blocking_display_signal_map(data['measurements'], "{}/{}".format(outputfolder, filename))