LLM inference in C/C++
Go to file
Reese Levine fd57b24c0f
ggml webgpu: unary op suppport, code refactoring, ops support (#17764)
* Squashed commit of the following:

commit b3c6bf4b0450d8d452b934df27a0fb7cb53cd755
Author: Abhijit Ramesh <abhijitramesh2k@gmail.com>
Date:   Mon Dec 1 18:29:00 2025 -0800

    ggml webgpu: fix xielu parameter passing (#11)

    The XIELU operation was incorrectly using static_cast to convert
    float parameters to uint32_t, which converted numeric values instead
    of preserving IEEE 754 bit patterns. This caused incorrect values
    to be interpreted by the GPU shader.

    * Use reinterpret_cast to preserve float bit patterns when passing
      through uint32_t params buffer
    * Update WGSL shader parameter types from u32 to f32
    * Re-enable XIELU support (was disabled due to numerical issues)

    Fixes NMSE test failures for XIELU operation on WebGPU backend.

commit 5ca9b5e49ea7cddc9ab7c8b43a11a9c76a4dff4a
Author: neha-ha <137219201+neha-ha@users.noreply.github.com>
Date:   Tue Nov 18 12:17:00 2025 -0800

    Refactored pipelines and workgroup calculations (#10)

    * refactored pipelines

    * refactored workgroup calculation

    * removed commented out block of prior maps

    * Clean up ceiling division pattern

    ---------

    Co-authored-by: Neha Abbas <nehaabbas@eduroam-169-233-141-223.ucsc.edu>
    Co-authored-by: Reese Levine <reeselevine1@gmail.com>

Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 29 23:13:06 2025 -0700

    formatted embed wgsl and ggml-webgpu.cpp

commit e1f6baea31645e5d96ad53664acae856f74b96f4
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 29 23:08:37 2025 -0700

    implemented REPL_Template support and removed bug in unary operators kernel

commit 8c70b8fece445cdc9a8c660dbddbf201e52da2bb
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 15 16:14:20 2025 -0700

    responded and dealt with PR comments

commit f9282c660c10dec4487d434549bdb707a9cd9f37
Author: James Contini <jamescontini@gmail.com>
Date:   Sun Oct 12 13:41:41 2025 -0700

    removed unnecesarry checking if node->src[1] exists for unary operators

commit 4cf28d7dec41c29186d66152735b244c5699f9dc
Author: James Contini <jamescontini@gmail.com>
Date:   Sun Oct 12 13:32:45 2025 -0700

    All operators (inlcluding xielu) working

commit 74c6add1761a59d2c2ff60b60e8ad3c8300f6d3e
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 13:16:48 2025 -0700

    fixed autoconfig

commit 362749910be4f0120c8ffb21ceddeb7d2c088e51
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 13:10:46 2025 -0700

    removed vestigial files

commit cb0858333785757804c5104e59c4981843207c16
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 12:59:32 2025 -0700

    abides by editor-config

commit 5360e2852a4b51197d7d67d0a5d42e908b02d7ed
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 12:45:57 2025 -0700

    rms_norm double declaration bug atoned

commit 7b09baa4aa53711be5a126043670cc182c78bfcd
Merge: 8a6ec843 74b8fc17
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 11:50:03 2025 -0700

    resolving merge conflicts

commit 8a6ec843a50ab82f8cef59b4558eb63f318ba02d
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 8 18:06:47 2025 -0700

    unary operators pass ggml tests

commit c3ae38278a2db236adc5912c9140e4f0d63f2c19
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 1 16:22:40 2025 -0700

    neg passes backend test

commit aa1c9b2f8877a405470ca56709c42a1fd43713de
Author: James Contini <jamescontini@gmail.com>
Date:   Tue Sep 30 23:55:27 2025 -0700

    neg f16xf32xip builds and runs, havent actually ran a model that uses neg kernel yet though

Co-authored-by: James Contini <jamescontini@gmail.com>
Co-authored-by: Neha Abbas <neabbas@ucsc.edu>
Co-authored-by: Abhijit Ramesh <abhijitramesh2k@gmail.com>

* Remove extra code and format

* Add ops documentation (finally)

* Update ggml/src/ggml-webgpu/wgsl-shaders/embed_wgsl.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: James Contini <jamescontini@gmail.com>
Co-authored-by: Neha Abbas <neabbas@ucsc.edu>
Co-authored-by: Abhijit Ramesh <abhijitramesh2k@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-05 12:25:51 -08:00
.devops devops: Add build-essential to Ubuntu 26.04 image (#17531) 2025-11-27 18:35:47 +08:00
.github ci : fix winget workflow (#17790) 2025-12-05 19:44:17 +08:00
benches/dgx-spark benches : add eval results (#17139) 2025-11-10 10:44:10 +02:00
ci ci : RVV1.0 builds with tests (#16682) 2025-12-02 21:46:10 +01:00
cmake cmake : simplify build info detection using standard variables (#17423) 2025-12-04 12:42:13 +02:00
common common : skip model validation when --help is requested (#17755) 2025-12-04 13:36:50 +01:00
docs ggml webgpu: unary op suppport, code refactoring, ops support (#17764) 2025-12-05 12:25:51 -08:00
examples metal : add residency sets keep-alive heartbeat (#17766) 2025-12-05 19:38:54 +02:00
ggml ggml webgpu: unary op suppport, code refactoring, ops support (#17764) 2025-12-05 12:25:51 -08:00
gguf-py convert : support latest mistral-common (fix conversion with --mistral-format) (#17712) 2025-12-03 21:15:04 +01:00
grammars llama : move end-user examples to tools directory (#13249) 2025-05-02 20:27:13 +02:00
include llama: introduce support for model-embedded sampling parameters (#17120) 2025-11-25 09:56:07 +08:00
licenses cmake : enable curl by default (#12761) 2025-04-07 13:35:19 +02:00
media media : add transparent icon svg and png [no ci] (#15891) 2025-09-10 14:51:28 +03:00
models common : Generalized XML-style tool-call parsing with streaming support (GLM 4.5/4.6 + MiniMax M2 + SeedOSS + Kimi-K2 + Qwen3-Coder + Apriel-1.5 + Xiaomi-MiMo) (#16932) 2025-11-18 18:54:15 +01:00
pocs ggml : move AMX to the CPU backend (#10570) 2024-11-29 21:54:58 +01:00
requirements convert : update transformers requirements (#16866) 2025-10-30 23:15:03 +01:00
scripts ggml webgpu: add support for emscripten builds (#17184) 2025-12-03 10:25:34 +01:00
src fix: prevent segfault in tokenizer on highly repetitive input (#17786) 2025-12-05 13:52:23 +02:00
tests Add support for CUMSUM and TRI for CUDA. (#17584) 2025-12-04 22:19:51 +01:00
tools server: strip content-length header on proxy (#17734) 2025-12-04 16:32:57 +01:00
vendor cmake: explicitly link against crypt32 on non-MSVC Windows builds (#17727) 2025-12-03 15:47:02 +02:00
.clang-format fix: apply clang-format to CUDA macros (#16017) 2025-09-16 08:59:19 +02:00
.clang-tidy clang-tidy : disable warning about performance enum size (#16127) 2025-09-22 19:57:46 +02:00
.dockerignore ci : fix docker build number and tag name (#9638) 2024-09-25 17:26:01 +02:00
.ecrc common : Update stb_image.h to latest version (#9161) 2024-08-27 08:58:50 +03:00
.editorconfig editorconfig : ignore benches/ (#17140) 2025-11-10 12:17:19 +02:00
.flake8 llama : move end-user examples to tools directory (#13249) 2025-05-02 20:27:13 +02:00
.gitignore ggml webgpu: add support for emscripten builds (#17184) 2025-12-03 10:25:34 +01:00
.gitmodules ggml : remove kompute backend (#14501) 2025-07-03 07:48:32 +03:00
.pre-commit-config.yaml convert.py : add python logging instead of print() (#6511) 2024-05-03 22:36:41 +03:00
AUTHORS authors : update (#12271) 2025-03-08 18:26:00 +02:00
CMakeLists.txt build : move _WIN32_WINNT definition to headers (#17736) 2025-12-04 07:04:02 +01:00
CMakePresets.json cmake : Add CMake presets for Linux and GCC (#14656) 2025-07-13 08:12:36 +03:00
CODEOWNERS Add pwilkin to CODEOWNERS for chat files (#17789) 2025-12-05 12:00:57 +01:00
CONTRIBUTING.md contributing: update guidelines for AI-generated code (#17625) 2025-11-30 22:51:34 +01:00
LICENSE license : update copyright notice + add AUTHORS (#6405) 2024-04-09 09:23:19 +03:00
Makefile make : remove make in favor of CMake (#15449) 2025-08-20 13:31:16 +03:00
README.md server: introduce API for serving / loading / unloading multiple models (#17470) 2025-12-01 19:41:04 +01:00
SECURITY.md contributing: update guidelines for AI-generated code (#17625) 2025-11-30 22:51:34 +01:00
build-xcframework.sh cmake : move OpenSSL linking to vendor/cpp-httplib (#17177) 2025-11-12 12:32:50 +01:00
convert_hf_to_gguf.py convert: use existing local chat_template if mistral-format model has one. (#17749) 2025-12-04 12:12:45 +01:00
convert_hf_to_gguf_update.py model : add AfmoeForCausalLM support (#16477) 2025-11-14 13:54:10 +01:00
convert_llama_ggml_to_gguf.py py : fix wrong input type for raw_dtype in ggml to gguf scripts (#8928) 2024-08-16 13:36:30 +03:00
convert_lora_to_gguf.py convert : allow quantizing lora again (#17453) 2025-11-24 15:50:55 +01:00
flake.lock flake.lock: Update (#10470) 2024-11-24 08:03:25 -08:00
flake.nix fix(nix): remove non-functional llama-cpp cachix cache from flake.nix (#15295) 2025-08-13 11:21:31 -07:00
mypy.ini convert : partially revert PR #4818 (#5041) 2024-01-20 18:14:18 -05:00
poetry.lock build(python): Package scripts with pip-0517 compliance 2024-07-04 15:39:13 +00:00
pyproject.toml gguf-py : avoid requiring pyside6 for other scripts (#13036) 2025-05-05 22:27:31 -04:00
pyrightconfig.json llama : move end-user examples to tools directory (#13249) 2025-05-02 20:27:13 +02:00
requirements.txt `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 2025-03-05 13:05:13 +00:00

README.md

llama.cpp

llama

License: MIT Release Server

Manifesto / ggml / ops

LLM inference in C/C++

Recent API changes

Hot topics


Quick start

Getting started with llama.cpp is straightforward. Here are several ways to install it on your machine:

Once installed, you'll need a model to work with. Head to the Obtaining and quantizing models section to learn more.

Example command:

# Use a local model file
llama-cli -m my_model.gguf

# Or download and run a model directly from Hugging Face
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF

# Launch OpenAI-compatible API server
llama-server -hf ggml-org/gemma-3-1b-it-GGUF

Description

The main goal of llama.cpp is to enable LLM inference with minimal setup and state-of-the-art performance on a wide range of hardware - locally and in the cloud.

  • Plain C/C++ implementation without any dependencies
  • Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
  • AVX, AVX2, AVX512 and AMX support for x86 architectures
  • RVV, ZVFH, ZFH and ZICBOP support for RISC-V architectures
  • 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
  • Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads GPUs via MUSA)
  • Vulkan and SYCL backend support
  • CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity

The llama.cpp project is the main playground for developing new features for the ggml library.

Models

Typically finetunes of the base models below are supported as well.

Instructions for adding support for new models: HOWTO-add-model.md

Text-only

Multimodal

Bindings
UIs

(to have a project listed here, it should clearly state that it depends on llama.cpp)

Tools
  • akx/ggify download PyTorch models from HuggingFace Hub and convert them to GGML
  • akx/ollama-dl download models from the Ollama library to be used directly with llama.cpp
  • crashr/gppm launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
  • gpustack/gguf-parser - review/check the GGUF file and estimate the memory usage
  • Styled Lines (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
  • unslothai/unsloth 🦥 exports/saves fine-tuned and trained models to GGUF (Apache-2.0)
Infrastructure
  • Paddler - Open-source LLMOps platform for hosting and scaling AI in your own infrastructure
  • GPUStack - Manage GPU clusters for running LLMs
  • llama_cpp_canister - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
  • llama-swap - transparent proxy that adds automatic model switching with llama-server
  • Kalavai - Crowdsource end to end LLM deployment at any scale
  • llmaz - ☸️ Easy, advanced inference platform for large language models on Kubernetes.
Games
  • Lucy's Labyrinth - A simple maze game where agents controlled by an AI model will try to trick you.

Supported backends

Backend Target devices
Metal Apple Silicon
BLAS All
BLIS All
SYCL Intel and Nvidia GPU
MUSA Moore Threads GPU
CUDA Nvidia GPU
HIP AMD GPU
Vulkan GPU
CANN Ascend NPU
OpenCL Adreno GPU
IBM zDNN IBM Z & LinuxONE
WebGPU [In Progress] All
RPC All
Hexagon [In Progress] Snapdragon

Obtaining and quantizing models

The Hugging Face platform hosts a number of LLMs compatible with llama.cpp:

You can either manually download the GGUF file or directly use any llama.cpp-compatible models from Hugging Face or other model hosting sites, such as ModelScope, by using this CLI argument: -hf <user>/<model>[:quant]. For example:

llama-cli -hf ggml-org/gemma-3-1b-it-GGUF

By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable MODEL_ENDPOINT. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. MODEL_ENDPOINT=https://www.modelscope.cn/.

After downloading a model, use the CLI tools to run it locally - see below.

llama.cpp requires the model to be stored in the GGUF file format. Models in other data formats can be converted to GGUF using the convert_*.py Python scripts in this repo.

The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with llama.cpp:

To learn more about model quantization, read this documentation

llama-cli

A CLI tool for accessing and experimenting with most of llama.cpp's functionality.

  • Run in conversation mode

    Models with a built-in chat template will automatically activate conversation mode. If this doesn't occur, you can manually enable it by adding -cnv and specifying a suitable chat template with --chat-template NAME

    llama-cli -m model.gguf
    
    # > hi, who are you?
    # Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today?
    #
    # > what is 1+1?
    # Easy peasy! The answer to 1+1 is... 2!
    
  • Run in conversation mode with custom chat template
    # use the "chatml" template (use -h to see the list of supported templates)
    llama-cli -m model.gguf -cnv --chat-template chatml
    
    # use a custom template
    llama-cli -m model.gguf -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
    
  • Run simple text completion

    To disable conversation mode explicitly, use -no-cnv

    llama-cli -m model.gguf -p "I believe the meaning of life is" -n 128 -no-cnv
    
    # I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga  it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
    
  • Constrain the output with a custom grammar
    llama-cli -m model.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
    
    # {"appointmentTime": "8pm", "appointmentDetails": "schedule a a call"}
    

    The grammars/ folder contains a handful of sample grammars. To write your own, check out the GBNF Guide.

    For authoring more complex JSON grammars, check out https://grammar.intrinsiclabs.ai/

llama-server

A lightweight, OpenAI API compatible, HTTP server for serving LLMs.

  • Start a local HTTP server with default configuration on port 8080
    llama-server -m model.gguf --port 8080
    
    # Basic web UI can be accessed via browser: http://localhost:8080
    # Chat completion endpoint: http://localhost:8080/v1/chat/completions
    
  • Support multiple-users and parallel decoding
    # up to 4 concurrent requests, each with 4096 max context
    llama-server -m model.gguf -c 16384 -np 4
    
  • Enable speculative decoding
    # the draft.gguf model should be a small variant of the target model.gguf
    llama-server -m model.gguf -md draft.gguf
    
  • Serve an embedding model
    # use the /embedding endpoint
    llama-server -m model.gguf --embedding --pooling cls -ub 8192
    
  • Serve a reranking model
    # use the /reranking endpoint
    llama-server -m model.gguf --reranking
    
  • Constrain all outputs with a grammar
    # custom grammar
    llama-server -m model.gguf --grammar-file grammar.gbnf
    
    # JSON
    llama-server -m model.gguf --grammar-file grammars/json.gbnf
    

llama-perplexity

A tool for measuring the perplexity 1 (and other quality metrics) of a model over a given text.

  • Measure the perplexity over a text file
    llama-perplexity -m model.gguf -f file.txt
    
    # [1]15.2701,[2]5.4007,[3]5.3073,[4]6.2965,[5]5.8940,[6]5.6096,[7]5.7942,[8]4.9297, ...
    # Final estimate: PPL = 5.4007 +/- 0.67339
    
  • Measure KL divergence
    # TODO
    

llama-bench

Benchmark the performance of the inference for various parameters.

  • Run default benchmark
    llama-bench -m model.gguf
    
    # Output:
    # | model               |       size |     params | backend    | threads |          test |                  t/s |
    # | ------------------- | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |
    # | qwen2 1.5B Q4_0     | 885.97 MiB |     1.54 B | Metal,BLAS |      16 |         pp512 |      5765.41 ± 20.55 |
    # | qwen2 1.5B Q4_0     | 885.97 MiB |     1.54 B | Metal,BLAS |      16 |         tg128 |        197.71 ± 0.81 |
    #
    # build: 3e0ba0e60 (4229)
    

llama-run

A comprehensive example for running llama.cpp models. Useful for inferencing. Used with RamaLama 2.

  • Run a model with a specific prompt (by default it's pulled from Ollama registry)
    llama-run granite-code
    

llama-simple

A minimal example for implementing apps with llama.cpp. Useful for developers.

  • Basic text completion
    llama-simple -m model.gguf
    
    # Hello my name is Kaitlyn and I am a 16 year old girl. I am a junior in high school and I am currently taking a class called "The Art of
    

Contributing

  • Contributors can open PRs
  • Collaborators will be invited based on contributions
  • Maintainers can push to branches in the llama.cpp repo and merge PRs into the master branch
  • Any help with managing issues, PRs and projects is very appreciated!
  • See good first issues for tasks suitable for first contributions
  • Read the CONTRIBUTING.md for more information
  • Make sure to read this: Inference at the edge
  • A bit of backstory for those who are interested: Changelog podcast

Other documentation

Development documentation

Seminal papers and background on the models

If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:

XCFramework

The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS, and macOS. It can be used in Swift projects without the need to compile the library from source. For example:

// swift-tools-version: 5.10
// The swift-tools-version declares the minimum version of Swift required to build this package.

import PackageDescription

let package = Package(
    name: "MyLlamaPackage",
    targets: [
        .executableTarget(
            name: "MyLlamaPackage",
            dependencies: [
                "LlamaFramework"
            ]),
        .binaryTarget(
            name: "LlamaFramework",
            url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
            checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
        )
    ]
)

The above example is using an intermediate build b5046 of the library. This can be modified to use a different version by changing the URL and checksum.

Completions

Command-line completion is available for some environments.

Bash Completion

$ build/bin/llama-cli --completion-bash > ~/.llama-completion.bash
$ source ~/.llama-completion.bash

Optionally this can be added to your .bashrc or .bash_profile to load it automatically. For example:

$ echo "source ~/.llama-completion.bash" >> ~/.bashrc

Dependencies

  • yhirose/cpp-httplib - Single-header HTTP server, used by llama-server - MIT license
  • stb-image - Single-header image format decoder, used by multimodal subsystem - Public domain
  • nlohmann/json - Single-header JSON library, used by various tools/examples - MIT License
  • minja - Minimal Jinja parser in C++, used by various tools/examples - MIT License
  • linenoise.cpp - C++ library that provides readline-like line editing capabilities, used by llama-run - BSD 2-Clause License
  • curl - Client-side URL transfer library, used by various tools/examples - CURL License
  • miniaudio.h - Single-header audio format decoder, used by multimodal subsystem - Public domain
  • subprocess.h - Single-header process launching solution for C and C++ - Public domain