fitting finalized

This commit is contained in:
HappyZ 2019-05-22 02:56:20 -05:00
parent fa31fb46fd
commit 5387285e7a
4 changed files with 221 additions and 34 deletions

View File

@ -62,18 +62,20 @@ def modelfit_log_gamma(
bounds_loc_x, bounds_loc_y, bounds_loc_x, bounds_loc_y,
bounds_pwr, bounds_gamma bounds_pwr, bounds_gamma
])) ]))
sampled_rx_locs = rx_locs
sampled_rx_rsses = rx_rsses
if monte_carlo_sampling and rx_rsses.shape[0] > 10: if monte_carlo_sampling and rx_rsses.shape[0] > 10:
logistics = np.random.choice( logistics = np.random.choice(
np.arange(rx_rsses.shape[0]), np.arange(rx_rsses.shape[0]),
size=int(monte_carlo_sampling_rate * rx_rsses.shape[0]), size=int(monte_carlo_sampling_rate * rx_rsses.shape[0]),
replace=False replace=False
) )
rx_locs = rx_locs[logistics, :] sampled_rx_locs = rx_locs[logistics, :]
rx_rsses = rx_rsses[logistics, :] sampled_rx_rsses = rx_rsses[logistics]
# fit # fit
popt, pcov = curve_fit( popt, pcov = curve_fit(
modelfit_log_gamma_func, rx_locs, rx_rsses, modelfit_log_gamma_func, sampled_rx_locs, sampled_rx_rsses,
p0=seeds, bounds=bounds p0=seeds, bounds=bounds
) )
@ -84,8 +86,15 @@ def modelfit_log_gamma(
else: else:
est_loc_x, est_loc_y, est_tx_pwr, est_env_gamma, est_loc_z = popt est_loc_x, est_loc_y, est_tx_pwr, est_env_gamma, est_loc_z = popt
est_tx_loc = np.array([est_loc_x, est_loc_y, est_loc_z]) est_tx_loc = np.array([est_loc_x, est_loc_y, est_loc_z])
est_rsses = log_gamma_loc(rx_locs, est_tx_loc, est_tx_pwr, est_env_gamma)
est_errors = est_rsses - rx_rsses
pmse = 1.0 * np.nansum(est_errors * est_errors) / est_errors.shape[0]
return pmse, est_tx_loc, est_tx_pwr, est_env_gamma, est_rsses # compute fit mse
est_sampled_rsses = log_gamma_loc(sampled_rx_locs, est_tx_loc, est_tx_pwr, est_env_gamma)
est_errors = est_sampled_rsses - sampled_rx_rsses
fit_mse = 1.0 * np.nansum(est_errors * est_errors) / est_errors.shape[0]
# compute the full original map if monte_carlo_sampling enabled
est_rsses = est_sampled_rsses
if monte_carlo_sampling and rx_rsses.shape[0] > 10:
est_rsses = log_gamma_loc(rx_locs, est_tx_loc, est_tx_pwr, est_env_gamma)
return fit_mse, est_tx_loc, est_tx_pwr, est_env_gamma, est_rsses

47
libs/util.py Normal file
View File

@ -0,0 +1,47 @@
#!/usr/bin/python
import numpy as np
from libs.consts import NOISE_FLOOR
def touch(filepath):
try:
open(filepath, 'a').close()
return True
except BaseException:
pass
return False
def convert_mat_to_vector(
mat: np.ndarray,
block_size: float = 0.1
):
'''
'''
rx_locs = []
rx_rsses = []
width, length = mat.shape
for i in range(width):
for j in range(length):
if mat[i, j] <= NOISE_FLOOR:
continue
rx_locs.append([(i + 0.5) * block_size, (j + 0.5) * block_size])
rx_rsses.append(mat[i, j])
return np.array(rx_locs), np.array(rx_rsses)
def convert_vector_to_mat(
rx_locs: np.ndarray,
rx_rsses: np.ndarray,
shape: tuple,
block_size: float = 0.1
):
'''
'''
result = np.ones(shape) * -85.0
for i in range(rx_locs.shape[0]):
x, y = rx_locs[i, :] / block_size
result[int(x), int(y)] = rx_rsses[i]
return result

View File

@ -0,0 +1,156 @@
#!/usr/bin/python
import os
import sys
import pickle
import argparse
from libs.util import touch
from libs.util import convert_mat_to_vector
from libs.util import convert_vector_to_mat
from libs.fitting import modelfit_log_gamma
from libs.plotting import plotRSS
def loadData(filepath):
try:
return pickle.load(open(filepath, "rb"))
except BaseException as e:
print("err: {}".format(e))
pass
return None
def fittingSingle(filepath, args):
'''
'''
# load data from file
data = loadData(filepath)
if data is None:
print("err: failed to load file {}".format(filepath))
return
# convert data matrix to vectors
rx_locs, rx_rsses = convert_mat_to_vector(data, block_size=0.1)
# start fitting
min_pmse = float('inf')
best_tx_loc = None
best_tx_pwr = None
best_env_gamma = None
best_rsses = None
for i in range(100):
result = modelfit_log_gamma(
rx_locs,
rx_rsses,
bounds_pwr=(-60, 0),
bounds_gamma=(2, 6),
bounds_loc_x=(0, 6.2),
bounds_loc_y=(0, 6.2),
monte_carlo_sampling=False,
monte_carlo_sampling_rate=0.8
)
# unpack
pmse, est_tx_loc, est_tx_pwr, est_env_gamma, est_rsses = result
if pmse < min_pmse:
print("|----- found better:", pmse, est_tx_loc, est_tx_pwr, est_env_gamma)
min_pmse = pmse
best_tx_loc = est_tx_loc
best_tx_pwr = est_tx_pwr
best_env_gamma = est_env_gamma
best_rsses = est_rsses
print("|- final:")
print("|--- tx loc: {:.3f}, {:.3f}".format(best_tx_loc[0], best_tx_loc[1]))
print("|--- tx pwr: {:.2f}".format(best_tx_pwr))
print("|--- env gamma: {:.2f}".format(best_env_gamma))
print("|--- fitting mse: {:.6f}".format(min_pmse))
data_best_est = convert_vector_to_mat(rx_locs, best_rsses, data.shape, block_size=0.1)
if args.outputfile:
filename = os.path.basename(args.outputfile)
with open(args.outputfile, 'a') as f:
f.write(
"{},".format(filename) +
"{:.3f},{:.3f},".format(best_tx_loc[0], best_tx_loc[1]) +
"{:.2f},{:.2f}".format(best_tx_pwr, best_env_gamma) +
"{:.6f}".format(min_pmse) +
"\n"
)
if args.visualize:
plotRSS(
data,
data_best_est,
est_tx_loc=best_tx_loc / 0.1
)
def main(args):
# finding files
filepaths = []
if args.filepath:
filepaths.append(args.filepath)
if args.folderpath:
files = os.listdir(args.folderpath)
filepaths.extend(["{}/{}".format(args.folderpath, file) for file in files if '.pickle' in file])
# prepare
if args.outputfile:
with open(args.outputfile, 'w') as f:
f.write("filename,tx_x,tx_y,tx_pwr,env_gamma,fit_mse\n")
# loop through and fit
for i in range(len(filepaths)):
print("- model fitting on file {}".format(filepaths[i]))
fittingSingle(filepaths[i], args)
if __name__ == '__main__':
p = argparse.ArgumentParser(description='Traditional Model Fitting')
p.add_argument(
'--filepath', '-f',
dest='filepath',
default=None,
help='input filepath for a pickle'
)
p.add_argument(
'--folderpath', '-fd',
dest='folderpath',
default=None,
help='input folderpath for many pickles'
)
p.add_argument(
'--visualize', '-v',
action='store_true',
default=False,
help='enable visualize'
)
p.add_argument(
'--output', '-o',
dest='outputfile',
default=None,
help='output results to filepath'
)
try:
args = p.parse_args()
except BaseException as e:
print(e)
sys.exit()
if args.filepath is None and args.folderpath is None:
print("at least specify file `-f` or folder `-fd`")
sys.exit()
elif args.filepath is None and not os.path.isdir(args.folderpath):
print("folder {} not exit".format(args.folderpath))
sys.exit()
elif args.folderpath is None and not os.path.isfile(args.filepath):
print("file {} not exit".format(args.filepath))
sys.exit()
if args.outputfile and not touch(args.outputfile):
print("cannot create file {}".format(args.outputfile))
sys.exit()
main(args)

View File

@ -10,35 +10,12 @@ import time
import pickle import pickle
import numpy as np import numpy as np
from libs.consts import NOISE_FLOOR from libs.consts import NOISE_FLOOR
from libs.util import convert_mat_to_vector
from libs.util import convert_vector_to_mat
from libs.fitting import modelfit_log_gamma from libs.fitting import modelfit_log_gamma
from libs.plotting import plotRSS from libs.plotting import plotRSS
def convert_mat_to_vector(mat, block_size=0.1):
'''
'''
rx_locs = []
rx_rsses = []
width, length = mat.shape
for i in range(width):
for j in range(length):
if mat[i, j] <= NOISE_FLOOR:
continue
rx_locs.append([(i + 0.5) * block_size, (j + 0.5) * block_size])
rx_rsses.append(mat[i, j])
return np.array(rx_locs), np.array(rx_rsses)
def convert_vector_to_mat(rx_locs, rx_rsses, shape, block_size=0.1):
'''
'''
result = np.ones(shape) * -85.0
for i in range(rx_locs.shape[0]):
x, y = rx_locs[i, :] / block_size
result[int(x), int(y)] = rx_rsses[i]
return result
def test(): def test():
data_ori = pickle.load(open(os.path.join(os.path.dirname(__file__), "dev_map.pickle"), "rb")) data_ori = pickle.load(open(os.path.join(os.path.dirname(__file__), "dev_map.pickle"), "rb"))
rx_locs, rx_rsses = convert_mat_to_vector(data_ori) rx_locs, rx_rsses = convert_mat_to_vector(data_ori)
@ -65,8 +42,6 @@ def test():
data_best_est, data_best_est,
est_tx_loc=best_tx_loc / 0.1 est_tx_loc=best_tx_loc / 0.1
) )
# print(rx_locs[:,1])
# print(rx_locs[1,:])
if __name__ == "__main__": if __name__ == "__main__":