llama.cpp/ggml/src/ggml-openvino/ggml-decoder.h

254 lines
9.4 KiB
C++

#pragma once
#include "ggml-quants.hpp"
#include "ggml.h"
#include "openvino/decoder.hpp"
#include <cstdint>
#include <map>
#include <memory>
#include <openvino/core/partial_shape.hpp>
#include <optional>
#include <vector>
struct ModelParams {
int ctx = -1;
int ctx_swa = -1;
int ctx_per_seq = -1;
int ctx_per_seq_swa = -1;
int n_seq = -1;
int n_heads = -1;
int n_heads_kv = -1;
int head_size = -1;
int32_t * rope_params = nullptr;
std::vector<int> swa_layers;
// std::vector<std::string> kv_names;
bool can_reuse_dynamically(const ModelParams & other) const {
return n_seq == other.n_seq && n_heads == other.n_heads && n_heads_kv == other.n_heads_kv &&
head_size == other.head_size && rope_params == other.rope_params && swa_layers == other.swa_layers;
}
bool can_reuse_statically(const ModelParams & other) const {
return can_reuse_dynamically(other) && ctx_per_seq == other.ctx_per_seq &&
ctx_per_seq_swa == other.ctx_per_seq_swa;
}
};
struct ComputeParams {
int n_seq_active = -1;
int seq_active_start = -1;
int attention_size = -1;
int attention_size_swa = -1;
int input_len = -1;
int token_len_per_seq = -1;
int past_kv_len = -1;
int output_len = -1;
};
class GgmlOvDecoder : public ov::frontend::ggml::GgmlDecoder {
public:
struct NodeInfo {
ggml_tensor * node;
std::string node_name;
std::string node_op_type;
std::map<std::string, ggml_tensor *> node_inputs;
std::vector<std::string> node_inputs_names;
ggml_tensor * node_output;
std::string node_output_name;
int node_op_case = 0;
void * data_addr;
};
// Graph decoder
GgmlOvDecoder(ggml_cgraph * cgraph,
ModelParams & model_params,
ComputeParams & compute_params,
std::map<std::string, std::shared_ptr<ov::Node>> & model_weights,
bool is_static,
bool is_prefill = false,
int prefill_chunk_size = 256);
// Naive graph decoder
GgmlOvDecoder(ggml_cgraph * cgraph, std::map<std::string, std::shared_ptr<ov::Node>> & model_weights);
virtual ov::Any get_attribute(const std::string & name) const override {
return nullptr;
GGML_UNUSED(name);
}
virtual ov::PartialShape get_input_shape(const std::string & name) const override;
virtual ov::PartialShape get_input_shape(int node_idx, const std::string & name) const override;
virtual std::vector<size_t> get_input_stride(const std::string & name) const override;
virtual std::vector<size_t> get_input_stride(int node_idx, const std::string & name) const override;
virtual ov::element::Type get_input_type(const std::string & name) const override;
virtual size_t get_input_size() const override;
virtual size_t get_input_size(int node_idx) const override;
virtual void get_input_node(size_t input_port_idx,
std::string & producer_name,
std::string & producer_output_port_name,
size_t & producer_output_port_index) const override {
GGML_UNUSED(input_port_idx);
GGML_UNUSED(producer_name);
GGML_UNUSED(producer_output_port_name);
GGML_UNUSED(producer_output_port_index);
}
virtual std::vector<std::string> get_input_names() const override;
virtual std::vector<std::string> get_input_names(int node_idx) const override;
virtual ov::PartialShape get_output_shape(int node_idx) const override;
virtual ov::element::Type get_output_type(const std::string & name) const override;
virtual int32_t * get_input_op_params(const std::string & name) const override;
virtual int32_t * get_input_op_params(int node_idx, const std::string & name) const override;
virtual int32_t * get_output_op_params(const std::string & name) const override;
virtual int32_t * get_output_op_params(int node_idx) const override;
virtual std::vector<std::string> get_output_names(int node_idx) const override;
virtual const std::string & get_op_type() const override;
virtual const std::string & get_op_type(int node_idx) const override;
virtual const std::string & get_op_name() const override;
virtual const std::string & get_op_name(int node_idx) const override;
virtual void visit_subgraph(std::function<void(std::shared_ptr<GgmlDecoder>, int node_idx)> node_visitor) const override;
ggml_tensor * get_input_ggml_tensor(const std::string & name) const { return m_inputs.at(name); }
ggml_tensor * get_output_ggml_tensor(const std::string & name) const { return m_outputs.at(name); }
virtual int get_op_case(int node_idx) const override { return m_node_info_list[node_idx].node_op_case; }
virtual const std::map<std::string, std::shared_ptr<ov::Node>> & get_model_inputs() const override {
return m_model_inputs;
}
virtual const std::map<std::string, std::shared_ptr<ov::Node>> & get_model_extra_inputs() const override {
return m_model_extra_inputs;
}
virtual const std::map<std::string, std::shared_ptr<ov::Tensor>> & get_model_extra_input_values() const {
return m_model_extra_input_values;
}
virtual const std::map<std::string, std::shared_ptr<ov::Node>> & get_model_weights() const override {
return m_model_weights;
}
virtual std::vector<std::string> get_model_output_names() const override {
std::vector<std::string> output_names;
output_names.reserve(m_model_outputs.size());
for (const auto & [name, tensor] : m_model_outputs) {
output_names.push_back(name);
}
return output_names;
}
const std::map<std::string, ggml_tensor *> & get_model_outputs() const { return m_model_outputs; }
virtual int get_ctx_size() const { return m_model_params.ctx; }
virtual int get_ctx_swa_size() const { return m_model_params.ctx_swa; }
virtual int get_ctx_per_seq() const { return m_model_params.ctx_per_seq; }
virtual int get_ctx_per_seq_swa() const { return m_model_params.ctx_per_seq_swa; }
virtual int get_n_seq() const { return m_model_params.n_seq; }
virtual int is_swa_layer(int layer) const override {
return std::find(m_model_params.swa_layers.begin(), m_model_params.swa_layers.end(), layer) !=
m_model_params.swa_layers.end();
}
int get_past_kv_len() const { return m_compute_params.past_kv_len; }
int get_input_len() const { return m_compute_params.input_len; }
virtual int32_t * get_rope_params() const override { return m_model_params.rope_params; }
// virtual std::map<std::string, std::string> get_kv_param_res_names() const override;
virtual bool is_static() const override { return m_is_static; }
ov::PartialShape get_graph_input_shape(const ggml_tensor * op, const ggml_tensor * input) const;
static void dump_cgraph(const ggml_cgraph * cgraph, std::string & filename);
static std::shared_ptr<ov::Node> create_weight_node(ggml_tensor * tensor,
std::optional<ExtraQuantType> requant_type = std::nullopt);
static std::map<std::string, std::shared_ptr<ov::Node>> create_weight_nodes(
ggml_cgraph * cgraph,
std::map<ggml_type, ExtraQuantType> types_to_requantize = {});
const ggml_tensor * get_tensor_used_op(const ggml_tensor * tensor) const;
const ggml_tensor * get_tensor_from_name(const std::string & name) const;
void clear_model_weights() { m_model_weights.clear(); }
static std::pair<ModelParams, ComputeParams> compute_llm_params(ggml_cgraph * cgraph, bool is_static);
ModelParams get_model_params() const { return m_model_params; }
ComputeParams get_compute_params() const { return m_compute_params; }
void set_model_params(const ModelParams & model_params) { m_model_params = model_params; }
void set_compute_params(const ComputeParams & compute_params) { m_compute_params = compute_params; }
bool m_is_static = false;
bool m_is_prefill = false;
int m_prefill_chunk_size = 0;
static std::vector<size_t> get_shape(const ggml_tensor * tensor);
static std::vector<size_t> get_stride(const ggml_tensor * tensor);
static ov::element::Type get_ov_type(const ggml_tensor * tensor);
static std::string compute_op_type(const ggml_tensor * node);
private:
void set_input_output(ggml_tensor * node, bool naive = false);
void add_extra_inputs();
int compute_op_case(const ggml_tensor * node) const;
void validate_cgraph() const;
ggml_cgraph * m_cgraph = nullptr;
std::vector<ggml_tensor *> m_nodes;
std::map<std::string, ggml_tensor *> m_inputs;
std::vector<std::string> m_input_names;
std::map<std::string, ggml_tensor *> m_outputs;
std::vector<std::string> m_output_names;
std::map<std::string, std::shared_ptr<ov::Node>> m_model_inputs;
std::map<std::string, std::shared_ptr<ov::Node>> m_model_extra_inputs;
std::map<std::string, std::shared_ptr<ov::Tensor>> m_model_extra_input_values;
std::map<std::string, std::shared_ptr<ov::Node>> m_model_weights;
std::map<std::string, ggml_tensor *> m_model_outputs;
std::vector<NodeInfo> m_node_info_list;
ModelParams m_model_params;
ComputeParams m_compute_params;
};
void print_tensor_address_map(const ggml_cgraph * cgraph);
int extract_layer_from_name(const std::string & name);