nexus_robot_code/nexus.py

226 lines
6.4 KiB
Python

MAP_SIZE_PIXELS = 500
MAP_SIZE_METERS = 10
LIDAR_DEVICE = '/dev/ttyACM0'
ROBOT_DEVICE = '/dev/ttyUSB0'
import serial
import time
class NexusRobot:
'''
Nexus Robot Library for moving
'''
def __init__(self, port):
self.ser = serial.serial_for_url(port, 9600, do_not_open=True)
self.ser.open()
self.pause(3)
self._spd_calib = 1
self._ang_calib = 1
self._dis_calib = 1
def _calib_spd(self, speed):
return int(speed * self._spd_calib)
def _calib_ang(self, angle):
return int(angle * self._ang_calib)
def _calib_dis(self, distance):
return int(distance * self._dis_calib)
def _wait(self):
self.ser.readline()
self.ser.readline()
def get_telem(self):
self.ser.write("t;".encode())
vars = self.ser.readline().splitlines()[0].replace(";","").split(",")
if vars[0] != "telem":
return
return vars[1:]
def pause(self, duration=1):
time.sleep(duration)
def forward(self, speed, dist):
self.ser.write(
"g{0},{1};".format(self._calib_spd(speed), self._calib_dis(dist)).encode()
)
if dist > 0:
self._wait()
def backward(self, speed, dist):
self.ser.write(
"b{0},{1};".format(self._calib_spd(speed), self._calib_dis(dist)).encode()
)
if dist > 0:
self._wait()
def turnRight(self, speed, angle=-1):
self.ser.write(
"rr{0},{1};".format(self._calib_spd(speed), self._calib_ang(angle)).encode()
)
if angle > 0:
self._wait()
def turnLeft(self, speed, angle=-1):
self.ser.write(
"rl{0},{1};".format(self._calib_spd(speed), self._calib_ang(angle)).encode()
)
if angle > 0:
self._wait()
def rotateLeft(self, speed, angle=-1):
self.ser.write(
"r-{0},{1},-1;".format(
self._calib_spd(speed), self._calib_spd(speed)).encode()
)
# self._wait()
def rotateRight(self, speed, angle=-1):
self.ser.write(
"r{0},-{1},-1;".format(
self._calib_spd(speed), self._calib_spd(speed)).encode()
)
# self._wait()
def stop(self, speed=0):
self.ser.write("s{0};".format(self._calib_spd(speed)).encode())
def getInfo(self):
self.ser.write("h;".encode())
actual_l_speed = int(self.ser.readline().rstrip().split(':')[-1])
target_l_speed = int(self.ser.readline().rstrip().split(':')[-1])
actual_r_speed = int(self.ser.readline().rstrip().split(':')[-1])
target_r_speed = int(self.ser.readline().rstrip().split(':')[-1])
return actual_l_speed, target_l_speed, actual_r_speed, target_r_speed
from breezyslam.algorithms import RMHC_SLAM
from breezyslam.sensors import XVLidar as LaserModel
from breezyslam.vehicles import WheeledVehicle
from xvlidar import XVLidar as Lidar
from pltslamshow import SlamShow
class NexusRobotOd(WheeledVehicle):
def __init__(self):
WheeledVehicle.__init__(self, 55, 1200)
def extractOdometry(self, timestamp, leftWheel, rightWheel):
return (int(timestamp) / 1000.0, int(leftWheel) / 2.08, -int(rightWheel) / 2.08)
import signal
import sys
import thread
import readchar
def telem(params):
speed = 150
prev_k = None
while 1:
k = readchar.readchar()
if k == 'w' and prev_k != k:
print('Going Forward')
robot.backward(speed, -1)
elif k == 's' and prev_k != k:
print('Going Backward')
robot.forward(speed, -1)
elif k == 'a' and prev_k != k:
print('Turing left')
robot.rotateLeft(speed, -1)
elif k == 'd' and prev_k != k:
print('Turning right')
robot.rotateRight(speed, -1)
elif k == ' ':
print('Stopping')
robot.stop()
elif k == 'h':
print('Printing info..')
print(robot.getInfo())
elif k == '+':
speed += 20
if speed > 400:
speed = 400
print('Config speed to: {0}'.format(speed))
elif k == '-':
speed -= 20
if speed < 20:
speed = 20
print('Config speed to: {0}'.format(speed))
elif k == '\x03':
robot.stop()
sys.exit(0)
else:
print('unrecognized key: {0}'.format(k))
prev_k = k
# robot.pause()
if __name__ == '__main__':
import sys
import tty
import termios
import signal
from threading import Thread
robot = None
def signal_handler(signa, frame):
robot.stop()
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
try:
print('Initializing..')
robot = NexusRobot(ROBOT_DEVICE)
print('Initialized')
t = Thread(target=telem, args=(robot,))
t.daemon = True
t.start()
odomRobot = NexusRobotOd()
# Connect to Lidar unit
lidar = Lidar(LIDAR_DEVICE)
# Create an RMHC SLAM object with a laser model and optional robot model
slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)
# Set up a SLAM display
display = SlamShow(MAP_SIZE_PIXELS, MAP_SIZE_METERS*1000/MAP_SIZE_PIXELS, 'SLAM')
# Initialize an empty trajectory
trajectory = []
# Initialize empty map
mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)
while True:
lidar_scan = lidar.getScan()
telem = robot.get_telem()
vel = odomRobot.computeVelocities(telem[0],telem[1],telem[2])
# Update SLAM with current Lidar scan, using first element of (scan, quality) pairs
slam.update([pair[0] for pair in lidar_scan], vel)
# Get current robot position
x, y, theta = slam.getpos()
print '(' + str(x) + ',' + str(y) + ',' + str(theta) +')'
# Get current map bytes as grayscale
slam.getmap(mapbytes)
display.displayMap(mapbytes)
display.setPose(x, y, theta)
# Exit on ESCape
key = display.refresh()
if key != None and (key&0x1A):
robot.stop()
exit(0)
except KeyboardInterrupt:
exit(0)
except serial.serialutil.SerialException, e:
print(str(e))
except Exception:
raise