llama.cpp/ggml/src/ggml-hexagon/htp/hvx-utils.c

1068 lines
38 KiB
C

#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#ifdef HTP_DEBUG
# define FARF_HIGH 1
#endif
#include <HAP_farf.h>
#include <HAP_mem.h>
#include <HAP_perf.h>
#include <HAP_ps.h>
#include <hexagon_protos.h>
#include <hexagon_types.h>
#include <math.h>
#include <string.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "hvx-utils.h"
#define htp_binary_ops_preamble \
int step_of_4 = num_elems >> 7; \
int step_of_2 = (num_elems - step_of_4 * VLEN_FP32 * 4) >> 6; \
int step_of_1 = (num_elems - step_of_4 * VLEN_FP32 * 4 - step_of_2 * VLEN_FP32 * 2) >> 5; \
int remaining = num_elems - step_of_4 * VLEN_FP32 * 4 - step_of_2 * VLEN_FP32 * 2 - step_of_1 * VLEN_FP32; \
\
const uint8_t * restrict src0_curr = src0; \
const uint8_t * restrict src1_curr = src1; \
uint8_t * restrict dst_curr = dst;
void hvx_mul_f32(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src0, VLEN)) || (0 == htp_is_aligned((void *) src1, VLEN)) ||
(0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_mul_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_mul_f32: unaligned loop in hvx op, possibly slower execution\n");
}
bool handled_leftover = false;
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src0;
HVX_Vector * restrict vec_in2 = (HVX_Vector *) src1;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*vec_in1++, *vec_in2++);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
int step_of_1 = num_elems_whole >> 5; // divby 32, because 32 float = 128 bytes per HVX vector
int leftover_size = left_over * sizeof(float);
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src0;
HVX_Vector * restrict vec_in2 = (HVX_Vector *) src1;
HVX_UVector * restrict vec_out = (HVX_UVector *) dst;
HVX_Vector slinep;
HVX_Vector slinec;
HVX_Vector sline;
HVX_Vector sline2p;
HVX_Vector sline2c;
HVX_Vector sline2;
slinep = *vec_in1++;
sline2p = *vec_in2++;
#pragma unroll(4)
for (int i = step_of_1 - 1; i > 0; i--) {
slinec = *vec_in1++;
sline2c = *vec_in2++;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src0);
sline2 = Q6_V_valign_VVR(sline2c, sline2p, (size_t) src1);
*((HVX_UVector *) (vec_out++)) = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(sline, sline2));
slinep = slinec;
sline2p = sline2c;
}
if (step_of_1 > 1) {
slinec = htp_is_aligned(vec_in1, VLEN) && left_over == 0 ? slinep : *vec_in1++;
sline2c = htp_is_aligned(vec_in2, VLEN) && left_over == 0 ? sline2p : *vec_in2++;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src0);
sline2 = Q6_V_valign_VVR(sline2c, sline2p, (size_t) src1);
*((HVX_UVector *) (vec_out++)) = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(sline, sline2));
slinep = slinec;
sline2p = sline2c;
}
if (left_over > 0) {
slinec = (is_in_one_chunk(vec_in1, leftover_size, VLEN) ? slinep : *vec_in1++);
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src0);
sline2c = (is_in_one_chunk(vec_in2, leftover_size, VLEN) ? sline2p : *vec_in2++);
sline2 = Q6_V_valign_VVR(sline2c, sline2p, (size_t) src1);
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(sline, sline2);
hvx_vec_store_u(vec_out, leftover_size, Q6_Vsf_equals_Vqf32(out));
handled_leftover = true;
}
}
if (left_over > 0 && !handled_leftover) {
const float * src0f = (const float *) src0 + num_elems_whole;
const float * src1f = (const float *) src1 + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in1 = *(HVX_UVector *) src0f;
HVX_Vector in2 = *(HVX_UVector *) src1f;
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(in1, in2);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
void hvx_mul_f32_opt(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems) {
htp_binary_ops_preamble;
for (int i = 0; i < step_of_4; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1 = Q6_Vqf32_vmpy_VsfVsf(v1a, v1b);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
HVX_Vector v3a = *(HVX_Vector *) (src0_curr + 2 * VLEN);
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(v2a, v2b);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
HVX_Vector v3b = *(HVX_Vector *) (src1_curr + 2 * VLEN);
HVX_Vector v4a = *(HVX_Vector *) (src0_curr + 3 * VLEN);
src0_curr += 4 * VLEN;
HVX_Vector v3 = Q6_Vqf32_vmpy_VsfVsf(v3a, v3b);
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
HVX_Vector v4b = *(HVX_Vector *) (src1_curr + 3 * VLEN);
*(HVX_Vector *) (dst_curr + 2 * VLEN) = Q6_Vsf_equals_Vqf32(v3);
HVX_Vector v4 = Q6_Vqf32_vmpy_VsfVsf(v4a, v4b);
src1_curr += 4 * VLEN;
*(HVX_Vector *) (dst_curr + 3 * VLEN) = Q6_Vsf_equals_Vqf32(v4);
dst_curr += 4 * VLEN;
}
for (int i = 0; i < step_of_2; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1 = Q6_Vqf32_vmpy_VsfVsf(v1a, v1b);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
src0_curr += 2 * VLEN;
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(v2a, v2b);
src1_curr += 2 * VLEN;
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
dst_curr += 2 * VLEN;
}
for (int i = 0; i < step_of_1; i++) {
HVX_Vector va = *(HVX_Vector *) src0_curr;
src0_curr += VLEN;
HVX_Vector vb = *(HVX_Vector *) src1_curr;
src1_curr += VLEN;
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(va, vb);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v);
dst_curr += VLEN;
}
if (remaining > 0) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*(HVX_Vector *) src0_curr, *(HVX_Vector *) src1_curr);
hvx_vec_store_u((void *) dst_curr, remaining * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(v));
}
}
void hvx_mul_mul_f32_opt(const uint8_t * restrict src0,
const uint8_t * restrict src1,
const uint8_t * restrict src2,
uint8_t * restrict dst,
const int num_elems) {
const uint8_t * restrict src0_curr = src0;
const uint8_t * restrict src1_curr = src1;
const uint8_t * restrict src2_curr = src2;
uint8_t * restrict dst_curr = dst;
int step_of_2 = num_elems >> 6;
int step_of_1 = (num_elems - step_of_2 * VLEN_FP32 * 2) >> 5;
int remaining = num_elems - step_of_2 * VLEN_FP32 * 2 - step_of_1 * VLEN_FP32;
for (int i = 0; i < step_of_2; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v1c = *(HVX_Vector *) src2_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1_ = Q6_Vqf32_vmpy_VsfVsf(v1a, v1b);
HVX_Vector v1 = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(v1_), v1c);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
HVX_Vector v2c = *(HVX_Vector *) (src2_curr + VLEN);
src0_curr += 2 * VLEN;
HVX_Vector v2_ = Q6_Vqf32_vmpy_VsfVsf(v2a, v2b);
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(v2_), v2c);
src1_curr += 2 * VLEN;
src2_curr += 2 * VLEN;
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
dst_curr += 2 * VLEN;
}
for (int i = 0; i < step_of_1; i++) {
HVX_Vector va = *(HVX_Vector *) src0_curr;
src0_curr += VLEN;
HVX_Vector vb = *(HVX_Vector *) src1_curr;
src1_curr += VLEN;
HVX_Vector vc = *(HVX_Vector *) src2_curr;
src2_curr += VLEN;
HVX_Vector v1 = Q6_Vqf32_vmpy_VsfVsf(va, vb);
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(v1), vc);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v2);
dst_curr += VLEN;
}
if (remaining > 0) {
HVX_Vector v1 = Q6_Vqf32_vmpy_VsfVsf(*(HVX_Vector *) src0_curr, *(HVX_Vector *) src1_curr);
HVX_Vector v2 = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(v1), *(HVX_Vector *) src2_curr);
hvx_vec_store_u((void *) dst_curr, remaining * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(v2));
}
}
void hvx_add_f32(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src0, VLEN)) || (0 == htp_is_aligned((void *) src1, VLEN)) ||
(0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_add_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_add_f32: unaligned loop in hvx op, possibly slower execution\n");
}
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src0;
HVX_Vector * restrict vec_in2 = (HVX_Vector *) src1;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vadd_VsfVsf(*vec_in1++, *vec_in2++);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in1 = *(HVX_UVector *) (src0 + i * SIZEOF_FP32);
HVX_Vector in2 = *(HVX_UVector *) (src1 + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in1, in2);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out);
}
}
if (left_over > 0) {
const float * src0f = (const float *) src0 + num_elems_whole;
const float * src1f = (const float *) src1 + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in1 = *(HVX_UVector *) src0f;
HVX_Vector in2 = *(HVX_UVector *) src1f;
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in1, in2);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
void hvx_add_f32_opt(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems) {
htp_binary_ops_preamble;
for (int i = 0; i < step_of_4; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1 = Q6_Vqf32_vadd_VsfVsf(v1a, v1b);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
HVX_Vector v3a = *(HVX_Vector *) (src0_curr + 2 * VLEN);
HVX_Vector v2 = Q6_Vqf32_vadd_VsfVsf(v2a, v2b);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
HVX_Vector v3b = *(HVX_Vector *) (src1_curr + 2 * VLEN);
HVX_Vector v4a = *(HVX_Vector *) (src0_curr + 3 * VLEN);
src0_curr += 4 * VLEN;
HVX_Vector v3 = Q6_Vqf32_vadd_VsfVsf(v3a, v3b);
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
HVX_Vector v4b = *(HVX_Vector *) (src1_curr + 3 * VLEN);
*(HVX_Vector *) (dst_curr + 2 * VLEN) = Q6_Vsf_equals_Vqf32(v3);
HVX_Vector v4 = Q6_Vqf32_vadd_VsfVsf(v4a, v4b);
src1_curr += 4 * VLEN;
*(HVX_Vector *) (dst_curr + 3 * VLEN) = Q6_Vsf_equals_Vqf32(v4);
dst_curr += 4 * VLEN;
}
for (int i = 0; i < step_of_2; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1 = Q6_Vqf32_vadd_VsfVsf(v1a, v1b);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
src0_curr += 2 * VLEN;
HVX_Vector v2 = Q6_Vqf32_vadd_VsfVsf(v2a, v2b);
src1_curr += 2 * VLEN;
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
dst_curr += 2 * VLEN;
}
for (int i = 0; i < step_of_1; i++) {
HVX_Vector va = *(HVX_Vector *) src0_curr;
src0_curr += VLEN;
HVX_Vector vb = *(HVX_Vector *) src1_curr;
src1_curr += VLEN;
HVX_Vector v = Q6_Vqf32_vadd_VsfVsf(va, vb);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v);
dst_curr += VLEN;
}
if (remaining > 0) {
HVX_Vector v = Q6_Vqf32_vadd_VsfVsf(*(HVX_Vector *) src0_curr, *(HVX_Vector *) src1_curr);
hvx_vec_store_u((void *) dst_curr, remaining * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(v));
}
}
void hvx_add_scalar_f32(const uint8_t * restrict src, const float val, uint8_t * restrict dst, const int num_elems) {
size_t left_over = num_elems & (VLEN_FP32 - 1);
size_t num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_add_scalar_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_add_scalar_f32: unaligned loop in hvx op, possibly slower execution\n");
}
static const float kInf = INFINITY;
const HVX_Vector inf = hvx_vec_splat_fp32(kInf);
HVX_Vector val_vec = hvx_vec_splat_fp32(val);
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *vec_in1++;
const HVX_VectorPred pred_inf = Q6_Q_vcmp_eq_VwVw(inf, in);
HVX_Vector v = Q6_Vqf32_vadd_VsfVsf(in, val_vec);
v = Q6_Vsf_equals_Vqf32(v);
v = Q6_V_vmux_QVV(pred_inf, inf, v);
*vec_out++ = v;
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
const HVX_VectorPred pred_inf = Q6_Q_vcmp_eq_VwVw(inf, in);
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in, val_vec);
out = Q6_Vsf_equals_Vqf32(out);
out = Q6_V_vmux_QVV(pred_inf, inf, out);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = out;
}
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
const HVX_VectorPred pred_inf = Q6_Q_vcmp_eq_VwVw(inf, in);
HVX_Vector out = Q6_Vqf32_vadd_VsfVsf(in, val_vec);
out = Q6_Vsf_equals_Vqf32(out);
out = Q6_V_vmux_QVV(pred_inf, inf, out);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, out);
}
}
void hvx_mul_scalar_f32(const uint8_t * restrict src, const float val, uint8_t * restrict dst, const int num_elems) {
size_t left_over = num_elems & (VLEN_FP32 - 1);
size_t num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_mul_scalar_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_mul_scalar_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector val_vec = hvx_vec_splat_fp32(val);
bool handled_leftover = false;
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*vec_in1++, val_vec);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
int step_of_1 = num_elems >> 5; // divby 32, because 32 float = 128 bytes per HVX vector
int leftover_size = left_over * sizeof(float);
HVX_Vector * input_v_ptr = (HVX_Vector *) src;
HVX_UVector * output_v_ptr = (HVX_UVector *) dst;
HVX_Vector slinep;
HVX_Vector slinec;
HVX_Vector sline;
slinep = *input_v_ptr++;
#pragma unroll(4)
for (int i = step_of_1 - 1; i > 0; i--) {
slinec = *input_v_ptr++;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src);
*((HVX_UVector *) (output_v_ptr++)) = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(sline, val_vec));
/* Prepare slinep for next iteration */
slinep = slinec;
}
if (step_of_1 > 0) {
slinec = htp_is_aligned(input_v_ptr, VLEN) && left_over == 0 ? slinep : *input_v_ptr++;
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src);
*((HVX_UVector *) (output_v_ptr++)) = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(sline, val_vec));
slinep = slinec;
}
if (leftover_size > 0) {
slinec = (is_in_one_chunk(input_v_ptr, leftover_size, VLEN) ? slinep : *input_v_ptr++);
sline = Q6_V_valign_VVR(slinec, slinep, (size_t) src);
HVX_Vector sout = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(sline, val_vec));
hvx_vec_store_u(output_v_ptr, leftover_size, sout);
handled_leftover = true;
}
}
if (left_over > 0 && !handled_leftover) {
const float * srcf = (const float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(in, val_vec);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
void hvx_sub_f32(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems) {
size_t left_over = num_elems & (VLEN_FP32 - 1);
size_t num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src0, VLEN)) || (0 == htp_is_aligned((void *) src1, VLEN)) ||
(0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_sub_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_sub_f32: unaligned loop in hvx op, possibly slower execution\n");
}
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src0;
HVX_Vector * restrict vec_in2 = (HVX_Vector *) src1;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vsub_VsfVsf(*vec_in1++, *vec_in2++);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in1 = *(HVX_UVector *) (src0 + i * SIZEOF_FP32);
HVX_Vector in2 = *(HVX_UVector *) (src1 + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vsub_VsfVsf(in1, in2);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out);
}
}
if (left_over > 0) {
const float * src0f = (const float *) src0 + num_elems_whole;
const float * src1f = (const float *) src1 + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in1 = *(HVX_UVector *) src0f;
HVX_Vector in2 = *(HVX_UVector *) src1f;
HVX_Vector out = Q6_Vqf32_vsub_VsfVsf(in1, in2);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
void hvx_sub_f32_opt(const uint8_t * restrict src0,
const uint8_t * restrict src1,
uint8_t * restrict dst,
const int num_elems) {
htp_binary_ops_preamble;
for (int i = 0; i < step_of_4; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1 = Q6_Vqf32_vsub_VsfVsf(v1a, v1b);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
HVX_Vector v3a = *(HVX_Vector *) (src0_curr + 2 * VLEN);
HVX_Vector v2 = Q6_Vqf32_vsub_VsfVsf(v2a, v2b);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
HVX_Vector v3b = *(HVX_Vector *) (src1_curr + 2 * VLEN);
HVX_Vector v4a = *(HVX_Vector *) (src0_curr + 3 * VLEN);
src0_curr += 4 * VLEN;
HVX_Vector v3 = Q6_Vqf32_vsub_VsfVsf(v3a, v3b);
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
HVX_Vector v4b = *(HVX_Vector *) (src1_curr + 3 * VLEN);
*(HVX_Vector *) (dst_curr + 2 * VLEN) = Q6_Vsf_equals_Vqf32(v3);
HVX_Vector v4 = Q6_Vqf32_vsub_VsfVsf(v4a, v4b);
src1_curr += 4 * VLEN;
*(HVX_Vector *) (dst_curr + 3 * VLEN) = Q6_Vsf_equals_Vqf32(v4);
dst_curr += 4 * VLEN;
}
for (int i = 0; i < step_of_2; i++) {
HVX_Vector v1a = *(HVX_Vector *) src0_curr;
HVX_Vector v1b = *(HVX_Vector *) src1_curr;
HVX_Vector v2a = *(HVX_Vector *) (src0_curr + VLEN);
HVX_Vector v1 = Q6_Vqf32_vsub_VsfVsf(v1a, v1b);
HVX_Vector v2b = *(HVX_Vector *) (src1_curr + VLEN);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v1);
src0_curr += 2 * VLEN;
HVX_Vector v2 = Q6_Vqf32_vsub_VsfVsf(v2a, v2b);
src1_curr += 2 * VLEN;
*(HVX_Vector *) (dst_curr + VLEN) = Q6_Vsf_equals_Vqf32(v2);
dst_curr += 2 * VLEN;
}
for (int i = 0; i < step_of_1; i++) {
HVX_Vector va = *(HVX_Vector *) src0_curr;
src0_curr += VLEN;
HVX_Vector vb = *(HVX_Vector *) src1_curr;
src1_curr += VLEN;
HVX_Vector v = Q6_Vqf32_vsub_VsfVsf(va, vb);
*(HVX_Vector *) dst_curr = Q6_Vsf_equals_Vqf32(v);
dst_curr += VLEN;
}
if (remaining > 0) {
HVX_Vector v = Q6_Vqf32_vsub_VsfVsf(*(HVX_Vector *) src0_curr, *(HVX_Vector *) src1_curr);
hvx_vec_store_u((void *) dst_curr, remaining * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(v));
}
}
void hvx_sub_scalar_f32(const uint8_t * restrict src, const float val, uint8_t * restrict dst, const int num_elems) {
size_t left_over = num_elems & (VLEN_FP32 - 1);
size_t num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_sub_scalar_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_sub_scalar_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector val_vec = hvx_vec_splat_fp32(val);
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vsub_VsfVsf(*vec_in1++, val_vec);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vsub_VsfVsf(in, val_vec);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out);
}
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = Q6_Vqf32_vsub_VsfVsf(in, val_vec);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
float hvx_sum_of_squares_f32(const uint8_t * restrict src, const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
if (0 == htp_is_aligned((void *) src, VLEN)) {
FARF(HIGH, "hvx_sum_of_squares_f32: unaligned address in hvx op, possibly slower execution\n");
}
assert((1 == htp_is_aligned((void *) src, VLEN)) || (0 == num_elems_whole));
HVX_Vector * restrict vec_in1 = (HVX_Vector *) src;
HVX_Vector sum_vec_acc = Q6_V_vsplat_R(0x00000000);
HVX_Vector zero_vec = Q6_V_vsplat_R(0x00000000);
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*vec_in1, *vec_in1);
sum_vec_acc = Q6_Vqf32_vadd_Vqf32Vqf32(sum_vec_acc, v);
vec_in1++;
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
HVX_Vector vec_left = *(HVX_UVector *) srcf;
HVX_Vector vec_left_sq = Q6_Vqf32_vmpy_VsfVsf(vec_left, vec_left);
HVX_Vector vec_tmp = Q6_V_valign_VVR(vec_left_sq, zero_vec, left_over * SIZEOF_FP32);
sum_vec_acc = Q6_Vqf32_vadd_Vqf32Vqf32(sum_vec_acc, vec_tmp);
}
HVX_Vector v = hvx_vec_qf32_reduce_sum(sum_vec_acc);
return hvx_vec_get_fp32(Q6_Vsf_equals_Vqf32(v));
}
float hvx_self_sum_f32(const uint8_t * restrict src, const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if (0 == htp_is_aligned((void *) src, VLEN)) {
FARF(HIGH, "hvx_self_sum_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_self_sum_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector sum_vec = Q6_V_vsplat_R(0x00000000);
HVX_Vector zero_vec = Q6_V_vsplat_R(0x00000000);
if (0 == unaligned_loop) {
HVX_Vector * vec_in = (HVX_Vector *) src;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
// sum_vec = Q6_Vqf32_vadd_Vqf32Vsf(sum_vec, *vec_in++);
sum_vec = Q6_Vqf32_vadd_VsfVsf(Q6_Vsf_equals_Vqf32(sum_vec), *vec_in++);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
sum_vec = Q6_Vqf32_vadd_VsfVsf(Q6_Vsf_equals_Vqf32(sum_vec), in);
}
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
HVX_Vector vec_left = *(HVX_UVector *) srcf;
HVX_Vector vec_tmp = Q6_V_valign_VVR(vec_left, zero_vec, left_over * SIZEOF_FP32);
// sum_vec = Q6_Vqf32_vadd_Vqf32Vsf(sum_vec, vec_tmp);
sum_vec = Q6_Vqf32_vadd_VsfVsf(Q6_Vsf_equals_Vqf32(sum_vec), vec_tmp);
}
HVX_Vector v = hvx_vec_qf32_reduce_sum(sum_vec);
return hvx_vec_get_fp32(Q6_Vsf_equals_Vqf32(v));
}
void hvx_scale_f32(const uint8_t * restrict src, uint8_t * restrict dst, const int num_elems, const float scale) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_scale_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_scale_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector scale_vec = hvx_vec_splat_fp32(scale);
if (0 == unaligned_loop) {
HVX_Vector * vec_in1 = (HVX_Vector *) src;
HVX_Vector * vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector v = Q6_Vqf32_vmpy_VsfVsf(*vec_in1++, scale_vec);
*vec_out++ = Q6_Vsf_equals_Vqf32(v);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(in, scale_vec);
*(HVX_UVector *) (dst + i * SIZEOF_FP32) = Q6_Vsf_equals_Vqf32(out);
}
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector out = Q6_Vqf32_vmpy_VsfVsf(in, scale_vec);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, Q6_Vsf_equals_Vqf32(out));
}
}
float hvx_self_max_f32(const uint8_t * restrict src, const int num_elems) {
int left_over = num_elems & (VLEN_FP32 - 1);
int num_elems_whole = num_elems - left_over;
int unaligned_addr = 0;
int unaligned_loop = 0;
if (0 == htp_is_aligned((void *) src, VLEN)) {
FARF(HIGH, "hvx_self_max_f32: unaligned address in hvx op, possibly slower execution\n");
unaligned_addr = 1;
}
if ((1 == unaligned_addr) && (num_elems_whole != 0)) {
unaligned_loop = 1;
FARF(HIGH, "hvx_self_max_f32: unaligned loop in hvx op, possibly slower execution\n");
}
HVX_Vector vec_max = hvx_vec_splat_fp32(((const float *) src)[0]);
HVX_Vector vec_first = hvx_vec_splat_fp32(((const float *) src)[0]);
if (0 == unaligned_loop) {
HVX_Vector * restrict vec_in = (HVX_Vector *) src;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
vec_max = Q6_Vsf_vmax_VsfVsf(vec_max, *vec_in++);
}
} else {
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in = *(HVX_UVector *) (src + i * SIZEOF_FP32);
vec_max = Q6_Vsf_vmax_VsfVsf(vec_max, in);
}
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
HVX_Vector in = *(HVX_UVector *) srcf;
HVX_Vector temp = Q6_V_valign_VVR(in, vec_first, left_over * SIZEOF_FP32);
vec_max = Q6_Vsf_vmax_VsfVsf(vec_max, temp);
}
HVX_Vector v = hvx_vec_reduce_max_fp32(vec_max);
return hvx_vec_get_fp32(v);
}
void hvx_min_scalar_f32(const uint8_t * restrict src, const float val, uint8_t * restrict dst, const int num_elems) {
size_t left_over = num_elems & (VLEN_FP32 - 1);
size_t num_elems_whole = num_elems - left_over;
int unalign_address = 0;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_min_scalar_f32: unaligned address in hvx op, possibly slower execution\n");
unalign_address = 1;
}
const float * src_f = (const float *) src;
HVX_Vector vec_min = hvx_vec_splat_fp32(val);
if(unalign_address == 0){
HVX_Vector * restrict vec_in = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector min_clamp = Q6_Vsf_vmin_VsfVsf(vec_min, *vec_in++);
*vec_out++ = (min_clamp);
}
}else{
HVX_UVector * restrict vec_in = (HVX_Vector *) src;
HVX_UVector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector min_clamp = Q6_Vsf_vmin_VsfVsf(vec_min, *vec_in++);
*vec_out++ = (min_clamp);
}
}
if (left_over > 0 ) {
const float * srcf = (const float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_UVector in = *(HVX_UVector *) srcf;
HVX_UVector min_clamp = Q6_Vsf_vmin_VsfVsf(vec_min, in);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, (min_clamp));
}
}
void hvx_clamp_scalar_f32(const uint8_t * restrict src,
const float limit_left,
const float limit_right,
uint8_t * restrict dst,
const int num_elems) {
size_t left_over = num_elems & (VLEN_FP32 - 1);
size_t num_elems_whole = num_elems - left_over;
int unalign_address = 0;
if ((0 == htp_is_aligned((void *) src, VLEN)) || (0 == htp_is_aligned((void *) dst, VLEN))) {
FARF(HIGH, "hvx_clamp_scalar_f32: unaligned address in hvx op, possibly slower execution\n");
unalign_address = 1;
}
HVX_Vector range_left = hvx_vec_splat_fp32(limit_left);
HVX_Vector range_right = hvx_vec_splat_fp32(limit_right);
if(unalign_address == 0){
HVX_Vector * restrict vec_in = (HVX_Vector *) src;
HVX_Vector * restrict vec_out = (HVX_Vector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in_vec = *vec_in++;
HVX_Vector temp_v = in_vec;
HVX_VectorPred pred_cap_right = Q6_Q_vcmp_gt_VsfVsf(in_vec, range_right);
HVX_VectorPred pred_cap_left = Q6_Q_vcmp_gt_VsfVsf(range_left, in_vec);
in_vec = Q6_V_vmux_QVV(pred_cap_right, range_right, temp_v);
in_vec = Q6_V_vmux_QVV(pred_cap_left, range_left, in_vec);
*vec_out++ = in_vec;
}
}else{
HVX_UVector * restrict vec_in = (HVX_UVector *) src;
HVX_UVector * restrict vec_out = (HVX_UVector *) dst;
#pragma unroll(4)
for (int i = 0; i < num_elems_whole; i += VLEN_FP32) {
HVX_Vector in_vec = *vec_in++;
HVX_Vector temp_v = in_vec;
HVX_VectorPred pred_cap_right = Q6_Q_vcmp_gt_VsfVsf(in_vec, range_right);
HVX_VectorPred pred_cap_left = Q6_Q_vcmp_gt_VsfVsf(range_left, in_vec);
in_vec = Q6_V_vmux_QVV(pred_cap_right, range_right, temp_v);
in_vec = Q6_V_vmux_QVV(pred_cap_left, range_left, in_vec);
*vec_out++ = in_vec;
}
}
if (left_over > 0) {
const float * srcf = (const float *) src + num_elems_whole;
float * dstf = (float *) dst + num_elems_whole;
HVX_Vector in_vec = *(HVX_UVector *) srcf;
HVX_Vector temp_v = in_vec;
HVX_VectorPred pred_cap_right = Q6_Q_vcmp_gt_VsfVsf(in_vec, range_right);
HVX_VectorPred pred_cap_left = Q6_Q_vcmp_gt_VsfVsf(range_left, in_vec);
in_vec = Q6_V_vmux_QVV(pred_cap_right, range_right, temp_v);
in_vec = Q6_V_vmux_QVV(pred_cap_left, range_left, in_vec);
hvx_vec_store_u((void *) dstf, left_over * SIZEOF_FP32, in_vec);
}
}