#!/usr/bin/python import os import sys import glob import pickle import numpy as np import matplotlib.pyplot as plt def blocking_display_signal_map( data_vector: np.ndarray, fp: str, vmin: float = -80.0, vmax: float = -40.0 ): ''' ''' plt.scatter(data_vector[:, 3], data_vector[:, 4], s=50, c=data_vector[:, 2]) # plt.xlim() # plt.ylim() plt.colorbar() plt.xlabel('loc x (m)') plt.ylabel('loc y (m)') # plt.show() plt.draw() plt.savefig(fp, dpi=50) # plt.pause(0.1) # q = input("press Enter to continue... type q to quit: ") # if q == 'q': # sys.exit() plt.close() if len(sys.argv) < 3: print('Usage: {} pickle_fp outputfolder'.format(sys.argv[0])) sys.exit(0) pickle_fp = sys.argv[1] outputfolder = sys.argv[2] if not os.path.isdir(outputfolder): try: os.makedirs(outputfolder) except BaseException: raise ############################ # load ############################ all_data = pickle.load(open(pickle_fp, 'rb')) for data in all_data: num_of_entries = len(data['measurements']) filename = ( "{}_{}_{}_{}_{}_{}_{}entries.png" .format(data['country_code'], data['radio'], data['mcc'], data['mnc'], data['area'], data['cell'], num_of_entries) ) blocking_display_signal_map(data['measurements'], "{}/{}".format(outputfolder, filename))