llama.cpp/ggml/src/ggml-qnn/utils.cpp

318 lines
9.6 KiB
C++

#include "utils.hpp"
#include <cstdlib>
#include "ggml-qnn.h"
#include "qnn-types.hpp"
#ifdef __linux__
#include <unistd.h>
#endif
namespace qnn {
qnn_dimension_array_t get_internal_dimension(const ggml_dimension_array_t &dims, uint32_t rank) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS should be 4");
GGML_ASSERT(rank <= GGML_MAX_DIMS && rank > 0);
qnn_dimension_array_t internal_dims = {};
/*
* Both the ggml and qnn tensor in memory are stored as row-major format.
* But the dimensions of the tensor are stored in different order.
* For example, a 2x3 matrix:
* [
* [1, 2, 3],
* [4, 5, 6],
* ]
* The ggml tensor will have dimensions [3, 2], while the qnn tensor will have dimensions [2, 3].
*/
for (uint32_t i = 0; i < rank; i++) {
internal_dims[i] = std::max<uint32_t>(dims[rank - 1 - i], 1);
}
return internal_dims;
}
// TODO: mapping more ggml data type to QNN data type
// ref:explanation of k-quants, https://github.com/ggerganov/llama.cpp/pull/1684
Qnn_DataType_t qnn_datatype_from_ggml_datatype(ggml_type ggml_type) {
switch (ggml_type) {
case GGML_TYPE_F32:
return QNN_DATATYPE_FLOAT_32;
case GGML_TYPE_F16:
return QNN_DATATYPE_FLOAT_16;
case GGML_TYPE_I32:
return QNN_DATATYPE_INT_32;
case GGML_TYPE_I16:
return QNN_DATATYPE_INT_16;
case GGML_TYPE_I8:
return QNN_DATATYPE_INT_8;
case GGML_TYPE_Q8_0:
return QNN_DATATYPE_SFIXED_POINT_8;
case GGML_TYPE_Q4_0:
return QNN_DATATYPE_SFIXED_POINT_4;
default:
break;
}
return QNN_DATATYPE_UNDEFINED;
}
ggml_type ggml_datatype_from_qnn_datatype(Qnn_DataType_t qnn_type) {
switch (qnn_type) {
case QNN_DATATYPE_FLOAT_32:
return GGML_TYPE_F32;
case QNN_DATATYPE_FLOAT_16:
return GGML_TYPE_F16;
case QNN_DATATYPE_UINT_32:
case QNN_DATATYPE_INT_32:
return GGML_TYPE_I32;
case QNN_DATATYPE_INT_16:
return GGML_TYPE_I16;
case QNN_DATATYPE_INT_8:
return GGML_TYPE_I8;
case QNN_DATATYPE_SFIXED_POINT_8:
return GGML_TYPE_Q8_0;
case QNN_DATATYPE_SFIXED_POINT_4:
return GGML_TYPE_Q4_0;
default:
break;
}
return GGML_TYPE_COUNT;
}
size_t qnn_datatype_size(Qnn_DataType_t qnn_type) {
switch (qnn_type) {
case QNN_DATATYPE_FLOAT_32:
return sizeof(float);
case QNN_DATATYPE_FLOAT_16:
return sizeof(uint16_t);
case QNN_DATATYPE_UINT_32:
case QNN_DATATYPE_INT_32:
return sizeof(int32_t);
case QNN_DATATYPE_INT_16:
return sizeof(int16_t);
case QNN_DATATYPE_INT_8:
return sizeof(int8_t);
case QNN_DATATYPE_SFIXED_POINT_8:
return sizeof(int8_t);
case QNN_DATATYPE_SFIXED_POINT_4:
return sizeof(int8_t);
default:
break;
}
return 0;
}
const char *qnn_datatype_to_string(Qnn_DataType_t qnn_type) {
switch (qnn_type) {
case QNN_DATATYPE_FLOAT_32:
return "QNN_DATATYPE_FLOAT_32";
case QNN_DATATYPE_FLOAT_16:
return "QNN_DATATYPE_FLOAT_16";
case QNN_DATATYPE_UINT_32:
return "QNN_DATATYPE_UINT_32";
case QNN_DATATYPE_INT_32:
return "QNN_DATATYPE_INT_32";
case QNN_DATATYPE_INT_16:
return "QNN_DATATYPE_INT_16";
case QNN_DATATYPE_INT_8:
return "QNN_DATATYPE_INT_8";
case QNN_DATATYPE_SFIXED_POINT_8:
return "QNN_DATATYPE_SFIXED_POINT_8";
case QNN_DATATYPE_SFIXED_POINT_4:
return "QNN_DATATYPE_SFIXED_POINT_4";
default:
break;
}
return "QNN_DATATYPE_UNDEFINED";
}
uint32_t get_ggml_tensor_rank(const ggml_tensor *tensor) {
uint32_t rank = 0;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if ((0 != tensor->ne[i]) && (1 != tensor->ne[i])) {
rank++;
}
}
return rank;
}
const char *get_ggml_type_name(ggml_type type) {
const auto *traits = ggml_get_type_traits(type);
return traits->type_name;
}
const char *get_backend_name(QNNBackend device_index) {
switch (device_index) {
case QNN_BACKEND_CPU:
return "QNN-CPU";
case QNN_BACKEND_GPU:
return "QNN-GPU";
case QNN_BACKEND_NPU:
return "QNN-NPU";
case QNN_BACKEND_COUNT:
default:
return "unknown";
}
}
const char *get_chipset_desc(uint32_t chipset_id) {
switch (chipset_id) {
case SM8450:
return "SM8450";
case SM8475:
return "SM8475";
case SM8550:
return "SM8550";
case SM8650:
return "SM8650";
default:
return "unknown";
}
}
const char *get_htparch_desc(size_t htp_arch) {
switch (htp_arch) {
case V68:
return "QCOM_HTP_V68";
case V69:
return "QCOM_HTP_V69";
case V73:
return "QCOM_HTP_V73";
case V75:
return "QCOM_HTP_V75";
default:
return "unknown";
}
}
intptr_t align_to(size_t alignment, intptr_t offset) {
return offset % alignment == 0
? offset
: offset + (static_cast<intptr_t>(alignment) - (offset % static_cast<intptr_t>(alignment)));
}
uint32_t get_ggml_tensor_data_size(const ggml_tensor *tensor) {
/*
size_t data_size = ggml_row_size(tensor->type, tensor->ne[0]);
size_t n_dims = qnn_get_ggml_tensor_rank(tensor);
for (int i = 1; i < n_dims; i++) {
data_size *= tensor->ne[i];
}
return data_size;
*/
return ggml_nbytes(tensor);
}
void *align_alloc(size_t alignment, size_t size) {
size_t size_aligned = size;
if ((size_aligned % alignment) != 0) {
size_aligned += (alignment - (size_aligned % alignment));
}
void *data = std::aligned_alloc(alignment, size_aligned);
if (!data) {
QNN_LOG_WARN("aligned_alloc failed\n");
return nullptr;
}
return data;
}
void align_free(void *ptr) { std::free(ptr); }
// =================================================================================================
//
// QNN backend internal helper functions
//
// =================================================================================================
// TODO: only support GGML_OP_ADD/GGML_OP_MUL/GGML_OP_MUL_MAT
const char *opname_from_ggmlop(enum ggml_op ggmlop) {
switch (ggmlop) {
case GGML_OP_ADD:
return QNN_OP_ELEMENT_WISE_ADD;
case GGML_OP_MUL:
return QNN_OP_ELEMENT_WISE_MULTIPLY;
case GGML_OP_MUL_MAT:
return QNN_OP_MAT_MUL;
default:
break;
}
return nullptr;
}
const char *get_qnn_error_string(Qnn_ErrorHandle_t error) {
// A complete list of error codes can be found at here:
// https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/api_error_codes.html
switch (error) {
case QNN_SUCCESS:
return "QNN_SUCCESS";
case QNN_COMMON_ERROR_GENERAL:
return "QNN_COMMON_ERROR_GENERAL";
// QnnGraph_Error_t
case QNN_GRAPH_ERROR_UNSUPPORTED_FEATURE:
return "QNN_GRAPH_ERROR_UNSUPPORTED_FEATURE";
case QNN_GRAPH_ERROR_MEM_ALLOC:
return "QNN_GRAPH_ERROR_MEM_ALLOC";
case QNN_GRAPH_ERROR_INVALID_ARGUMENT:
return "QNN_GRAPH_ERROR_INVALID_ARGUMENT";
case QNN_GRAPH_ERROR_INVALID_HANDLE:
return "QNN_GRAPH_ERROR_INVALID_HANDLE";
case QNN_GRAPH_ERROR_GRAPH_DOES_NOT_EXIST:
return "QNN_GRAPH_ERROR_GRAPH_DOES_NOT_EXIST";
case QNN_GRAPH_ERROR_INVALID_NAME:
return "QNN_GRAPH_ERROR_INVALID_NAME";
case QNN_GRAPH_ERROR_INVALID_TENSOR:
return "QNN_GRAPH_ERROR_INVALID_TENSOR";
case QNN_GRAPH_ERROR_INVALID_OP_CONFIG:
return "QNN_GRAPH_ERROR_INVALID_OP_CONFIG";
case QNN_GRAPH_ERROR_SET_PROFILE:
return "QNN_GRAPH_ERROR_SET_PROFILE";
case QNN_GRAPH_ERROR_UNCONNECTED_NODE:
return "QNN_GRAPH_ERROR_UNCONNECTED_NODE";
case QNN_GRAPH_ERROR_CREATE_FAILED:
return "QNN_GRAPH_ERROR_CREATE_FAILED";
// QnnOpPackage_Error_t
case QNN_OP_PACKAGE_ERROR_LIBRARY_ALREADY_INITIALIZED:
return "QNN_OP_PACKAGE_ERROR_LIBRARY_ALREADY_INITIALIZED";
case QNN_OP_PACKAGE_ERROR_LIBRARY_NOT_INITIALIZED:
return "QNN_OP_PACKAGE_ERROR_LIBRARY_NOT_INITIALIZED";
case QNN_OP_PACKAGE_ERROR_INVALID_HANDLE:
return "QNN_OP_PACKAGE_ERROR_INVALID_HANDLE";
case QNN_OP_PACKAGE_ERROR_INVALID_INFRASTRUCTURE:
return "QNN_OP_PACKAGE_ERROR_INVALID_INFRASTRUCTURE";
case QNN_OP_PACKAGE_ERROR_INVALID_INFO:
return "QNN_OP_PACKAGE_ERROR_INVALID_INFO";
case QNN_OP_PACKAGE_ERROR_VALIDATION_FAILURE:
return "QNN_OP_PACKAGE_ERROR_VALIDATION_FAILURE";
case QNN_OP_PACKAGE_ERROR_INVALID_ARGUMENT:
return "QNN_OP_PACKAGE_ERROR_INVALID_ARGUMENT";
default:
return nullptr;
}
}
#ifdef __linux__
size_t get_system_total_memory_in_bytes() {
auto pages = (size_t)sysconf(_SC_PHYS_PAGES);
auto page_size = (size_t)sysconf(_SC_PAGE_SIZE);
return pages * page_size;
}
size_t get_system_free_memory_in_bytes() {
auto avail_pages = (size_t)sysconf(_SC_AVPHYS_PAGES);
auto page_size = (size_t)sysconf(_SC_PAGE_SIZE);
return avail_pages * page_size;
}
#endif
} // namespace qnn