propagation_gan/libs/spacemap.py

542 lines
19 KiB
Python

#!/usr/bin/python
import numpy as np
from libs.consts import MAX_RANGE
from libs.consts import NOISE_FLOOR
from libs.consts import FLOAT_TOLERANCE
from libs.models import log_gamma_dist
from libs.plotting import plotSpace
class SpaceBlock():
'''
'''
def __init__(self, x, y, z=None, material='default'):
self.x = float(x)
self.y = float(y)
self.z = float('nan') if z is None else float(z)
self.mat = material
self.has_transmitter = False
self.loss_penetration = 0.0
self.loss_reflection = -100.0
self.orientation = None
# backup linked list
self.left = None # <-
self.right = None # ->
self.up = None # ^
self.down = None # v
self.top = None # . (3d on top)
self.bottom = None # o (3d underneath)
def __mul__(self, val):
return SpaceBlock(self.x * val, self.y * val, self.z * val)
def __div__(self, val):
return self.__truediv__(val)
def __truediv__(self, val):
return SpaceBlock(self.x / val, self.y / val, self.z / val)
def __floordiv__(self, val):
return SpaceBlock(self.x // val, self.y // val, self.z // val)
def __add__(self, blk):
if isinstance(blk, SpaceBlock):
return SpaceBlock(self.x + blk.x, self.y + blk.y, self.z + blk.z)
return SpaceBlock(self.x + blk, self.y + blk, self.z + blk)
def __sub__(self, blk):
if isinstance(blk, SpaceBlock):
return SpaceBlock(self.x - blk.x, self.y - blk.y, self.z - blk.z)
return SpaceBlock(self.x - blk, self.y - blk, self.z - blk)
def __abs__(self):
return self.dot(self)
def __eq__(self, blk):
return self.distance(blk) < FLOAT_TOLERANCE
def __contains__(self, lst):
for each in lst:
if self == each:
return True
return False
def includes(self, x, y, z=None, block_size=0.1):
flag = x >= self.x and x < (self.x + block_size)
flag = flag and y >= self.y and y < (self.y + block_size)
if z is None:
return flag
return flag and z >= self.z and z < (self.z + block_size)
def dot(self, blk):
'''
dot product
'''
if np.isnan(self.z) or np.isnan(blk.z):
return (self.x * blk.x) + (self.y * blk.y)
return (self.x * blk.x) + (self.y * blk.y) + (self.z * blk.z)
def round(self, dg=0):
return SpaceBlock(round(self.x, dg), round(self.y, dg), round(self.z, dg))
def distanceSquared(self, blk):
return (self - blk).__abs__()
def distance(self, blk):
return np.sqrt(self.distanceSquared(blk))
def __iter__(self):
self.__i = 0
return self
def __next__(self):
self.__i += 1
if self.__i == 1:
return self.x
elif self.__i == 2:
return self.y
elif self.__i == 3 and not np.isnan(self.z):
return self.z
raise StopIteration
def __str__(self):
return "SpaceBlock(x = {:.3f}, y = {:.3f}, z = {:.3f})".format(self.x, self.y, self.z)
def setTransmitter(self, flag):
self.has_transmitter = flag
def hasTransmitter(self):
return self.has_transmitter
def setLoss(self, penetration=0.0, reflection=-100.0):
self.loss_penetration = penetration
self.loss_reflection = reflection
def setOrientation(self, orientation=0.0):
self.orientation = orientation
def getOrientation(self):
return self.orientation
def getLoss(self):
return [self.loss_penetration, self.loss_reflection]
class SpaceRay():
'''
TODO: extend to 3D
'''
def __init__(self, point1, point2):
self.start = point1
if isinstance(point2, float):
self.end = point1 + SpaceBlock(np.cos(point2), np.sin(point2)) * MAX_RANGE
else:
self.end = point2
# property
self.distance = None
self.angle_theta = None
self.angle_theta_deg = None
self.angle_theta_sin = None
self.angle_theta_cos = None
self.angle_theta_tan = self.slope = None
# power and propagation
self.init_pwr = None
self.init_phase = None
self.starting_loss = None
self.starting_distance = None
self.ending_pwr = None
self.ending_phase = None
self.ending_loss = None
self.ending_distance = None
self.passthrough_loss = None
self.passthrough_blks = None
self.reflection_blks = None
self.gamma = 2.0
# distance traveled prior to this distance
self.distance_traveled = None
self.reflection_count = 0
# id
self.ray_id = ''
self.prev_ray = None
def __eq__(self, spaceray):
return (self.start - self.end) == (spaceray.start - spaceray.end)
def __contains__(self, lst):
for each in lst:
if self == each:
return True
return False
def __str__(self):
return (
"SpaceRay(start = {0}, end = {1}): ".format(self.start, self.end) +
"pwr_init = {0}, pwr_end = {1}, ".format(self.init_pwr, self.ending_pwr) +
"loss_start = {0}, loss_end = {1}\n".format(self.starting_loss, self.ending_loss) +
" <- prev_ray = {}".format(self.prev_ray)
)
def __iter__(self):
self.__prev_ray = self
return self
def __next__(self):
if self.__prev_ray is None:
raise StopIteration
tmp = self.__prev_ray
self.__prev_ray = self.__prev_ray.prev_ray
return tmp
def getAngle(self, degree=False):
if self.angle_theta is None:
self.angle_theta = np.arctan2(
self.end.y - self.start.y, self.end.x - self.start.x
)
if degree:
if self.angle_theta_deg is None:
self.angle_theta_deg = self.angle_theta * 180.0 / np.pi
return self.angle_theta_deg
return self.angle_theta
def getSlope(self):
if self.slope is None:
self.slope = np.tan(self.getAngle())
self.angle_theta_tan = self.slope
return self.slope
def getAngleThetaTan(self):
return self.getSlope()
def getAngleThetaSin(self):
if self.angle_theta_sin is None:
self.angle_theta_sin = np.sin(self.getAngle())
return self.angle_theta_sin
def getAngleThetaCos(self):
if self.angle_theta_cos is None:
self.angle_theta_cos = np.cos(self.getAngle())
return self.angle_theta_cos
def getDistance(self):
if self.distance is None:
self.distance = self.start.distance(self.end)
return self.distance
def setStartingDistance(self, val):
self.starting_distance = val
def getTraveledDistance(self):
if self.starting_distance is None:
print("need to run `setStartingLoss` first")
return
if self.ending_distance is None:
self.ending_distance = self.starting_distance + self.getDistance()
return self.ending_distance
def derivePassAndReflectBlocks(self, space_map):
self.passthrough_blks = []
self.reflection_blks = []
step_blk = SpaceBlock(self.getAngleThetaCos(), self.getAngleThetaSin()) * space_map.bs
early_stop_flag = False
# reflect_blk_min_gap = 2
for i in range(2, int(self.getDistance() / space_map.bs) - 1):
next_blk = self.start + step_blk * i
# assume 2D
x_idx, y_idx = [int(x) for x in (next_blk / space_map.bs).round()]
if x_idx < space_map.map.shape[0] and x_idx > -1 and y_idx < space_map.map.shape[1] and y_idx > -1:
early_stop_flag = True
if space_map.map[x_idx, y_idx].loss_penetration < 0.1:
self.passthrough_blks.append(space_map.map[x_idx, y_idx])
if space_map.map[x_idx, y_idx].loss_reflection > -100:
self.reflection_blks.append(space_map.map[x_idx, y_idx])
continue
if early_stop_flag:
break
def getPassThroughLoss(self):
if self.passthrough_loss is None:
if self.passthrough_blks is None:
print("need to run `derivePassAndReflectBlocks` first")
return
self.passthrough_loss = np.sum([
each.loss_penetration
for each in self.passthrough_blks
])
return self.passthrough_loss
def getEndingLoss(self):
'''
excluding the end penetration/reflection loss
'''
if self.starting_loss is None:
print("need to run `setStartingLoss` first")
return
if self.passthrough_loss is None and self.getPassThroughLoss() is None:
return
self.ending_loss = self.starting_loss + self.passthrough_loss
return self.ending_loss
def setStartingLoss(self, val):
self.starting_loss = val
def setInitPower(self, amplitude, phase=0.0):
self.init_pwr = amplitude
self.init_phase = phase
def getEndingPower(self):
if self.ending_loss is None:
if self.getEndingLoss() is None:
return
if self.init_pwr is None:
print("need to run `setInitPower` first")
return
self.ending_pwr = log_gamma_dist(
np.array([self.ending_distance]),
self.init_pwr,
self.gamma,
loss = self.ending_loss,
gaussian_noise = False
)[0]
return self.ending_pwr
def getPathFromRay(ray, stop_blk, spacemap):
path = SpaceRay(ray.start, stop_blk)
# prevent 0 distance
if path.getDistance() < FLOAT_TOLERANCE:
return None
# inherit ray properties
path.derivePassAndReflectBlocks(spacemap)
# path.passthrough_blks = ray.passthrough_blks[:ray.passthrough_blks.index(stop_blk)]
path.setInitPower(ray.init_pwr, ray.gamma)
path.setStartingDistance(ray.starting_distance)
path.setStartingLoss(ray.starting_loss)
path.prev_ray = ray.prev_ray
#
path.getTraveledDistance()
path.getPassThroughLoss()
path.getEndingLoss()
#
path.getEndingPower()
return path
def getRayFromPath(path, direction, t='penetrate'):
if path.getEndingPower() <= NOISE_FLOOR:
return None
ray = SpaceRay(path.end, direction)
ray.setInitPower(path.init_pwr, path.gamma)
ray.setStartingDistance(path.getTraveledDistance())
if t == 'penetrate':
ray.setStartingLoss(path.getEndingLoss() + path.end.getLoss()[0])
elif t == 'reflect':
ray.setStartingLoss(path.getEndingLoss() + path.end.getLoss()[1])
else:
ray.setStartingLoss(path.getEndingLoss())
if ray.starting_loss <= NOISE_FLOOR:
return None
ray.prev_ray = path
return ray
class SpaceMap():
'''
TODO: extend to 3D
'''
def __init__(
self,
width: float = 6.4,
length: float = 6.4,
block_size: float = 0.1
):
if MAX_RANGE < width or MAX_RANGE < length:
print("WARNNING! MAX_RANGE {} is less than input".format(MAX_RANGE))
self.width = width
self.length = length
self.bs = block_size
self.map = np.empty(
(
int(self.width / self.bs),
int(self.length / self.bs)
), dtype=SpaceBlock
)
# initialize the map
self.__loss_p = np.zeros(self.map.shape)
self.__loss_r = np.ones(self.map.shape) * -100
self.__tx_locs = np.zeros(self.map.shape)
for j in range(self.map.shape[1]):
y = self.bs * (j + 0.5)
for i in range(self.map.shape[0]):
self.map[i, j] = SpaceBlock(self.bs * (i + 0.5), y)
for j in range(self.map.shape[1]):
for i in range(self.map.shape[0]):
self.map[i, j].up = self.map[i, j+1] if j < self.map.shape[1]-1 else None
self.map[i, j].down = self.map[i, j-1] if j > 0 else None
self.map[i, j].left = self.map[i-1, j] if i < 0 else None
self.map[i, j].right = self.map[i+1, j] if i < self.map.shape[0]-1 else None
# propagation
self.endpaths = []
self.tx_loc = None
self.env_gamma = 2.0
self.ray_trace_deg_step = 1.0
# according to VTC paper
# "A RAY TRACING METHOD FOR PREDICTING PATH LOSS AND DELAY SPREAD
# IN MICROCELLULAR ENVIRONMENTS"
self.ray_trace_deg_tol = self.ray_trace_deg_step / 180.0 * np.pi / np.sqrt(3)
def getLosses(self):
return np.array([self.__loss_p, self.__loss_r])
def getLoss(self, i, j):
return np.array([self.__loss_p[i, j], self.__loss_r[i, j]])
def setLosses(self, penetrations, reflections):
for j in range(self.map.shape[1]):
for i in range(self.map.shape[0]):
self.setLoss(i, j, penetrations[i ,j], reflections[i, j])
def setOrientations(self, orientations):
for j in range(self.map.shape[1]):
for i in range(self.map.shape[0]):
self.setOrientation(i, j, orientations[i ,j])
def setOrientation(self, i, j, orientation):
if np.isnan(orientation):
orientation = None
self.map[i, j].setOrientation(orientation)
def setLoss(self, i, j, penetration, reflection):
self.map[i, j].setLoss(penetration, reflection)
self.__loss_p[i, j] = penetration
self.__loss_r[i, j] = reflection
def setHasTransmitter(self, i, j):
self.map[i, j].setTransmitter(flag)
self.__tx_locs[i, j] = 1 if flag else 0
def getTransmitterLocs(self):
return self.__tx_locs
def setEnvGamma(self, val: float):
self.env_gamma = val
def traceRays(self, tx_power: float, tx_loc: SpaceBlock):
'''
'''
if self.tx_loc is not None and tx_loc == self.tx_loc:
return
self.endpaths = []
self.tx_loc = tx_loc
rays = []
for direction in np.arange(0, 359.99, self.ray_trace_deg_step):
ray = SpaceRay(tx_loc, direction / 180.0 * np.pi)
ray.setInitPower(tx_power, self.env_gamma)
ray.setStartingLoss(0.0)
ray.setStartingDistance(0.0)
rays.append(ray)
# fake_init_ray.next_rays.append(ray)
# BFS
while len(rays) > 0:
ray = rays.pop(0)
ray.derivePassAndReflectBlocks(self)
# if no reflections exist, then only passing through, simple
if not ray.reflection_blks:
# if passing through the receiver block, we only have a LoS here
# safe to save this last ray (instead of path)
self.endpaths.append(ray)
continue
ref_blk = ray.reflection_blks[0]
path = getPathFromRay(ray, ref_blk, self)
# zero length
if path is None:
continue
# too weak
if path.getEndingPower() < NOISE_FLOOR:
self.endpaths.append(path)
continue
# penetrated ray
ray_p = getRayFromPath(path, ray.getAngle(), t='penetrate')
if ray_p is not None:
rays.append(ray_p)
# reflected ray
if ref_blk.getOrientation() is None:
# if no orientation info provided, cannot calculate reflected ray
continue
ray_r = getRayFromPath(path, 2.0 * ref_blk.getOrientation() - path.getAngle() , t='reflect')
if ray_r is not None:
rays.append(ray_r)
print("size of all found rays: {}".format(len(self.endpaths)))
def traceRay(self, rx_loc: SpaceBlock):
'''
'''
def aggreatePower(paths):
if not paths:
return NOISE_FLOOR
sig_pwr = 0.0
for path in paths:
sig_pwr += np.power(10, path.getEndingPower() / 10.0)
return 10.0 * np.log10(sig_pwr)
def removeRedundantPaths(paths):
paths_len = len(paths)
duplicated_ones = {}
# calcualte pair-wise distance
for i in range(paths_len):
for j in range(i + 1, paths_len):
if abs(paths[i].start - paths[j].start) < 2.0 * self.bs:
if i not in duplicated_ones:
duplicated_ones[i] = [0, []]
duplicated_ones[i][0] += 1
duplicated_ones[i][1].append(j)
if j not in duplicated_ones:
duplicated_ones[j] = [0, []]
duplicated_ones[j][0] += 1
duplicated_ones[j][1].append(i)
# removal
to_be_removed = []
while len(duplicated_ones) > 0:
idx = sorted(list(duplicated_ones.keys()), key=lambda x: duplicated_ones[x][0], reverse=True)[0]
for target_idx in duplicated_ones[idx][1]:
if target_idx not in to_be_removed:
to_be_removed.append(target_idx)
duplicated_ones[idx][0] -= 1
duplicated_ones[target_idx][0] -= 1
if duplicated_ones[target_idx][0] == 0:
del duplicated_ones[target_idx]
continue
del duplicated_ones[target_idx][1][duplicated_ones[target_idx][1].index(idx)]
del duplicated_ones[idx]
for each in sorted(to_be_removed, reverse=True):
del paths[each]
if not self.endpaths:
return NOISE_FLOOR, []
rx_loc_paths = []
for path in self.endpaths:
current_p = path
target_p_found = None
original_path_flag = True
while current_p is not None:
target_p = getPathFromRay(current_p, rx_loc, self)
if target_p is None:
break
angle_diff = abs(target_p.getAngle() % (2 * np.pi) - current_p.getAngle() % (2 * np.pi))
if angle_diff < self.ray_trace_deg_tol * max(target_p.getTraveledDistance(), 2):
if target_p.getEndingPower() < NOISE_FLOOR:
continue
target_p_found = target_p
current_p = current_p.prev_ray
original_path_flag = False
if target_p_found is not None and target_p_found not in rx_loc_paths:
rx_loc_paths.append(target_p_found)
# clean up for too nearby paths
removeRedundantPaths(rx_loc_paths)
return aggreatePower(rx_loc_paths), rx_loc_paths