184 lines
6.7 KiB
C++
184 lines
6.7 KiB
C++
#include "models.h"
|
|
|
|
ggml_cgraph * clip_graph_qwen2vl::build() {
|
|
GGML_ASSERT(model.patch_bias == nullptr);
|
|
GGML_ASSERT(model.class_embedding == nullptr);
|
|
|
|
const int batch_size = 1;
|
|
const bool use_window_attn = hparams.n_wa_pattern > 0;
|
|
const int n_wa_pattern = hparams.n_wa_pattern;
|
|
const int n_pos = n_patches;
|
|
const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
|
|
|
|
norm_type norm_t = proj_type == PROJECTOR_TYPE_QWEN25VL
|
|
? NORM_TYPE_RMS // qwen 2.5 vl
|
|
: NORM_TYPE_NORMAL; // qwen 2 vl
|
|
|
|
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
|
|
|
|
ggml_tensor * inp_raw = build_inp_raw();
|
|
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
|
|
|
|
GGML_ASSERT(img.nx % (patch_size * 2) == 0);
|
|
GGML_ASSERT(img.ny % (patch_size * 2) == 0);
|
|
|
|
// second conv dimension
|
|
{
|
|
auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
|
|
inp = ggml_add(ctx0, inp, inp_1);
|
|
|
|
inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
|
|
inp = ggml_cont_4d(
|
|
ctx0, inp,
|
|
n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
|
|
inp = ggml_reshape_4d(
|
|
ctx0, inp,
|
|
n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
|
|
inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
|
|
inp = ggml_cont_3d(
|
|
ctx0, inp,
|
|
n_embd, n_patches_x * n_patches_y, batch_size);
|
|
}
|
|
|
|
ggml_tensor * inpL = inp;
|
|
ggml_tensor * window_mask = nullptr;
|
|
ggml_tensor * window_idx = nullptr;
|
|
ggml_tensor * inv_window_idx = nullptr;
|
|
|
|
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
|
|
ggml_set_name(positions, "positions");
|
|
ggml_set_input(positions);
|
|
|
|
// pre-layernorm
|
|
if (model.pre_ln_w) {
|
|
inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
|
|
}
|
|
|
|
if (use_window_attn) {
|
|
// handle window attention inputs
|
|
inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
|
|
ggml_set_name(inv_window_idx, "inv_window_idx");
|
|
ggml_set_input(inv_window_idx);
|
|
// mask for window attention
|
|
window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
|
|
ggml_set_name(window_mask, "window_mask");
|
|
ggml_set_input(window_mask);
|
|
|
|
// if flash attn is used, we need to pad the mask and cast to f16
|
|
if (flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
|
|
window_mask = ggml_cast(ctx0, window_mask, GGML_TYPE_F16);
|
|
}
|
|
|
|
// inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
|
|
GGML_ASSERT(batch_size == 1);
|
|
inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
|
|
inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
|
|
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
|
|
}
|
|
|
|
// loop over layers
|
|
for (int il = 0; il < n_layer; il++) {
|
|
const auto & layer = model.layers[il];
|
|
const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
|
|
|
|
ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
|
|
|
|
// layernorm1
|
|
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
|
|
cb(cur, "ln1", il);
|
|
|
|
// self-attention
|
|
{
|
|
ggml_tensor * Qcur = ggml_add(ctx0,
|
|
ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
|
|
ggml_tensor * Kcur = ggml_add(ctx0,
|
|
ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
|
|
ggml_tensor * Vcur = ggml_add(ctx0,
|
|
ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
|
|
|
|
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
|
|
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
|
|
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
|
|
|
|
cb(Qcur, "Qcur", il);
|
|
cb(Kcur, "Kcur", il);
|
|
cb(Vcur, "Vcur", il);
|
|
|
|
// apply M-RoPE
|
|
Qcur = ggml_rope_multi(
|
|
ctx0, Qcur, positions, nullptr,
|
|
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
|
|
Kcur = ggml_rope_multi(
|
|
ctx0, Kcur, positions, nullptr,
|
|
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
|
|
|
|
cb(Qcur, "Qcur_rope", il);
|
|
cb(Kcur, "Kcur_rope", il);
|
|
|
|
ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
|
|
|
|
cur = build_attn(layer.o_w, layer.o_b,
|
|
Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
|
|
cb(cur, "attn_out", il);
|
|
}
|
|
|
|
// re-add the layer input, e.g., residual
|
|
cur = ggml_add(ctx0, cur, inpL);
|
|
|
|
inpL = cur; // inpL = residual, cur = hidden_states
|
|
|
|
cb(cur, "ffn_inp", il);
|
|
|
|
// layernorm2
|
|
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
|
|
cb(cur, "ffn_inp_normed", il);
|
|
|
|
// ffn
|
|
cur = build_ffn(cur,
|
|
layer.ff_up_w, layer.ff_up_b,
|
|
layer.ff_gate_w, layer.ff_gate_b,
|
|
layer.ff_down_w, layer.ff_down_b,
|
|
hparams.ffn_op, il);
|
|
|
|
cb(cur, "ffn_out", il);
|
|
|
|
// residual 2
|
|
cur = ggml_add(ctx0, inpL, cur);
|
|
cb(cur, "layer_out", il);
|
|
|
|
inpL = cur;
|
|
}
|
|
|
|
// post-layernorm
|
|
if (model.post_ln_w) {
|
|
inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
|
|
}
|
|
|
|
// multimodal projection
|
|
ggml_tensor * embeddings = inpL;
|
|
embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
|
|
embeddings = build_ffn(embeddings,
|
|
model.mm_0_w, model.mm_0_b,
|
|
nullptr, nullptr,
|
|
model.mm_1_w, model.mm_1_b,
|
|
FFN_GELU,
|
|
-1);
|
|
|
|
if (use_window_attn) {
|
|
window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
|
|
ggml_set_name(window_idx, "window_idx");
|
|
ggml_set_input(window_idx);
|
|
|
|
// embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
|
|
GGML_ASSERT(batch_size == 1);
|
|
embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
|
|
embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
|
|
embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
|
|
}
|
|
|
|
// build the graph
|
|
ggml_build_forward_expand(gf, embeddings);
|
|
|
|
return gf;
|
|
}
|