70 lines
2.5 KiB
C++
70 lines
2.5 KiB
C++
#include "models.h"
|
|
|
|
ggml_cgraph * clip_graph_internvl::build() {
|
|
GGML_ASSERT(model.class_embedding != nullptr);
|
|
GGML_ASSERT(model.position_embeddings != nullptr);
|
|
|
|
const int n_pos = n_patches + 1;
|
|
ggml_tensor * inp = build_inp();
|
|
|
|
// add CLS token
|
|
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
|
|
|
|
// The larger models use a different ViT, which uses RMS norm instead of layer norm
|
|
// ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
|
|
norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
|
|
? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
|
|
: NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
|
|
|
|
ggml_tensor * cur = build_vit(
|
|
inp, n_pos,
|
|
norm_t,
|
|
hparams.ffn_op,
|
|
model.position_embeddings,
|
|
nullptr);
|
|
|
|
// remove CLS token
|
|
cur = ggml_view_2d(ctx0, cur,
|
|
n_embd, n_patches,
|
|
ggml_row_size(cur->type, n_embd), 0);
|
|
|
|
// pixel shuffle
|
|
{
|
|
const int scale_factor = model.hparams.n_merge;
|
|
const int bsz = 1; // batch size, always 1 for now since we don't support batching
|
|
const int height = n_patches_y;
|
|
const int width = n_patches_x;
|
|
GGML_ASSERT(scale_factor > 0);
|
|
cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
|
|
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
|
|
cur = ggml_cont_4d(ctx0, cur,
|
|
n_embd * scale_factor * scale_factor,
|
|
height / scale_factor,
|
|
width / scale_factor,
|
|
bsz);
|
|
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
|
|
// flatten to 2D
|
|
cur = ggml_cont_2d(ctx0, cur,
|
|
n_embd * scale_factor * scale_factor,
|
|
cur->ne[1] * cur->ne[2]);
|
|
}
|
|
|
|
// projector (always using GELU activation)
|
|
{
|
|
// projector LayerNorm uses pytorch's default eps = 1e-5
|
|
// ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
|
|
cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
|
|
cur = build_ffn(cur,
|
|
model.mm_1_w, model.mm_1_b,
|
|
nullptr, nullptr,
|
|
model.mm_3_w, model.mm_3_b,
|
|
FFN_GELU,
|
|
-1);
|
|
}
|
|
|
|
// build the graph
|
|
ggml_build_forward_expand(gf, cur);
|
|
|
|
return gf;
|
|
}
|