add functions to generate desired locations with synthetic models
This commit is contained in:
parent
b7af9e9a76
commit
41f469ee84
|
|
@ -86,7 +86,9 @@ def floormap_noise_injection(floormap, args):
|
||||||
def generateData(floormap, tx_locs, args):
|
def generateData(floormap, tx_locs, args):
|
||||||
'''
|
'''
|
||||||
'''
|
'''
|
||||||
if args.train:
|
if args.single:
|
||||||
|
tag = "single"
|
||||||
|
elif args.train:
|
||||||
tag = "input_synthetic_train"
|
tag = "input_synthetic_train"
|
||||||
elif args.train_real:
|
elif args.train_real:
|
||||||
tag = "input_real_emu_train"
|
tag = "input_real_emu_train"
|
||||||
|
|
@ -180,7 +182,13 @@ def getFloormap(args):
|
||||||
def main(args):
|
def main(args):
|
||||||
tx_locs = None
|
tx_locs = None
|
||||||
|
|
||||||
if args.train:
|
if args.single:
|
||||||
|
if args.txloc is None:
|
||||||
|
print("did not specify tx location")
|
||||||
|
return
|
||||||
|
locations = [float(x) for x in args.txloc.split(' ')]
|
||||||
|
tx_locs = np.array(locations).reshape(-1, 2)
|
||||||
|
elif args.train:
|
||||||
np.random.seed(RANDOM_SEED_TRAIN)
|
np.random.seed(RANDOM_SEED_TRAIN)
|
||||||
tx_locs = getLocs([0.2, 6.2], [0.2, 6.2], step_size=0.3)
|
tx_locs = getLocs([0.2, 6.2], [0.2, 6.2], step_size=0.3)
|
||||||
elif args.train_real:
|
elif args.train_real:
|
||||||
|
|
@ -193,6 +201,10 @@ def main(args):
|
||||||
print("nothing specified")
|
print("nothing specified")
|
||||||
return
|
return
|
||||||
|
|
||||||
|
if args.floormap is None:
|
||||||
|
print("specify floormap")
|
||||||
|
return
|
||||||
|
|
||||||
generateData(getFloormap(args), tx_locs, args)
|
generateData(getFloormap(args), tx_locs, args)
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -202,6 +214,19 @@ if __name__ == '__main__':
|
||||||
'outfolder',
|
'outfolder',
|
||||||
help='output generated data to folder'
|
help='output generated data to folder'
|
||||||
)
|
)
|
||||||
|
p.add_argument(
|
||||||
|
'--single',
|
||||||
|
dest='single',
|
||||||
|
action='store_true',
|
||||||
|
default=False,
|
||||||
|
help='generate data with tx location'
|
||||||
|
)
|
||||||
|
p.add_argument(
|
||||||
|
'--txloc',
|
||||||
|
dest='txloc',
|
||||||
|
default=None,
|
||||||
|
help='tx location in `x y x y ...` format, in meters'
|
||||||
|
)
|
||||||
p.add_argument(
|
p.add_argument(
|
||||||
'--training',
|
'--training',
|
||||||
dest='train',
|
dest='train',
|
||||||
|
|
@ -223,13 +248,6 @@ if __name__ == '__main__':
|
||||||
default=False,
|
default=False,
|
||||||
help='emulating testing data (real data part)'
|
help='emulating testing data (real data part)'
|
||||||
)
|
)
|
||||||
p.add_argument(
|
|
||||||
'--visualize', '-v',
|
|
||||||
dest='visualize',
|
|
||||||
action='store_true',
|
|
||||||
default=False,
|
|
||||||
help='visualize'
|
|
||||||
)
|
|
||||||
p.add_argument(
|
p.add_argument(
|
||||||
'--floormap', '-f',
|
'--floormap', '-f',
|
||||||
dest='floormap',
|
dest='floormap',
|
||||||
|
|
|
||||||
|
|
@ -40,7 +40,9 @@ def getPowers(power_range, step_size: float = 2):
|
||||||
def generateData(tx_locs, args):
|
def generateData(tx_locs, args):
|
||||||
'''
|
'''
|
||||||
'''
|
'''
|
||||||
if args.train:
|
if args.single:
|
||||||
|
tag = "single"
|
||||||
|
elif args.train:
|
||||||
tag = "input_synthetic_train"
|
tag = "input_synthetic_train"
|
||||||
elif args.train_real:
|
elif args.train_real:
|
||||||
tag = "input_real_emu_train"
|
tag = "input_real_emu_train"
|
||||||
|
|
@ -63,7 +65,7 @@ def generateData(tx_locs, args):
|
||||||
rx_locs = getLocs([-3.2, 3.1], [-3.2, 3.1], step_size=0.1)
|
rx_locs = getLocs([-3.2, 3.1], [-3.2, 3.1], step_size=0.1)
|
||||||
powers = getPowers([-40, 30])
|
powers = getPowers([-40, 30])
|
||||||
for i in range(tx_locs.shape[0]):
|
for i in range(tx_locs.shape[0]):
|
||||||
fp_base = "{0}/img_{1:.2f}_{2:.2f}_{3:.1f}".format(folderp, tx_locs[i, 0], tx_locs[i, 1], args.gamma)
|
fp_base = "{0}/img_{1:.2f}_{2:.2f}_{3:.1f}".format(folderp, tx_locs[i, 0] - 3.2, tx_locs[i, 1] - 3.2, args.gamma)
|
||||||
for power in powers:
|
for power in powers:
|
||||||
rss_vec = log_gamma_loc(rx_locs, tx_locs[i, :], power, args.gamma, gaussian_noise=args.withnoise)
|
rss_vec = log_gamma_loc(rx_locs, tx_locs[i, :], power, args.gamma, gaussian_noise=args.withnoise)
|
||||||
rss_map = convert_vector_to_mat(rx_locs, rss_vec, (64, 64))
|
rss_map = convert_vector_to_mat(rx_locs, rss_vec, (64, 64))
|
||||||
|
|
@ -74,7 +76,13 @@ def generateData(tx_locs, args):
|
||||||
def main(args):
|
def main(args):
|
||||||
tx_locs = None
|
tx_locs = None
|
||||||
|
|
||||||
if args.train:
|
if args.single:
|
||||||
|
if args.txloc is None:
|
||||||
|
print("did not specify tx location")
|
||||||
|
return
|
||||||
|
locations = [float(x) for x in args.txloc.split(' ')]
|
||||||
|
tx_locs = np.array(locations).reshape(-1, 2)
|
||||||
|
elif args.train:
|
||||||
np.random.seed(RANDOM_SEED_TRAIN)
|
np.random.seed(RANDOM_SEED_TRAIN)
|
||||||
tx_locs = getLocs([-3, 3], [-3, 3], step_size=0.3)
|
tx_locs = getLocs([-3, 3], [-3, 3], step_size=0.3)
|
||||||
elif args.train_real:
|
elif args.train_real:
|
||||||
|
|
@ -96,6 +104,19 @@ if __name__ == '__main__':
|
||||||
'outfolder',
|
'outfolder',
|
||||||
help='output generated data to folder'
|
help='output generated data to folder'
|
||||||
)
|
)
|
||||||
|
p.add_argument(
|
||||||
|
'--single',
|
||||||
|
dest='single',
|
||||||
|
action='store_true',
|
||||||
|
default=False,
|
||||||
|
help='generate data with tx location'
|
||||||
|
)
|
||||||
|
p.add_argument(
|
||||||
|
'--txloc',
|
||||||
|
dest='txloc',
|
||||||
|
default=None,
|
||||||
|
help='tx location in `x y x y ...` format, in meters'
|
||||||
|
)
|
||||||
p.add_argument(
|
p.add_argument(
|
||||||
'--training',
|
'--training',
|
||||||
dest='train',
|
dest='train',
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue