llama.cpp/ggml/src/ggml-sycl/element_wise.cpp

1204 lines
47 KiB
C++

#include "common.hpp"
#include "ggml-sycl/presets.hpp"
#include "ggml.h"
#include "element_wise.hpp"
#define SYCL_GLOBAL_ID_LOOP(K, ITEM) \
for (auto i = ITEM.get_global_id(0); i < (size_t)K; i += ITEM.get_global_range(0))
#define SYCL_LOCAL_ID_CALC(ITEM, IDX) \
(ITEM.get_local_range(IDX) * ITEM.get_group(IDX) + ITEM.get_local_id(IDX))
static void acc_f32(const float * x, const float * y, float * dst, const int ne,
const int ne10, const int ne11, const int ne12,
const int nb1, const int nb2, int offset, const sycl::nd_item<1> &item_ct1) {
const int i = SYCL_LOCAL_ID_CALC(item_ct1, 0);
if (i >= ne) {
return;
}
int src1_idx = i - offset;
int oz = src1_idx / nb2;
int oy = (src1_idx - (oz * nb2)) / nb1;
int ox = src1_idx % nb1;
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
} else {
dst[i] = x[i];
}
}
/* Unary OP funcs */
template<typename T>
static __dpct_inline__ T op_sgn(T x) {
return x > static_cast<T>(0.f) ? static_cast<T>(1.f) : ((x < static_cast<T>(0.f) ? static_cast<T>(-1.f) : static_cast<T>(0.f)));
}
template<typename T>
static __dpct_inline__ T op_abs(T x) {
return sycl::fabs(x);
}
template<typename T>
static __dpct_inline__ T op_elu(T x) {
return (x > static_cast<T>(0.f)) ? x : sycl::expm1(x);
}
template<typename T>
static __dpct_inline__ T op_gelu(T x) {
const T GELU_COEF_A = static_cast<T>(0.044715f);
const T SQRT_2_OVER_PI = static_cast<T>(0.79788456080286535587989211986876f);
return static_cast<T>(0.5f) * x *
(static_cast<T>(1.0f) +
sycl::tanh(SQRT_2_OVER_PI * x * (static_cast<T>(1.0f) + GELU_COEF_A * x * x)));
}
template<typename T>
static __dpct_inline__ T op_silu(T x) {
return x / (static_cast<T>(1.0f) + sycl::native::exp(-x));
}
template<typename T>
static __dpct_inline__ T op_gelu_quick(T x) {
const T GELU_QUICK_COEF_LOCAL = static_cast<T>(-1.702f);
return x * (static_cast<T>(1.0f) / (static_cast<T>(1.0f) + sycl::native::exp(GELU_QUICK_COEF_LOCAL * x)));
}
template<typename T>
static __dpct_inline__ T op_gelu_erf(T x) {
const T SQRT_2_INV = static_cast<T>(0.70710678118654752440084436210484f);
return static_cast<T>(0.5f) * x * (static_cast<T>(1.0f) + sycl::erf(x * SQRT_2_INV));
}
template<typename T>
static __dpct_inline__ T op_tanh(T x) {
return sycl::tanh(x);
}
template<typename T>
static __dpct_inline__ T op_relu(T x) {
return sycl::fmax(x, static_cast<T>(0));
}
template<typename T>
static __dpct_inline__ T op_sigmoid(T x) {
return static_cast<T>(1.0f) / (static_cast<T>(1.0f) + sycl::native::exp(-x));
}
template<typename T>
static __dpct_inline__ T op_sqrt(T x) {
return sycl::sqrt(x);
}
template<typename T>
static __dpct_inline__ T op_sin(T x) {
return sycl::sin(x);
}
template<typename T>
static __dpct_inline__ T op_cos(T x) {
return sycl::cos(x);
}
template<typename T>
static __dpct_inline__ T op_hardsigmoid(T x) {
return sycl::fmin(static_cast<T>(1.0f), sycl::fmax(static_cast<T>(0.0f), (x + static_cast<T>(3.0f)) / static_cast<T>(6.0f)));
}
template<typename T>
static __dpct_inline__ T op_hardswish(T x) {
return x * sycl::fmin(static_cast<T>(1.0f), sycl::fmax(static_cast<T>(0.0f), (x + static_cast<T>(3.0f)) / static_cast<T>(6.0f)));
}
template<typename T>
static __dpct_inline__ T op_exp(T x) {
return sycl::exp(x);
}
template<typename T>
static __dpct_inline__ T op_log(T x) {
if (x <= static_cast<T>(0)) {
return neg_infinity<T>();
}
return sycl::log(x);
}
template<typename T>
static __dpct_inline__ T op_neg(T x) {
return -x;
}
template<typename T>
static __dpct_inline__ T op_step(T x) {
return (x > static_cast<T>(0.0f)) ? static_cast<T>(1.0f) : static_cast<T>(0.0f);
}
template<typename T>
static __dpct_inline__ T op_leaky_relu(T x, float negative_slope) {
T neg_slope_T = static_cast<T>(negative_slope);
return sycl::fmax(x, static_cast<T>(0)) +
sycl::fmin(x, static_cast<T>(0.0f)) * neg_slope_T;
}
template<typename T>
static __dpct_inline__ T op_sqr(T x) {
return x * x;
}
template<typename T>
static __dpct_inline__ T op_clamp(T x, float min_val, float max_val) {
return x < static_cast<T>(min_val) ? static_cast<T>(min_val) : (x > static_cast<T>(max_val) ? static_cast<T>(max_val) : x);
}
template<typename T>
static __dpct_inline__ T op_floor(T x) {
return sycl::floor(x);
}
template<typename T>
static __dpct_inline__ T op_ceil(T x) {
return sycl::ceil(x);
}
template<typename T>
static __dpct_inline__ T op_round(T x) {
return sycl::round(x);
}
template<typename T>
static __dpct_inline__ T op_trunc(T x) {
return sycl::trunc(x);
}
template<typename T, typename F>
static void unary_op_generic_kernel(
const T * x,
T * dst,
const int k,
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3,
const size_t nb0, const size_t nb1, const size_t nb2, const size_t nb3,
const size_t nbd0, const size_t nbd1, const size_t nbd2, const size_t nbd3,
const sycl::nd_item<1> & item_ct1,
F func) {
(void) ne3;
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
const int64_t i0 = i % ne0;
const int64_t i1 = (i / ne0) % ne1;
const int64_t i2 = (i / (ne0*ne1)) % ne2;
const int64_t i3 = i / (ne0*ne1*ne2);
const char * src_base = (const char *) x;
char * dst_base = (char *) dst;
const T * srcp = (const T *)(src_base + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3 );
T * dstp = (T *)(dst_base + i0*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3);
*dstp = func(*srcp);
}
}
template<typename T>
static void unary_op_sqrt_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_sqrt(x[i]);
}
}
template<typename T>
static void unary_op_sin_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_sin(x[i]);
}
}
template<typename T>
static void unary_op_cos_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_cos(x[i]);
}
}
template<typename T>
static void unary_op_log_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_log(x[i]);
}
}
template<typename T>
static void unary_op_leaky_relu_kernel(const T * x, T * dst, const int k, float negative_slope, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_leaky_relu(x[i], negative_slope);
}
}
template<typename T>
static void unary_op_sqr_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_sqr(x[i]);
}
}
template<typename T>
static void unary_op_clamp_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1, float min_val, float max_val) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_clamp(x[i], min_val, max_val);
}
}
template<typename T>
static void unary_op_floor_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_floor(x[i]);
}
}
template<typename T>
static void unary_op_ceil_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_ceil(x[i]);
}
}
template<typename T>
static void unary_op_round_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_round(x[i]);
}
}
template<typename T>
static void unary_op_trunc_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = op_trunc(x[i]);
}
}
template<typename T>
static void upscale(const T *x, T *dst, const int nb00, const int nb01,
const int nb02, const int nb03, const int ne10, const int ne11,
const int ne12, const int ne13, const float sf0, const float sf1,
const float sf2, const float sf3, const sycl::nd_item<1> &item_ct1) {
int index = item_ct1.get_local_id(0) +
item_ct1.get_group(0) * item_ct1.get_local_range(0);
if (index >= ne10 * ne11 * ne12 * ne13) {
return;
}
// operation
int i10 = index % ne10;
int i11 = (index / ne10) % ne11;
int i12 = (index / (ne10 * ne11)) % ne12;
int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
int i00 = static_cast<int>(i10 / sf0);
int i01 = static_cast<int>(i11 / sf1);
int i02 = static_cast<int>(i12 / sf2);
int i03 = static_cast<int>(i13 / sf3);
dst[index] = *(const T *)((const char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
}
template<typename T>
static void clamp(const T * x, T * dst, const float min, const float max, const int k,
const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = x[i] < static_cast<T>(min) ? static_cast<T>(min) : (x[i] > static_cast<T>(max) ? static_cast<T>(max) : x[i]);
}
}
template<typename T>
static void gated_op_fused_geglu(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
const int64_t j0 = (i / n) * o0 + (i % n);
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
dst[i] = op_gelu(x[j0]) * g[j1];
}
}
template<typename T>
static void gated_op_fused_reglu(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
const int64_t j0 = (i / n) * o0 + (i % n);
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
dst[i] = op_relu(x[j0]) * g[j1];
}
}
template<typename T>
static void gated_op_fused_swiglu(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
const int64_t j0 = (i / n) * o0 + (i % n);
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
dst[i] = op_silu(x[j0]) * g[j1];
}
}
template<typename T>
static void gated_op_fused_geglu_erf(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
const int64_t j0 = (i / n) * o0 + (i % n);
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
dst[i] = op_gelu_erf(x[j0]) * g[j1];
}
}
template<typename T>
static void gated_op_fused_geglu_quick(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
const int64_t j0 = (i / n) * o0 + (i % n);
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
dst[i] = op_gelu_quick(x[j0]) * g[j1];
}
}
namespace ggml_sycl_detail {
static void acc_f32_sycl(const float *x, const float *y, float *dst,
const int n_elements, const int ne10, const int ne11,
const int ne12, const int nb1, const int nb2,
const int offset, queue_ptr stream) {
int num_blocks = ceil_div(n_elements, SYCL_ACC_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) *
sycl::range<1>(SYCL_ACC_BLOCK_SIZE),
sycl::range<1>(SYCL_ACC_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
item_ct1);
});
}
template<typename T>
static void arange_kernel(T * dst, const int k, T start, T step,
const sycl::nd_item<1> &item_ct1) {
SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
dst[i] = start + static_cast<T>(i) * step;
}
}
template<typename T>
static void upscale_sycl(const T *x, T *dst, const int nb00, const int nb01,
const int nb02, const int nb03, const int ne10, const int ne11,
const int ne12, const int ne13, const float sf0, const float sf1,
const float sf2, const float sf3, queue_ptr stream) {
int dst_size = ne10 * ne11 * ne12 * ne13;
int num_blocks = ceil_div(dst_size, SYCL_UPSCALE_BLOCK_SIZE);
sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
upscale(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1);
});
}
template<typename KernelInvoker, typename... Args>
static inline void dispatch_ggml_sycl_op_unary(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
#if defined (GGML_SYCL_F16)
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
#else
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
#endif
GGML_ASSERT(dst->src[0]->type == dst->type);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
switch (dst->type) {
#if defined (GGML_SYCL_F16)
case GGML_TYPE_F16:
{
auto data_pts = cast_data<sycl::half>(dst);
kernel_invoker(data_pts.src, data_pts.dst, (int)ggml_nelements(dst->src[0]), main_stream, std::forward<Args>(args)...);
break;
}
#endif
case GGML_TYPE_F32:
{
auto data_pts = cast_data<float>(dst);
kernel_invoker(data_pts.src, data_pts.dst, (int)ggml_nelements(dst->src[0]), main_stream, std::forward<Args>(args)...);
break;
}
default:
GGML_ABORT("GGML tensor type not supported!\n");
}
}
template<typename KernelInvoker, typename... Args>
static inline void dispatch_ggml_sycl_op_fused_glu(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
#if defined (GGML_SYCL_F16)
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
#else
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
#endif
GGML_ASSERT(dst->src[0]->type == dst->type);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const int64_t nc = src1 ? src0->ne[0] : src0->ne[0] / 2;;
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_is_contiguous_1(dst->src[0]));
GGML_ASSERT(ggml_is_contiguous(dst));
const int32_t swapped = ((const int32_t *) dst->op_params)[1];
void * src0_d = src0->data;
void * src1_d = src1 ? src1->data : src0->data;
const int64_t src0_o = src0->nb[1];
const int64_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
void * dst_d = dst->data;
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
GGML_ASSERT(src1->ne[0] == nc);
GGML_ASSERT(src0->type == src1->type);
}
switch (dst->type) {
#if defined (GGML_SYCL_F16)
case GGML_TYPE_F16:
{
sycl::half * src0_p = (sycl::half *) src0_d;
sycl::half * src1_p = (sycl::half *) src1_d;
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
kernel_invoker(src0_p,
src1_p,
(sycl::half *) dst_d,
ggml_nelements(dst),
nc,
src0_o / sizeof(sycl::half),
src1_o / sizeof(sycl::half),
main_stream,
std::forward<Args>(args)...);
break;
}
#endif
case GGML_TYPE_F32:
{
float * src0_p = (float *) src0_d;
float * src1_p = (float *) src1_d;
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
kernel_invoker(src0_p,
src1_p,
(float *) dst_d,
ggml_nelements(dst),
nc,
src0_o / sizeof(float),
src1_o / sizeof(float),
main_stream,
std::forward<Args>(args)...);
break;
}
default:
GGML_ABORT("GGML tensor type not supported!\n");
}
}
template<typename KernelInvoker, typename... Args>
static inline void dispatch_ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
#if defined (GGML_SYCL_F16)
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
#else
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
#endif
GGML_ASSERT(dst->src[0]->type == dst->type);
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float sf0 = (float) dst->ne[0] / dst->src[0]->ne[0];
const float sf1 = (float) dst->ne[1] / dst->src[0]->ne[1];
const float sf2 = (float) dst->ne[2] / dst->src[0]->ne[2];
const float sf3 = (float) dst->ne[3] / dst->src[0]->ne[3];
switch (dst->type) {
#if defined (GGML_SYCL_F16)
case GGML_TYPE_F16:
{
auto data_pts = cast_data<sycl::half>(dst);
kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->nb[0], (int)dst->src[0]->nb[1], (int)dst->src[0]->nb[2],
(int)dst->src[0]->nb[3], (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], sf0, sf1, sf2, sf3,
main_stream, std::forward<Args>(args)...);
break;
}
#endif
case GGML_TYPE_F32:
{
auto data_pts = cast_data<float>(dst);
kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->nb[0], (int)dst->src[0]->nb[1], (int)dst->src[0]->nb[2],
(int)dst->src[0]->nb[3], (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], sf0, sf1, sf2, sf3,
main_stream, std::forward<Args>(args)...);
break;
}
default:
GGML_ABORT("GGML tensor type not supported!\n");
}
}
template<typename F>
static inline void ggml_sycl_op_unary(
ggml_backend_sycl_context & ctx, ggml_tensor * dst, F func) {
ggml_tensor * src0 = dst->src[0];
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
const int64_t ne2 = dst->ne[2];
const int64_t ne3 = dst->ne[3];
const size_t nb0 = src0->nb[0];
const size_t nb1 = src0->nb[1];
const size_t nb2 = src0->nb[2];
const size_t nb3 = src0->nb[3];
const size_t nbd0 = dst->nb[0];
const size_t nbd1 = dst->nb[1];
const size_t nbd2 = dst->nb[2];
const size_t nbd3 = dst->nb[3];
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[=](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_generic_kernel(
src, dst_ptr, k_elements,
ne0, ne1, ne2, ne3,
nb0, nb1, nb2, nb3,
nbd0, nbd1, nbd2, nbd3,
item_ct1,
func
);
});
});
}
static inline void ggml_sycl_op_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->type == GGML_TYPE_F32);
float start, stop, step;
memcpy(&start, dst->op_params, sizeof(float));
memcpy(&stop, (float *) dst->op_params + 1, sizeof(float));
memcpy(&step, (float *) dst->op_params + 2, sizeof(float));
dpct::queue_ptr stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
float * dst_ptr = (float *)dst->data;
const int k = (int)ggml_nelements(dst);
const int num_blocks = ceil_div(k, SYCL_ARANGE_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_ARANGE_BLOCK_SIZE),
sycl::range<1>(SYCL_ARANGE_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
arange_kernel(dst_ptr, k, start, step, item_ct1);
});
}
} // namespace ggml_sycl_detail
static inline void ggml_sycl_op_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_sgn(x);
});
}
static inline void ggml_sycl_op_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_abs(x);
});
}
static inline void ggml_sycl_op_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_elu(x);
});
}
static inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_silu(x);
});
}
static inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_gelu(x);
});
}
static inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_gelu_quick(x);
});
}
static inline void ggml_sycl_op_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_gelu_erf(x);
});
}
static inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_tanh(x);
});
}
static inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_relu(x);
});
}
static inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_hardsigmoid(x);
});
}
static inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_hardswish(x);
});
}
static inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_exp(x);
});
}
static inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_EXP_BLOCK_SIZE); // Using EXP block size
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_EXP_BLOCK_SIZE),
sycl::range<1>(SYCL_EXP_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_log_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_neg(x);
});
}
static inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_step(x);
});
}
static inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_sigmoid(x);
});
}
static inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_SQRT_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SQRT_BLOCK_SIZE),
sycl::range<1>(SYCL_SQRT_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_sqrt_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_SIN_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SIN_BLOCK_SIZE),
sycl::range<1>(SYCL_SIN_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_sin_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_SIN_BLOCK_SIZE); // Using SIN block size
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SIN_BLOCK_SIZE),
sycl::range<1>(SYCL_SIN_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_cos_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
float negative_slope;
memcpy(&negative_slope, dst->op_params, sizeof(float));
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream, float slope) {
const int num_blocks = ceil_div(k_elements, SYCL_RELU_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_RELU_BLOCK_SIZE),
sycl::range<1>(SYCL_RELU_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_leaky_relu_kernel(src, dst_ptr, k_elements, slope, item_ct1);
});
}, negative_slope);
}
static inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, SYCL_SQR_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SQR_BLOCK_SIZE),
sycl::range<1>(SYCL_SQR_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_sqr_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_upscale(ctx, dst,
[](const auto* src, auto* dst_ptr, int nb00, int nb01, int nb02, int nb03,
int ne10, int ne11, int ne12, int ne13, float sf0, float sf1, float sf2, float sf3,
queue_ptr stream) {
ggml_sycl_detail::upscale_sycl(src, dst_ptr, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, stream);
});
}
static inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
float min_val;
float max_val;
memcpy(&min_val, dst->op_params, sizeof(float));
memcpy(&max_val, (float *) dst->op_params + 1, sizeof(float));
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream, float min_arg, float max_arg) {
const int num_blocks = ceil_div(k_elements, SYCL_CLAMP_BLOCK_SIZE);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_CLAMP_BLOCK_SIZE),
sycl::range<1>(SYCL_CLAMP_BLOCK_SIZE)),
[=](sycl::nd_item<1> item_ct1) {
clamp(src, dst_ptr, min_arg, max_arg, k_elements, item_ct1);
});
}, min_val, max_val);
}
static inline void ggml_sycl_op_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_floor_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_ceil_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_round_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_trunc_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
}
static inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
const float * src1_dd = static_cast<const float*>(dst->src[1]->data);
float * dst_dd = static_cast<float *>(dst->data);
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
int offset = dst->op_params[3] / 4; // offset in bytes
ggml_sycl_detail::acc_f32_sycl(src0_dd, src1_dd, dst_dd, (int)ggml_nelements(dst), (int)dst->src[1]->ne[0], (int)dst->src[1]->ne[1], (int)dst->src[1]->ne[2], nb1, nb2, offset, main_stream);
}
static inline void ggml_sycl_op_geglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
[](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
const uint32_t num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE);
main_stream->parallel_for(
sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
gated_op_fused_geglu(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
});
});
}
static inline void ggml_sycl_op_reglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
[](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
const uint32_t num_blocks = ceil_div((uint32_t)k, SYCL_RELU_BLOCK_SIZE); // Using RELU block size for reglu
main_stream->parallel_for(
sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_RELU_BLOCK_SIZE)), sycl::range<1>(SYCL_RELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
gated_op_fused_reglu(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
});
});
}
static inline void ggml_sycl_op_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
[](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
const uint32_t num_blocks = ceil_div((uint32_t)k, SYCL_SILU_BLOCK_SIZE); // Using SILU block size for swiglu
main_stream->parallel_for(
sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_SILU_BLOCK_SIZE)), sycl::range<1>(SYCL_SILU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
gated_op_fused_swiglu(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
});
});
}
__dpct_inline__ float ggml_sycl_op_swiglu_oai_single(float x, float g, float alpha = 1.702f, float limit = 7.0f) {
x = sycl::fmin(x, limit);
g = sycl::fmax(sycl::fmin(g, limit), -limit);
float out_glu = x / (1.0f + sycl::native::exp(-x * alpha));
out_glu = out_glu * (1.0f + g);
return out_glu;
}
template <typename T>
static void swiglu_oai_kernel(const T * x, const T * g, T * dst, const int64_t k,
const int64_t n, const int64_t o0, const int64_t o1,
float alpha, float limit, sycl::nd_item<3> item_ct1) {
const int64_t i = int64_t(item_ct1.get_local_range(2)) * item_ct1.get_group(2) + item_ct1.get_local_id(2);
if (i >= k) {
return;
}
const int64_t j0 = (i / n) * o0 + (i % n);
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
float xi = x[j0];
float gi = g[j1];
dst[i] = ggml_sycl_op_swiglu_oai_single(xi, gi, alpha, limit);
}
template <typename T>
static void swiglu_oai_sycl(const T * x,
const T * g,
T * dst,
const int64_t k,
const int64_t n,
const int64_t o0,
const int64_t o1,
const float alpha,
const float limit,
dpct::queue_ptr stream) {
const int64_t num_blocks = (k + SYCL_GLU_BLOCK_SIZE - 1) / SYCL_GLU_BLOCK_SIZE;
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, SYCL_GLU_BLOCK_SIZE),
sycl::range<3>(1, 1, SYCL_GLU_BLOCK_SIZE)),
[=](sycl::nd_item<3> item_ct1) {
swiglu_oai_kernel(x, g, dst, k, n, o0, o1, alpha, limit, item_ct1);
});
}
void ggml_sycl_op_swiglu_oai(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
void * src0_d = src0->data;
void * src1_d = src1 ? src1->data : src0->data;
const int64_t src0_o = src0->nb[1];
const int64_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
void * dst_d = dst->data;
const int64_t nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
dpct::queue_ptr stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(src0->nb[0] == ggml_element_size(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->type == dst->type);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == ggml_nrows(src0));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
GGML_ASSERT(src1->ne[0] == nc);
GGML_ASSERT(src0->type == src1->type);
}
//const int32_t swapped = ((const int32_t *) dst->op_params)[1];
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
const float alpha = ggml_get_op_params_f32(dst, 2);
const float limit = ggml_get_op_params_f32(dst, 3);
float * src0_p = (float *) src0_d;
float * src1_p = (float *) src1_d;
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
swiglu_oai_sycl(src0_p, src1_p, (float *)dst_d, ggml_nelements(dst), nc, src0_o / sizeof(float), src1_o / sizeof(float), alpha, limit, stream);
}
static inline void ggml_sycl_op_geglu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
[](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
const uint32_t num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE);
main_stream->parallel_for(
sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
gated_op_fused_geglu_erf(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
});
});
}
static inline void ggml_sycl_op_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
[](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
const uint32_t num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE);
main_stream->parallel_for(
sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
gated_op_fused_geglu_quick(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
});
});
}
void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_sqrt(ctx, dst);
}
void ggml_sycl_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_sin(ctx, dst);
}
void ggml_sycl_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_cos(ctx, dst);
}
void ggml_sycl_acc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/2);
ggml_sycl_op_acc(ctx, dst);
}
void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_gelu(ctx, dst);
}
void ggml_sycl_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_silu(ctx, dst);
}
void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_gelu_quick(ctx, dst);
}
void ggml_sycl_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_gelu_erf(ctx, dst);
}
void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_tanh(ctx, dst);
}
void ggml_sycl_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_relu(ctx, dst);
}
void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_sigmoid(ctx, dst);
}
void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_hardsigmoid(ctx, dst);
}
void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_hardswish(ctx, dst);
}
void ggml_sycl_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_exp(ctx, dst);
}
void ggml_sycl_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_log(ctx, dst);
}
void ggml_sycl_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_neg(ctx, dst);
}
void ggml_sycl_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_step(ctx, dst);
}
void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_leaky_relu(ctx, dst);
}
void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_sqr(ctx, dst);
}
void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_upscale(ctx, dst);
}
void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_clamp(ctx, dst);
}
void ggml_sycl_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_sgn(ctx, dst);
}
void ggml_sycl_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_abs(ctx, dst);
}
void ggml_sycl_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_elu(ctx, dst);
}
void ggml_sycl_geglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_geglu(ctx, dst);
}
void ggml_sycl_reglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_reglu(ctx, dst);
}
void ggml_sycl_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_swiglu(ctx, dst);
}
void ggml_sycl_swiglu_oai(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_swiglu_oai(ctx, dst);
}
void ggml_sycl_geglu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_geglu_erf(ctx, dst);
}
void ggml_sycl_geglu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_geglu_quick(ctx, dst);
}
void ggml_sycl_arange(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/0);
ggml_sycl_detail::ggml_sycl_op_arange(ctx, dst);
}
void ggml_sycl_floor(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_floor(ctx, dst);
}
void ggml_sycl_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_ceil(ctx, dst);
}
void ggml_sycl_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_round(ctx, dst);
}
void ggml_sycl_trunc(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
ggml_sycl_op_trunc(ctx, dst);
}