llama.cpp/examples/model-conversion/scripts/causal/compare-logits.py

81 lines
2.7 KiB
Python
Executable File

#!/usr/bin/env python3
import sys
import numpy as np
from pathlib import Path
# Add utils directory to path for direct script execution
sys.path.insert(0, str(Path(__file__).parent.parent / "utils"))
from common import get_model_name_from_env_path # type: ignore[import-not-found]
def quick_logits_check(pytorch_file, llamacpp_file):
"""Lightweight sanity check before NMSE"""
try:
pytorch_logits = np.fromfile(pytorch_file, dtype=np.float32)
llamacpp_logits = np.fromfile(llamacpp_file, dtype=np.float32)
except Exception as e:
print(f"❌ NOK: Failed to load files - {e}")
return False
# Check shapes match
if pytorch_logits.shape != llamacpp_logits.shape:
print(f"❌ NOK: Shape mismatch - PyTorch: {pytorch_logits.shape}, llama.cpp: {llamacpp_logits.shape}")
return False
# Calculate key metrics
diff = pytorch_logits - llamacpp_logits
abs_diff = np.abs(diff)
max_diff = np.max(abs_diff)
# Get top 10 predictions from both models
pytorch_top10 = np.argsort(pytorch_logits)[-10:][::-1]
llamacpp_top10 = np.argsort(llamacpp_logits)[-10:][::-1]
print(f"Top 10 PyTorch logits: {pytorch_logits[pytorch_top10]}")
print(f"Top 10 llama.cpp logits: {llamacpp_logits[llamacpp_top10]}")
print(f"Max absolute difference: {max_diff:.4f}")
return True
def main():
model_name = get_model_name_from_env_path('MODEL_PATH')
data_dir = Path("data")
pytorch_file = data_dir / f"pytorch-{model_name}.bin"
llamacpp_model_name = get_model_name_from_env_path('CONVERTED_MODEL')
print(f"Using converted model: {llamacpp_model_name}")
llamacpp_file = data_dir / f"llamacpp-{llamacpp_model_name}.bin"
if not pytorch_file.exists():
print(f"Error: PyTorch logits file not found: {pytorch_file}")
print("Please run scripts/run-org-model.sh first to generate this file.")
sys.exit(1)
if not llamacpp_file.exists():
print(f"Error: llama.cpp logits file not found: {llamacpp_file}")
print("Please run scripts/run-converted-model.sh first to generate this file.")
sys.exit(1)
print("Checked all required files were found. Proceeding...\n")
print("🔍 GGML Model Validation for model ", model_name)
print("=" * 40)
print(f"PyTorch logits : {pytorch_file}")
print(f"llama.cpp logits: {llamacpp_file}")
print()
success = quick_logits_check(pytorch_file, llamacpp_file)
# Exit with appropriate code
if success:
print("✅ OK: Lightweight model check successful!")
print(" Ok to proceed with NMSE check...")
sys.exit(0)
else:
print(f"❌ NOK: Top 10 predictions don't match - generation will differ")
sys.exit(1)
if __name__ == "__main__":
main()