44 lines
1.8 KiB
Plaintext
44 lines
1.8 KiB
Plaintext
#include "reduce_rows.cuh"
|
|
#include "sumrows.cuh"
|
|
|
|
void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
const int id = ggml_cuda_get_device();
|
|
const int nsm = ggml_cuda_info().devices[id].nsm;
|
|
const dim3 block_nums(nrows, 1, 1);
|
|
if ((nrows / nsm) < 2) {
|
|
const dim3 block_dims(512, 1, 1);
|
|
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
|
} else {
|
|
const dim3 block_dims(ncols < 1024 ? 32 : 128, 1, 1);
|
|
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const float * src0_d = (const float *)src0->data;
|
|
float * dst_d = (float *)dst->data;
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
const int64_t ncols = src0->ne[0];
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
const dim3 block_nums(nrows, 1, 1);
|
|
|
|
const int id = ggml_cuda_get_device();
|
|
const int nsm = ggml_cuda_info().devices[id].nsm;
|
|
if ((nrows / nsm) < 2) {
|
|
// Increase num threads to 512 for small nrows to better hide the latency
|
|
const dim3 block_dims(512, 1, 1);
|
|
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
|
} else {
|
|
// Enough active SMs to hide latency, use smaller blocks to allow better scheduling
|
|
const dim3 block_dims(ncols < 1024 ? 32 : 128, 1, 1);
|
|
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
|
}
|
|
}
|