model and space map classes

This commit is contained in:
HappyZ 2019-05-21 03:36:57 -05:00
parent a2d7393f6f
commit 9c5533ceaf
4 changed files with 372 additions and 0 deletions

11
libs/consts.py Normal file
View File

@ -0,0 +1,11 @@
#!/usr/bin/python
RANDOM_SEED = 0
GAUSSIAN_NOISE_MEAN = 0.0 # dB
GAUSSIAN_NOISE_STD = 3.16 # 10 dB variance
NOISE_FLOOR = -85 #dB
FLOAT_TOLERANCE = 0.001

48
libs/models.py Normal file
View File

@ -0,0 +1,48 @@
#!/usr/bin/python
import numpy as np
from libs.consts import NOISE_FLOOR
from libs.consts import RANDOM_SEED
from libs.consts import GAUSSIAN_NOISE_STD
from libs.consts import GAUSSIAN_NOISE_MEAN
np.random.seed(RANDOM_SEED)
def log_gamma_loc(
rx_loc: np.ndarray,
tx_loc: np.ndarray,
pwr: float,
gamma: float,
loss: float = 0.0,
gaussian_noise: bool = False
):
'''
'''
dist_squared = np.nansum((rx_loc - tx_loc) * (rx_loc - tx_loc), axis=1)
dist_squared[dist_squared < 0.02] = 0.02
noise = normal(GAUSSIAN_NOISE_MEAN, GAUSSIAN_NOISE_STD) if gaussian_noise else 0.0
rss = pwr - 10.0 * gamma / 2 * np.log10(dist_squared) + noise + loss
rss[rss < NOISE_FLOOR] = NOISE_FLOOR
rss[rss > pwr] = pwr
return rss
def log_gamma_dist(
dist: np.ndarray,
pwr: float,
gamma: float,
loss: float = 0.0,
gaussian_noise: bool = False,
is_squared: bool = False
):
'''
'''
factor = 0.5 if is_squared else 1.0
noise = normal(GAUSSIAN_NOISE_MEAN, GAUSSIAN_NOISE_STD) if gaussian_noise else 0.0
rss = pwr - 10.0 * gamma * factor * np.log10(dist) + noise + loss
rss[rss < NOISE_FLOOR] = NOISE_FLOOR
rss[rss > pwr] = pwr
return rss

281
libs/spacemap.py Normal file
View File

@ -0,0 +1,281 @@
#!/usr/bin/python
import numpy as np
from libs.consts import FLOAT_TOLERANCE
from libs.models import log_gamma_dist
class SpaceBlock():
'''
'''
def __init__(self, x, y, z=None, material='default'):
self.x = float(x)
self.y = float(y)
self.z = float('nan') if z is None else float(z)
self.mat = material
self.has_transmitter = False
self.loss_penetration = 0.0
self.loss_reflection = 0.0
self.related_rays = []
def __mul__(self, val):
return SpaceBlock(self.x * val, self.y * val, self.z * val)
def __div__(self, val):
return self.__truediv__(val)
def __truediv__(self, val):
return SpaceBlock(self.x / val, self.y / val, self.z / val)
def __floordiv__(self, val):
return SpaceBlock(self.x // val, self.y // val, self.z // val)
def __add__(self, blk):
if isinstance(blk, SpaceBlock):
return SpaceBlock(self.x + blk.x, self.y + blk.y, self.z + blk.z)
return SpaceBlock(self.x + blk, self.y + blk, self.z + blk)
def __sub__(self, blk):
if isinstance(blk, SpaceBlock):
return SpaceBlock(self.x - blk.x, self.y - blk.y, self.z - blk.z)
return SpaceBlock(self.x - blk, self.y - blk, self.z - blk)
def __abs__(self):
return self.dot(self)
def __eq__(self, blk):
return self.distance(blk) < FLOAT_TOLERANCE
def includes(self, x, y, z=None, block_size=0.1):
flag = x >= self.x and x < (self.x + block_size)
flag = flag and y >= self.y and y < (self.y + block_size)
if z is None:
return flag
return flag and z >= self.z and z < (self.z + block_size)
def dot(self, blk):
'''
dot product
'''
if np.isnan(self.z) or np.isnan(blk.z):
return (self.x * blk.x) + (self.y * blk.y)
return (self.x * blk.x) + (self.y * blk.y) + (self.z * blk.z)
def round(self, dg=0):
return SpaceBlock(round(self.x, dg), round(self.y, dg), round(self.z, dg))
def distanceSquared(self, blk):
return (self - blk).__abs__()
def distance(self, blk):
return np.sqrt(self.distanceSquared(blk))
def __iter__(self):
self.__i = 0
return self
def __next__(self):
self.__i += 1
if self.__i == 1:
return self.x
elif self.__i == 2:
return self.y
elif self.__i == 3 and not np.isnan(self.z):
return self.z
raise StopIteration
def __str__(self):
return "SpaceBlock(x = {:.3f}, y = {:.3f}, z = {:.3f})".format(self.x, self.y, self.z)
def setTransmitter(self, flag):
self.has_transmitter = flag
def hasTransmitter(self):
return self.has_transmitter
def setLoss(self, penetration=0.0, reflection=0.0):
self.loss_penetration = penetration
self.loss_reflection = reflection
def getLoss(self):
return [self.loss_penetration, self.loss_reflection]
class SpaceRay():
'''
TODO: extend to 3D
'''
def __init__(self, point1, point2):
self.start = point1
self.end = point2
# property
self.distance = None
self.angle_theta = None
self.angle_theta_deg = None
self.angle_theta_sin = None
self.angle_theta_cos = None
self.angle_theta_tan = self.slope = None
# power and propagation
self.begininng_pwr = 0.0
self.begininng_phase = 0.0
self.this_starting_pwr = 0.0
self.this_starting_phase = 0.0
self.this_ending_pwr = 0.0
self.this_ending_phase = 0.0
self.this_pass_through_loss = None
self.this_pass_through_blks = None
self.this_gamma = None
self.__prev_factor = None
self.__prev_bounds = None
self.loss_total = None
self.distance_traveled = None
# id
self.ray_id = ''
def getAngle(self, degree=False):
if self.angle_theta is None:
self.angle_theta = np.arctan2(
self.end.y - self.start.y, self.end.x - self.start.x
)
if degree:
if self.angle_theta_deg is None:
self.angle_theta_deg = self.angle_theta * 180.0 / np.pi
return self.angle_theta_deg
return self.angle_theta
def getSlope(self):
if self.slope is None:
self.slope = np.tan(self.getAngle())
self.angle_theta_tan = self.slope
return self.slope
def getAngleThetaTan(self):
return self.getSlope()
def getAngleThetaSin(self):
if self.angle_theta_sin is None:
self.angle_theta_sin = np.sin(self.getAngle())
return self.angle_theta_sin
def getAngleThetaCos(self):
if self.angle_theta_cos is None:
self.angle_theta_cos = np.cos(self.getAngle())
return self.angle_theta_cos
def getDistance(self):
if self.distance is None:
self.distance = self.start.distance(self.end)
return self.distance
def setTravelDistance(self, prior_distance):
self.distance_traveled = prior_distance + self.getDistance()
def computeLinePassThroughLoss(self, space_map):
factor = space_map.bs
bounds = space_map.map.shape
if (
self.__prev_bounds == bounds and
self.__prev_factor == factor and
self.this_pass_through_blks is not None
):
return np.sum([
each.loss_penetration
for each in self.this_pass_through_blks
])
self.__prev_bounds = bounds
self.__prev_factor = factor
self.this_pass_through_blks = []
step_blk = SpaceBlock(self.getAngleThetaCos(), self.getAngleThetaSin()) * factor
for i in range(1, int(self.getDistance() / factor)):
next_blk = self.start + step_blk * i
# assume 2D
x_idx, y_idx = [int(x) for x in (next_blk / factor).round()]
if x_idx < bounds[0] and x_idx > -1 and y_idx < bounds[1] and y_idx > -1:
self.this_pass_through_blks.append(space_map.map[x_idx, y_idx])
space_map.map[x_idx, y_idx].related_rays.append(self)
self.this_pass_through_loss = np.sum([
each.loss_penetration
for each in self.this_pass_through_blks
])
def setTotalLoss(self, prior_loss):
'''
excluding the end penetration/reflection loss
'''
if self.this_pass_through_loss is None:
print("need to run `computeLinePassThroughLoss` first")
return
self.loss_total = prior_loss + self.this_pass_through_loss
def setInitPower(self, power, gamma=2.0):
self.begininng_pwr = power
self.this_gamma = gamma
def computeResultingPwr(self):
if self.loss_total is None:
print("need to run `setTotalLoss` first")
return
if self.begininng_pwr is None:
print("need to run `setInitPower` first")
return
if self.distance_traveled is None:
print("need to run `setTravelDistance` first")
return
self.this_ending_pwr = log_gamma_dist(
np.array([self.distance_traveled]),
self.begininng_pwr,
self.this_gamma,
loss = self.loss_total,
gaussian_noise = False,
is_squared = False
)[0]
return self.this_ending_pwr
class SpaceMap():
'''
TODO: extend to 3D
'''
def __init__(
self,
width: float = 6.4,
length: float = 6.4,
block_size: float = 0.1
):
self.width = width
self.length = length
self.bs = block_size
self.map = np.empty(
(
int(self.width / self.bs),
int(self.length / self.bs)
), dtype=SpaceBlock
)
# initialize the map
self.__loss_p = np.zeros(self.map.shape)
self.__loss_r = np.zeros(self.map.shape)
for j in range(self.map.shape[1]):
y = self.bs * (j + 0.5)
for i in range(self.map.shape[0]):
self.map[i, j] = SpaceBlock(self.bs * (i + 0.5), y)
def getLosses(self):
return np.array([self.__loss_p, self.__loss_r])
def getLoss(self, i, j):
return np.array([self.__loss_p[i, j], self.__loss_r[i, j]])
def setLosses(self, penetrations, reflections):
for j in range(self.map.shape[1]):
for i in range(self.map.shape[0]):
self.setLoss(i, j, penetrations[i ,j], reflections[i, j])
def setLoss(self, i, j, penetration, reflection):
self.map[i, j].setLoss(penetration, reflection)
self.__loss_p[i, j] = penetration
self.__loss_r[i, j] = reflection

32
tests/spacemap.py Normal file
View File

@ -0,0 +1,32 @@
#!/usr/bin/python
import sys
sys.path.append(".")
sys.path.append("..")
sys.path.append("../..") # Adds higher directory to python modules path
import os
import time
import numpy as np
from libs.spacemap import SpaceBlock
from libs.spacemap import SpaceRay
from libs.spacemap import SpaceMap
def test():
spacemap = SpaceMap(width=6.4, length=6.4, block_size=0.1)
print(spacemap.getLosses())
print(spacemap.getLoss(np.array([1, 2, 3]), 1))
ray = SpaceRay(SpaceBlock(0.0, 0.0), SpaceBlock(2, 6.38))
ray.computeLinePassThroughLoss(spacemap)
ray.setTotalLoss(0.0)
ray.setInitPower(0, gamma=2.0)
ray.setTravelDistance(0.0)
pwr = ray.computeResultingPwr()
print("pwr = {}".format(pwr))
print(ray.this_pass_through_blks[0].related_rays)
print(ray.this_pass_through_blks[0])
if __name__ == "__main__":
test()