LLM inference in C/C++
Go to file
Naco Siren 5c0d18881e
llama.android : Rewrite Android binding (w/o cpu_features dep) (#17413)
* UI: implement basic UI components

* util: implement performance monitor; wrap it with a viewmodel

* util: implement user preferences utility

* UI: implement core flow's screens

* UI: add a new MainActivity; update manifest

* [WIP] DI: implement simple local vm factory provider

* UI: disable triggering drawer via gesture; enable alert dialog on back navigation inside conversation and benchmark

* UI: allow drawer's gesture control only on Home and Settings screens; enable alert dialog on back navigation inside conversation and benchmark

* UI: split a nested parent settings screen into separate child settings screens

* UI: polish system prompt setup UI

* Deps: bump Kotlin plugin; introduce KSP; apply in :app subproject

* DB: setup Room database

* data: introduce repo for System Prompt; flow data from Room to VM

* bugfix: properly handle user's quitting conversation screen while tokens in generation

* UI: rename `ModeSelection` to `ModelLoading` for better clarity

* UI: update app name to be more Arm

* UI: polish conversation screen

* data: code polish

* UI: code polish

* bugfix: handle user quitting on model loading

* UI: locks user in alert dialog when model is unloading

* vm: replace token metrics stubs with actual implementation

* UI: refactor top app bars

* nit: combine temperatureMetrics and useFahrenheit

* DI: introduce Hilt plugin + processor + lib dependencies

* DI: make app Hilt injectable

* DI: make viewmodels Hilt injectable

* DI: replace manual DI with Hilt DI

* UI: optimize AppContent's composing

* bugfix: wait for model to load before navigating to benchmark screen; use NavigationActions instead of raw navController

* UI: navigation with more natural animated transitions

* DI: Optimize AppModule

* Feature: Introduce ModelRepository and ModelsManagementViewModel; update AppModule

* UI: polish UI for ModelsManagementScreen; inject ModelsManagementVieModel

* DI: abstract the protocol of SystemPromptRepository; update AppModule

* data: [WIP] prepare for ModelRepository refactor & impl

* data: introduce Model entity and DAO; update DI module

* UI: replace Models Management screen's stubbing with instrumentation

* UI: polish sort order menu

* data: import local model with file picker

* bugfix: use List instead of Collection for ModelDao's deletion

* data: add a util file for extracting file name & size and model metadata

* UI: enrich ModelManagementState; extract filename to show correct importing UI

* UI: implement multiple models deletion; update Models Management screen

* UI: handle back navigation when user is in multi-selection mode

* util: extract file size formatting into ModelUtils

* UI: add a confirmation step when user picks a file; refactor model import overlay into AlertDialog

* UI: extract a shared ModelCard component

* UI: replace model selection screen's data stubbing; add empty view

* nit: tidy SystemPromptViewModel

* Util: split FileUtils from ModelUtils; extract copy methods into FileUtils

* data: pass through getModelById from ModelDao into ModelRepository

* core: extract conversation and benchmark logics into InferenceManager; add logs and missing state updates in stub InferenceEngine

* vm: split mono MainViewModel into separate individual ViewModels

* vm: merge SystemPromptViewModel into ModelLoadingViewModel

* core: break down InferenceManager due to Interface Segregation Principle

* UI: show model card in Model Loading screen

* UI: show model card in Conversation screen

* UI: unify Model Card components

* core: swap in LLamaAndroid and mark stub engine for testing only

* data: allow canceling the ongoing model import

* UI: update UI ongoing model import's cancellation

* LLama: update engine state after handling the cancellation of sendUserPrompt

* VM: handle the cancellation of ongoing token generation

* LLama: refactor loadModel by splitting the system prompt setting into a separate method

* feature: check for available space before copying local model

* UI: centralize the AppScaffold and modularize its configs

* UI: refactor BottomBarConfig.ModelsManagement APIs

* UI: combine TopBarConfig and BottomBarConfig into each route's ScaffoldConfig

* UI: replace ugly optional as casts in AppScaffold with extension functions

* UI: fix the typo `totalGb` in `StorageMetrics`

* UI: remove code duplication in sort menu

* LLama: add ModelUnloadingState to engine State; add missing state checks in stub engine; fix instrumentation engine's error messages

* UI: refactor back handling by removing centralized BackHandlerSetup and UnloadModelConfirmationDialog from AppContent

* UI: implement BenchmarkScreen's individual back handling

* LLama: add a new Initializing state; ; add two extension properties; rename LibraryLoaded state to Initialized

* UI: Introduce an abstract ViewModel to handle additional model unloading logics

* UI: expose a single facade ModelUnloadDialogHandler; move UnloadModelState into ModelUnloadingViewModel.kt

* UI: migrate ModelLoadingScreen onto ModelLoadingViewModel; update & refine ModelLoadingScreen

* UI: migrate ConversationViewModel onto ModelLoadingViewModel; update & refine ConversationScreen

* nit: extract app name into a constant value; remove unused onBackPressed callbacks

* UI: update AppContent to pass in correct navigation callbacks

* nit: polish ModelLoadingScreen UI

* core: throw Exception instead of returning null if model fails to load

* navigation: sink model loading state management from AppContent down into ModelLoadingScreen; pass ModelLoadingMetrics to Benchmark and Conversation screens

* gguf: add GGUF metadata data holder and its corresponding extractor implementation

* DB: introduce Kotlin serialization extension's library and plugin; add Room runtime library

* GGUF: make GgufMetadata serializable in order to be compatible with Room

* nit: refactor data.local package structure

* nit: rename lastUsed field to dateLastUsed; add dateAdded field

* UI: refactor ModelCard UI to show GGUF metadata

* UI: update ModelSelectionScreen with a preselect mechanism

* UI: polish model card

* nit: allow deselect model on Model Selection screen

* nit: revert accidental committing of debug code

* UI: polish ModelLoading screen

* util: extract formatting helper functions from FileUtils into a new FormatUtils

* UI: polish model cards on Benchmark and Conversation screens to show model loading metrics

* UI: show a Snack bar to warn user that system prompt is not always supported

* UI: handle back press on Model Selection screen

* UI: finally support theme modes; remove hardcoded color schemes, default to dynamic color scheme implementation

* feature: support searching on Model Selection screen

* nit: move scaffold related UI components into a separate package

* UI: extract InfoView out into a separate file for reusability

* data: move Model related actions (query, filter, sort) into ModelInfo file

* UI: animate FAB on model preselection states

* feature: support filtering in Model Management screen

* ui: show empty models info in Model Management screen

* ui: add filter off icon to "Clear filters" menu item

* [WIP] ui: polish Benchmark screen; implement its bottom app bar

* ui: polish Benchmark screen; implement its bottom app bar's rerun and share

* nit: disable mode selection's radio buttons when loading model

* feature: implement Conversation screen's bottom app bar

* pkg: restructure BottomAppBars into separate files in a child package

* pkg: restructure TopBarApps into separate files in a child package

* pkg: restructure system metrics into a separate file

* UI: polish Conversation screen

* data: update system prompt presets

* UI: allow hide or show model card on Conversation & Benchmark screens; fix message arrangement

* data: update & enhance system prompt presets

* deps: introduce Retrofit2

* data: implement HuggingFace data model, data source with Retrofit API

* data: update Model data repository to support fetching HuggingFace models

* [WIP] UI: replace the HuggingFace stub in Model Management screen with actual API call

* UI: map language codes into country Emojis

* ui: add "clear results" action to Benchmark screen

* nit: print current pp & tg in llama-bench

* UI: disable landscape mode; prevent duplicated benchmark running

* llama: migrate C/CXX flags into CMakeList

* [WIP] llama: ABI split builds five .so artifacts.

However, all .so are performing on SVE level

* [WIP] llama: ABI split where five tiers are built sequentially.

* [WIP] llama: disable OpenMP in ABI split since most SoCs are big.LITTLE

* [WIP] llama: enable KleidiAI and disable tier 4 due to `+sve+sve2` bug caused by `ggml_add_cpu_backend_variant_impl` as explained below

```CMake
if (NOT SME_ENABLED MATCHES -1)
...
    set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2")
...
```

* core: add Google's cpu_features as a submodule

* core: implement cpu_detector native lib

* core: swap out hardcoded LlamaAndroid library loading

* core: add back OpenMP due to huge perf loss on TG128

* misc: reorg the pkg structure

* misc: rename LlamaAndroid related class to InferenceEngine prefixes

* [WIP] lib: move GgufMetadata into the lib submodule

* lib: expose GgufMetadataReader as interface only

* lib: replace the naive & plain SharedPreferences with DataStore implementation

* lib: hide the internal implementations, only expose a facade and interfaces

* lib: expose Arm features

* di: add a stub TierDetection; provide both actual impl and stub in AppModule

* UI: add visualizer UI for Arm features

* misc: UI polish

* lib: refactored InferenceEngineLoader; added a `NONE` Llama Tier

* UI: support `NONE` Llama Tier in general settings

* lib: optimize engine loader; always perform a fresh detection when cache is null

* remote: add HuggingFaceModelDetails data class

* remote: refine HuggingFaceModel data class

* nit: remove `trendingScore` field from HuggingFace model entities, weird...

* remote: refactor HuggingFaceApiService; implement download feature in HuggingFaceRemoteDataSource

* remote: fix the incorrect parse of HuggingFace's inconsistent & weird JSON response

* UI: scaffold Models Management screen and view model

* UI: implement a dialog UI to show fetched HuggingFace models.

* UI: use a broadcast receiver to listen for download complete events and show local import dialog.

* data: handle network exceptions elegantly

* pkg: restructure `data`'s packages

* data: extract local file info, copy and cleanup logics into LocalFileDataSource

* nit: minor UI patch; add missing comments

* bugfix: tapping "Home" in navigation drawer should simply close it without any navigation action.

* UI: improve autoscroll during token generation

* lib: tested on JFrog Artifactory for Maven publishing

* UI: show RAM warning if model too large

* UI: polish model management screen's error dialog

* util: add more items into the mapping table of ISO 639-1 language code to ISO 3166-1 country code

* llm: properly propagate error to UI upon failing to load selected model

* UI: avoid duplicated calculation of token metrics

* lib: read & validate the magic number from the picked source file before executing the import

* UI: add "Learn More" hyperlinks to Error dialog upon model import failures

* lib: refactor the GgufMetadataReader to take  InputStream instead of absolute path as argument

* lib: fix the `SIMD` typo in Tier description

* core: verify model file path is readable

* lib: add UnsupportedArchitectureException for triaged error message

* util: split FormatUtils into multiple utils for better readability

* UI: change benchmark screen from raw markdown to table view

* bugfix: reset preselection upon running the preselected model

* misc: linter issue

* bugfix: fix the malfunctioning monitoring switch

* UI: update Arm features indicator; fix the broken hyperlinks

* UI: add quick action buttons to benchmark screen's result card

* UI: hide share fab after clearing all benchmark results

* UI: fix the model unload dialog message; elevate the model card and hide it by default on Conversation screen;

* UI: hide the stubbing actions in Conversation screen

* UI: add show/hide stats control to conversation screen's assistant message bubble; fix placeholder

* UI: add a info button to explain token metrics

* misc: remove the redundant `Companion` added due to refactoring

* UI: show corresponding system metrics detailed info upon tapping RAM / storage / temperature indicator

* UI: add info button to System Prompt switch; expand the model card by default

* UI: disable tag & language chips; add section headers to explain what they are

* misc: replace top bar indicator's spacer with padding

* UI: merge the Model Selection and Model Management into a unified Models screen

* UI: split the ModelsManagementViewModel from a unified ModelsViewModel due to huge complexity

* UI: add model loading in progress view; polish the empty model info view

* UI: polish the bottom bars and info view when no models found; show loading in progress while fetching models

* build: [BREAKING] bump the versions of libraries and plugins

* UI: fix the breaking build

* UI: add Tooltip on Import FAB for user onboarding

* UI: adds AppPreferences to track user onboarding status

* UI: tracks user's first success on importing a model

* data: add hand crafted rules to filter the models fetched from HuggingFace API

* UI: update app name & about; polish top bars' indicators & buttons

* UI: polish Hugging Face download dialog UI

* UX: implement onboarding tooltips for model import and onboarding

* misc: use sentence case for CTA button labels

* [WIP] UI: add Arm color palette from Philip.Watson3

* UI: address Rojin's UX feedbacks

* UI: address Rojin's UX feedbacks - part 2

* UI: update Arm color palette from Philip.Watson3

* data: make sure fetch preselected models in the same order of their IDs

* UI: fix UI issues in the generic settings screen and navigation drawer

* nit: address Rojin's feedbacks on model import message again

* nit: append `®` to all `Arm` labels

* UI: extract a reusable InfoAlertDialog

* core: support GGML_CPU_ALL_VARIANTS on Android!

* core: restructure Kleidi-Llama library

* core: organizing cmake arguments

* data: sort preselected models according to device's available RAM

* app: update adaptive + themed + legacy icons and app name

* UI: fix the font size auto scaling for ArmFeaturesVisualizer

* core: further improve the performance on native methods

* UI: minor color palette changes; emphasize the bottom bar FABs; fix Settings Screen menu item label

* UI: make more room for assistant message bubble's width

* UI: better usage of tertiary colors to highlight model cards but not for warnings

* UI: fix the layout issue on large font sizes

* lib: support x86-64 by dynamically set Arm related definitions

* lib: replace the factory pattern for  deprecated tiered lib loading with single instance pattern

* llama: update the library name in JNI and CMake project

* llama: update the library's package name and namespace

* llama: update the app's package name and namespace

* app: bump ksp version

* app: remove deprecated SystemUIController from accompanist by migrating to EdgeToEdge

* app: extract AppContent from MainActivity to a separate file in ui package

* lib: add File version for GGUF Magic number verification

* lib: perform engine state check inclusively instead of exclusively

* lib: change `LlamaTier` to `ArmCpuTier`

* lib: remove kleidi-llama related namings

* cleanup: remove Arm AI Chat/Playground app source code; replace with the basic sample app from https://github.com/hanyin-arm/Arm-AI-Chat-Sample

Note: the full Google Play version of AI Chat app will be open will be open sourced in another repo soon, therefore didn't go through the trouble of pruning the history using `git filter-repo` here.

* [WIP] doc: update main and Android README docs; add self to code owners

* lib: revert System.load back to System.loadLibrary

* jni: introduce a logging util to filter different logging levels on different build types

* lib: enable app optimization

* doc: replace stub Google Play app URL with the actual link add screenshots; add my GitHub ID to maintainer list

* Remove cpu_features

* Fix linters issues in editorconfig-checker job

https://github.com/ggml-org/llama.cpp/actions/runs/19548770247/job/55974800633?pr=17413

* Remove unnecessary Android CMake flag

* purge include/cpu_features directory

---------

Co-authored-by: Han Yin <han.yin@arm.com>
2025-12-17 10:14:47 +02:00
.devops CLI: fixed adding cli and completion into docker containers, improved docs (#18003) 2025-12-16 11:52:23 +01:00
.github ci : separate webui from server (#18072) 2025-12-16 08:17:26 +01:00
benches/dgx-spark benches : add eval results (#17139) 2025-11-10 10:44:10 +02:00
ci llama: automatically set parameters not set by the user in such a way that maximizes GPU utilization (#16653) 2025-12-15 09:24:59 +01:00
cmake cmake : simplify build info detection using standard variables (#17423) 2025-12-04 12:42:13 +02:00
common arg: allow -kvu flag for llama-perplexity (#18117) 2025-12-17 08:33:02 +02:00
docs llama.android : Rewrite Android binding (w/o cpu_features dep) (#17413) 2025-12-17 10:14:47 +02:00
examples llama.android : Rewrite Android binding (w/o cpu_features dep) (#17413) 2025-12-17 10:14:47 +02:00
ggml llama.android : Rewrite Android binding (w/o cpu_features dep) (#17413) 2025-12-17 10:14:47 +02:00
gguf-py gguf-py : allow converting multi-tensor models from read-only locations (#18100) 2025-12-17 02:27:03 +01:00
grammars cli: fixed dead links to tools/main for cli and completion, fixed code owners (#17993) 2025-12-15 11:47:04 +01:00
include llama: automatically set parameters not set by the user in such a way that maximizes GPU utilization (#16653) 2025-12-15 09:24:59 +01:00
licenses cmake : enable curl by default (#12761) 2025-04-07 13:35:19 +02:00
media media : add transparent icon svg and png [no ci] (#15891) 2025-09-10 14:51:28 +03:00
models common : add nemotron 3 parsing (#18077) 2025-12-16 04:05:23 -06:00
pocs ggml : move AMX to the CPU backend (#10570) 2024-11-29 21:54:58 +01:00
requirements convert : update transformers requirements (#16866) 2025-10-30 23:15:03 +01:00
scripts ggml-hexagon: mm for mtmd (#17894) 2025-12-15 10:53:56 -08:00
src llama-fit-params: force disable mlock (#18103) 2025-12-17 00:50:12 +01:00
tests common : add nemotron 3 parsing (#18077) 2025-12-16 04:05:23 -06:00
tools llama-fit-params: QoL impr. for prints/errors (#18089) 2025-12-17 00:03:19 +01:00
vendor cmake: correct scope - link ws2_32 for MinGW/w64devkit builds in cpp-httplib (#17972) 2025-12-13 12:46:36 +01:00
.clang-format fix: apply clang-format to CUDA macros (#16017) 2025-09-16 08:59:19 +02:00
.clang-tidy clang-tidy : disable warning about performance enum size (#16127) 2025-09-22 19:57:46 +02:00
.dockerignore ci : fix docker build number and tag name (#9638) 2024-09-25 17:26:01 +02:00
.ecrc common : Update stb_image.h to latest version (#9161) 2024-08-27 08:58:50 +03:00
.editorconfig editorconfig : ignore benches/ (#17140) 2025-11-10 12:17:19 +02:00
.flake8 llama : move end-user examples to tools directory (#13249) 2025-05-02 20:27:13 +02:00
.gitignore vulkan: faster q6_k matmul (#17813) 2025-12-14 08:29:37 +01:00
.gitmodules ggml : remove kompute backend (#14501) 2025-07-03 07:48:32 +03:00
.pre-commit-config.yaml convert.py : add python logging instead of print() (#6511) 2024-05-03 22:36:41 +03:00
AUTHORS authors : update (#12271) 2025-03-08 18:26:00 +02:00
CMakeLists.txt build : move _WIN32_WINNT definition to headers (#17736) 2025-12-04 07:04:02 +01:00
CMakePresets.json cmake : Add CMake presets for Linux and GCC (#14656) 2025-07-13 08:12:36 +03:00
CODEOWNERS llama.android : Rewrite Android binding (w/o cpu_features dep) (#17413) 2025-12-17 10:14:47 +02:00
CONTRIBUTING.md docs: clarify that CPU support should be first (#17886) 2025-12-09 20:10:36 +01:00
LICENSE license : update copyright notice + add AUTHORS (#6405) 2024-04-09 09:23:19 +03:00
Makefile make : remove make in favor of CMake (#15449) 2025-08-20 13:31:16 +03:00
README.md llama.android : Rewrite Android binding (w/o cpu_features dep) (#17413) 2025-12-17 10:14:47 +02:00
SECURITY.md security : add collaborator guidance (#18081) 2025-12-16 11:17:11 +02:00
build-xcframework.sh cmake : move OpenSSL linking to vendor/cpp-httplib (#17177) 2025-11-12 12:32:50 +01:00
convert_hf_to_gguf.py model: support GLM4V vision encoder (#18042) 2025-12-16 11:25:26 +01:00
convert_hf_to_gguf_update.py model : add KORMo model (#18032) 2025-12-15 18:51:43 +01:00
convert_llama_ggml_to_gguf.py py : fix wrong input type for raw_dtype in ggml to gguf scripts (#8928) 2024-08-16 13:36:30 +03:00
convert_lora_to_gguf.py convert : allow quantizing lora again (#17453) 2025-11-24 15:50:55 +01:00
flake.lock flake.lock: Update (#10470) 2024-11-24 08:03:25 -08:00
flake.nix fix(nix): remove non-functional llama-cpp cachix cache from flake.nix (#15295) 2025-08-13 11:21:31 -07:00
mypy.ini convert : partially revert PR #4818 (#5041) 2024-01-20 18:14:18 -05:00
poetry.lock build(python): Package scripts with pip-0517 compliance 2024-07-04 15:39:13 +00:00
pyproject.toml gguf-py : avoid requiring pyside6 for other scripts (#13036) 2025-05-05 22:27:31 -04:00
pyrightconfig.json model-conversion : use CONVERTED_MODEL value for converted model [no ci] (#17984) 2025-12-13 08:34:26 +01:00
requirements.txt `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 2025-03-05 13:05:13 +00:00

README.md

llama.cpp

llama

License: MIT Release Server

Manifesto / ggml / ops

LLM inference in C/C++

Recent API changes

Hot topics


Quick start

Getting started with llama.cpp is straightforward. Here are several ways to install it on your machine:

Once installed, you'll need a model to work with. Head to the Obtaining and quantizing models section to learn more.

Example command:

# Use a local model file
llama-cli -m my_model.gguf

# Or download and run a model directly from Hugging Face
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF

# Launch OpenAI-compatible API server
llama-server -hf ggml-org/gemma-3-1b-it-GGUF

Description

The main goal of llama.cpp is to enable LLM inference with minimal setup and state-of-the-art performance on a wide range of hardware - locally and in the cloud.

  • Plain C/C++ implementation without any dependencies
  • Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
  • AVX, AVX2, AVX512 and AMX support for x86 architectures
  • RVV, ZVFH, ZFH, ZICBOP and ZIHINTPAUSE support for RISC-V architectures
  • 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
  • Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads GPUs via MUSA)
  • Vulkan and SYCL backend support
  • CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity

The llama.cpp project is the main playground for developing new features for the ggml library.

Models

Typically finetunes of the base models below are supported as well.

Instructions for adding support for new models: HOWTO-add-model.md

Text-only

Multimodal

Bindings
UIs

(to have a project listed here, it should clearly state that it depends on llama.cpp)

Tools
  • akx/ggify download PyTorch models from HuggingFace Hub and convert them to GGML
  • akx/ollama-dl download models from the Ollama library to be used directly with llama.cpp
  • crashr/gppm launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
  • gpustack/gguf-parser - review/check the GGUF file and estimate the memory usage
  • Styled Lines (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
  • unslothai/unsloth 🦥 exports/saves fine-tuned and trained models to GGUF (Apache-2.0)
Infrastructure
  • Paddler - Open-source LLMOps platform for hosting and scaling AI in your own infrastructure
  • GPUStack - Manage GPU clusters for running LLMs
  • llama_cpp_canister - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
  • llama-swap - transparent proxy that adds automatic model switching with llama-server
  • Kalavai - Crowdsource end to end LLM deployment at any scale
  • llmaz - ☸️ Easy, advanced inference platform for large language models on Kubernetes.
Games
  • Lucy's Labyrinth - A simple maze game where agents controlled by an AI model will try to trick you.

Supported backends

Backend Target devices
Metal Apple Silicon
BLAS All
BLIS All
SYCL Intel and Nvidia GPU
MUSA Moore Threads GPU
CUDA Nvidia GPU
HIP AMD GPU
ZenDNN AMD CPU
Vulkan GPU
CANN Ascend NPU
OpenCL Adreno GPU
IBM zDNN IBM Z & LinuxONE
WebGPU [In Progress] All
RPC All
Hexagon [In Progress] Snapdragon

Obtaining and quantizing models

The Hugging Face platform hosts a number of LLMs compatible with llama.cpp:

You can either manually download the GGUF file or directly use any llama.cpp-compatible models from Hugging Face or other model hosting sites, such as ModelScope, by using this CLI argument: -hf <user>/<model>[:quant]. For example:

llama-cli -hf ggml-org/gemma-3-1b-it-GGUF

By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable MODEL_ENDPOINT. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. MODEL_ENDPOINT=https://www.modelscope.cn/.

After downloading a model, use the CLI tools to run it locally - see below.

llama.cpp requires the model to be stored in the GGUF file format. Models in other data formats can be converted to GGUF using the convert_*.py Python scripts in this repo.

The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with llama.cpp:

To learn more about model quantization, read this documentation

llama-cli

A CLI tool for accessing and experimenting with most of llama.cpp's functionality.

  • Run in conversation mode

    Models with a built-in chat template will automatically activate conversation mode. If this doesn't occur, you can manually enable it by adding -cnv and specifying a suitable chat template with --chat-template NAME

    llama-cli -m model.gguf
    
    # > hi, who are you?
    # Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today?
    #
    # > what is 1+1?
    # Easy peasy! The answer to 1+1 is... 2!
    
  • Run in conversation mode with custom chat template
    # use the "chatml" template (use -h to see the list of supported templates)
    llama-cli -m model.gguf -cnv --chat-template chatml
    
    # use a custom template
    llama-cli -m model.gguf -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
    
  • Constrain the output with a custom grammar
    llama-cli -m model.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
    
    # {"appointmentTime": "8pm", "appointmentDetails": "schedule a a call"}
    

    The grammars/ folder contains a handful of sample grammars. To write your own, check out the GBNF Guide.

    For authoring more complex JSON grammars, check out https://grammar.intrinsiclabs.ai/

llama-server

A lightweight, OpenAI API compatible, HTTP server for serving LLMs.

  • Start a local HTTP server with default configuration on port 8080
    llama-server -m model.gguf --port 8080
    
    # Basic web UI can be accessed via browser: http://localhost:8080
    # Chat completion endpoint: http://localhost:8080/v1/chat/completions
    
  • Support multiple-users and parallel decoding
    # up to 4 concurrent requests, each with 4096 max context
    llama-server -m model.gguf -c 16384 -np 4
    
  • Enable speculative decoding
    # the draft.gguf model should be a small variant of the target model.gguf
    llama-server -m model.gguf -md draft.gguf
    
  • Serve an embedding model
    # use the /embedding endpoint
    llama-server -m model.gguf --embedding --pooling cls -ub 8192
    
  • Serve a reranking model
    # use the /reranking endpoint
    llama-server -m model.gguf --reranking
    
  • Constrain all outputs with a grammar
    # custom grammar
    llama-server -m model.gguf --grammar-file grammar.gbnf
    
    # JSON
    llama-server -m model.gguf --grammar-file grammars/json.gbnf
    

llama-perplexity

A tool for measuring the perplexity 1 (and other quality metrics) of a model over a given text.

  • Measure the perplexity over a text file
    llama-perplexity -m model.gguf -f file.txt
    
    # [1]15.2701,[2]5.4007,[3]5.3073,[4]6.2965,[5]5.8940,[6]5.6096,[7]5.7942,[8]4.9297, ...
    # Final estimate: PPL = 5.4007 +/- 0.67339
    
  • Measure KL divergence
    # TODO
    

llama-bench

Benchmark the performance of the inference for various parameters.

  • Run default benchmark
    llama-bench -m model.gguf
    
    # Output:
    # | model               |       size |     params | backend    | threads |          test |                  t/s |
    # | ------------------- | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |
    # | qwen2 1.5B Q4_0     | 885.97 MiB |     1.54 B | Metal,BLAS |      16 |         pp512 |      5765.41 ± 20.55 |
    # | qwen2 1.5B Q4_0     | 885.97 MiB |     1.54 B | Metal,BLAS |      16 |         tg128 |        197.71 ± 0.81 |
    #
    # build: 3e0ba0e60 (4229)
    

llama-run

A comprehensive example for running llama.cpp models. Useful for inferencing. Used with RamaLama 2.

  • Run a model with a specific prompt (by default it's pulled from Ollama registry)
    llama-run granite-code
    

llama-simple

A minimal example for implementing apps with llama.cpp. Useful for developers.

  • Basic text completion
    llama-simple -m model.gguf
    
    # Hello my name is Kaitlyn and I am a 16 year old girl. I am a junior in high school and I am currently taking a class called "The Art of
    

Contributing

  • Contributors can open PRs
  • Collaborators will be invited based on contributions
  • Maintainers can push to branches in the llama.cpp repo and merge PRs into the master branch
  • Any help with managing issues, PRs and projects is very appreciated!
  • See good first issues for tasks suitable for first contributions
  • Read the CONTRIBUTING.md for more information
  • Make sure to read this: Inference at the edge
  • A bit of backstory for those who are interested: Changelog podcast

Other documentation

Development documentation

Seminal papers and background on the models

If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:

XCFramework

The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS, and macOS. It can be used in Swift projects without the need to compile the library from source. For example:

// swift-tools-version: 5.10
// The swift-tools-version declares the minimum version of Swift required to build this package.

import PackageDescription

let package = Package(
    name: "MyLlamaPackage",
    targets: [
        .executableTarget(
            name: "MyLlamaPackage",
            dependencies: [
                "LlamaFramework"
            ]),
        .binaryTarget(
            name: "LlamaFramework",
            url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
            checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
        )
    ]
)

The above example is using an intermediate build b5046 of the library. This can be modified to use a different version by changing the URL and checksum.

Completions

Command-line completion is available for some environments.

Bash Completion

$ build/bin/llama-cli --completion-bash > ~/.llama-completion.bash
$ source ~/.llama-completion.bash

Optionally this can be added to your .bashrc or .bash_profile to load it automatically. For example:

$ echo "source ~/.llama-completion.bash" >> ~/.bashrc

Dependencies

  • yhirose/cpp-httplib - Single-header HTTP server, used by llama-server - MIT license
  • stb-image - Single-header image format decoder, used by multimodal subsystem - Public domain
  • nlohmann/json - Single-header JSON library, used by various tools/examples - MIT License
  • minja - Minimal Jinja parser in C++, used by various tools/examples - MIT License
  • linenoise.cpp - C++ library that provides readline-like line editing capabilities, used by llama-run - BSD 2-Clause License
  • curl - Client-side URL transfer library, used by various tools/examples - CURL License
  • miniaudio.h - Single-header audio format decoder, used by multimodal subsystem - Public domain
  • subprocess.h - Single-header process launching solution for C and C++ - Public domain